

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# PREDICTIVE CVAR Q-LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

We propose a sample-efficient Q-learning algorithm for reinforcement learning with the Conditional Value-at-Risk (CVaR) objective. Our method introduces two key innovations. First, we propose the *predictive tail value function*, a novel formulation of risk-sensitive action value, admits a recursive structure as in the conventional risk-neutral Bellman equation. This novel formulation addresses the problem of noisy policy evaluation originating from the non-decomposable objective. Second, we introduce a *two-way exploration* strategy that explores the agent’s risk-sensitivity level in addition to its actions. This technique mitigates the “blindness to success” phenomenon by preventing premature convergence to overly conservative policies. We establish a rigorous theoretical foundation for this framework, including a new Bellman optimality equation and a policy improvement theorem. Empirical results demonstrate that our algorithm significantly improves both CVaR performance and learning stability.

## 1 INTRODUCTION

In high-stakes sequential decision-making tasks, the consequences of rare but catastrophic outcomes cannot be ignored. Standard reinforcement learning (RL), which assumes risk neutrality and optimizes expected returns, is insufficient in such settings. Indeed, risk-sensitive approaches have demonstrated superior performance in a variety of safety-critical domains, such as autonomous driving (Wen et al., 2020), robotic surgery (Pore et al., 2021), and finance (Greenberg et al., 2022). Among the various risk measures, Conditional Value-at-Risk (CVaR) has emerged as a prominent objective, valued for its mathematical tractability (Rockafellar et al., 2000) and its direct focus on worst-case outcomes.

CVaR quantifies the expected loss within the worst-case quantile of a return distribution, making it a natural fit for agents designed to be averse to catastrophic losses. Mirroring the development of risk-neutral RL, methodological advancements to optimize the CVaR objective have primarily evolved along two main avenues: policy-gradient methods (Tamar et al., 2015; Rajeswaran et al., 2016; Tamar et al., 2016; Queeney et al., 2021; Urpí et al., 2021; Greenberg et al., 2022; Markowitz et al., 2023; Kim & Min, 2024; Mead et al., 2025) and value-based approaches (Bäuerle & Ott, 2011; Chow et al., 2015; Pflug & Pichler, 2016; Stanko & Macek, 2019; Singh et al., 2020; Zhang & Weng, 2021; Lim & Malik, 2022; Li et al., 2022; Wang et al., 2023). Despite this progress, applying these methods introduces significant challenges.

CVaR RL is notoriously sample-inefficient, a problem often attributed to its focus on a narrow subset of worst-case trajectories. In this work, we argue that this inefficiency stems from two more fundamental issues: **noisy policy evaluation** due to a lack of temporal decomposition, and **ineffective exploration** caused by ignoring successful outcomes.

The first fundamental issue stems from the difficulty of temporal credit assignment. In many value-based formulations, the CVaR objective is treated as a single, non-decomposable reward realized only at the end of the episode. This structure prevents the agent from assessing the immediate impact of its actions, as the learning signal from an entire trajectory is collapsed into one delayed outcome. This lack of temporal decomposition makes policy evaluation exceptionally noisy, which is a primary driver of the sample inefficiency observed in CVaR RL (Hau et al., 2023; Kim & Min, 2024).

Compounding this evaluation problem is a fundamental difficulty with exploration. Because the CVaR objective is driven by the worst-case outcomes, the learning signal is derived almost exclu-

054 sively from “failure” trajectories. High-return trajectories that fall outside the lower-risk quantile are  
 055 effectively ignored, preventing the agent from learning to improve upon already successful behav-  
 056 iors. This well-documented phenomenon, known as “blindness to success” (Greenberg et al., 2022;  
 057 Mead et al., 2025), can cause the learning process to stagnate in overly conservative, suboptimal  
 058 policies.

059 To address these challenges, we introduce **Predictive CVaR Q-learning**, a novel value-based al-  
 060 gorithm built upon a new, recursive formulation of the CVaR objective. We provide a rigorous  
 061 theoretical foundation for our method, justifying each component of the algorithm, and demonstrate  
 062 its superior performance and sample efficiency through experiments.  
 063

064 Our primary contribution is a new pair of value functions—the **predictive tail value function** and  
 065 the **predictive tail probability function**—that resolves the temporal credit assignment problem.  
 066 This approach adapts and extends an idea originally proposed in the policy-gradient setting (Kim &  
 067 Min, 2024) for value-based learning. Together, these functions allow us to reformulate the CVaR  
 068 objective into a temporally decomposable structure. We prove that this formulation satisfies a risk-  
 069 neutral Bellman-style recursion, allowing the learning signal to be propagated at every step of a  
 070 trajectory. This provides dense, immediate feedback for policy evaluation, drastically reducing esti-  
 071 mation noise and improving sample efficiency.

072 Our second contribution is a **two-way randomized exploration** strategy designed to mitigate  
 073 “blindness to success.” In addition to conventional  $\epsilon$ -greedy for action-level exploration, we in-  
 074 troduce novel exploration in the augmented state space by randomizing the initial risk budget. This  
 075 encourages the agent to experience trajectories with varying degrees of risk sensitivity—sometimes  
 076 acting boldly, other times conservatively. This exploration of risk preferences prevents the agent  
 077 from prematurely converging to overly safe, suboptimal policies and promotes the discovery of  
 078 more robust strategies.

## 079 2 PROBLEM SETUP AND PRELIMINARIES

080 We consider a finite-horizon Markov decision process (MDP)  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, T, (\mathcal{P}_t)_{t=1}^T, s_1)$ , where  
 081  $\mathcal{S}$  is the state space,  $\mathcal{A}$  is the action space,  $T$  is the time horizon,  $s_1 \in \mathcal{S}$  is the initial state, and  
 082  $\mathcal{P}_t$  is the transition kernel at time  $t$ . At each time step  $t = 1, \dots, T$ , the agent observes the current  
 083 state  $S_t \in \mathcal{S}$ , chooses an action  $A_t \in \mathcal{A}$ , receives a reward  $R_t \in \mathbb{R}$ , and transitions to a next state  
 084  $S_{t+1} \in \mathcal{S}$  according to the transition kernel  $\mathcal{P}_t$ , i.e.,  $(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot | S_t, A_t)$ .  
 085

086 For notational convenience, we define  $R_{s:t} := \sum_{\tau=s}^t R_\tau$ , and  $(x)^+ := \max\{x, 0\}$ .  
 087

088 **CVaR optimization** Given a risk level  $q \in (0, 1]$ , the CVaR of a random variable  $X$  is defined as

$$089 \text{CVaR}_q[X] := \int_0^q \text{VaR}_u[X] du,$$

090 where  $\text{VaR}_q[X] := \sup\{\eta \in \mathbb{R} | \mathbb{P}(X \leq \eta) \leq q\}$  denotes the Value-at-Risk at the risk level  $q$ , i.e.,  
 091 the  $q$ -quantile of the distribution of total reward.  
 092

093 Our goal is to find the optimal policy that maximizes the CVaR value of the total reward  $R_{1:T}$  at the  
 094 risk level  $q$ :

$$095 \sup_{\pi \in \Pi} \{\text{CVaR}_q^\pi [R_{1:T}]\},$$

096 where  $\Pi$  is the set of non-anticipating policies, including randomized ones. More formally, let  
 097  $H_t := (S_1, A_1, R_1, \dots, S_{t-1}, A_{t-1}, R_{t-1}, S_t)$  be the history revealed up to time  $t$ , and let  $\mathcal{H}_t$  be its  
 098 space. Each policy  $\pi \in \Pi$  is defined as a sequence of functions  $(\pi_t : \mathcal{H}_t \rightarrow \Delta^{|\mathcal{A}|})_{t=1}^T$  such that each  
 099  $\pi_t$  specifies the distribution over actions at time  $t$  given history, i.e.,  $A_t \sim \pi_t(\cdot | H_t)$ .  
 100

101 **State space augmentation** As one of its most favored properties, the CVaR measure admits a  
 102 variational representation that provides a more tractable alternative to its original definition that  
 103 involves non-smooth and non-linear structure. Specifically, for any non-anticipating policy  $\pi \in \Pi$ ,  
 104 the CVaR can be expressed in the following variational form:  
 105

$$106 q \cdot \text{CVaR}_q^\pi [R_{1:T}] = \max_{\eta \in \mathbb{R}} \left\{ q\eta + \mathbb{E}^\pi \left[ -(\eta - R_{1:T})^+ \right] \right\}.$$

108 Here, the factor  $q$  on the left hand side is introduced to simplify expressions in later parts. This variational form allows us to reinterpret CVaR maximization as a two-stage optimization with respect  
 109 to the tail risk budget  $\eta$  (outer) and the policy  $\pi$  (inner):  
 110

$$112 \sup_{\pi \in \Pi} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \left\{ q\eta + \sup_{\pi \in \Pi} \mathbb{E}^\pi \left[ -(\eta - R_{1:T})^+ \right] \right\}.$$

115 This representation naturally leads to the idea of state space augmentation, with an additional state  
 116 variable representing the tail budget. Formally, we introduce a residual tail budget process  $(Y_t^\eta)_{t=1}^{T+1}$   
 117 defined as

$$118 \quad Y_t^\eta := \eta - R_{1:t-1},$$

120 where  $\eta \in \mathbb{R}$  is an auxiliary variable specifying the (initial) tail budget.

121 A Markov policy living on the augmented state space chooses the current action  $A_t$  based on the  
 122 current state  $S_t$  and the current residual budget  $Y_t^\eta$ . Such a policy is specified by an augmented  
 123 Markov policy *kernel*  $\chi$  that is defined as a sequence of functions  $(\chi_t)_{t=1}^T$  such that  $\chi_t : \mathcal{S} \times \mathbb{R} \rightarrow$   
 124  $\Delta^{|\mathcal{A}|}$  maps the current state and the residual budget to an action distribution. That is, under a policy  
 125 induced by a kernel  $\chi$  with a tail budget  $\eta$ , the action  $A_t$  is chosen according to

$$127 \quad A_t \sim \chi_t(\cdot | S_t, Y_t^\eta).$$

128 Note that a kernel  $\chi$  alone does not define a non-anticipating policy  $\pi \in \Pi$ ; it must be coupled with  
 129 a specific tail budget  $\eta$  and we write  $\mathbb{P}^{\chi, \eta}$  to denote their corresponding probability measure. We  
 130 denote by  $\mathcal{X}$  the set of augmented Markov policy kernels.

