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ABSTRACT

We propose a sample-efficient Q-learning algorithm for reinforcement learning
with the Conditional Value-at-Risk (CVaR) objective. Our method introduces two
key innovations. First, we propose the predictive tail value function, a novel for-
mulation of risk-sensitive action value, admits a recursive structure as in the con-
ventional risk-neutral Bellman equation. This novel formulation addresses the
problem of noisy policy evaluation originating from the non-decomposable ob-
jective. Second, we introduce a two-way exploration strategy that explores the
agent’s risk-sensitivity level in addition to its actions. This technique mitigates
the “blindness to success” phenomenon by preventing premature convergence to
overly conservative policies. We establish a rigorous theoretical foundation for
this framework, including a new Bellman optimality equation and a policy im-
provement theorem. Empirical results demonstrate that our algorithm significantly
improves both CVaR performance and learning stability.

1 INTRODUCTION

In high-stakes sequential decision-making tasks, the consequences of rare but catastrophic out-
comes cannot be ignored. Standard reinforcement learning (RL), which assumes risk neutrality
and optimizes expected returns, is insufficient in such settings. Indeed, risk-sensitive approaches
have demonstrated superior performance in a variety of safety-critical domains, such as autonomous
driving (Wen et al., 2020), robotic surgery (Pore et al., 2021), and finance (Greenberg et al., 2022).
Among the various risk measures, Conditional Value-at-Risk (CVaR) has emerged as a prominent
objective, valued for its mathematical tractability (Rockafellar et al., 2000) and its direct focus on
worst-case outcomes.

CVaR quantifies the expected loss within the worst-case quantile of a return distribution, making
it a natural fit for agents designed to be averse to catastrophic losses. Mirroring the development
of risk-neutral RL, methodological advancements to optimize the CVaR objective have primarily
evolved along two main avenues: policy-gradient methods (Tamar et al., 2015; Rajeswaran et al.,
2016; Tamar et al., 2016; Queeney et al., 2021; Urpı́ et al., 2021; Greenberg et al., 2022; Markowitz
et al., 2023; Kim & Min, 2024; Mead et al., 2025) and value-based approaches (Bäuerle & Ott, 2011;
Chow et al., 2015; Pflug & Pichler, 2016; Stanko & Macek, 2019; Singh et al., 2020; Zhang & Weng,
2021; Lim & Malik, 2022; Li et al., 2022; Wang et al., 2023). Despite this progress, applying these
methods introduces significant challenges.

CVaR RL is notoriously sample-inefficient, a problem often attributed to its focus on a narrow subset
of worst-case trajectories. In this work, we argue that this inefficiency stems from two more fun-
damental issues: noisy policy evaluation due to a lack of temporal decomposition, and ineffective
exploration caused by ignoring successful outcomes.

The first fundamental issue stems from the difficulty of temporal credit assignment. In many value-
based formulations, the CVaR objective is treated as a single, non-decomposable reward realized
only at the end of the episode. This structure prevents the agent from assessing the immediate
impact of its actions, as the learning signal from an entire trajectory is collapsed into one delayed
outcome. This lack of temporal decomposition makes policy evaluation exceptionally noisy, which
is a primary driver of the sample inefficiency observed in CVaR RL (Hau et al., 2023; Kim & Min,
2024).

Compounding this evaluation problem is a fundamental difficulty with exploration. Because the
CVaR objective is driven by the worst-case outcomes, the learning signal is derived almost exclu-
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sively from “failure” trajectories. High-return trajectories that fall outside the lower-risk quantile are
effectively ignored, preventing the agent from learning to improve upon already successful behav-
iors. This well-documented phenomenon, known as “blindness to success” (Greenberg et al., 2022;
Mead et al., 2025), can cause the learning process to stagnate in overly conservative, suboptimal
policies.

To address these challenges, we introduce Predictive CVaR Q-learning, a novel value-based al-
gorithm built upon a new, recursive formulation of the CVaR objective. We provide a rigorous
theoretical foundation for our method, justifying each component of the algorithm, and demonstrate
its superior performance and sample efficiency through experiments.

Our primary contribution is a new pair of value functions—the predictive tail value function and
the predictive tail probability function—that resolves the temporal credit assignment problem.
This approach adapts and extends an idea originally proposed in the policy-gradient setting (Kim &
Min, 2024) for value-based learning. Together, these functions allow us to reformulate the CVaR
objective into a temporally decomposable structure. We prove that this formulation satisfies a risk-
neutral Bellman-style recursion, allowing the learning signal to be propagated at every step of a
trajectory. This provides dense, immediate feedback for policy evaluation, drastically reducing esti-
mation noise and improving sample efficiency.

Our second contribution is a two-way randomized exploration strategy designed to mitigate
“blindness to success.” In addition to conventional ϵ-greedy for action-level exploration, we in-
troduce novel exploration in the augmented state space by randomizing the initial risk budget. This
encourages the agent to experience trajectories with varying degrees of risk sensitivity—sometimes
acting boldly, other times conservatively. This exploration of risk preferences prevents the agent
from prematurely converging to overly safe, suboptimal policies and promotes the discovery of
more robust strategies.

2 PROBLEM SETUP AND PRELIMINARIES

We consider a finite-horizon Markov decision process (MDP)M =
(
S,A, T, (Pt)

T
t=1, s1

)
, where

S is the state space, A is the action space, T is the time horizon, s1 ∈ S is the initial state, and
Pt is the transition kernel at time t. At each time step t = 1, . . . , T , the agent observes the current
state St ∈ S, chooses an action At ∈ A, receives a reward Rt ∈ R, and transitions to a next state
St+1 ∈ S according to the transition kernel Pt, i.e., (Rt, St+1) ∼ Pt(· | St, At).

For notational convenience, we define Rs:t :=
∑t

τ=s Rτ , and (x)+ := max{x, 0}.

CVaR optimization Given a risk level q ∈ (0, 1], the CVaR of a random variable X is defined as

CVaRq[X] :=

∫ q

0

VaRu[X]du,

where VaRq[X] := sup{η ∈ R|P(X ≤ η) ≤ q} denotes the Value-at-Risk at the risk level q, i.e.,
the q-quantile of the distribution of total reward.

Our goal is to find the optimal policy that maximizes the CVaR value of the total reward R1:T at the
risk level q:

sup
π∈Π

{
CVaRπ

q [R1:T ]
}
,

where Π is the set of non-anticipating policies, including randomized ones. More formally, let
Ht := (S1, A1, R1, . . . , St−1, At−1, Rt−1, St) be the history revealed up to time t, and letHt be its
space. Each policy π ∈ Π is defined as a sequence of functions (πt : Ht → ∆|A|)Tt=1 such that each
πt specifies the distribution over actions at time t given history, i.e., At ∼ πt( · | Ht).

