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Abstract

Is automated hallucination detection fundamen-
tally possible? In this paper, we introduce a
theoretical framework to rigorously study the
(im)possibility of automatically detecting hallu-
cinations produced by large language models
(LLMs). Our model builds on the classical Gold-
Angluin framework of language identification
(Gold, 1967; Angluin, 1980) and its recent adap-
tation by Kleinberg & Mullainathan (2024) to the
language generation setting. Concretely, we inves-
tigate whether an algorithm—trained on examples
from an unknown target language K, chosen from
a countable collection of languages L, and given
access to an LLM—can reliably determine if the
LLM’s outputs are correct or constitute hallucina-
tions.

First, we establish a strong equivalence between
hallucination detection and the classical prob-
lem of language identification. Specifically, we
prove that any algorithm capable of identifying
languages (in the limit) can be efficiently trans-
formed into one that reliably detects hallucina-
tions, and conversely, successful hallucination de-
tection strategy inherently implies language iden-
tification. Given the notorious difficulty of lan-
guage identification, our first result implies that
hallucination detection is impossible for most col-
lections of languages.

Second, we show that once we enrich the detec-
tor’s training data, i.e., providing it with both
positive examples (correct statements) and nega-
tive examples (explicitly labeled incorrect state-
ments)— the conclusion dramatically changes.
Under this enriched training regime, we show that
automated hallucination detection is possible for
any countable collection L.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
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Models. Do not distribute.

Our theoretical results, thus, underscore the fun-
damental importance of expert-labeled feedback
in the practical deployment of hallucination de-
tection methods, reinforcing why feedback-based
approaches, such as reinforcement learning with
human feedback (RLHF), have proven so crucial
in improving the reliability and safety of real-
world LLMs.

1. Introduction
The recent breakthroughs in Large Language Models
(LLMs) have significantly advanced the state-of-the-art in
natural language processing and broader machine learning
tasks (OpenAI et al., 2024; Team et al., 2024). Contem-
porary models routinely demonstrate exceptional perfor-
mance across diverse tasks, including mathematical rea-
soning, complex problem-solving, and generating coherent,
contextually appropriate text (Bubeck et al., 2023; Touvron
et al., 2023).

However, alongside these remarkable capabilities, a critical
limitation has emerged: LLMs frequently produce halluci-
nations—outputs that appear fluent and convincing yet are
factually incorrect (Ji et al., 2023). Hallucinations signifi-
cantly limit the trustworthiness of LLMs, posing substantial
risks when deploying them in sensitive applications, and
raising urgent concerns around ethics, reliability, and so-
cietal impacts (Weidinger et al., 2021; Zhang et al., 2023;
Azamfirei et al., 2023).

A promising approach to addressing hallucinations is the
development of automated detection mechanisms. Unfor-
tunately, practical attempts to detect hallucinations using
LLMs themselves as detectors have faced limitations. Em-
pirical studies indicate that LLMs perform significantly
worse than humans at identifying hallucinations, and typ-
ically require reliable external feedback—such as explicit
labeling by experts—to improve (Kamoi et al., 2024a;b).
Despite these empirical observations, a theoretical under-
standing of these practical difficulties has remained open:

Is automated hallucination detection inherently difficult, or
can we expect it to become easier as models improve?

To address this gap, we introduce a formal theoretical frame-
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(Im)possibility of Automated Hallucination Detection in Large Language Models

work inspired by classical learning theory—particularly the
foundational work of Gold and Angluin on language identi-
fication (Gold, 1967; Angluin, 1979; 1980), and its recent
adaptation to the context of language generation by Klein-
berg & Mullainathan (2024). Specifically, we propose a
novel theoretical abstraction to formally study the feasibility
of reliably detecting hallucinations produced by language
models. In our model, the hallucination detector is provided
with a corpus of training data coming from some unknown
target language K and is allowed to interact with an LLM,
whose outputs we denote by the set G. Conceptually, the
language K encodes all statements that are factually correct,
while any output outside of K is considered a hallucina-
tion. We say that a hallucination detection algorithm is
successful if, after observing sufficiently many examples
from K and interacting extensively with the LLM, it eventu-
ally determines correctly whether or not the LLM produces
hallucinations. Formally, this means that if G ⊆ K, the
detector should eventually conclude that the LLM does not
hallucinate, whereas if G ̸⊆ K, meaning the LLM generates
outputs outside of K, the detector should correctly identify
that the LLM hallucinates.

Our first main result formally establishes an equivalence
between hallucination detection and the classical problem
of language identification, which is known to be inherently
challenging (Gold, 1967; Angluin, 1980). The practical
implication is summarized concisely below:

Informal Result I. Automated detection of hallucina-
tions by a detector that is trained only on correct ex-
amples (positive examples) is inherently difficult and
typically impossible without additional assumptions or
signals.

Thus, this result provides theoretical justification for the
challenges encountered in practice when trying to automati-
cally detect whether an LLM hallucinates.