132 Notably, Bäuerle & Ott (2011) show that, for dynamic CVaR optimization, it is sufficient to search  
 133 over the augmented Markov policies instead of the entire set of non-anticipating policies:

$$135 \sup_{\pi \in \Pi} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \left\{ q\eta + \sup_{\chi \in \mathcal{X}} \mathbb{E}^{\chi, \eta} \left[ -(\eta - R_{1:T})^+ \right] \right\}. \quad (1)$$

138 A line of work (Bäuerle & Ott, 2011; Pflug & Pichler, 2016; Wang et al., 2023) applies dynamic  
 139 programming (DP) principles based on this observation. Our approach also builds on this insight,  
 140 but adopts a different formulation, as detailed below.

142 **Dynamic programming on augmented state space** Viewed as a risk-neutral optimization, the  
 143 inner optimization,  $\sup_{\chi \in \mathcal{X}} \mathbb{E}^{\chi, \eta} \left[ -(\eta - R_{1:T})^+ \right]$ , can be solved by applying the DP principles on  
 144 the augmented state space (Pflug & Pichler, 2016).

146 In particular, aforementioned prior studies postulate a risk-neutral decision maker who receives a  
 147 total reward of  $-(\eta - R_{1:T})^+$  at the end of horizon. They introduce the action value function of an  
 148 augmented Markov policy kernel  $\chi$  as

$$149 \quad u_t^\chi(s, y, a) := \mathbb{E}^{\chi, \eta} \left[ -(\eta - R_{1:T})^+ | S_t = s, Y_t^\eta = y, A_t = a \right],$$

151 which leads to the following Bellman equation:

$$153 \quad u_t^\chi(s, y, a) = \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot | s, a), A_{t+1} \sim \chi_{t+1}(\cdot | S_{t+1}, y - R_t)} [u_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1})], \quad (2)$$

155 with  $u_{T+1}^\chi(s, y, a) = -(y)^+$ . Conventional risk-neutral Q-learning algorithms can be applied to  
 156 optimize the kernel  $\chi$  so that the optimal action value function  $u_t^*$  can be obtained, and then the outer  
 157 optimization reduces to a simple one-dimensional optimization,  $\max_{\eta \in \mathbb{R}} \{q\eta + \max_a u_1^*(s_1, \eta, a)\}$ .

158 However, this approach suffers from sample inefficiency. Among the sample trajectories collected  
 159 over the course of Q-learning procedure, only a small subset of them will be meaningfully utilized  
 160 since the effective reward will be zero, i.e.,  $(\eta - R_{1:T})^+ = 0$ , in the majority of trajectories (roughly,  
 161  $(1 - q)$ -fraction of trajectories). The main issue is that the term  $(\eta - R_{1:T})^+$  is non-separable across  
 time steps, effectively delaying the reward realizations to the end of time horizon.

162 **3 THEORETICAL FOUNDATIONS**  
 163

164 Existing CVaR-based dynamic programming approaches often rely on augmented state representations  
 165 and treat the CVaR term as a terminal, non-decomposable objective. This leads to significant  
 166 sample inefficiency and complicates recursive value estimation. In this work, we resolve this by  
 167 introducing a novel, recursive formulation for the CVaR objective. Our key idea is to define a pair  
 168 of predictive functions — the predictive tail value function and the predictive tail probability func-  
 169 tion — that permit temporal decomposition and satisfy a risk-neutral Bellman-style recursion. This  
 170 structure facilitates value propagation and policy improvement in a manner analogous to standard  
 171 Q-learning, forming the theoretical bedrock for our sample-efficient Predictive CVaR Q-learning  
 172 algorithm.

173 **Definition 1** (Predictive tail value/probability functions). *Given an augmented Markov policy kernel*  
 174  $\chi$ , *its predictive tail value function*  $f^\chi = (f_t^\chi : \mathcal{S} \times \mathbb{R} \times \mathcal{A} \rightarrow \mathbb{R})_{t=1}^{T+1}$  *is defined as*

$$175 \quad f_t^\chi(s, y, a) := \mathbb{E}^{\chi, \eta=0} \left[ \mathbb{I}\{R_{t:T} \leq y\} R_{t:T} \mid S_t = s, Y_t^{\eta=0} = y, A_t = a \right],$$

177 *with*  $f_{T+1}^\chi(s, y, a) := 0$ . *Additionally, its predictive tail probability function*  $g^\chi = (g_t^\chi : \mathcal{S} \times \mathbb{R} \times$   
 178  $\mathcal{A} \rightarrow [0, 1])_{t=1}^{T+1}$  *is defined as*

$$179 \quad g_t^\chi(s, y, a) := \mathbb{P}^{\chi, \eta=0} \left( R_{t:T} \leq y \mid S_t = s, Y_t^{\eta=0} = y, A_t = a \right), \quad (3)$$

181 *with*  $g_{T+1}^\chi(s, y, a) := \mathbb{I}\{0 \leq y\}$ .

183 Here, the choice  $\eta = 0$  is arbitrary. Above notion of predictive tail values and probabilities are  
 184 invariant in  $\eta$ .

185 The *predictive tail probability* function  $g_t^\chi$  quantifies the likelihood that the remaining return from  
 186 time  $t$  onward falls below a specified threshold given the current state, residual budget, and ac-  
 187 tion. This object effectively encodes the probability of entering the CVaR tail conditioned on the  
 188 current decision point. The idea of modeling such risk-conditioned probabilities is reminiscent of  
 189 the Predictive CVaR Policy Gradient framework (Kim & Min, 2024), which uses similar quantities  
 190 to inform policy gradient-based policy updates. In contrast, we integrate action-conditioning into  
 191 the predictive structure and embed it within a Bellman-style recursion. This formulation enables  
 192 value-based approach such as Q-learning, moving beyond trajectory-level estimation and allowing  
 193 for action selection that directly maximize the CVaR objective.

194 In addition to the predictive tail probability, we define the *predictive tail value* function — for-  
 195 mally described by the function  $f_t^\chi(s, y, a)$  — as a novel, risk-sensitive analogue of the standard  
 196 action value function (so called Q-function). This function captures the expected cumulative re-  
 197 turn weighted by the probability that the trajectory remains in the CVaR tail from time  $t$  onward.  
 198 This function reflects both the magnitude and likelihood of tail outcomes. Importantly, the return  
 199  $R_{t:T}$  is recursively decomposable, which allows  $f^\chi$  to satisfy a risk-neutral Bellman-style recursion.  
 200 This recursive structure enables value propagation and policy improvement analogous to standard  
 201 Q-learning, while preserving sensitivity to risk throughout the learning process.

202 Next result shows that the objective of the inner optimization,  $\mathbb{E}^{\chi, \eta} [ -(\eta - R_{1:T})^+ ]$ , can be repre-  
 203 sented in terms of  $f^\chi$  and  $g^\chi$ , and also that  $f^\chi$  can be decomposed across time steps.

205 **Assumption 1.** *Under any non-anticipating policy*  $\pi \in \Pi$  *and any time*  $t \in \{1, \dots, T\}$ , *the distri-*  
 206 *bution of remaining return*  $R_{t:T}$  *does not have any probability mass.*

207 **Proposition 1** (Temporal decomposition). *Under Assumption 1, for any*  $s \in \mathcal{S}, y \in \mathbb{R}, a \in \mathcal{A}$ , *and*  
 208  $t \in \{1, \dots, T\}$ , *the following equations hold:*

$$210 \quad f_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau \mid S_t = s, Y_t^\eta = y, A_t = a \right],$$

$$213 \quad g_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} [ g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) \mid S_t = s, Y_t^\eta = y, A_t = a ], \quad (4)$$

214 *and*

$$215 \quad \mathbb{E}^{\chi, \eta} [ -(\eta - R_{1:T})^+ ] = \mathbb{E}_{A_1 \sim \chi_1(\cdot | s_1, \eta)} [ f_1^\chi(s_1, \eta, A_1) - g_1^\chi(s_1, \eta, A_1) \times \eta ].$$

We next show that the predictive tail value function exhibits a recursive structure that is very analogous to the standard Bellman equation in the risk-neutral setting.

**Theorem 1** (Bellman equation). *Given an augmented Markov policy kernel  $\chi$ , under Assumption 1, its predictive tail value function  $f^\chi$  and predictive tail probability function  $g^\chi$  satisfy*

$$f_t^\chi(s, y, a) = \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [f_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) + g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t], \quad (5)$$

for all  $s \in \mathcal{S}$ ,  $y \in \mathbb{R}$ ,  $a \in \mathcal{A}$ , and  $t \in \{1, \dots, T\}$ .

Compared to the Bellman equation (Eq. 2) established in prior work, this Bellman equation (Eq. 5) includes an additional term,  $g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t$ , corresponding to the immediate reward in the standard Bellman equation. This term reflects that the anticipated contribution of the current reward to the objective, enabling efficient value propagation in our suggested CVaR Q-learning algorithm.

Building on this recursion, we can derive the optimality conditions that the optimal kernel has to satisfy and its implication on the CVaR objective. This allows us to characterize optimality and construct improvement principles, despite the non-Markovian nature of CVaR. We begin by defining the notion of greedy kernels for the state space augmentation, mirroring the classic notion of greedy policies in the standard Q-learning approaches.