State space augmentation As one of its most favored properties, the CVaR measure admits a
variational representation that provides a more tractable alternative to its original definition that
involves non-smooth and non-linear structure. Specifically, for any non-anticipating policy π ∈ Π,
the CVaR can be expressed in the following variational form:

q · CVaRπ
q [R1:T ] = max

η∈R

{
qη + Eπ

[
−
(
η −R1:T

)+]}
.
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Here, the factor q on the left hand side is introduced to simplify expressions in later parts. This vari-
ational form allows us to reinterpret CVaR maximization as a two-stage optimization with respect
to the tail risk budget η (outer) and the policy π (inner):

sup
π∈Π

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R

{
qη + sup

π∈Π
Eπ

[
−
(
η −R1:T

)+]}
.

This representation naturally leads to the idea of state space augmentation, with an additional state
variable representing the tail budget. Formally, we introduce a residual tail budget process (Y η

t )
T+1
t=1

defined as
Y η
t := η −R1:t−1,

where η ∈ R is an auxiliary variable specifying the (initial) tail budget.

A Markov policy living on the augmented state space chooses the current action At based on the
current state St and the current residual budget Y η

t . Such a policy is specified by an augmented
Markov policy kernel χ that is defined as a sequence of functions (χt)

T
t=1 such that χt : S × R →

∆|A| maps the current state and the residual budget to an action distribution. That is, under a policy
induced by a kernel χ with a tail budget η, the action At is chosen according to

At ∼ χt( · | St, Y
η
t ).

Note that a kernel χ alone does not define a non-anticipating policy π ∈ Π; it must be coupled with
a specific tail budget η and we write Pχ,η to denote their corresponding probability measure. We
denote by X the set of augmented Markov policy kernels.

Notably, Bäuerle & Ott (2011) show that, for dynamic CVaR optimization, it is sufficient to search
over the augmented Markov policies instead of the entire set of non-anticipating policies:

sup
π∈Π

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R

{
qη + sup

χ∈X
Eχ,η

[
−
(
η −R1:T

)+]}
. (1)

A line of work (Bäuerle & Ott, 2011; Pflug & Pichler, 2016; Wang et al., 2023) applies dynamic
programming (DP) principles based on this observation. Our approach also builds on this insight,
but adopts a different formulation, as detailed below.

Dynamic programming on augmented state space Viewed as a risk-neutral optimization, the
inner optimization, supχ∈X Eχ,η

[
−
(
η −R1:T

)+]
, can be solved by applying the DP principles on

the augmented state space (Pflug & Pichler, 2016).

In particular, aforementioned prior studies postulate a risk-neutral decision maker who receives a
total reward of −(η −R1:T )

+ at the end of horizon. They introduce the action value function of an
augmented Markov policy kernel χ as

uχ
t (s, y, a) := Eχ,η

[
− (η −R1:T )

+ |St = s, Y η
t = y,At = a

]
,

which leads to the following Bellman equation:

uχ
t (s, y, a) = E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)[u

χ
t+1(St+1, y −Rt, At+1)], (2)

with uχ
T+1(s, y, a) = −(y)+. Conventional risk-neutral Q-learning algorithms can be applied to

optimize the kernel χ so that the optimal action value function u∗
t can be obtained, and then the outer

optimization reduces to a simple one-dimensional optimization, maxη∈R{qη +maxa u
∗
1(s1, η, a)}.

However, this approach suffers from sample inefficiency. Among the sample trajectories collected
over the course of Q-learning procedure, only a small subset of them will be meaningfully utilized
since the effective reward will be zero, i.e., (η−R1:T )

+ = 0, in the majority of trajectories (roughly,
(1− q)-fraction of trajectories). The main issue is that the term (η−R1:T )

+ is non-separable across
time steps, effectively delaying the reward realizations to the end of time horizon.

3
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3 THEORETICAL FOUNDATIONS

Existing CVaR-based dynamic programming approaches often rely on augmented state representa-
tions and treat the CVaR term as a terminal, non-decomposable objective. This leads to significant
sample inefficiency and complicates recursive value estimation. In this work, we resolve this by
introducing a novel, recursive formulation for the CVaR objective. Our key idea is to define a pair
of predictive functions — the predictive tail value function and the predictive tail probability func-
tion — that permit temporal decomposition and satisfy a risk-neutral Bellman-style recursion. This
structure facilitates value propagation and policy improvement in a manner analogous to standard
Q-learning, forming the theoretical bedrock for our sample-efficient Predictive CVaR Q-learning
algorithm.
Definition 1 (Predictive tail value/probability functions). Given an augmented Markov policy kernel
χ, its predictive tail value function fχ = (fχ

t : S × R×A → R)T+1
t=1 is defined as

fχ
t (s, y, a) := Eχ,η=0

[
I{Rt:T ≤ y}Rt:T

∣∣∣ St = s, Y η=0
t = y,At = a

]
,

with fχ
T+1(s, y, a) := 0. Additionally, its predictive tail probability function gχ = (gχt : S × R ×

A → [0, 1])T+1
t=1 is defined as

gχt (s, y, a) := Pχ,η=0
(
Rt:T ≤ y

∣∣∣ St = s, Y η=0
t = y,At = a

)
, (3)

with gχT+1(s, y, a) := I{0 ≤ y}.

Here, the choice η = 0 is arbitrary. Above notion of predictive tail values and probabilities are
invariant in η.

The predictive tail probability function gχt quantifies the likelihood that the remaining return from
time t onward falls below a specified threshold given the current state, residual budget, and ac-
tion. This object effectively encodes the probability of entering the CVaR tail conditioned on the
current decision point. The idea of modeling such risk-conditioned probabilities is reminiscent of
the Predictive CVaR Policy Gradient framework (Kim & Min, 2024), which uses similar quantities
to inform policy gradient-based policy updates. In contrast, we integrate action-conditioning into
the predictive structure and embed it within a Bellman-style recursion. This formulation enables
value-based approach such as Q-learning, moving beyond trajectory-level estimation and allowing
for action selection that directly maximize the CVaR objective.

In addition to the predictive tail probability, we define the predictive tail value function — for-
mally described by the function fχ

t (s, y, a) — as a novel, risk-sensitive analogue of the standard
action value function (so called Q-function). This function captures the expected cumulative re-
turn weighted by the probability that the trajectory remains in the CVaR tail from time t onward.
This function reflects both the magnitude and likelihood of tail outcomes. Importantly, the return
Rt:T is recursively decomposable, which allows fχ to satisfy a risk-neutral Bellman-style recursion.
This recursive structure enables value propagation and policy improvement analogous to standard
Q-learning, while preserving sensitivity to risk throughout the learning process.

Next result shows that the objective of the inner optimization, Eχ,η
[
− (η −R1:T )

+
]
, can be repre-

sented in terms of fχ and gχ, and also that fχ can be decomposed across time steps.