Given this negative finding, we next examine a more opti-
mistic scenario, inspired both by classical theory (Gold,
1967) and modern empirical approaches (Kamoi et al.,
2024a), in which the detector receives both correct state-
ments (positive examples) and explicitly labeled incorrect
statements (negative examples). Under these conditions, the
outlook changes dramatically:

Informal Result II. Reliable automated hallucination
detection is achievable when the detector is trained using
both correct (positive) and explicitly labeled incorrect
(negative) examples.

This result has an interesting implication for practical at-
tempts to create hallucination detectors: explicit expert feed-
back, particularly negative examples, is critical and funda-

mentally necessary for automated hallucination detection
to succeed.

These theoretical results align closely with both classical
and recent theoretical findings, reinforcing the crucial im-
portance of negative examples first noticed by Gold (1967),
and complementing recent theoretical works on the ben-
efits of negative examples for generating a broad set of
responses without encountering hallucinations (Kalai &
Vempala, 2024; Kalavasis et al., 2024; 2025). They also
resonate with current practical methodologies, such as re-
inforcement learning with human feedback (RLHF), that
leverage explicit negative examples to reduce hallucinations
and enhance model reliability in practice (Yang et al., 2024;
DeepMind, 2024). In short, our theoretical findings pro-
vide a first theoretical understanding of the fundamental
limitations—and necessary conditions—of automated hallu-
cination detection in LLMs.

1.1. Related Work

1.1.1. THEORETICAL FRAMEWORKS FOR LLMS

Our proposed framework builds on seminal works in learn-
ing theory, including the seminal Gold-Angluin framework
(Gold, 1967; Angluin, 1979; 1980) for language identifi-
cation, and its recent adaptation to language generation by
Kleinberg & Mullainathan (2024).

Following Kleinberg’s and Mullainathan’s formulation, Li
et al. (2024) extended this perspective, using a learning-
theoretic lens to characterize when “uniform” and “non-
uniform” language generation are achievable. Further, re-
cent works by Kalavasis et al. (2025; 2024); Charikar & Pab-
baraju (2024) explored notions of generation “with breadth,”
demonstrating that this goal is inherently harder than stan-
dard language generation, and, in some cases, as challenging
as language identification itself. In a similar spirit, Peale
et al. (2025) formalized and studied a notion of “represen-
tative generation,” and showed that it is possible to achieve
it in the limit for all countable collections of languages. In
a complementary direction, Raman & Raman (2025) stud-
ied language generation from noisy examples, considering
scenarios where training data includes instances outside the
target language K. In a concurrent and independent work,
Kleinberg & Wei (2025) studied a hallucination-breadth
trade-off based on a notion of density of languages.

Diverging from the Gold-Angluin framework, Kalai & Vem-
pala (2024) connected calibration in generation to increased
hallucination rates. Additionally, recent analyses by Peng
et al. (2024); Chen et al. (2024) identified fundamental limi-
tations of transformer architectures. Using techniques from
communication complexity, they proved transformers are
incapable of composing functions when domains become
sufficiently large, providing rigorous evidence for inherent
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(Im)possibility of Automated Hallucination Detection in Large Language Models

hallucination tendencies in LLMs, given that function com-
position underlies reasoning (Guan et al., 2024). Lastly, Xu
et al. (2024) leveraged complexity theory tools to demon-
strate inevitable hallucinations in LLMs under certain as-
sumptions. Earlier work by Hanneke et al. (2018) also
illustrates the value of using external feedback to mitigate
hallucinations of generative models. Our work contributes
to this literature which aims to give theoretical insights into
the capabilities and limitations of LLMs.

1.1.2. EMPIRICAL WORKS ON AUTOMATED
HALLUCINATION DETECTION

Automated hallucination detection has recently gained sig-
nificant attention, driven by the practical urgency to mitigate
hallucinations. Several empirical approaches have emerged
to tackle this challenge. For instance, Manakul et al. (2023)
introduce SelfCheckGPT, a black-box hallucination detec-
tion method that relies solely on stochastic sampling of
model responses. The core intuition of their method is that
factually accurate responses are typically consistent and
frequent, whereas hallucinated outputs tend to vary and
contradict each other.

In contrast to the black-box consistency-based method,
Azaria & Mitchell (2023) propose leveraging the internal
hidden states of the LLM to classify outputs as hallucinated
or factual. Notably, their classifier is trained using an explic-
itly labeled dataset comprising sentences marked as either
correct or incorrect, highlighting the benefit of explicitly
supervised hallucination detection. Their results signifi-
cantly outperform probability-distribution-based methods,
illustrating the advantage of internal-state supervision and
leveraging annotated datasets to perform this task.

Building upon these empirical insights, Kamoi et al. (2024a)
conduct a comprehensive evaluation demonstrating the lim-
itations of current LLM-based hallucination detection ap-
proaches. In particular, they show that LLMs perform poorly
as detectors when evaluating responses generated by other
models, emphasizing the challenge in using LLMs for auto-
mated hallucination detection without robust external sig-
nals. Echoing this observation, Tyen et al. (2023) further
demonstrate that introducing even minimal human feedback
greatly enhances the capability of LLMs to reliably detect
hallucinations. Similarly motivated, Niu et al. (2023) il-
lustrate the benefits of fine-tuning LLMs using carefully
curated, high-quality labeled datasets containing explicit an-
notations of hallucinations. This supervised fine-tuning im-
proves hallucination detection performance and underscores
the importance of explicitly labeled negative examples.