**Definition 2** (Greedy kernel). *An augmented Markov policy kernel  $\chi$  is said to be greedy with respect to a predictive tail value/probability function pair  $(f, g)$  if*

$$\{a \in \mathcal{A} \mid \chi_t(a|s, y) > 0\} \subseteq \arg \max_{a \in \mathcal{A}} \{f_t(s, y, a) - g_t(s, y, a) \times y\},$$

for all  $s \in \mathcal{S}$ ,  $y \in \mathbb{R}$ , and  $t \in \{1, \dots, T\}$ .

**Theorem 2** (Bellman optimality equation). *Define*

$$v_t^\chi(s, y) := \mathbb{E}_{A_t \sim \chi_t(\cdot|s, y)} [f_t^\chi(s, y, A_t) - g_t^\chi(s, y, A_t) \times y], \quad v_t^*(s, y) := \sup_{\chi \in \mathcal{X}} v_t^\chi(s, y).$$

Then, the following holds under Assumption 1:

1. Let  $\Pi(\chi)$  be the set of augmented Markov policies induced by a kernel  $\chi$  across all values of  $\eta \in \mathbb{R}$ . Then,

$$\sup_{\pi \in \Pi(\chi)} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \{q\eta + v_1^\chi(s_1, \eta)\}.$$

2. With respect to all non-anticipating policies,

$$\sup_{\pi \in \Pi} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \{q\eta + v_1^*(s_1, \eta)\}.$$

3.  $v^\chi \equiv v^*$  if and only if  $\chi$  is greedy with respect to  $(f^\chi, g^\chi)$ .

The functions  $v_t^\chi$  and  $v_t^*$  are analogous to the state value function and the optimal state value function, respectively, in the risk-neutral setting. The above result establishes explicit connections between the CVaR objective and predictive tail value/probability functions, and clarifies the meaning of optimizing the augmented Markov policy kernel  $\chi$  through dynamic programming principles.

We now demonstrate that the state-wise improvement of the kernel (in the augmented state space) indeed improves the CVaR performance of the resulting policies.

**Theorem 3** (Policy improvement). *Consider an augmented Markov policy kernel  $\chi$  along with its predictive tail value function  $f^\chi$  and predictive tail probability function  $g^\chi$ . Let  $\chi'$  be the greedy kernel with respect to  $(f^\chi, g^\chi)$ . Then, under Assumption 1,*

$$v_t^\chi(s, y) \leq v_t^{\chi'}(s, y), \quad \forall s \in \mathcal{S}, y \in \mathbb{R}, t \in \{1, \dots, T\}.$$

Consequently,

$$\sup_{\pi \in \Pi(\chi)} \text{CVaR}_q^\pi(R_{1:T}) \leq \sup_{\pi \in \Pi(\chi')} \text{CVaR}_q^\pi(R_{1:T}), \quad (6)$$

for any  $q \in (0, 1]$ .

270 This result formally guarantees that taking greedy updates with respect to the predictive functions  
 271 yields monotonic improvement in the CVaR objective over the entire augmented state space. This  
 272 result generalizes the classical policy improvement theorem to the risk-sensitive setting and justifies  
 273 our value-based approach to CVaR optimization.

## 275 4 ALGORITHM

278 Based on the theoretical framework established above, we now present our Predictive CVaR  
 279 Q-learning (PCVaR-Q) algorithm. The algorithm learns three key components: two function  
 280 approximators,  $\hat{f}^\theta$  and  $\hat{g}^\phi$ , which estimate the predictive tail value and probability, and a risk-budget  
 281 parameter  $\eta$ , which tracks the optimal risk level. The learning process is driven by a two-way  
 282 exploration strategy and periodic updates to these parameters, as detailed in Algorithm 1.

---

**284 Algorithm 1** PCVaR-Q
 

---

285 1: **Initialize** parameters  $(\theta, \phi, \eta)$ , risk budget grid  $H$ , replay buffer  $\mathcal{D}$ .  
 286 2: **Pretrain** parameters  $(\theta, \phi, \eta)$  using pre-existing sample trajectories, if available.  
 287 3: **for**  $k = 1$  to  $K$  **do**  
 288 4:   Set  $S_1 \leftarrow s_1$ , and sample  $Y_1 \sim \mathcal{N}(\eta, \sigma_k^2)$ .  
 289 5:   **for**  $t = 1$  to  $T$  **do**  
 290 6:     With probability  $\epsilon_k$ , choose  $A_t \sim \text{Uniform}(\mathcal{A})$ .  
 291 7:     Otherwise, choose  $A_t$  greedily with respect to  $(\hat{f}^\theta, \hat{g}^\phi)$ :  
 292 8:       
$$A_t \leftarrow \arg \max_{a \in \mathcal{A}} \left\{ \hat{f}_t^\theta(S_t, Y_t, a) - \hat{g}_t^\phi(S_t, Y_t, a) \cdot Y_t \right\}.$$
  
 293 9:     Execute  $A_t$ , observe  $R_t$ ,  $S_{t+1}$ ; update  $Y_{t+1} \leftarrow Y_t - R_t$ .  
 294 10:    Store  $(R_{1:t-1}, S_t, A_t, R_t, S_{t+1})$  into replay buffer  $\mathcal{D}$ .  
 295 11:    Sample a mini-batch  $\mathcal{B} = \{(R_{1:j-1}, S_j, A_j, R_j, S_{j+1})\}_{j=1}^B$  from  $\mathcal{D}$ .  
 296 12:    **Update**  $\theta$  and  $\phi$  using TD losses, Eq. 7 and Eq. 8:  
 297 13:       
$$\theta \leftarrow \theta - \alpha_{\theta,k} \nabla_\theta \mathcal{L}_f(\theta; \mathcal{B}), \quad \phi \leftarrow \phi - \alpha_{\phi,k} \nabla_\phi \mathcal{L}_g(\phi; \mathcal{B}).$$
  
 298 14:   **end for**  
 299 15:   Every  $c$  episodes, **update** risk budget  $\eta$ :  
 300 16:       
$$\eta \leftarrow \arg \max_{\eta' \in H} \max_{a \in \mathcal{A}} \left\{ \hat{f}_1^\theta(s_1, \eta', a) + \eta' \cdot \left( q - \hat{g}_1^\phi(s_1, \eta', a) \right) \right\}.$$
  
 301 17: **end for**  
 302 18:

---

303 **Generating sample trajectories with two-way randomized exploration** To generate sample  
 304 trajectories, the agent follows a behavior policy built upon a two-way randomized exploration strategy  
 305 (lines 4 – 9). The first component is an  $\epsilon$ -greedy scheme for action-level exploration. This applies  
 306 random perturbations to the actions of the greedy policy derived from the current function approxi-  
 307 mators,  $\hat{f}^\theta$  and  $\hat{g}^\phi$ .

308 The second, more distinctive component of this strategy is the exploration within the augmented state  
 309 space. In line 4, the initial residual budget  $Y_1$  is sampled from a normal distribution  $\mathcal{N}(\eta, \sigma_k^2)$  instead  
 310 of being fixed to a single value. Here,  $\eta$  corresponds to current best estimate of the optimal risk  
 311 budget. By sampling around this central value, the agent is prompted to experience trajectories under  
 312 varying degrees of risk sensitivity, thereby exploring the space of risk preferences more effectively.  
 313 Analogous to  $\epsilon_k$  for action-level exploration, the variance  $\sigma_k^2$  governs the extent of this exploration  
 314 and is typically annealed as training progresses.

315 **Updating the predictive functions and risk budget** The learning process involves updating the  
 316 parameters of the function approximators, denoted by  $\theta$  and  $\phi$  for  $\hat{f}^\theta$  and  $\hat{g}^\phi$  respectively, along with  
 317 the risk budget parameter  $\eta$  (lines 11–13). From the sampled trajectories,  $\theta$  and  $\phi$  are updated using  
 318 two distinct temporal-difference (TD) loss functions.

324 The parameter  $\theta$  is updated by minimizing the following TD loss,  $\mathcal{L}_f(\theta; \mathcal{B})$ , which is derived  
 325 from the Bellman equation (Eq. 5) in Theorem 1:

$$327 \quad \mathcal{L}_f(\theta; \mathcal{B}) := \frac{1}{B|H|} \sum_{\eta' \in H} \sum_{j=1}^B \left( \hat{f}_j^\theta(S_j, \eta' - R_{1:j-1}, A_j) \right. \\ 328 \quad \left. - \left[ \hat{f}_{j+1}^\theta(S_{j+1}, \eta' - R_{1:j}, A'_{j+1}) + \hat{g}_{j+1}^\phi(S_{j+1}, \eta' - R_{1:j}, A'_{j+1}) \cdot R_j \right] \right)^2 \quad (7)$$

$$330 \quad 331$$

332 where  $A'_{j+1}$  is the greedy action at  $(S_{j+1}, \eta' - R_{1:j})$  with respect to  $(\hat{f}^\theta, \hat{g}^\phi)$ . A key aspect of our  
 333 method is that the loss for each sample is computed over a discrete set of candidate risk budgets  
 334  $H \subset \mathbb{R}$ , leveraging the property that the predictive functions are invariant to the initial risk budget  
 335 level. This encourages the function approximators to generalize across various risk levels.

336 Similarly, the parameter  $\phi$  is updated by minimizing a second TD loss,  $\mathcal{L}_g(\phi; \mathcal{B})$ , derived from the  
 337 martingale property of the predictive tail probability function (Eq. 4) in Proposition 1:

$$339 \quad \mathcal{L}_g(\phi; \mathcal{B}) := \frac{1}{B|H|} \sum_{\eta' \in H} \sum_{j=1}^B \left( \hat{g}_{j+1}^\phi(S_{j+1}, \eta' - R_{1:j}, A'_{j+1}) - \hat{g}_j^\phi(S_j, \eta' - R_{1:j-1}, A_j) \right)^2. \quad (8)$$

$$340 \quad 341$$

342 Finally, the risk level  $\eta$  is updated periodically for stability by solving the outer optimization problem  
 343 in the variational formulation of CVaR (cf. Theorem 2). This newly identified optimal risk budget  
 344 then serves as the central point for the agent’s risk-level exploration in subsequent episodes.