Assumption 1. Under any non-anticipating policy π ∈ Π and any time t ∈ {1, . . . , T}, the distri-
bution of remaining return Rt:T does not have any probability mass.
Proposition 1 (Temporal decomposition). Under Assumption 1, for any s ∈ S, y ∈ R, a ∈ A, and
t ∈ {1, . . . , T}, the following equations hold:

fχ
t (s, y, a) = Eχ,η

[
T∑

τ=t

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ

∣∣∣∣∣ St = s, Y η
t = y,At = a

]
,

gχt (s, y, a) = Eχ,η
[
gχt+1(St+1, Yt+1, At+1)

∣∣ St = s, Y η
t = y,At = a

]
, (4)

and
Eχ,η

[
− (η −R1:T )

+
]
= EA1∼χ1(·|s1,η) [f

χ
1 (s1, η, A1)− gχ1 (s1, η, A1)× η] .

4
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We next show that the predictive tail value function exhibits a recursive structure that is very analo-
gous to the standard Bellman equation in the risk-neutral setting.
Theorem 1 (Bellman equation). Given an augmented Markov policy kernel χ, under Assumption 1,
its predictive tail value function fχ and predictive tail probability function gχ satisfy

fχ
t (s, y, a) = E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
fχ
t+1

(
St+1, y −Rt, At+1

)
+ gχt+1

(
St+1, y −Rt, At+1

)
×Rt

]
,
(5)

for all s ∈ S, y ∈ R, a ∈ A, and t ∈ {1, . . . , T}.

Compared to the Bellman equation (Eq. 2) established in prior work, this Bellman equation (Eq. 5)
includes an additional term, gχt+1

(
St+1, y−Rt, At+1

)
×Rt, corresponding to the immediate reward

in the standard Bellman equation. This term reflects that the anticipated contribution of the current
reward to the objective, enabling efficient value propagation in our suggested CVaR Q-learning
algorithm.

Building on this recursion, we can derive the optimality conditions that the optimal kernel has to
satisfy and its implication on the CVaR objective. This allows us to characterize optimality and
construct improvement principles, despite the non-Markovian nature of CVaR. We begin by defining
the notion of greedy kernels for the state space augmentation, mirroring the classic notion of greedy
policies in the standard Q-learning approaches.
Definition 2 (Greedy kernel). An augmented Markov policy kernel χ is said to be greedy with
respect to a predictive tail value/probability function pair (f, g) if

{a ∈ A | χt(a|s, y) > 0} ⊆ argmax
a∈A

{ft(s, y, a)− gt(s, y, a)× y} ,

for all s ∈ S, y ∈ R, and t ∈ {1, . . . , T}.
Theorem 2 (Bellman optimality equation). Define

vχt (s, y) := EAt∼χt(·|s,y) [f
χ
t (s, y, At)− gχt (s, y, At)× y] , v∗t (s, y) := sup

χ∈X
vχt (s, y).

Then, the following holds under Assumption 1:

1. Let Π(χ) be the set of augmented Markov policies induced by a kernel χ across all values
of η ∈ R. Then,

sup
π∈Π(χ)

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R
{qη + vχ1 (s1, η)} .

2. With respect to all non-anticipating policies,

sup
π∈Π

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R
{qη + v∗1(s1, η)} .

3. vχ ≡ v∗ if and only if χ is greedy with respect to (fχ, gχ).

The functions vχt and v∗t are analogous to the state value function and the optimal state value func-
tion, respectively, in the risk-neutral setting. The above result establishes explicit connections be-
tween the CVaR objective and predictive tail value/probability functions, and clarifies the meaning
of optimizing the augmented Markov policy kernel χ through dynamic programming principles.

We now demonstrate that the state-wise improvement of the kernel (in the augmented state space)
indeed improves the CVaR performance of the resulting policies.
Theorem 3 (Policy improvement). Consider an augmented Markov policy kernel χ along with its
predictive tail value function fχ and predictive tail probability function gχ. Let χ′ be the greedy
kernel with respect to (fχ, gχ). Then, under Assumption 1,

vχt (s, y) ≤ vχ
′

t (s, y), ∀s ∈ S, y ∈ R, t ∈ {1, . . . , T}.
Consequently,

sup
π∈Π(χ)

CVaRπ
q (R1:T ) ≤ sup

π∈Π(χ′)

CVaRπ
q (R1:T ), (6)

for any q ∈ (0, 1].

5
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This result formally guarantees that taking greedy updates with respect to the predictive functions
yields monotonic improvement in the CVaR objective over the entire augmented state space. This
result generalizes the classical policy improvement theorem to the risk-sensitive setting and justifies
our value-based approach to CVaR optimization.

4 ALGORITHM

Based on the theoretical framework established above, we now present our Predictive CVaR
Q-learning (PCVaR-Q) algorithm. The algorithm learns three key components: two function
approximators, f̂θ and ĝϕ, which estimate the predictive tail value and probability, and a risk-budget
parameter η, which tracks the optimal risk level. The learning process is driven by a two-way
exploration strategy and periodic updates to these parameters, as detailed in Algorithm 1.

Algorithm 1 PCVaR-Q
1: Initialize parameters (θ, ϕ, η), risk budget grid H , replay buffer D.
2: Pretrain parameters (θ, ϕ, η) using pre-existing sample trajectories, if available.
3: for k = 1 to K do
4: Set S1 ← s1, and sample Y1 ∼ N (η, σ2

k).
5: for t = 1 to T do
6: With probability ϵk, choose At ∼ Uniform(A).
7: Otherwise, choose At greedily with respect to (f̂θ, ĝϕ):

At ← argmax
a∈A

{
f̂θ
t (St, Yt, a)− ĝϕt (St, Yt, a) · Yt

}
.

8: Execute At, observe Rt, St+1; update Yt+1 ← Yt −Rt.
9: Store (R1:t−1, St, At, Rt, St+1) into replay buffer D.

10: Sample a mini-batch B = {(R1:j−1, Sj , Aj , Rj , Sj+1)}Bj=1 from D.
11: Update θ and ϕ using TD losses, Eq. 7 and Eq. 8:

θ ← θ − αθ,k∇θLf (θ;B), ϕ← ϕ− αϕ,k∇ϕLg(ϕ;B).

12: end for
13: Every c episodes, update risk budget η:

η ← arg max
η′∈H

max
a∈A

{
f̂θ
1 (s1, η

′, a) + η′ ·
(
q − ĝϕ1 (s1, η

′, a)
)}

.

14: end for

Generating sample trajectories with two-way randomized exploration To generate sample tra-
jectories, the agent follows a behavior policy built upon a two-way randomized exploration strategy
(lines 4 – 9). The first component is an ϵ-greedy scheme for action-level exploration. This applies
random perturbations to the actions of the greedy policy derived from the current function approxi-
mators, f̂θ and ĝϕ.