Our theoretical findings provide formal validation for these
empirical results, clearly highlighting the crucial role played
by explicitly labeled negative examples in successful hallu-
cination detection.

For comprehensive surveys on the broad topic of hallu-
cinations in LLMs, including various detection methods
discussed above, we refer the interested reader to Ji et al.
(2023); Zhang et al. (2023).

2. Model and Formal Results
2.1. Model

In this section we define the formal model we consider in
this work. We denote by L = {L1, L2, . . .} a countable
collection of candidate languages, where each language Li

is a subset of some countable domain X. We assume that
we have membership access to the collection L, meaning
that for any i ∈ N and x ∈ X we can ask whether x ∈ Li.
We allow L to contain multiple occurrences of the same
language, i.e. there might exist i ̸= j such that Li = Lj .

1

Each language Li can have finite or infinite cardinality.2

We define an enumeration of a language L to be an infinite
sequence E = (w1, w2, w3, . . .) such that for all i ∈ N
we have wi ∈ L, and for all x ∈ L there is some j ∈ N
such that wj = x. Notice that this allows for repetitions of
strings, but, crucially, for any given string x ∈ L there is a
finite index where this string appears.

We define the hallucination detection game as the follow-
ing interaction between a learner and an adversary: the
adversary picks a target language K ∈ L, an arbitrary enu-
meration E = (w1, w2, . . .) of K, and a target set G ⊆ X.
We say that G hallucinates with respect to K if it con-
tains elements outside of K, i.e., if G ̸⊆ K. We denote
by Et = (w1, . . . , wt) the prefix of the first t elements of
E. In every timestep t = 1, 2, . . . , the learner observes
wt, asks finitely many membership queries to G, i.e., for
finitely many x1, . . . , xk ∈ X it can ask if xi ∈ G, and
get the correct response. Then, it has to output its guess
gt ∈ {0, 1} whether G ⊆ K; it outputs 0 if it believes G
hallucinates and 1 otherwise. We say that the learner de-
tects hallucinations in the limit if for every target language
K ∈ L, enumeration E of K, and candidate G ⊆ X it
holds that after sufficiently long but finite t the guesses of
the learner become correct, i.e., there exists some t0 ∈ N
such that gt = 1 {G ⊆ K} ,∀t ≥ t0. The formal definition
is provided below.

Definition 2.1 (Hallucination Detection in the Limit). Fix
some K from the language collection L = {L1, L2, . . . }
and some set G ⊆ X. The hallucination detection algorithm
D = (Dt) detects hallucinations for G in the limit if there
is some t∗ ∈ N such that for all steps t > t∗, the detector’s
guess dt satisfies dt = 1 {G ⊆ K} . The language collec-

1This is because there might be different canonical representa-
tions of the same language.

2In the model of Kleinberg & Mullainathan (2024) the lan-
guages need to have infinite cardinality; this is not needed in our
model.
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tion L allows for hallucination detection in the limit if there
is a hallucination detector that detects in the limit for any
K ∈ L, for any G ⊆ X, and for any enumeration E of K.

To gain some intuition about this model, it is useful to
consider a simple example.
Example 2.2. Let X = N = {1, 2, 3, . . .} and L =
{L1, L2, L3, . . .} , where Li = {i · j, j ∈ N} , i.e., the i-th
language contains all the multiples of i. Assume the adver-
sary chooses K = L2, i.e., the language of all even numbers.
Then, it has to present to the learner all the even numbers,
one at a time, potentially allowing for duplicates in the pre-
sentation. Crucially, for every even number 2 · j, there is
some timestep tj ∈ N such that wtj = 2 · j. Consider two
potential choices of G : the first choice is G1 = L4 and the
second choice is G2 = L3.

3 In the first case, a successful
hallucination detection algorithm should claim, in the limit,
that G1 does not hallucinate with respect to K, whereas in
the second case it should claim that G2 does hallucinate
with respect to K. To give the reader a first glance of the
difficulty of the hallucination detection task, while we have
not stated our main result yet (Theorem 2.3), it is worth
pointing out that this result, along with Angluin’s charac-
terization of language detection in the limit (Theorem A.3),
implies that no hallucination detection algorithm exists for
this collection.

Identification and generation in the limit. Our model
is closely related to the Gold-Angluin language identifica-
tion setting (Gold, 1967; Angluin, 1979; 1980), and the
language generation setting of Kleinberg & Mullainathan
(2024). In both of these models there is a infinite game
between a learner and an adversary: the adversary picks a
target K ∈ L and an enumeration of that target; however,
unlike these models, the adversary does not pick a target set
G ⊆ X as happens in our setting. Similar to these models,
in every t ∈ N the learner observes a new element from
the enumeration. In the identification setting, the goal of
the learner is to find an index of the target language K for
all but finitely many steps, and in the generation setting the
goal is to output unseen elements of K for all but finitely
many steps. We present a more formal treatment of these
settings in Appendix A. Angluin (1980) exactly character-
ized when identification in this setting is achievable. Her
result is largely viewed as an impossibility result, since a
very limited number of collections satisfy it. On the other
hand, Kleinberg & Mullainathan (2024) showed that the
landscape of generation is vastly different: it is achievable
for all such collections.