345 This entire learning procedure constitutes a form of generalized policy iteration (GPI). The TD  
 346 updates for  $\theta$  and  $\phi$  act as the kernel evaluation step, driving the learned functions to satisfy the  
 347 Bellman optimality equation (Theorem 2). The greedy kernel derived from these updated functions  
 348 is then guaranteed to be superior by Theorem 3. This interplay between evaluation and improvement  
 349 ensures that our algorithm progressively finds a better kernel, converging towards a CVaR-optimal  
 350 solution.

351 **Starting with pretrained parameters (optional)** While our core PCVaR-Q algorithm is inherently  
 352 more robust to the “blindness-to-success” phenomenon than prior methods because it utilizes  
 353 two-way exploration, this issue can still be a challenge in the early stages of learning. To further  
 354 mitigate this risk, we propose an optional warm-start by pre-training the parameters  $(\theta, \phi, \eta)$  (line 2).  
 355 This is a highly practical step, as it can leverage any dataset of pre-existing sample trajectories (e.g.,  
 356 ones obtained from a risk-neutral policy). The pre-training procedure itself is straightforward, as it  
 357 reuses the update rules to fit the predictive functions to this data, from which an initial risk budget  $\eta$   
 358 can also be derived. This initialization anchors the agent to promising, high-return behaviors from  
 359 the outset, ensuring a more stable learning dynamic.

## 362 5 EXPERIMENTS

363 In this section, we evaluate the performance of Predictive CVaR Q-learning algorithm in a controlled  
 364 setting to investigate (1) whether our method improves CVaR performance over risk-neutral policies,  
 365 and (2) whether it achieves stable and sample-efficient learning compared to baselines. We compare  
 366 our proposed algorithm PCVaR-Q with the other two baselines, RN and CVaR-Q:

- 367 • RN: Risk-neutral optimal policy learned through risk-neutral Q-learning.
- 368 • CVaR-Q: The policy learned through a Q-learning-style approach based on the Bellman  
 369 operator in (Pflug & Pichler, 2016).
- 370 • PCVaR-Q: The policy learned through the Predictive CVaR Q-learning algorithm.

### 375 5.1 SEQUENTIAL DECISION TREE (TREE-STRUCTURED MDP)

376 **Setup** We design a finite-horizon MDP to highlight risk-return trade-offs under CVaR optimiza-  
 377 tion. The agent starts in State 0 and proceeds through a branching structure involving both stochastic

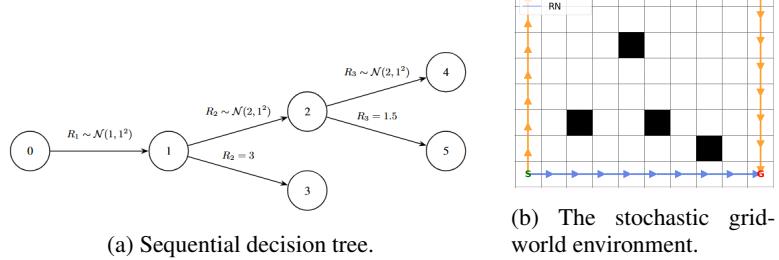


Figure 1: Illustration of experiment environments.

and deterministic rewards. Figure 1a illustrates the simulated environment. The dynamics are described as follows. The agent starts in State 0. At State 0, the agent moves deterministically to State 1, receiving a stochastic reward  $R_1 \sim \mathcal{N}(1, 1^2)$ . At State 1 and State 2, the agent chooses between two actions, *up* and *down*. The *up* action yields stochastic rewards whereas the *down* action yields deterministic rewards and terminates the MDP process (see Figure 1a).

The total return  $R_{1:3} = R_1 + R_2 + R_3$  (with missing rewards treated as zero) presents a clear risk-return trade-off: the *down* path offers lower variance and moderate return, while the *up* path provides higher expected return but greater risk. The risk-neutral optimal policy always chooses the *up* action, yielding an average total return of 5.0 but a CVaR value of only 1.96 at level  $q = 0.1$ . In contrast, the CVaR-optimal policy at the same level ( $q = 0.1$ ) adopts a more cautious approach. A simple calculation shows that it will play *down* at State 1 if  $R_1 \leq -0.2$  and will do so at State 2 if  $R_1 + R_2 \leq 1.1$ . The CVaR performance of this policy is 2.50, and its corresponding VaR value is 3.02.

**Results** To evaluate risk-sensitive behavior, we compare the distributions of total reward  $R_{1:3}$  under the policies obtained by running RN and PCVaR-Q over 100,000 episodes. As shown in Figure 2a, PCVaR-Q yields a higher lower-tail return, achieving a CVaR value of 2.45 at risk level  $q = 0.1$ , whereas RN achieves 1.96 (the optimal CVaR value is 2.50). This confirms that PCVaR-Q successfully finds out the CVaR-optimal policy.

Figure 2b tracks the evolution of CVaR performance ( $q = 0.1$ ) throughout the training process: Each solid line represents the mean performance across 10 independent trials. Policies were evaluated every 100 iterations, with each point estimated from 100,000 sample runs. Our PCVaR-Q algorithm exhibits a stable learning curve that steadily converges to a near-optimal value, whereas the CVaR-Q baseline shows high variance and converges to a suboptimal policy. This result confirms the superior stability and sample efficiency of our method, validating the practical benefits of our proposed recursive structure in a risk-sensitive learning context.

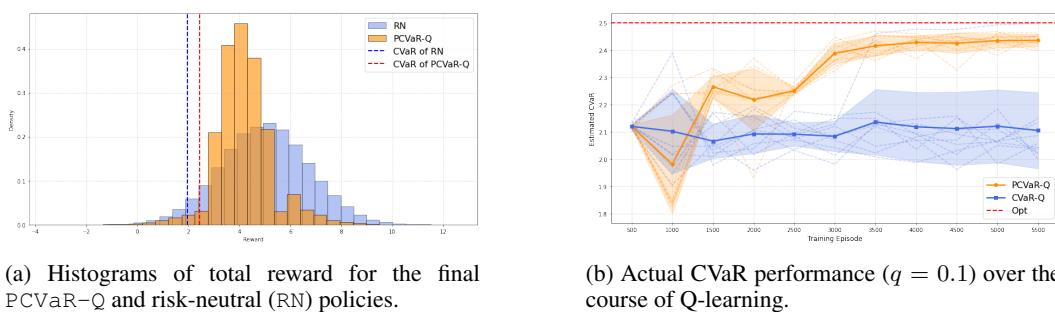


Figure 2: Results for sequential decision tree

## 5.2 GRID-WORLD WITH STOCHASTIC TRANSITION AND OBSTACLES.

**Setup** We conduct our experiments in a grid-based navigation environment designed to evaluate decision-making under uncertainty and risk. The environment is a two-dimensional grid of size 8

(height)  $\times$  10 (width), where an agent starts at the bottom-left corner and aims to reach a goal located at the bottom-right corner. The agent’s action space consists of four cardinal movements: *up*, *down*, *left*, and *right*. The transition is stochastic: an intended action is successful with a probability of 0.7, but with a 0.3 probability, the agent moves in one of the other three directions, chosen uniformly at random. The episode terminates if the agent reaches the goal, which yields a reward from  $\mathcal{N}(50, 1)$ , or hits an obstacle, which incurs a penalty from  $\mathcal{N}(-50, 1)$ . All other transitions receive a reward of  $-1$  as a step penalty. While the risk-neutral policy tends to follow a direct path toward the goal, it often incurs a higher chance of collision with obstacles. In contrast, the risk-sensitive policy, such as PCVaR-Q, learns a safer path that avoids obstacles, even if it results in a longer trajectory. Figure 1b illustrates the experimental environment and the distinct policies learned by the risk-neutral (RN) and PCVaR-Q agents.

**Results** Figure 3a presents the total reward distributions from 50,000 evaluation episodes, showing that PCVaR-Q produces a more robust policy. By mitigating the risk of catastrophic penalties, it improves the lower tail of the distribution, achieving a CVaR of  $-55.84$  at the  $q = 0.1$  level — a clear improvement over the RN policy’s  $-58.37$  and close to the optimal value of  $-53.34$ .

Furthermore, Figure 3b illustrates that this superior outcome is achieved through a more efficient and stable learning process. The CVaR performance of PCVaR-Q, measured every 1000 iterations, shows rapid and consistent convergence, while the baseline model is more volatile. This demonstrates that our method’s improved sample efficiency directly translates to better and more reliable risk-aware policies in complex environments.

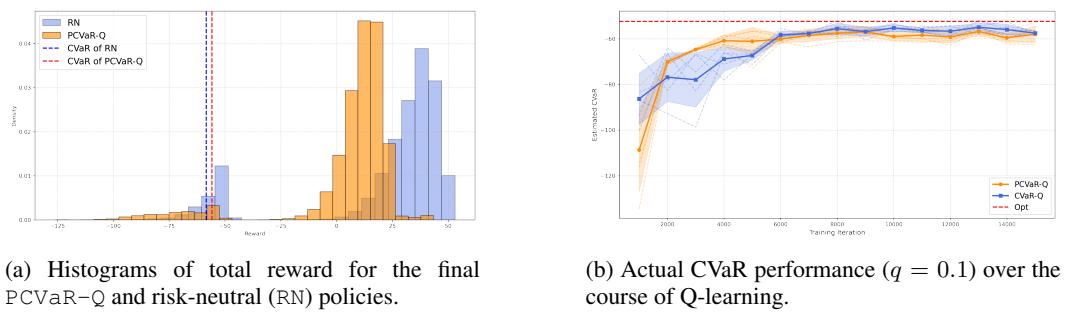


Figure 3: Results for stochastic grid-world.