The second, more distinctive component of this strategy is the exploration within the augmented state
space. In line 4, the initial residual budget Y1 is sampled from a normal distributionN (η, σ2

k) instead
of being fixed to a single value. Here, η corresponds to current best estimate of the optimal risk
budget. By sampling around this central value, the agent is prompted to experience trajectories under
varying degrees of risk sensitivity, thereby exploring the space of risk preferences more effectively.
Analogous to ϵk for action-level exploration, the variance σ2

k governs the extent of this exploration
and is typically annealed as training progresses.

Updating the predictive functions and risk budget The learning process involves updating the
parameters of the function approximators, denoted by θ and ϕ for f̂θ and ĝθ respectively, along with
the risk budget parameter η (lines 11–13). From the sampled trajectories, θ and ϕ are updated using
two distinct temporal-difference (TD) loss functions.

6
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The parameter θ is updated updated by minimizing the following TD loss,Lf (θ;B), which is derived
from the Bellman equation (Eq. 5) in Theorem 1:

Lf (θ;B) :=
1

B|H|
∑
η′∈H

B∑
j=1

(
f̂θ
j (Sj , η

′ −R1:j−1, Aj) (7)

−
[
f̂θ
j+1(Sj+1, η

′ −R1:j , A
′
j+1) + ĝϕj+1(Sj+1, η

′ −R1:j , A
′
j+1) ·Rj

])2

where A′
j+1 is the greedy action at (Sj+1, η

′ − R1:j) with respect to (f̂θ, ĝϕ). A key aspect of our
method is that the loss for each sample is computed over a discrete set of candidate risk budgets
H ⊂ R, leveraging the property that the predictive functions are invariant to the initial risk budget
level. This encourages the function approximators to generalize across various risk levels.

Similarly, the parameter ϕ is updated by minimizing a second TD loss, Lg(ϕ;B), derived from the
martingale property of the predictive tail probability function (Eq. 4) in Proposition 1:

Lg(ϕ;B) :=
1

B|H|
∑
η′∈H

B∑
j=1

(
ĝϕj+1(Sj+1, η

′ −R1:j , A
′
j+1)− ĝϕj (Sj , η

′ −R1:j−1, Aj)
)2

. (8)

Finally, the risk level η is updated periodically for stability by solving the outer optimization problem
in the variational formulation of CVaR (cf. Theorem 2). This newly identified optimal risk budget
then serves as the central point for the agent’s risk-level exploration in subsequent episodes.

This entire learning procedure constitutes a form of generalized policy iteration (GPI). The TD
updates for θ and ϕ act as the kernel evaluation step, driving the learned functions to satisfy the
Bellman optimality equation (Theorem 2). The greedy kernel derived from these updated functions
is then guaranteed to be superior by Theorem 3. This interplay between evaluation and improvement
ensures that our algorithm progressively finds a better kernel, converging towards a CVaR-optimal
solution.

Starting with pretrained parameters (optional) While our core PCVaR-Q algorithm is inher-
ently more robust to the “blindness-to-success” phenomenon than prior methods because it utilizes
two-way exploration, this issue can still be a challenge in the early stages of learning. To further
mitigate this risk, we propose an optional warm-start by pre-training the parameters (θ, ϕ, η) (line 2).
This is a highly practical step, as it can leverage any dataset of pre-existing sample trajectories (e.g.,
ones obtained from a risk-neutral policy). The pre-training procedure itself is straightforward, as it
reuses the update rules to fit the predictive functions to this data, from which an initial risk budget η
can also be derived. This initialization anchors the agent to promising, high-return behaviors from
the outset, ensuring a more stable learning dynamic.

5 EXPERIMENTS

In this section, we evaluate the performance of Predictive CVaR Q-learning algorithm in a controlled
setting to investigate (1) whether our method improves CVaR performance over risk-neutral policies,
and (2) whether it achieves stable and sample-efficient learning compared to baselines. We compare
our proposed algorithm PCVaR-Q with the other two baselines, RN and CVaR-Q:

• RN: Risk-neutral optimal policy learned through risk-neutral Q-learning.

• CVaR-Q: The policy learned through a Q-learning-style approach based on the Bellman
operator in (Pflug & Pichler, 2016).

• PCVaR-Q: The policy learned through the Predictive CVaR Q-learning algorithm.

5.1 SEQUENTIAL DECISION TREE (TREE-STRUCTURED MDP)

Setup We design a finite-horizon MDP to highlight risk-return trade-offs under CVaR optimiza-
tion. The agent starts in State 0 and proceeds through a branching structure involving both stochastic

7
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(a) Sequential decision tree.
(b) The stochastic grid-
world environment.

Figure 1: Illustration of experiment environments.

and deterministic rewards. Figure 1a illustrates the simulated environment. The dynamics are de-
scribed as follows. The agent starts in State 0. At State 0, the agent moves deterministically to State
1, receiving a stochastic reward R1 ∼ N (1, 12). At State 1 and State 2, the agent chooses between
two actions, up and down. The up action yields stochastic rewards whereas the down action yields
deterministic rewards and terminates the MDP process (see Figure 1a).

The total return R1:3 = R1 + R2 + R3 (with missing rewards treated as zero) presents a clear
risk-return trade-off: the down path offers lower variance and moderate return, while the up path
provides higher expected return but greater risk. The risk-neutral optimal policy always chooses the
up action, yielding an average total return of 5.0 but a CVaR value of only 1.96 at level q = 0.1. In
contrast, the CVaR-optimal policy at the same level (q = 0.1) adopts a more cautious approach. A
simple calculation shows that it will play down at State 1 if R1 ≤ −0.2 and will do so at State 2 if
R1 + R2 ≤ 1.1. The CVaR performance of this policy is 2.50, and its corresponding VaR value is
3.02.

Results To evaluate risk-sensitive behavior, we compare the distributions of total reward R1:3

under the policies obtained by running RN and PCVaR-Q over 100,000 episodes. As shown in
Figure 2a, PCVaR-Q yields a higher lower-tail return, achieving a CVaR value of 2.45 at risk level
q = 0.1, whereas RN achieves 1.96 (the optimal CVaR value is 2.50). This confirms that PCVaR-Q
successfully finds out the CVaR-optimal policy.

Figure 2b tracks the evolution of CVaR performance (q = 0.1) throughout the training process:
Each solid line represents the mean performance across 10 independent trials. Policies were eval-
uated every 100 iterations, with each point estimated from 100,000 sample runs. Our PCVaR-Q
algorithm exhibits a stable learning curve that steadily converges to a near-optimal value, whereas
the CVaR-Q baseline shows high variance and converges to a suboptimal policy. This result con-
firms the superior stability and sample efficiency of our method, validating the practical benefits of
our proposed recursive structure in a risk-sensitive learning context.