Connections of theoretical model to practical LLM train-
ing. At this point, it is instructive to pause and consider

3We underline that we do not place the restriction G ∈ L, this
is only done to illustrate our example.

some common features of these three models; we believe
that while they are mathematical abstractions of the practi-
cal LLM training process, they capture a lot of important
aspects of this process. The way to interpret the different
languages of the collection L is that they capture different
“worlds” and the different elements of X are different “state-
ments.” Therefore, each “world” defines precisely which
“statements” are accurate and which ones are inaccurate.
Admittedly, real-world applications might be more nuanced
than that and there could be statements that cannot be eas-
ily categorized into accurate or inaccurate ones. Since our
model gives a clear taxonomy, it follows that a negative
result here can be viewed as a strong indication that in
real-world applications hallucination detection is even more
challenging.

In our model, we consider an adversarial enumeration in-
stead of placing distributional assumptions on the language
generation process and the way the outputs of the LLM are
generated. While this might look like a restriction of our
model at first glance, it turns out that our results carry over to
a setting where the data are generated probabilistically; this
follows from techniques similar to Kalavasis et al. (2025).
We choose to focus on the adversarial setting, following
the work of Kleinberg & Mullainathan (2024), to make our
exposition easier to follow.

Moreover, in all these models the “learner” is given access
only to positive examples in the form of elements that be-
long to the target language. This assumption is capturing
the pre-training process of modern machine learning archi-
tectures that are trained on a large corpus of datapoints that
are elements of the target language and are deployed to act
at automatic language identifiers, generators or detectors.
We also ignore the fact that the training dataset might be
corrupted. Again, this simplification is made to ensure that
our negative result reflects an innate difficulty of the halluci-
nation detection task and is not an artifact of inaccuracies
contained in the training data.

Next, notice that in all three settings we have discussed so
far – language identification, language generation, and hal-
lucination detection – the algorithm never receives feedback
about its guesses. This is also largely consistent with the
pre-training phase of the LLM training pipeline.

Furthermore, we do not place any computational restrictions
on the learning algorithm or the architecture that it relies
upon. In fact, we only wish for the detection property to hold
“in the limit.” This simplification is again made to ensure that
any negative results in the setting reveal inherent difficulties
of the underlying task and are not mere limitations of the
current technologies or computational resources that might
be rectified in the future.

Lastly, we underline that throughout our work we consider
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a promptless generation setting. Intuitively, this is also a
simplification of the behavior of real-world LLMs, thus
negative results in our model should also carry over to ap-
plied settings. We emphasize that all these assumptions are
largely consistent with prior work on theoretical capabilities
and limitations of LLMs (Kalai & Vempala, 2024; Xu et al.,
2024; Kleinberg & Mullainathan, 2024; Kalavasis et al.,
2024; Charikar & Pabbaraju, 2024; Kalavasis et al., 2025).
We believe that our results can be extended to the prompted
setting of Kleinberg & Mullainathan (2024), and we leave
this as an interesting future direction.

2.2. Formal Results

Given the similarities of the different tasks we have de-
scribed so far—language identification, language genera-
tion, and hallucination detection—it is natural to ask: is
hallucination detection as easy as generation, as hard as
identification, or does it lie somewhere in between? Our
first main result gives a precise answer to this question; we
show that hallucination detection is as hard as identification.

Theorem 2.3. A countable collection of languages L =
{L1, L2, . . .} over some countable domain X admits an
algorithm that detects hallucinations in the limit if and only
if L is identifiable in the limit.

Given our result and Angluin’s characterization (Angluin,
1980) which we state in Theorem A.3, we get the following
immediate corollary.

Corollary 2.4. A countable collection of languages L =
{L1, L2, . . .} over some countable domain X admits an
algorithm that detects hallucinations in the limit if and only
if L satisfies Angluin’s condition (Definition A.2).

Given this largely negative result about the ability to per-
form automated hallucination detection of LLMs, we next
ask what more information is needed by the learner to per-
form this task. Inspired by Gold’s work (Gold, 1967), we
consider a modified game termed hallucination detection
with negative examples. The main difference is that instead
of presenting an enumeration of the target language K, the
adversary presents an enumeration of the whole domain
X along with a label in {0, 1} indicating whether the enu-
merated element is in the target language or not. We call
this type of enumeration a labeled enumeration. In stark
contrast to our previous result, we show that hallucination
detection with negative examples is always possible. The
formal description of this game igiven below.