## 6 CONCLUSION

We introduced Predictive CVaR Q-learning (PCVaR-Q), a novel CVaR Q-learning framework designed to optimize CVaR objectives in a sample-efficient and theoretically grounded manner. Our key contributions include the predictive tail value function, which enables a recursive Bellman structure tailored to CVaR, and a two-way randomized exploration strategy that explores both action and risk budget spaces. Together, we provide theoretical guarantees including a Bellman equation, optimality condition, and policy improvement theorem specific to the CVaR setting. These results offer a principled foundation of temporal-difference (TD) learning style algorithm, thereby extending classical Q-learning theory into the domain of CVaR measure. Experimental results further demonstrate the practical effectiveness and stability of our approach.

One limitation of our method is the increased model complexity: the introduction of the predictive tail value and probability functions requires learning two separate function approximators, and the residual threshold  $\eta$  must also be tracked and updated throughout the learning process. Despite this added complexity, our results show that the benefits in sample efficiency and theoretical rigor justify the overhead in most settings. Future work may extend our framework to deep RL environments, and explore integration with model-based risk-sensitive planning. Our method also opens the door for further research on adaptive risk modeling and safety-critical learning in real-world applications.

486     **Reproducibility Statement.** We have made significant efforts to ensure the reproducibility of our  
 487     results. Baseline algorithmic descriptions and detailed experimental settings, including hyperparam-  
 488     eters, are described in Appendix A.  
 489

490     REFERENCES  
 491

492     Nicole Bäuerle and Jonathan Ott. Markov decision processes with average-value-at-risk criteria.  
 493     *Mathematical Methods of Operations Research*, 74:361–379, 2011.

494     Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-  
 495     making: a cvar optimization approach. *Advances in neural information processing systems*, 28,  
 496     2015.

497     Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-averse  
 498     reinforcement learning. *Advances in Neural Information Processing Systems*, 35:32639–32652,  
 500     2022.

501     JL Hau, E Delage, M Ghavamzadeh, and M Petrik. On dynamic program decompositions of static  
 502     risk mea-sures. *Les Cahiers du GERAD ISSN*, 711:2440, 2023.

503     Ju-Hyun Kim and Seungki Min. Risk-sensitive policy optimization via predictive cvar policy gradi-  
 504     ent. In *Forty-first International Conference on Machine Learning*, 2024.

505     Xiaocheng Li, Huaiyang Zhong, and Margaret L Brandeau. Quantile markov decision processes.  
 507     *Operations research*, 70(3):1428–1447, 2022.

509     Shiau Hong Lim and Ilyas Malik. Distributional reinforcement learning for risk-sensitive policies.  
 510     *Advances in Neural Information Processing Systems*, 35:30977–30989, 2022.

511     Jared Markowitz, Ryan W Gardner, Ashley Llorens, Raman Arora, and I-Jeng Wang. A risk-  
 512     sensitive approach to policy optimization. In *Proceedings of the AAAI Conference on Artificial*  
 513     *Intelligence*, volume 37, pp. 15019–15027, 2023.

514     Harry Mead, Clarissa Costen, Bruno Lacerda, and Nick Hawes. Return capping: Sample-efficient  
 515     cvar policy gradient optimisation. *arXiv preprint arXiv:2504.20887*, 2025.

517     Georg Ch Pflug and Alois Pichler. Time-consistent decisions and temporal decomposition of coher-  
 518     ent risk functionals. *Mathematics of Operations Research*, 41(2):682–699, 2016.

520     Ameya Pore, Davide Corsi, Enrico Marchesini, Diego Dall’Alba, Alicia Casals, Alessandro  
 521     Farinelli, and Paolo Fiorini. Safe reinforcement learning using formal verification for tissue re-  
 522     traction in autonomous robotic-assisted surgery. In *2021 IEEE/RSJ International Conference on*  
 523     *Intelligent Robots and Systems (IROS)*, pp. 4025–4031. IEEE, 2021.

524     James Queeney, Ioannis Ch Paschalidis, and Christos G Cassandras. Uncertainty-aware policy op-  
 525     timization: A robust, adaptive trust region approach. In *Proceedings of the AAAI Conference on*  
 526     *Artificial Intelligence*, volume 35, pp. 9377–9385, 2021.

527     Aravind Rajeswaran, Sarveeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning  
 528     robust neural network policies using model ensembles. *arXiv preprint arXiv:1610.01283*, 2016.

530     R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. *Journal*  
 531     *of risk*, 2:21–42, 2000.

533     Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse distri-  
 534     butional reinforcement learning. In *Learning for Dynamics and Control*, pp. 958–968. PMLR,  
 535     2020.

536     Silvestr Stanko and Karel Macek. Risk-averse distributional reinforcement learning: A cvar opti-  
 537     mization approach. In *IJCCI*, pp. 412–423, 2019.

538     Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In *Proceedings*  
 539     *of the AAAI Conference on Artificial Intelligence*, volume 29, 2015.

540 Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Sequential decision making  
 541 with coherent risk. *IEEE transactions on automatic control*, 62(7):3323–3338, 2016.  
 542

543 Núria Armengol Urpí, Sebastian Curi, and Andreas Krause. Risk-averse offline reinforcement learning  
 544 *arXiv preprint arXiv:2102.05371*, 2021.

545 Kaiwen Wang, Nathan Kallus, and Wen Sun. Near-minimax-optimal risk-sensitive reinforcement  
 546 learning with cvar. In *International Conference on Machine Learning*, pp. 35864–35907. PMLR,  
 547 2023.

549 Lu Wen, Jingliang Duan, Shengbo Eben Li, Shaobing Xu, and Huei Peng. Safe reinforcement  
 550 learning for autonomous vehicles through parallel constrained policy optimization. In *2020 IEEE*  
 551 *23rd International Conference on Intelligent Transportation Systems (ITSC)*, pp. 1–7. IEEE, 2020.

553 Jianyi Zhang and Paul Weng. Safe distributional reinforcement learning. In *International Conference*  
 554 *on Distributed Artificial Intelligence*, pp. 107–128. Springer, 2021.

## 557 A EXPERIMENT AND IMPLEMENTATION DETAILS

### 559 A.1 BASELINE: CVAR-Q ALGORITHM

561 We employ CVaR Q-learning to solve the CVaR optimization problem. This approach learns a function  
 562 approximator  $u^\theta$  that estimates the CVaR value function. The training procedure is summarized  
 563 in Algorithm 0. While the method shares similarities with Predictive CVaR Q-learning, the key  
 564 difference lies in the optimization of the parameter  $\theta$ , which is updated using a temporal-difference  
 565 (TD) loss derived from the Bellman optimal equation in (Wang et al., 2023) such as: for a mini-batch  
 566  $\mathcal{B} = \{(R_{1:j-1}, S_j, A_j, R_j, S_{j+1})\}_{j=1}^B$ ,

$$568 \mathcal{L}_u(\theta; \mathcal{B}) := \frac{1}{B|H|} \sum_{\eta' \in H} \sum_{j=1}^B \left( \hat{u}_j^\theta(S_j, \eta' - R_{1:j-1}, A_j) - \hat{u}_{j+1}^\theta(S_{j+1}, \eta' - R_{1:j}, A_{j+1}^*) \right)^2.$$

571 where  $A_{j+1}^* \in \arg \max_{a \in \mathcal{A}} \hat{u}_{j+1}^\theta(S_{j+1}, \eta' - R_{1:j}, a)$ .

---

### 574 Algorithm 2 CVaR Q-Learning

575 1: **Initialize** parameters  $\theta, \phi$ , risk budget grid  $H$ , initial  $\eta \in H$ , replay buffer  $\mathcal{D}$

576 2: **for**  $k = 1$  to  $K$  **do**

577 3:   Initialize  $S_1 \leftarrow s_1, Y_1 \leftarrow \eta$ .

578 4:   **for**  $t = 1$  to  $T$  **do**

579 5:     With probability  $\epsilon$ , choose  $A_t \sim \text{Uniform}(\mathcal{A})$ .

580 6:     Otherwise, choose  $A_t$  greedily with:

$$581 \quad A_t \leftarrow \arg \max_{a \in \mathcal{A}} \{u_t^\theta(S_t, Y_t, a)\}.$$

583 7:     Execute  $A_t$ , observe  $R_t, S_{t+1}$ ; update  $Y_{t+1} \leftarrow Y_t - R_t$ .

584 8:   **end for**

585 9:   Store  $(R_{1:t-1}, S_t, A_t, R_t, S_{t+1})$  into replay buffer  $\mathcal{D}$ .

586 10:   Sample a mini-batch  $\mathcal{B} = \{(R_{1:j-1}, S_j, A_j, R_j, S_{j+1})\}_{j=1}^B$  from  $\mathcal{D}$ .

587 11:   **Update**  $\theta$  using TD loss:

$$588 \quad \theta \leftarrow \theta - \alpha_\theta \nabla_\theta \mathcal{L}_u(\theta; \mathcal{B}).$$

589 12:   **Update** risk budget  $\eta$ :

$$591 \quad \eta \leftarrow \arg \max_{\eta' \in H} \max_{a \in \mathcal{A}} \{\hat{u}_1^\theta(s_1, \eta', a) + \eta' \cdot q\}.$$

593 13: **end for**

---

594 A.2 SEQUENTIAL DECISION TREE  
595596 **CVaR parameterization** To optimize for Conditional Value at Risk (CVaR), we define a discrete  
597 grid for the risk budget  $H$  as follows:

598 
$$H = \{-10.0, -9.9, -9.8, \dots, 1.48, 14.9, 15.0\},$$
  
599

600 and the quantile level  $q = 0.1$ . The Predictive CVaR Q-learning algorithm estimates the predic-  
601 tive tail value function  $f^\chi$  and the predictive tail probability function  $g^\chi$ . The CVaR Q-learning  
602 algorithm estimates value function  $u^\chi$ . A tabular function approximator is used for each of these  
603 functions:  $f^\theta, g^\phi$ , and  $u^\theta$ , where the values are maintained separately for combinations of states,  
604 residual risk budgets, and actions. The CVaR objective at a given risk budget  $\eta$  is computed as:  
605

606 
$$\hat{v}(s_1, \eta) = \eta \cdot (q - \hat{g}^\phi(s_1, \eta, a')) + \hat{f}_1(s_1, \eta, a'),$$
  