(a) Histograms of total reward for the final
PCVaR-Q and risk-neutral (RN) policies.

(b) Actual CVaR performance (q = 0.1) over the
course of Q-learning.

Figure 2: Results for sequential decision tree

5.2 GRID-WORLD WITH STOCHASTIC TRANSITION AND OBSTACLES.

Setup We conduct our experiments in a grid-based navigation environment designed to evaluate
decision-making under uncertainty and risk. The environment is a two-dimensional grid of size 8

8
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(height)× 10 (width), where an agent starts at the bottom-left corner and aims to reach a goal located
at the bottom-right corner. The agent’s action space consists of four cardinal movements: up, down,
left, and right. The transition is stochastic: an intended action is successful with a probability of 0.7,
but with a 0.3 probability, the agent moves in one of the other three directions, chosen uniformly at
random. The episode terminates if the agent reaches the goal, which yields a reward fromN (50, 1),
or hits an obstacle, which incurs a penalty from N (−50, 1). All other transitions receive a reward
of−1 as a step penalty. While the risk-neutral policy tends to follow a direct path toward the goal, it
often incurs a higher chance of collision with obstacles. In contrast, the risk-sensitive policy, such as
PCVaR-Q, learns a safer path that avoids obstacles, even if it results in a longer trajectory. Figure 1b
illustrates the experimental environment and the distinct policies learned by the risk-neutral (RN)
and PCVaR-Q agents.

Results Figure 3a presents the total reward distributions from 50,000 evaluation episodes, showing
that PCVaR-Q produces a more robust policy. By mitigating the risk of catastrophic penalties, it
improves the lower tail of the distribution, achieving a CVaR of −55.84 at the q = 0.1 level — a
clear improvement over the RN policy’s −58.37 and close to the optimal value of −53.34.

Furthermore, Figure 3b illustrates that this superior outcome is achieved through a more efficient
and stable learning process. The CVaR performance of PCVaR-Q, measured every 1000 iterations,
shows rapid and consistent convergence, while the baseline model is more volatile. This demon-
strates that our method’s improved sample efficiency directly translates to better and more reliable
risk-aware policies in complex environments.

(a) Histograms of total reward for the final
PCVaR-Q and risk-neutral (RN) policies.

(b) Actual CVaR performance (q = 0.1) over the
course of Q-learning.

Figure 3: Results for stochastic grid-world.

6 CONCLUSION

We introduced Predictive CVaR Q-learning (PCVaR-Q), a novel CVaR Q-learning framework de-
signed to optimize CVaR objectives in a sample-efficient and theoretically grounded manner. Our
key contributions include the predictive tail value function, which enables a recursive Bellman struc-
ture tailored to CVaR, and a two-way randomized exploration strategy that explores both action and
risk budget spaces. Together, we provide theoretical guarantees including a Bellman equation, opti-
mality condition, and policy improvement theorem specific to the CVaR setting. These results offer a
principled foundation of temporal-difference (TD) learning style algorithm, thereby extending clas-
sical Q-learning theory into the domain of CVaR measure. Experimental results further demonstrate
the practical effectiveness and stability of our approach.

One limitation of our method is the increased model complexity: the introduction of the predictive
tail value and probability functions requires learning two separate function approximators, and the
residual threshold η must also be tracked and updated throughout the learning process. Despite this
added complexity, our results show that the benefits in sample efficiency and theoretical rigor justify
the overhead in most settings. Future work may extend our framework to deep RL environments,
and explore integration with model-based risk-sensitive planning. Our method also opens the door
for further research on adaptive risk modeling and safety-critical learning in real-world applications.

9
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Reproducibility Statement. We have made significant efforts to ensure the reproducibility of our
results. Baseline algorithmic descriptions and detailed experimental settings, including hyperparam-
eters, are described in Appendix A.
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A EXPERIMENT AND IMPLEMENTATION DETAILS

A.1 BASELINE: CVAR-Q ALGORITHM

We employ CVaR Q-learning to solve the CVaR optimization problem. This approach learns a func-
tion approximator uθ that estimates the CVaR value function. The training procedure is summarized
in Algorithm 0. While the method shares similarities with Predictive CVaR Q-learning, the key
difference lies in the optimization of the parameter θ, which is updated using a temporal-difference
(TD) loss derived from the Bellman optimal equation in (Wang et al., 2023) such as: for a mini-batch
B = {(R1:j−1, Sj , Aj , Rj , Sj+1)}Bj=1,

Lu(θ;B) :=
1

B|H|
∑
η′∈H

B∑
j=1

(
ûθ
j (Sj , η

′ −R1:j−1, Aj)− ûθ
j+1(Sj+1, η

′ −R1:j , A
∗
j+1)

])2

.

where A∗
j+1 ∈ argmaxa∈A ûθ

j+1(Sj+1, η
′ −R1:j , a).

Algorithm 2 CVaR Q-Learning

1: Initialize parameters θ, ϕ, risk budget grid H , initial η ∈ H , replay buffer D
2: for k = 1 to K do
3: Initialize S1 ← s1, Y1 ← η.
4: for t = 1 to T do
5: With probability ϵ, choose At ∼ Uniform(A).
6: Otherwise, choose At greedily with:

At ← argmax
a∈A

{
uθ
t (St, Yt, a)

}
.

7: Execute At, observe Rt, St+1; update Yt+1 ← Yt −Rt.
8: end for
9: Store (R1:t−1, St, At, Rt, St+1) into replay buffer D.

10: Sample a mini-batch B = {(R1:j−1, Sj , Aj , Rj , Sj+1)}Bj=1 from D.
11: Update θ using TD loss:

θ ← θ − αθ∇θLu(θ;B).
12: Update risk budget η:

η ← arg max
η′∈H

max
a∈A

{
ûθ
1(s1, η

′, a) + η′ · q
}
.

13: end for

11
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A.2 SEQUENTIAL DECISION TREE

CVaR parameterization To optimize for Conditional Value at Risk (CVaR), we define a discrete
grid for the risk budget H as follows:

H = {−10.0,−9.9,−9.8, . . . , 1.48, 14.9, 15.0},

and the quantile level q = 0.1. The Predictive CVaR Q-learning algorithm estimates the predic-
tive tail value function fχ and the predictive tail probability function gχ. The CVaR Q-learning
algorithm estimates value function uχ. A tabular function approximator is used for each of these
functions: fθ, gϕ, and uθ, where the values are maintained separately for combinations of states,
residual risk budgets, and actions. The CVaR objective at a given risk budget η is computed as:

v̂(s1, η) = η · (q − ĝϕ(s1, η, a
′)) + f̂1(s1, η, a

′),

or alternatively:
v̂(s1, η) = η · q + û1(s1, η, a

′),

where a′ = argmaxa∈A η·(q−ĝ1(s1, η, a′))+f̂1(s1, η, a
′) or a′ = argmaxa∈A η·q+û1(s1, η, a

′).