Definition 2.5 (Hallucination Detection with Negative Ex-
amples in the Limit). Fix some K from the language collec-
tion L = {L1, L2, . . . } and some set G ⊆ X. The halluci-
nation detection algorithm D = (Dt) detects hallucinations
for G given negative examples in the limit if there is some
t∗ ∈ N such that for all steps t > t∗, the detector’s guess

dt satisfies dt = 1 {G ⊆ K} . The language collection L

allows for hallucination detection with negative examples in
the limit if there is a hallucination detector that detects in the
limit for any K ∈ L, for any G ⊆ X, and for any labeled
enumeration E of X with respect to the target language K.

Having explained the mathematical setting, we are now
ready to state our formal result.

Theorem 2.6. Every countable collection of languages
L = {L1, L2, . . .} over some countable domain X admits
an algorithm that, given negative examples, detects halluci-
nations in the limit.

3. Overview of the Approach
Having discussed our formal setting and results, we now
describe the main steps of our technical approach. We start
with Theorem 2.3.

3.1. Proof of Theorem 2.3

Our approach here is divided into two main steps. First,
we show that we can transform any algorithm that achieves
identification in the limit in this setting to an algorithm that
detects hallucinations in the limit.

Language identification =⇒ hallucination detection.
The formal statement of this result is given below.

Lemma 3.1. Let L be a countable collection of languages
over a domain X that is identifiable in the limit. Then, L
admits an algorithm that achieves hallucination detection
in the limit.

Let us now explain the idea of our approach, which utilizes
the identification algorithm in a black-box way. In every
timestep t, the learner feeds the element wt the adversary
enumerates to the identification algorithm. The identifica-
tion property (Definition A.1) immediately shows that there
exists some t∗ ∈ N (which depends on the choice of the
target language K and the enumeration E) such that for
all t > t∗ the identifier’s guess it satisfies it = it−1 and
Lit = K. The learner next considers an enumeration of the
domain X = {x1, x2, . . .}. In the t-th step of the execution,
the learner uses the membership oracle to check which of
the elements x1, . . . , xt belong to the language Lit . Subse-
quently, the learner also queries the target LLM, modeled as
the set G, to see which of these elements belong to it. If for
all xi ∈ G it holds that xi ∈ Lit , then the guess of the hal-
lucination detection algorithm for this step will be that the
LLM does not hallucinate. We present a formal overview
of our hallucination detection strategy in Algorithm 1. We
now give the formal proof of our result.

5
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Algorithm 1 Hallucination Detection from Language Iden-
tification
Input:

• Identification algorithm I
• Enumeration E = (w1, w2, . . .) of K
• Language collection L

• Domain X

•Membership oracle for L
• LLM output set G

1: for t = 1, 2, . . . do
2: Feed Et =

(
w1, . . . , wt

)
to I to obtain guess it.

3: Let K̂ ← Lit .
4: Enumerate domain prefix Xt = {x1, . . . , xt}.
5: for each x ∈ Xt do
6: if x ∈ G and x /∈ K̂ then
7: return G hallucinates
8: end if
9: end for

10: return G does not hallucinate
11: end for

Proof of Lemma 3.1. First, notice that by definition of the
identification property, it holds that there exists some t∗ ∈ N
(that depends both on the target language and the enumer-
ation) such that for all t ≥ t∗ the output of the identifier
satisfies Lit = K. Let us now consider any t > t∗. We
divide our analysis into two disjoint cases, which jointly
cover all possible outcomes.

• First, let us consider the case G ⊆ K. Then, for all
t ≥ t∗ we have that if xi ∈ G then xi ∈ K, for all
1 ≤ i ≤ t. Thus, our algorithm will correctly claim
that the LLM does not hallucinate for all t ≥ t∗.

• Next, we consider the slightly more challenging case
G ̸⊆ K. By definition, there exists some x ∈ X

such that x ∈ G and x ̸∈ K. Let i∗ ∈ N be the
smallest index in the enumeration of X for which
this holds, i.e., xi∗ ∈ G, xi∗ ̸∈ K. Then, for any
t ≥ max {t∗, i∗} when we consider the prefix of the
enumeration x1, . . . , xt the element xi∗ will be in-
cluded in this enumeration. Moreover, it holds that
Lit = K. Thus, when the hallucination detector tests
the element xi∗ , it will see that xi∗ ∈ G and xi∗ ̸∈ K
and it will correctly deduce that the LLM G halluci-
nates.

The previous two arguments conclude the proof.

Hallucination detection =⇒ language identification.
We now shift our attention to the more technically intri-
cate result which shows that language identification is not
harder than hallucination detection. This is also a black-box

transformation; it takes as input any hallucination detection
algorithm and it constructs an identification algorithm.
Lemma 3.2. Let L be a countable collection of languages
over a domain X that admits an algorithm that achieves
hallucination detection in the limit. Then, L is identifiable
in the limit.