607

608 or alternatively:  
609

610 
$$\hat{v}(s_1, \eta) = \eta \cdot q + \hat{u}_1(s_1, \eta, a'),$$
  
611 where  $a' = \arg \max_{a \in \mathcal{A}} \eta \cdot (q - \hat{g}_1(s_1, \eta, a')) + \hat{f}_1(s_1, \eta, a')$  or  $a' = \arg \max_{a \in \mathcal{A}} \eta \cdot q + \hat{u}_1(s_1, \eta, a')$ .  
612

613 **Learning and optimization** We utilize both Predictive CVaR Q-learning and CVaR Q-learning  
614 algorithms. The learning process maintains estimates of  $f^\theta, g^\phi$ , and  $u^\theta$ . These are updated via the  
615 Adam optimizer. Key settings include:  
616617

- Learning rates:  $\alpha_\theta = 0.01, \alpha_\phi = 0.0001$
- Epsilon decay:  $\epsilon_t = 0.1 \cdot 0.9^{\lfloor t/100 \rfloor}$
- Batch size: 8 sampled trajectories per episode
- Optimizer: Adam with  $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$
- Episodes: 5,000
- 

618
$$\sigma_k = \begin{cases} 3, & \text{if } 0 \leq k < 500 \\ 2, & \text{if } 500 \leq k < 1000 \\ 1, & \text{if } 1000 \leq k < 1500 \\ 0, & \text{if } k \geq 1500 \end{cases}$$

619 Both  $f^\theta, g^\phi$  and  $u^\theta$  are updated based on cumulative return trajectories. The risk level parameter  $\eta$   
620 is updated every 500 iterations. The same hyperparameter configuration is applied to both Predictive  
621 CVaR Q-learning and CVaR Q-learning algorithms to ensure consistency. Under ideal conditions,  
622 the CVaR Q-learning algorithm also converges to the optimal risk-sensitive policy. However, we  
623 aim to highlight the robustness and stability of the Predictive CVaR Q-learning algorithm under the  
624 same conditions.  
625626 A.3 GRID-WORLD  
627628 **CVaR parameterization** To optimize for Conditional Value at Risk (CVaR), we define a discrete  
629 grid for the risk budget  $H$  as follows:  
630

631 
$$H = \{-150, -149, -148, \dots, 98, 99, 100\},$$
  
632

633 and the quantile level  $q = 0.1$ . A tabular function approximator is used for each of these functions:  
634  $f^\theta, g^\phi$ , and  $u^\theta$ , where the values are maintained separately for combinations of states, residual risk  
635 budgets, and actions. The CVaR objective at a given risk budget  $\eta$  is computed as same method  
636 before.  
637638 **Learning and optimization** We utilize both Predictive CVaR Q-learning and CVaR Q-learning  
639 algorithms. The learning process maintains estimates of  $f^\theta, g^\phi$ , and  $u^\theta$ . These are updated via the  
640 Adam optimizer. Key settings include:  
641642

- Learning rates:  $\alpha_\theta = 0.01, \alpha_\phi = 0.01$

- Epsilon decay:  $\max(1 - (\frac{\text{episode}}{2000}), 0.0)$
- Batch size: 1 sample trajectories per episode
- Optimizer: fixed learning rates
- Episodes: 15,000
- $\sigma_k = \begin{cases} 45, & \text{if } 0 \leq k < 2000 \\ 30, & \text{if } 2000 \leq k < 4000 \\ 15, & \text{if } 4000 \leq k < 6000 \\ 0, & \text{if } k \geq 6000 \end{cases}$
- Pretrain parameters  $(\theta, \phi, \eta)$  with risk-neutral policy

Both  $f^\theta, g^\phi$  and  $u^\theta$  are updated based on cumulative return trajectories. The risk level parameter  $\eta$  is updated every 500 iterations. The same hyperparameter configuration is applied to both Predictive CVaR Q-learning and CVaR Q-learning algorithms to ensure consistency.

#### A.4 COMPUTATION AND IMPLEMENTATION

All experiments were conducted on a system with an 11th Gen Intel(R) Core(TM) i7-11700K processor running at 3.60 GHz, 32 GB of RAM, and 8 CPU cores. Each experiment for a given seed typically requires about 20 (tree) and 90 (grid-world) minutes to complete. The implementation is written in Python 3.8+ using only NumPy and Matplotlib, without relying on any external reinforcement learning libraries (such as Gym or Stable Baselines). All code and experimental results will be released as a ZIP file.

## B EFFECTIVENESS OF TWO-WAY EXPLORATION AND PARAMETERS PRETRAINING

In this section, we evaluate the performance of Predictive CVaR Q-learning algorithm in a controlled setting to investigate the effect of parameters pretraining and  $\eta$  sampling. We compare our proposed algorithm PCVaR-Q with or without the two technique, Two-way and Pretrain:

- Two-way (O/X) : exploration with both action-level and risk-level (O) or with only action-level (X).
- Pretrain (O/X): Start with pretrained parameters  $(\theta, \phi, \eta)$  (O) or zero parameters  $(\theta, \phi, \eta)$  (X)

**Result** Each row in Figure 4 visualizes the distinct paths discovered during training and the state visit frequencies as heatmaps for each model at specific iterations (left: at 2,000 iterations, right: at 12,000 iterations). In Figures 4a~ 4d, where models were initialized with zero value functions and trained without pretraining, we observe that the agents fail to learn optimal trajectories. The case without both two-way exploration and pretraining failed to achieve sufficient exploration, resulting in poor performance. Even when two-way exploration was enabled without pretraining, the agent still converged to suboptimal local behaviors. This phenomenon reflects a blindness to success, which may bring CVaR learning to a local optimum deadlock. In contrast, models were initialized with the pretrained parameters in Figures (e)–(h) successfully identify safer trajectories. Notably, models augmented with two-way exploration converge more quickly and consistently to the desirable path, demonstrating improved exploration and stability during training.

## C PROOFS OF THEORETICAL FOUNDATIONS

To establish the theoretical foundations, we begin by introducing a key technical assumption that simplifies the treatment of conditional distributions over cumulative rewards.

**Assumption 1.** *Under any non-anticipating policy  $\pi \in \Pi$  and any time  $t \in \{1, \dots, T\}$ , the distribution of remaining return  $R_{t:T}$  does not have any probability mass.*

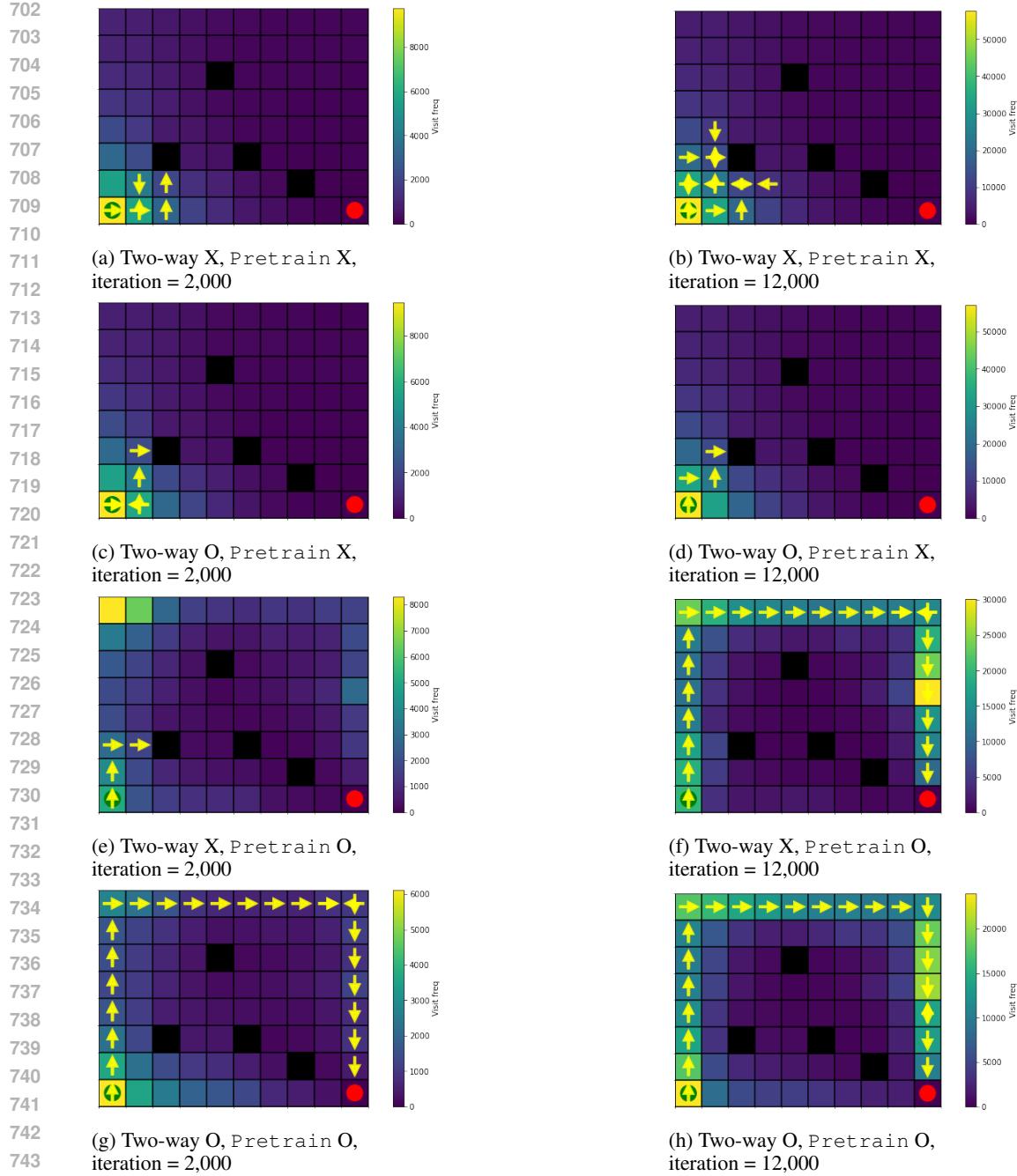


Figure 4: The distinct policies learned by PCVaR-Q agents over the course of Q-learning

Assumption 1 ensures that the cumulative return  $R_{t:T}$  has a continuous distribution, with no point masses (atoms). This condition is critical to the theoretical framework presented in this work. Specifically, it guarantees that the conditional probability  $\mathbb{P}(R_{t:T} \leq Y_t \mid S_t, Y_t, A_t)$  is differentiable with respect to the threshold  $Y_t$ , which is a key component for defining the tail probability function  $g_t^\chi$  and constructing the recursive CVaR objective function. Without Assumption 1, the function  $g_t^\chi$  could exhibit discontinuities or even be undefined. This is due to the presence of atoms in the conditional distribution of returns. This would invalidate several important results, including Lemma 1, Proposition 1, and Theorem 1, which rely on the smoothness of these functions.