Learning and optimization We utilize both Predictive CVaR Q-learning and CVaR Q-learning
algorithms. The learning process maintains estimates of fθ, gϕ, and uθ. These are updated via the
Adam optimizer. Key settings include:

• Learning rates: αθ = 0.01, αϕ = 0.0001

• Epsilon decay: ϵt = 0.1 · 0.9⌊t/100⌋

• Batch size: 8 sampled trajectories per episode
• Optimizer: Adam with β1 = 0.9, β2 = 0.999, ϵ = 10−8

• Episodes: 5,000
•

σk =


3, if 0 ≤ k < 500

2, if 500 ≤ k < 1000

1, if 1000 ≤ k < 1500

0, if k ≥ 1500

Both fθ, gϕ and uθ are updated based on cumulative return trajectories. The risk level parameter η
is updated every 500 iterations. The same hyperparameter configuration is applied to both Predictive
CVaR Q-learning and CVaR Q-learning algorithms to ensure consistency. Under ideal conditions,
the CVaR Q-learning algorithm also converges to the optimal risk-sensitive policy. However, we
aim to highlight the robustness and stability of the Predictive CVaR Q-learning algorithm under the
same conditions.

A.3 GRID-WORLD

CVaR parameterization To optimize for Conditional Value at Risk (CVaR), we define a discrete
grid for the risk budget H as follows:

H = {−150,−149,−148, . . . , 98, 99, 100},

and the quantile level q = 0.1. A tabular function approximator is used for each of these functions:
fθ, gϕ, and uθ, where the values are maintained separately for combinations of states, residual risk
budgets, and actions. The CVaR objective at a given risk budget η is computed as same method
before.

Learning and optimization We utilize both Predictive CVaR Q-learning and CVaR Q-learning
algorithms. The learning process maintains estimates of fθ, gϕ, and uθ. These are updated via the
Adam optimizer. Key settings include:

• Learning rates: αθ = 0.01, αϕ = 0.01

12
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• Epsilon decay: max(1− ( episode
2000 ), 0.0)

• Batch size: 1 sample trajectories per episode
• Optimizer: fixed learning rates
• Episodes: 15,000
•

σk =


45, if 0 ≤ k < 2000

30, if 2000 ≤ k < 4000

15, if 4000 ≤ k < 6000

0, if k ≥ 6000

• Pretrain parameters (θ, ϕ, η) with risk-neutral policy

Both fθ, gϕ and uθ are updated based on cumulative return trajectories. The risk level parameter η
is updated every 500 iterations. The same hyperparameter configuration is applied to both Predictive
CVaR Q-learning and CVaR Q-learning algorithms to ensure consistency.

A.4 COMPUTATION AND IMPLEMENTATION

All experiments were conducted on a system with an 11th Gen Intel(R) Core(TM) i7-11700K pro-
cessor running at 3.60 GHz, 32 GB of RAM, and 8 CPU cores. Each experiment for a given seed
typically requires about 20 (tree) and 90 (grid-world) minutes to complete. The implementation is
written in Python 3.8+ using only NumPy and Matplotlib, without relying on any external reinforce-
ment learning libraries (such as Gym or Stable Baselines). All code and experimental results will be
released as a ZIP file.

B EFFECTIVENESS OF TWO-WAY EXPLORATION AND PARAMETERS
PRETRAINING

In this section, we evaluate the performance of Predictive CVaR Q-learning algorithm in a controlled
setting to investigate the effect of parameters pretraining and η sampling. We compare our proposed
algorithm PCVaR-Q with or without the two technicque, Two-way and Pretrain:

• Two-way (O/X) : exploration with both action-level and risk-level (O) or with only action-
level (X).

• Pretrain (O/X): Start with pretrained parameters (θ, ϕ, η) (O) or zero parameters
(θ, ϕ, η) (X)

Result Each row in Figure 4 visualizes the distinct paths discovered during training and the state
visit frequencies as heatmaps for each model at specific iterations (left: at 2,000 iterations, right:
at 12,000 iterations). In Figures 4a∼ 4d, where models were initialized with zero value functions
and trained without pretraining, we observe that the agents fail to learn optimal trajectories. The
case without both two-way exploration and pretraining failed to achieve sufficient exploration, re-
sulting in poor performance. Even when two-way exploration was enabled without pretraining,
the agent still converged to suboptimal local behaviors. This phenomenon reflects a blindness to
success,which may bring CVaR learning to a local optimum deadlock. In contrast, models were
initialized with the pretrained parameters in Figures (e)–(h) successfully identify safer trajectories.
Notably, models augmented with two-way exploration converge more quickly and consistently to
the desirable path, demonstrating improved exploration and stability during training.

C PROOFS OF THEORETICAL FOUNDATIONS

To establish the theoretical foundations, we begin by introducing a key technical assumption that
simplifies the treatment of conditional distributions over cumulative rewards.
Assumption 1. Under any non-anticipating policy π ∈ Π and any time t ∈ {1, . . . , T}, the distri-
bution of remaining return Rt:T does not have any probability mass.

13
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(a) Two-way X, Pretrain X,
iteration = 2,000

(b) Two-way X, Pretrain X,
iteration = 12,000

(c) Two-way O, Pretrain X,
iteration = 2,000

(d) Two-way O, Pretrain X,
iteration = 12,000

(e) Two-way X, Pretrain O,
iteration = 2,000

(f) Two-way X, Pretrain O,
iteration = 12,000

(g) Two-way O, Pretrain O,
iteration = 2,000

(h) Two-way O, Pretrain O,
iteration = 12,000

Figure 4: The distinct policies learned by PCVaR-Q agents over the course of Q-learning

Assumption 1 ensures that the cumulative return Rt:T has a continuous distribution, with no point
masses (atoms). This condition is critical to the theoretical framework presented in this work.
Specifically, it guarantees that the conditional probability P(Rt:T ≤ Yt | St, Yt, At) is differen-
tiable with respect to the threshold Yt, which is a key component for defining the tail probability
function gχt and constructing the recursive CVaR objective function. Without Assumption 1, the
function gχt could exhibit discontinuities or even be undefined. This is due to the presence of atoms
in the conditional distribution of returns. This would invalidate several important results, including
Lemma 1, Proposition 1, and Theorem 1, which rely on the smoothness of these functions.
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C.1 PROOF OF PROPOSITION 1

In order to derive efficient recursive formulations of the CVaR objective, we first characterize how
the CVaR objective can be decomposed temporally. The following proposition shows that the pre-
dictive tail value function fχ can be expressed as the expectation of cumulative discounted rewards,
weighted by a predictive tail probability function gχ. This result provides the foundation for a
Bellman-type recursive formulation presented in Theorem 1.