Before explaining our construction, it is instructive to build
some intuition about the difficulty of the language identifica-
tion task. A natural attempt to achieve language identifica-
tion is to keep track of all the language that are “consistent”
with the current set of examples Et the adversary has enu-
merated, that is the set Ct = {L ∈ L : Et ⊆ L} . It is not
very hard to see that for any language Li that is not a (strict)
superset of the target language K, there is some timestep
t∗i such that Li /∈ Ct. Indeed, since Li ̸⊃ K, there exists
some xi which satisfies xi ∈ K,xi /∈ Li. Thus, when
the adversary enumerates xi the algorithm will deduce that
Li ̸∈ Ct. What happens if Li is a (strict) superset of K?
Unfortunately, in this case the language Li will always re-
main consistent with the sample Et. Thus, the strategy of
keeping track of the consistent languages is not sufficient
to guarantee identification in the limit. Indeed, consider
Example 2.2: no matter what the choice the target language
K and the enumeration E of the adversary is, the language
L1 will always be consistent with the sample Et. Thus, the
consistency-based approach is not sufficient to distinguish
between Lj , j ̸= 1, and L1. Is there a more sophisticated ap-
proach that can overcome this obstacle? The seminal result
of Angluin (1980) shows that, unless L satisfies some very
strong structural conditions (Definition A.2), the answer is
largely negative.

The previous discussion highlights that in order to achieve
identification in the limit we need to leverage the hallucina-
tion detection algorithm to distinguish between languages
Li with Li ⊋ K and the target language K. Our main
insight is that the “consistency-based” approach and the
hallucination detection algorithm work in a complementary
way: the former allows us to discard languages that are
not (strict) supersets of K, while the latter helps us rule
out languages that are (strict) supersets of K.4 Neither of
these approaches is sufficient to be used for language identi-
fication on its own, but it turns out that a carefully crafted
approach that coordinates their behavior gives the desired
result.

We now explain our algorithm in more detail; its formal
description is given in Algorithm 2. In each step t we create
the set C′

t = {Li ∈ L : Et ⊆ Li, 1 ≤ i ≤ t} , i.e., the set of
the languages whose index is at most t and are consistent
with the elements Et that have been enumerated so far.
Notice that this can be achieved with finitely many queries

4In fact, the hallucination detection algorithm allows us to
discard languages that are not subsets of K.
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to the membership oracle for L.5 Let Li1 , . . . , Lik be the
languages of C′

t. Next, we run k copies of the hallucination
detection algorithm: the i-th copy is given as input the
collection L, the currently enumerated set Et, and the target
set Li as the LLM that needs to be tested for hallucinations.
Our guess for the target language is the smallest element z′

for which i) Lz′ ∈ C′
t, and ii) the output of the z′-th copy of

the hallucination detection algorithm guesses that Lz′ does
not hallucinate. We now give the formal proof.

Algorithm 2 Identification via Hallucination Detection
Input:

• Hallucination detection algorithm D
• Enumeration E = (w1, w2, . . . ) of the target lan-

guage K
• Language collection L

• Domain X

•Membership oracle for L
1: for t = 1, 2, . . . do
2: Let Et = (w1, w2, . . . , wt).
3: Compute the consistent set

C′
t = {Li ∈ L : Et ⊆ Li and i ≤ t}.

4: for i = 1, . . . , t do
5: Run a copy of D with inputs Et and target set

Li for t steps, and obtain output dit, where:

dti =

{
1 if no hallucinations are detected,

0 if hallucinations are detected.

6: end for
7: Let

N = {i ≤ t : Li ∈ C′
t and dit = 1}.

8: if N ̸= ∅ then
9: Let z′ = min {i ∈ N}.

10: return z′ ▷ Output the index of the identified
language.

11: else
12: return 1. ▷ We return an arbitrary index and

proceed.
13: end if
14: end for

Proof of Lemma 3.2. We let z ∈ N be the smallest num-
ber such that Lz = K.6 Our algorithm outputs the lan-
guage with the smallest index that satisfies these two
conditions we described above. Thus, to get the de-

5In fact, we only need 2t− 1 fresh queries in the t-th round.
6Recall that a language is allowed to appear multiple times in

the collection L.

sired result we need to show that i) all the languages in
Lz−1 = {L1, L2, . . . , Lz−1} that precede Lz do not satisfy
these conditions (for all sufficiently large t), while the tar-
get language Lz does satisfy these conditions (again, for
all sufficiently large t). To that end, we divide Lz into
two disjoint subsets: L⊃

z−1 = {L ∈ Lz−1 : L ⊋ Lz} and
L

̸⊃
z−1 = {L ∈ Lz−1 : L ̸⊋ Lz}. In words, L⊃

z−1 is the set
of all languages that precede Lz and are strict supersets of
it, and L

̸⊃
z−1 is the set of all languages that precede Lz and

are not strict supersets of it. Notice that, since Lz ̸∈ Lz−1,
we have L⊃

z−1 ∪ L
̸⊃
z−1 = Lz−1. We now handle these two

sets separately.

We first consider the set L ̸⊃
z−1 = {L ∈ Lz−1 : L ̸⊋ Lz}.

We denote by Li1 , . . . , Lik the languages of this collection,
where 0 ≤ k ≤ z−1. By definition, for every such Lij there
exists some element xij ∈ Lz, xij ̸∈ Lij . Moreover, since
the adversary presents a complete enumeration of Lz there
exists some timestep tℓj such that wtℓj

= xij (recall that
wtℓj

is the element enumerated by the adversary at timestep
tℓj .) We define t∗1 = maxj≤k tℓj . Using the definition of the
consistent set C′

t we see that for all t ≥ t∗1 these languages
are not consistent with Et, i.e., Li1 , . . . , Lik ̸∈ C′

t.