756 C.1 PROOF OF PROPOSITION 1  
757

758 In order to derive efficient recursive formulations of the CVaR objective, we first characterize how  
759 the CVaR objective can be decomposed temporally. The following proposition shows that the pre-  
760 dictive tail value function  $f^\chi$  can be expressed as the expectation of cumulative discounted rewards,  
761 weighted by a predictive tail probability function  $g^\chi$ . This result provides the foundation for a  
762 Bellman-type recursive formulation presented in Theorem 1.

763 **Proposition 1** (Temporal decomposition). *Under Assumption 1, for any  $s \in \mathcal{S}, y \in \mathbb{R}, a \in \mathcal{A}$ , and  
764  $t \in \{1, \dots, T\}$ , the following equations hold:*

$$766 f_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau \mid S_t = s, Y_t^\eta = y, A_t = a \right],$$

$$770 g_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} [ g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) \mid S_t = s, Y_t^\eta = y, A_t = a ], \quad (9)$$

771 and

$$773 \mathbb{E}^{\chi, \eta} [ -(\eta - R_{1:T})^+ ] = \mathbb{E}_{A_1 \sim \chi_1(\cdot|s_1, \eta)} [ f_1^\chi(s_1, \eta, A_1) - g_1^\chi(s_1, \eta, A_1) \times \eta ].$$

775 *Proof.* The following results provide a key identity that allows us to express the event indicator over  
776 cumulative returns in terms of the predictive weight function  $g^\chi$ :

778 **Lemma 1.** *Given an augmented Markov policy kernel  $\chi$  and risk budget  $\eta$ , under Assumption 1, we  
779 have*

$$780 \mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{t:T} \leq Y_t\} R_\tau | S_t, Y_t, A_t] = \mathbb{E}^{\chi, \eta} [g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau | S_t, Y_t, A_t]$$

782  $\forall t \in \{1, \dots, T\}$  and  $\forall \tau \in \{t, \dots, T\}$

784 *Proof.*

$$786 \mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{t:T} \leq Y_t\} R_\tau | S_t, Y_t, A_t] \stackrel{(a)}{=} \mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{t:T} \leq Y_t\} R_\tau | H_t, A_t] \\ 787 \stackrel{(b)}{=} \mathbb{E}^{\chi, \eta} [\mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{t:T} \leq Y_t\} R_\tau | H_{\tau+1}, A_{\tau+1}] | H_t, A_t] \\ 788 \stackrel{(c)}{=} \mathbb{E}^{\chi, \eta} [\mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{t:T} \leq Y_t\} | H_{\tau+1}, A_{\tau+1}] R_\tau | H_t, A_t] \\ 789 = \mathbb{E}^{\chi, \eta} [\mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{\tau+1:T} \leq Y_t - R_{t:\tau}\} | H_{\tau+1}, A_{\tau+1}] R_\tau | H_t, A_t] \\ 790 \stackrel{(a)}{=} \mathbb{E}^{\chi, \eta} [\mathbb{E}^{\chi, \eta} [\mathbb{I}\{R_{\tau+1:T} \leq Y_{\tau+1}\} | S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}] R_\tau | H_t, A_t] \\ 791 = \mathbb{E}^{\chi, \eta} [g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau | H_t, A_t] \\ 792 \stackrel{(a)}{=} \mathbb{E}^{\chi, \eta} [g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau | S_t, Y_t, A_t]$$

797 We proceed by conditioning on the full history and applying the tower property of conditional ex-  
798 pectation.

800 (a) By the Markov property with respect to the augmented state space, the conditional expec-  
801 tation given  $(S_t, Y_t)$  is equivalent to conditioning on the full history  $H_t$ .  
802

803 (b) We apply the law of total expectation to decompose the expectation across time steps,  
804 conditioning first on  $H_{\tau+1}$ .  
805

806 (c) Since  $H_{\tau+1}$  contains all rewards up to time  $\tau$ , we can isolate  $R_\tau$  over the conditional  
807 expectation.

808 We utilize the definition of  $g^\chi$  in the sixth step. Substituting this decomposition into the original  
809 expression yields the desired form.  $\square$

810 Applying Lemma 1, which is (d), to the definition of  $f_t^\chi$ , we obtain:  
 811

$$\begin{aligned} 812 \quad f_t^\chi(s, y, a) &:= \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | S_t = s, Y_t = y, A_t = a] \\ 813 &= \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | S_t = s, Y_t = y, A_t = a] \\ 814 &\stackrel{(d)}{=} \mathbb{E}^{\chi, \eta}[\sum_{\tau=t}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau | S_t = s, Y_t = y, A_t = a] \\ 815 \end{aligned}$$

816 Furthermore, similar technique utilizes the representation for  $\mathbb{E}^{\chi, \eta}[-(\eta - R_{1:T})^+]$  as:  
 817

$$\begin{aligned} 818 \quad \mathbb{E}^{\chi, \eta}[-(\eta - R_{1:T})^+] &= \mathbb{E}^{\chi, \eta}[(R_{1:T} - \eta) \times \mathbb{I}\{R_{1:T} \leq Y_1\}] \\ 819 &= \mathbb{E}^{\chi, \eta}[R_{1:T} \times \mathbb{I}\{R_{1:T} \leq Y_1\}] - \mathbb{E}^{\chi, \eta}[\eta \times \mathbb{I}\{R_{1:T} \leq Y_1\}] \\ 820 &= \mathbb{E}^{\chi, \eta}[f_1^\chi(s_1, \eta, A_1)] - \mathbb{E}[g_1^\chi(s_1, \eta, A_1)] \times \eta \\ 821 &= \mathbb{E}_{A_1 \sim \chi_1(\cdot | s_1, \eta)}[f_1^\chi(s_1, \eta, A_1) - g_1^\chi(s_1, \eta, A_1) \times \eta]. \\ 822 \end{aligned}$$

823 For the last equation, we need the following lemma.  
 824

825 **Lemma 2.** *Given an augmented Markov policy kernel  $\chi$  and risk budget  $\eta$ , under Assumption 1, we  
 826 have*

$$\begin{aligned} 827 \quad \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | S_t, Y_t, A_t] &= \mathbb{E}^{\chi, \eta}[g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) | S_t, Y_t, A_t] \\ 828 \quad \forall t \in \{1, \dots, T\} \end{aligned}$$

829 *Proof.*

$$\begin{aligned} 830 \quad \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | S_t, Y_t, A_t] &\stackrel{(a)}{=} \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | H_t, A_t] \\ 831 &\stackrel{(b)}{=} \mathbb{E}^{\chi, \eta}[\mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | H_{t+1}, A_{t+1}] | H_t, A_t] \\ 832 &= \mathbb{E}^{\chi, \eta}[\mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t+1:T} \leq Y_t - R_t\} | H_{t+1}, A_{t+1}] | H_t, A_t] \\ 833 &\stackrel{(a)}{=} \mathbb{E}^{\chi, \eta}[\mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t+1:T} \leq Y_{t+1}\} | S_{t+1}, Y_{t+1}, A_{t+1}] | H_t, A_t] \\ 834 &= \mathbb{E}^{\chi, \eta}[g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) | H_t, A_t] \\ 835 &\stackrel{(a)}{=} \mathbb{E}^{\chi, \eta}[g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) | S_t, Y_t, A_t] \\ 836 \end{aligned}$$

837 We proceed by conditioning on the full history and applying the tower property of conditional ex-  
 838 pectation.  
 839

- 840 (a) By the Markov property with respect to the augmented state space, the conditional expec-  
 841 tation given  $(S_t, Y_t)$  is equivalent to conditioning on the full history  $H_t$ .  
 842
- 843 (b) We apply the law of total expectation to decompose the expectation across time steps,  
 844 conditioning first on  $H_{\tau+1}$ .  
 845

846 We utilize the definition of  $g^\chi$  in the sixth step. Substituting this decomposition into the original  
 847 expression yields the desired form.  $\square$   
 848

849 Applying Lemma 2, which is (d), to the definition of  $g_t^\chi$ , we obtain:  
 850

$$\begin{aligned} 851 \quad g_t^\chi(s, y, a) &:= \mathbb{P}^{\chi, \eta}(R_{t:T} \leq y | S_t = s, Y_t^\eta = y, A_t = a) \\ 852 &= \mathbb{E}^{\chi, \eta}[\mathbb{I}\{R_{t:T} \leq Y_t\} | S_t = s, Y_t = y, A_t = a] \\ 853 &\stackrel{(d)}{=} \mathbb{E}^{\chi, \eta}[g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) | S_t = s, Y_t = y, A_t = a] \\ 854 \end{aligned}$$

855  $\square$

856 The first statement of Proposition 1 establishes a cumulative formulation of the predictive tail value  
 857 function. This result naturally motivates a recursive Bellman-style decomposition. We formalize it  
 858 in the next theorem.  
 859

864 C.2 PROOF OF THEOREM 1  
865

866 Building upon the temporal decomposition in Proposition 1, we derive a Bellman-type recursive  
867 relation for the predictive tail value function. This relation enables efficient policy evaluation and  
868 learning in dynamic settings.