Proposition 1 (Temporal decomposition). Under Assumption 1, for any s ∈ S, y ∈ R, a ∈ A, and
t ∈ {1, . . . , T}, the following equations hold:

fχ
t (s, y, a) = Eχ,η

[
T∑

τ=t

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ

∣∣∣∣∣ St = s, Y η
t = y,At = a

]
,

gχt (s, y, a) = Eχ,η
[
gχt+1(St+1, Yt+1, At+1)

∣∣ St = s, Y η
t = y,At = a

]
, (9)

and
Eχ,η

[
− (η −R1:T )

+
]
= EA1∼χ1(·|s1,η) [f

χ
1 (s1, η, A1)− gχ1 (s1, η, A1)× η] .

Proof. The following results provide a key identity that allows us to express the event indicator over
cumulative returns in terms of the predictive weight function gχ:

Lemma 1. Given an augmented Markov policy kernel χ and risk budget η, under Assumption 1, we
have

Eχ,η[I{Rt:T ≤ Yt}Rτ |St, Yt, At] = Eχ,η[gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ |St, Yt, At]

∀t ∈ {1, . . . , T} and ∀τ ∈ {t, . . . , T}

Proof.

Eχ,η[I{Rt:T ≤ Yt}Rτ |St, Yt, At]
(a)
= Eχ,η[I{Rt:T ≤ Yt}Rτ |Ht, At]

(b)
= Eχ,η[Eχ,η[I{Rt:T ≤ Yt}Rτ |Hτ+1, Aτ+1]|Ht, At]

(c)
= Eχ,η[Eχ,η[I{Rt:T ≤ Yt}|Hτ+1, Aτ+1]Rτ |Ht, At]

= Eχ,η[Eχ,η[I{Rτ+1:T ≤ Yt −Rt:τ}|Hτ+1, Aτ+1]Rτ |Ht, At]

(a)
= Eχ,η[Eχ,η[I{Rτ+1:T ≤ Yτ+1}|Sτ+1, Yτ+1, Aτ+1]Rτ |Ht, At]

= Eχ,η[gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ |Ht, At]

(a)
= Eχ,η[gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ |St, Yt, At]

We proceed by conditioning on the full history and applying the tower property of conditional ex-
pectation.

(a) By the Markov property with respect to the augmented state space, the conditional expec-
tation given (St, Yt) is equivalent to conditioning on the full history Ht.

(b) We apply the law of total expectation to decompose the expectation across time steps,
conditioning first on Hτ+1.

(c) Since Hτ+1 contains all rewards up to time τ , we can isolate Rτ over the conditional
expectation.

We utilize the definition of gχ in the sixth step. Substituting this decomposition into the original
expression yields the desired form.
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Applying Lemma 1, which is (d), to the definition of fχ
t , we obtain:

fχ
t (s, y, a) := Eχ,η[I{Rt:T ≤ Yt}Rt:T |St = s, Yt = y,At = a]

= Eχ,η[I{Rt:T ≤ Yt}|St = s, Yt = y,At = a]

(d)
= Eχ,η[

T∑
τ=t

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ |St = s, Yt = y,At = a]

Furthermore, similar technique utilizes the representation for Eχ,η
[
− (η −R1:T )

+
]

as:

Eχ,η
[
− (η −R1:T )

+
]
= Eχ,η[(R1:T − η)× I{R1:T ≤ Y1}]

= Eχ,η[R1:T × I{R1:T ≤ Y1}]− Eχ,η[η × I{R1:T ≤ Y1}]
= Eχ,η[fχ

1 (s1, η, A1)]− E[gχ1 (s1, η, A1)]× η

= EA1∼χ1(·|s1,η) [f
χ
1 (s1, η, A1)− gχ1 (s1, η, A1)× η] .

Fot the last equation, we need the following lemma.

Lemma 2. Given an augmented Markov policy kernel χ and risk budget η, under Assumption 1, we
have

Eχ,η[I{Rt:T ≤ Yt}|St, Yt, At] = Eχ,η[gχt+1(St+1, Yt+1, At+1)|St, Yt, At]

∀t ∈ {1, . . . , T}

Proof.

Eχ,η[I{Rt:T ≤ Yt}|St, Yt, At]
(a)
= Eχ,η[I{Rt:T ≤ Yt}|Ht, At]

(b)
= Eχ,η[Eχ,η[I{Rt:T ≤ Yt}|Ht+1, At+1]|Ht, At]

= Eχ,η[Eχ,η[I{Rt+1:T ≤ Yt −Rt}|Ht+1, At+1]|Ht, At]

(a)
= Eχ,η[Eχ,η[I{Rt+1:T ≤ Yt+1}|St+1, Yt+1, At+1]|Ht, At]

= Eχ,η[gχt+1(St+1, Yt+1, At+1)|Ht, At]

(a)
= Eχ,η[gχt+1(St+1, Yt+1, At+1)|St, Yt, At]

We proceed by conditioning on the full history and applying the tower property of conditional ex-
pectation.

(a) By the Markov property with respect to the augmented state space, the conditional expec-
tation given (St, Yt) is equivalent to conditioning on the full history Ht.

(b) We apply the law of total expectation to decompose the expectation across time steps,
conditioning first on Hτ+1.

We utilize the definition of gχ in the sixth step. Substituting this decomposition into the original
expression yields the desired form.

Applying Lemma 2, which is (d), to the definition of gχt , we obtain:

gχt (s, y, a) := Pχ,η ( Rt:T ≤ y | St = s, Y η
t = y,At = a )

= Eχ,η[I{Rt:T ≤ Yt}|St = s, Yt = y,At = a]

(d)
= Eχ,η[gχτ+1(St+1, Yt+1, At+1)|St = s, Yt = y,At = a]

The first statement of Proposition 1 establishes a cumulative formulation of the predictive tail value
function. This result naturally motivates a recursive Bellman-style decomposition. We formalize it
in the next theorem.
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C.2 PROOF OF THEOREM 1

Building upon the temporal decomposition in Proposition 1, we derive a Bellman-type recursive
relation for the predictive tail value function. This relation enables efficient policy evaluation and
learning in dynamic settings.
Theorem 1 (Bellman equation). Given an augmented Markov policy kernel χ, under Assumption 1,
its predictive tail value function fχ and predictive tail probability function gχ satisfy

fχ
t (s, y, a) = E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
fχ
t+1

(
St+1, y −Rt, At+1

)
+ gχt+1

(
St+1, y −Rt, At+1

)
×Rt

]
,

(10)

for all s ∈ S, y ∈ R, a ∈ A, and t ∈ {1, . . . , T}.