We now focus on the set L⊃
z−1. Let Lj1 , . . . , Ljm , be the

languages of this collection, where 0 ≤ m ≤ z− 1. For any
i ≤ m consider the execution of the hallucination detection
algorithm with input the collection L, the enumeration E,
and the target set Lji . Since E is a valid enumeration of Lz

and Lji ⊋ Lz, by definition of the hallucination detection
property, there exists some t′ℓi such that for all t ≥ t′ℓi the
hallucination detection algorithm declares that Lji hallu-
cinates. To see that, notice that since Lji ⊋ Lz and the
hallucination detection algorithm observes a sequence that
enumerates all of Lz, it must eventually conclude that Lji

hallucinates. We define t∗2 = maxi≤m t′ℓi . It follows that
for all t ≥ t∗2 the hallucination detection algorithm declares
that each Lj1 , . . . , Ljm hallucinates.

Lastly, let us consider the language Lz. First, notice that
for all t ≥ z we have Lz ∈ C′

t. Moreover, using the exact
similar reasoning as in the above paragraph, there exists
some timestep t′ such that for all t ≥ t′ the hallucination
detection algorithm declares that Lz does not hallucinate.
Let t∗3 = max {z, t′} .

We now have all the ingredients we need to prove our result.
We let t∗ = max {t∗1, t∗2, t∗3} . Consider any t ≥ t∗. By
definition of t∗, for any language Li, i < z, either Li ̸∈
C′
t or the hallucination detection algorithm with input set

Li declares that Li hallucinates, so the two conditions are
not simultaneously satisfied for this language. However,
both conditions are simultaneously satisfied for Lz since
Lz ∈ C′

t and the hallucination detection algorithm declares
that Lz does not hallucinate. Hence, the smallest indexed
language that satisfies both of our conditions is indeed Lz.

7
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Consequently, our algorithm achieves identification in the
limit.

We now note that the proof of Theorem 2.3 follows as an
immediate corollary of Lemmas 3.1 and 3.2.

3.2. Proof of Theorem 2.6

Unlike Theorem 2.3, the technical details of Theorem 2.6
are not as challenging. The full proof of this result is given
below.

Proof of Theorem 2.6. We first describe the strategy we use
to achieve hallucination detection. Recall that G denotes
the set we test, K denotes the target language, and E =
{(w1, y1) , (w2, y2) , . . .} , where yi = 1 {wi ∈ K} ,∀i ∈
N, in a labeled enumeration of X, i.e., every element x ∈ X

appears at some finite position in the enumeration, and its
label indicates whether it is part of the target language K.
In every step t = 1, 2, . . . , we do the following:

• For every element in the input stream that appears with
a 0 label, i.e., (w, 0) ∈ Et := {(w1, y1) , . . . , (wt, yt)}
we check if 1 {w ∈ G} = 1. If this holds for some
(w, 0) we declare that G hallucinates.

• Otherwise, we declare that G does not hallucinate.

We now prove the correctness of this strategy. Similarly as
before, we divide the analysis into two cases.

• If G ⊆ K, then the above algorithm correctly declares
that G does not hallucinate in every step t ∈ N. This is
because w ̸∈ K =⇒ w ̸∈ G.

• If G ̸⊆ K, we consider an enumeration of the domain
X = {x1, x2, . . .} . Let i∗ ∈ N be the smallest number
such that xi∗ ∈ G and xi∗ ̸∈ K. Notice that such an
i∗ does exist. Moreover, there exists some t∗ such
that (wt∗ , yt∗) = (xi∗ , 0) . Thus, for this tuple we get
yt∗ = 0, and 1 {wt∗ ∈ G} = 1. Hence, for any t ≥ t∗

our algorithm will correctly declare that G hallucinates.

This concludes our proof.

4. Conclusion
In this work, we initiated the formal study of automated hal-
lucination detection by introducing a mathematical frame-
work to explore the possibilities and inherent limitations
of this task. Our results provide theoretical justification
for several phenomena observed experimentally. Specifi-
cally, we showed that hallucination detection is typically

unattainable if detectors are trained solely on positive exam-
ples from the target language (i.e., factually correct state-
ments). In stark contrast, when detectors have access to
explicitly labeled negative examples—factually incorrect
statements—hallucination detection becomes tractable for
all countable collections. These findings underscore the
critical role of human feedback in practical LLM training.
Several compelling directions for future work remain open.
It would be valuable to quantify precisely the amount of
negative examples needed for reliable hallucination detec-
tion, and formally explore the computational complexity
of the detection problem within our proposed framework.
Additionally, investigating whether hallucination detection
remains tractable under noisy negative examples, as well
as exploring alternative forms of feedback beyond explicit
labeling, are promising avenues that warrant further explo-
ration. Finally, inspired by the definition of Kleinberg &
Wei (2025) it would be interesting to explore whether we
can achieve a more relaxed notion of hallucination detec-
tion, where we only wish to detect whether the density of
hallucinations is greater than some target threshold c > 0.