869 **Theorem 1** (Bellman equation). *Given an augmented Markov policy kernel  $\chi$ , under Assumption 1,  
870 its predictive tail value function  $f^\chi$  and predictive tail probability function  $g^\chi$  satisfy*

$$871 \quad f_t^\chi(s, y, a) = \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [f_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \\ 872 \quad + g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t], \\ 873 \quad (10)$$

874 for all  $s \in \mathcal{S}$ ,  $y \in \mathbb{R}$ ,  $a \in \mathcal{A}$ , and  $t \in \{1, \dots, T\}$ .

875 *Proof.*

$$876 \quad f_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau \mid S_t = s, Y_t^\eta = y, A_t = a \right] \\ 877 \quad = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t+1}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau \mid S_t = s, Y_t^\eta = y, A_t = a \right] \\ 878 \quad \quad + \mathbb{E}^{\chi, \eta} [g_{t+1}^\chi(S_{t+1}, Y_{t+1}, A_{t+1}) \times R_t \mid S_t = s, Y_t^\eta = y, A_t = a] \\ 879 \quad = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t+1}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \times R_\tau \mid S_t = s, Y_t^\eta = y, A_t = a \right] \\ 880 \quad \quad + \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t] \\ 881 \quad = \mathbb{E}^{\chi, \eta} [f_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \mid S_t = s, Y_t^\eta = y, A_t = a] \\ 882 \quad \quad + \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t] \\ 883 \quad = \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [f_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \\ 884 \quad \quad + g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \times R_t].$$

885 We begin with the temporal decomposition from Proposition 1, which expresses  $f_t^\chi$  as a cumulative  
886 expectation of future rewards weighted by  $g^\chi$ :

$$887 \quad f_t^\chi(s, y, a) = \mathbb{E}^{\chi, \eta} \left[ \sum_{\tau=t}^T g_{\tau+1}^\chi(S_{\tau+1}, Y_{\tau+1}, A_{\tau+1}) \cdot R_\tau \mid S_t = s, Y_t = y, A_t = a \right].$$

888 We isolate the contribution of the first term  $R_t$ , and apply the law of total expectation with respect  
889 to the policy kernel  $\chi$ :

$$890 \quad f_t^\chi(s, y, a) = \mathbb{E}_{(R_t, S_{t+1}) \sim \mathcal{P}_t(\cdot|s, a), A_{t+1} \sim \chi_{t+1}(\cdot|S_{t+1}, y - R_t)} [ \\ 891 \quad f_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) + g_{t+1}^\chi(S_{t+1}, y - R_t, A_{t+1}) \cdot R_t].$$

892 This completes the recursive Bellman-type equation for  $f^\chi$ .  $\square$

893 Having established the Bellman recursion for the predictive tail value function, we now turn to  
894 the corresponding optimality conditions. Theorem 2 characterizes the optimal value function and  
895 derives the form of the optimal policy via a greedy selection criterion.

914 C.3 PROOF OF THEOREM 2  
915

916 With the recursive formulation established in Theorem 1, we now turn to the optimality condition.  
917 The following result characterizes the optimal value function and policy structure under CVaR ob-  
918 jective.

918 **Theorem 2** (Bellman optimality equation). *Define*

$$919 \quad v_t^\chi(s, y) := \mathbb{E}_{A_t \sim \chi_t(\cdot|s, y)} [f_t^\chi(s, y, A_t) - g_t^\chi(s, y, A_t) \times y], \quad v_t^*(s, y) := \sup_{\chi \in \mathcal{X}} v_t^\chi(s, y).$$

920 *Then, the following holds under Assumption 1:*

921 *1. Let  $\Pi(\chi)$  be the set of augmented Markov policies induced by a kernel  $\chi$  across all values*  
*922 of  $\eta \in \mathbb{R}$ . Then,*

$$923 \quad \sup_{\pi \in \Pi(\chi)} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \{q\eta + v_1^\chi(s_1, \eta)\}.$$

924 *2. With respect to all non-anticipating policies,*

$$925 \quad \sup_{\pi \in \Pi} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} = \max_{\eta \in \mathbb{R}} \{q\eta + v_1^*(s_1, \eta)\}.$$

926 *3.  $v^\chi \equiv v^*$  if and only if  $\chi$  is greedy with respect to  $(f^\chi, g^\chi)$ .*

927 *Proof.* For the first claim,

928 We begin by proving the first claim. For any fixed policy kernel  $\chi$ , we consider the class of aug-  
929 mented Markov policies  $\Pi(\chi)$  it induces. Then,

$$930 \quad \begin{aligned} \sup_{\pi \in \Pi(\chi)} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} &= \sup_{\pi \in \Pi(\chi)} \left\{ q \cdot \max_{\eta \in \mathbb{R}} \{\eta + \mathbb{E}^\pi[-(\eta - R_{1:T})^+]\} \right\} \\ &\stackrel{(a)}{=} \max_{\eta \in \mathbb{R}} \{\eta q + \mathbb{E}^{\chi, \eta}[-(\eta - R_{1:T})^+]\} \\ &\stackrel{(b)}{=} \max_{\eta \in \mathbb{R}} \{\eta q + \mathbb{E}_{A_1 \sim \chi_1(\cdot|s_1, \eta)} [f_1^\chi(s_1, \eta, A_1) - g_1^\chi(s_1, \eta, A_1) \times \eta]\} \\ &\stackrel{(c)}{=} \max_{\eta \in \mathbb{R}} \{\eta q + v_1^\chi(s_1, \eta)\}, \end{aligned}$$

931 where step (a) holds because the supremum over  $\pi \in \Pi(\chi)$  includes the freedom to choose  $\eta$ , step  
932 (b) follows directly from Proposition 1 and step (c) follows directly from the definition of  $v_t^\chi(s, y)$   
933 in Theorem 2.

934 We now turn to the second claim. When optimizing over all admissible non-anticipating policies  $\Pi$ ,  
935 we can equivalently optimize over the space of all Markov kernels  $\chi \in \mathcal{X}$ :

$$936 \quad \begin{aligned} \sup_{\pi \in \Pi} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} &\stackrel{(a)}{=} \sup_{\chi \in \mathcal{X}} \left\{ \sup_{\pi \in \Pi(\chi)} \{q \cdot \text{CVaR}_q^\pi[R_{1:T}]\} \right\} \\ &\stackrel{(b)}{=} \sup_{\chi \in \mathcal{X}} \left\{ \max_{\eta \in \mathbb{R}} \{q\eta + v_1^\chi(s_1, \eta)\} \right\} \\ &= \max_{\eta \in \mathbb{R}} \left\{ q\eta + \sup_{\chi \in \mathcal{X}} \{v_1^\chi(s_1, \eta)\} \right\} \\ &\stackrel{(c)}{=} \max_{\eta \in \mathbb{R}} \{q\eta + v_1^*(s_1, \eta)\}, \end{aligned}$$

937 where step (a) uses the policy optimization result (Theorem 3.2 in (Bäuerle & Ott, 2011)), step  
938 (b) follows from the result already shown in the first claim of this theorem, and step (c) uses the  
939 definition of  $v_t^*(s, y)$  as the pointwise supremum over  $\chi \in \mathcal{X}$ .

940 To prove the final statement, we make use of the optimality condition for value functions (Theorem  
941 5.1 in (Wang et al., 2023)), which states that equality between  $v^\chi$  and  $v^*$  holds if and only if the  
942 policy is greedy with respect to the action-value function  $u^\chi$ . Specifically:

$$943 \quad v^\chi \equiv v^* \Leftrightarrow \left( \{a \in \mathcal{A} \mid \chi_t(a|s, y) > 0\} \subseteq \arg \max_{a \in \mathcal{A}} u_t^\chi(s, y, a) \quad \forall t, s, y. \right)$$

944 Using the identity  $u_t^\chi(s, y, a) = f_t^\chi(s, y, a) - g_t^\chi(s, y, a) \cdot y$ , the equivalence follows.

945  $\square$

972 C.4 PROOF OF THEOREM 3  
973

974 We now show that a policy improvement guarantee in the context of CVaR optimization over aug-  
975 mented state spaces. This forms the backbone of our Predictive CVaR Q-learning algorithms in  
976 risk-sensitive reinforcement learning settings.

977 **Theorem 3** (Policy improvement). *Consider an augmented Markov policy kernel  $\chi$  along with its  
978 predictive tail value function  $f^\chi$  and predictive tail probability function  $g^\chi$ . Let  $\chi'$  be the greedy  
979 kernel with respect to  $(f^\chi, g^\chi)$ . Then, under Assumption 1,*

$$980 \quad v_t^\chi(s, y) \leq v_t^{\chi'}(s, y), \quad \forall s \in \mathcal{S}, y \in \mathbb{R}, t \in \{1, \dots, T\}.$$

982 Consequently,

$$983 \quad \sup_{\pi \in \Pi(\chi)} \text{CVaR}_q^\pi(R_{1:T}) \leq \sup_{\pi \in \Pi(\chi')} \text{CVaR}_q^\pi(R_{1:T}), \quad (11)$$

985 for any  $q \in (0, 1]$ .

987 *Proof.*

$$988 \quad \begin{aligned} \sup_{\pi \in \Pi(\chi)} \text{CVaR}_q^\pi(R_{1:T}) &\stackrel{(a)}{=} \max_{\eta \in \mathbb{R}} \{q\eta + v_1^\chi(s_1, \eta)\} \\ 991 &\stackrel{(b)}{\leq} \max_{\eta \in \mathbb{R}} \{q\eta + v_1^{\chi'}(s_1, \eta)\} \\ 993 &\stackrel{(a)}{=} \sup_{\pi \in \Pi(\chi')} \text{CVaR}_q^\pi(R_{1:T}) \end{aligned}$$

996 where step (a) uses 1. of Theorem 2, step (b) follows from the definition of greedy kernel  $\chi'$ .  $\square$

997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025