Proof.

fχ
t (s, y, a) = Eχ,η

[
T∑

τ=t

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ

∣∣∣∣∣ St = s, Y η
t = y,At = a

]

= Eχ,η

[
T∑

τ=t+1

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ

∣∣∣∣∣ St = s, Y η
t = y,At = a

]
+ Eχ,η

[
gχt+1(St+1, Yt+1, At+1)×Rt

∣∣ St = s, Y η
t = y,At = a

]
= Eχ,η

[
T∑

τ=t+1

gχτ+1(Sτ+1, Yτ+1, Aτ+1)×Rτ

∣∣∣∣∣ St = s, Y η
t = y,At = a

]
+ E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
gχt+1

(
St+1, y −Rt, At+1

)
×Rt

]
= Eχ,η

[
fχ
t+1(St+1, y −Rt, At+1)

∣∣ St = s, Y η
t = y,At = a

]
+ E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
gχt+1

(
St+1, y −Rt, At+1

)
×Rt

]
= E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
fχ
t+1

(
St+1, y −Rt, At+1

)
+ gχt+1

(
St+1, y −Rt, At+1

)
×Rt

]
.

We begin with the temporal decomposition from Proposition 1, which expresses fχ
t as a cumulative

expectation of future rewards weighted by gχ:

fχ
t (s, y, a) = Eχ,η

[
T∑

τ=t

gχτ+1(Sτ+1, Yτ+1, Aτ+1) ·Rτ | St = s, Yt = y,At = a

]
.

We isolate the contribution of the first term Rt, and apply the law of total expectation with respect
to the policy kernel χ:

fχ
t (s, y, a) = E(Rt,St+1)∼Pt(·|s,a),At+1∼χt+1(·|St+1,y−Rt)

[
fχ
t+1(St+1, y −Rt, At+1) + gχt+1(St+1, y −Rt, At+1) ·Rt

]
.

This completes the recursive Bellman-type equation for fχ.

Having established the Bellman recursion for the predictive tail value function, we now turn to
the corresponding optimality conditions. Theorem 2 characterizes the optimal value function and
derives the form of the optimal policy via a greedy selection criterion.

C.3 PROOF OF THEOREM 2

With the recursive formulation established in Theorem 1, we now turn to the optimality condition.
The following result characterizes the optimal value function and policy structure under CVaR ob-
jective.
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Theorem 2 (Bellman optimality equation). Define

vχt (s, y) := EAt∼χt(·|s,y) [f
χ
t (s, y, At)− gχt (s, y, At)× y] , v∗t (s, y) := sup

χ∈X
vχt (s, y).

Then, the following holds under Assumption 1:

1. Let Π(χ) be the set of augmented Markov policies induced by a kernel χ across all values
of η ∈ R. Then,

sup
π∈Π(χ)

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R
{qη + vχ1 (s1, η)} .

2. With respect to all non-anticipating policies,

sup
π∈Π

{
q · CVaRπ

q [R1:T ]
}
= max

η∈R
{qη + v∗1(s1, η)} .

3. vχ ≡ v∗ if and only if χ is greedy with respect to (fχ, gχ).

Proof. For the first claim,
We begin by proving the first claim. For any fixed policy kernel χ, we consider the class of aug-
mented Markov policies Π(χ) it induces. Then,

sup
π∈Π(χ)

{
q · CVaRπ

q [R1:T ]
}
= sup

π∈Π(χ)

{
q ·max

η∈R
{η + Eπ[−(η −R1:T )

+]}
}

(a)
= max

η∈R
{ηq + Eχ,η[−(η −R1:T )

+]}

(b)
= max

η∈R
{ηq + EA1∼χ1(·|s1,η) [f

χ
1 (s1, η, A1)− gχ1 (s1, η, A1)× η]}

(c)
= max

η∈R
{ηq + vχ1 (s1, η)},

where step (a) holds because the supremum over π ∈ Π(χ) includes the freedom to choose η, step
(b) follows directly from Propostion 1 and step (c) follows directly from the definition of vχt (s, y)
in Theorem 2.
We now turn to the second claim. When optimizing over all admissible non-anticipating policies Π,
we can equivalently optimize over the space of all Markov kernels χ ∈ X :

sup
π∈Π

{
q · CVaRπ

q [R1:T ]
} (a)

= sup
χ∈X

{
sup

π∈Π(χ)

{
q · CVaRπ

q [R1:T ]
}}

(b)
= sup

χ∈X

{
max
η∈R
{qη + vχ1 (s1, η)}

}
= max

η∈R

{
qη + sup

χ∈X
{vχ1 (s1, η)}

}
(c)
= max

η∈R
{qη + v∗1(s1, η)} ,

where step (a) uses the policy optimization result (Theorem 3.2 in (Bäuerle & Ott, 2011)), step
(b) follows from the result already shown in the first claim of this theorem, and step (c) uses the
definition of v∗t (s, y) as the pointwise supremum over χ ∈ X .
To prove the final statement, we make use of the optimality condition for value functions (Theorem
5.1 in (Wang et al., 2023)), which states that equality between vχ and v∗ holds if and only if the
policy is greedy with respect to the action-value function uχ. Specifically:

vχ ≡ v∗ ⇔
(
{a ∈ A | χt(a|s, y) > 0} ⊆ argmax

a∈A
uχ
t (s, y, a) ∀t, s, y.

)
Using the identity uχ

t (s, y, a) = fχ
t (s, y, a)− gχt (s, y, a) · y, the equivalence follows.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4 PROOF OF THEOREM 3

We now show that a policy improvement guarantee in the context of CVaR optimization over aug-
mented state spaces. This forms the backbone of our Predictive CVaR Q-learning algorithms in
risk-sensitive reinforcement learning settings.
Theorem 3 (Policy improvement). Consider an augmented Markov policy kernel χ along with its
predictive tail value function fχ and predictive tail probability function gχ. Let χ′ be the greedy
kernel with respect to (fχ, gχ). Then, under Assumption 1,

vχt (s, y) ≤ vχ
′

t (s, y), ∀s ∈ S, y ∈ R, t ∈ {1, . . . , T}.

Consequently,
sup

π∈Π(χ)

CVaRπ
q (R1:T ) ≤ sup

π∈Π(χ′)

CVaRπ
q (R1:T ), (11)

for any q ∈ (0, 1].

Proof.

sup
π∈Π(χ)

CVaRπ
q (R1:T )

(a)
= max

η∈R
{qη + vχ1 (s1, η)}

(b)

≤ max
η∈R

{
qη + vχ

′

1 (s1, η)
}

(a)
= sup

π∈Π(χ′)

CVaRπ
q (R1:T )

where step (a) uses 1. of Theorem 2, step (b) follows from the definition of greedy kernel χ′.
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