8
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Tyen, G., Mansoor, H., Cărbune, V., Chen, P., and Mak, T.
Llms cannot find reasoning errors, but can correct them
given the error location. arXiv preprint arXiv:2311.08516,
2023.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato,
J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B.,
Kasirzadeh, A., et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359,
2021.

Xu, Z., Jain, S., and Kankanhalli, M. Hallucination is
inevitable: An innate limitation of large language mod-

10

https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.08164
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

(Im)possibility of Automated Hallucination Detection in Large Language Models

els, 2024. URL https://arxiv.org/abs/2401.
11817.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K., Chaudhuri,
S., and Song, D. Formal mathematical reasoning: A new
frontier in ai. arXiv preprint arXiv:2412.16075, 2024.

Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang,
X., Zhao, E., Zhang, Y., Chen, Y., Wang, L., Luu, A. T.,
Bi, W., Shi, F., and Shi, S. Siren’s song in the ai ocean: A
survey on hallucination in large language models, 2023.
URL https://arxiv.org/abs/2309.01219.

A. Preliminaries
Building on the foundational work in learning theory by
Gold (1967) and Angluin (1988), Kleinberg & Mullainathan
(2024) introduced a rigorous framework for language gener-
ation. In this model, the domain X is a countable set, and
the target language K is an unknown subset of X.

A.1. Language Identification in the Limit

The problem of language identification in the limit from pos-
itive examples was introduced by Gold (1967) and further
studied by Angluin (1979; 1980). For a fixed collection L,
an adversary and an identifier play the following game: The
adversary chooses a language K from L without revealing
it to the identifier, and it begins enumerating the strings of
K (potentially with repetitions) w1, w2, . . . over a sequence
of time steps t = 1, 2, 3, . . . . The adversary can repeat
strings in its enumeration, but the crucial point is that for
every string x ∈ K, there must be at least one time step t at
which it appears. At each time t, the identification algorithm
I , given the previous examples w1, w2, . . . , wt, outputs an
index it that corresponds to its guess for the index of the
true language K. Language identification in the limit is then
defined as follows.

Definition A.1 (Language Identification in the Limit (Gold,
1967)). Fix some K from the language collection L =
{L1, L2, . . . }. The identification algorithm I = (It) identi-
fies K in the limit if there is some t∗ ∈ N such that for all
steps t > t∗, the identifier’s guess it satisfies it = it−1 and
Lit = K. The language collection L is identifiable in the
limit if there is an identifier that identifies in the limit any
K ∈ L, for any enumeration of K. In this case, we say that
the identifier identifies the collection L in the limit.

Angluin’s seminal result (Angluin, 1980) proposed a condi-
tion that precisely characterizes which collections are iden-
tifiable in the limit.

Definition A.2 (Angluin’s Condition (Angluin, 1980)). Fix
a language collection L = {L1, L2, . . . }. The collection L

is said to satisfy Angluin’s condition if for any index i, there
is a tell-tale, i.e., a finite set of strings Ti such that Ti is a
subset of Li, i.e., Ti ⊆ Li, and the following holds:

For all j ≥ 1, if Lj ⊇ Ti, then Lj is not a proper subset of
Li.

Further, the tell-tale oracle is a primitive that, given an index
i, outputs an enumeration of the set Ti.

Formally, Angluin (1980) showed the following result.

Theorem A.3 (Characterization of Identification in the
Limit (Angluin, 1980)). A language collection L is identifi-
able in the limit if and only if it satisfies Angluin’s condition.
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Perhaps surprisingly, this result shows that language identi-
fication is impossible even for simple collections.

A.2. Language Generation in the Limit

Using the same game-theoretic setting as Gold (1967),
Kleinberg & Mullainathan (2024) proposed a modification
of this game where the objective of the learner is to generate
unseen elements of K instead of guessing its index.

Definition A.4 (Language Generation in the Limit (Klein-
berg & Mullainathan, 2024)). Fix some K from the lan-
guage collection L = {L1, L2, . . . } and a generating algo-
rithm G = (Gt). At each step t, let Et ⊆ K be the set of all
strings that the algorithm G has seen so far. G must output
a string wt /∈ Et (its guess for an unseen string in K). The
algorithm G is said to generate from K in the limit if, for all
enumerations of K, there is some t∗ ∈ N such that for all
steps t ≥ t∗, the algorithm’s guess wt belongs to K \Et (or
K \ Et is empty). The collection L allows for generation
in the limit if there is an algorithm G that, for any target
K ∈ L, generates from K in the limit.

Note that for the problem of language generation to be inter-
esting, the languages of the collection L must be of infinite
cardinality. The main result of Kleinberg & Mullainathan
(2024) is that language generation in the limit is possible
for all countable collections of languages.

Theorem A.5 (Theorem 1 in Kleinberg & Mullainathan
(2024)). There is a generating algorithm with the prop-
erty that for any countable collection of languages L =
{L1, L2, . . . }, any target language K ∈ L, and any enu-
meration of K, the algorithm generates from K in the limit.
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