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ABSTRACT

Word representation is a fundamental component in neural language understand-
ing models. Recently, pre-trained language models (PrLMs) offer a new perfor-
mant method of contextualized word representations by leveraging the sequence-
level context for modeling. Although the PrLMs generally give more accurate
contextualized word representations than non-contextualized models do, they are
still subject to a sequence of text contexts without diverse hints for word repre-
sentation from multimodality. This paper thus proposes a visual representation
method to explicitly enhance conventional word embedding with multiple-aspect
senses from visual guidance. In detail, we build a small-scale word-image dic-
tionary from a multimodal seed dataset where each word corresponds to diverse
related images. The texts and paired images are encoded in parallel, followed by
an attention layer to integrate the multimodal representations. We show that the
method substantially improves the accuracy of disambiguation. Experiments on
12 natural language understanding and machine translation tasks further verify the
effectiveness and the generalization capability of the proposed approach.

1 INTRODUCTION

Learning word representations has been an active research field that has gained renewed popularities
for decades (Mikolov et al., 2013; Radford et al., 2018). Word representations have been evolved
from standard distributed representations (Brown et al., 1992; Mikolov et al., 2013; Pennington
et al., 2014) to contextualized language representations from deep pre-trained representation models
(PrLMs) (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019). The former static embeddings
are commonly derived from distributed representations through capturing the local co-occurrence of
words from large-scale unlabeled texts. In contrast, the later contextualized representations are
mainly obtained by PrLMs. However, the contexts during language modeling are subject to the
individual input text sequence, without diverse hints for word representation from multimodality.
Polysemy is a common phenomenon in human language. As shown in Figure 1, word polysemy
may result in completely different sentence meanings.1 The difficulty lies in what kind of meanings
the word expresses in each context, and it may be insufficient to obtain the exact representations
from the sentence context alone. Therefore, in addition to the contextual word representation, we
turn to model multiple-aspect representations for each word to refine more accurate sentence repre-
sentations.

Recently, the study of multimodal representations has aroused great interest, which shows potential
benefits to the language representations through a more comprehensive perception of the real world
(Zhang et al., 2018). The major theme of multimodality is to use different modality sources such
as texts and images to get a more distinguished representation, which would be beneficial than
learning representations from only one modality (Lazaridou et al., 2015). Multimodal information
provides more discriminative inputs such as image features than learning representations from only
one modality, which is potential to help deal with the ambiguity of words in text-only modality. Most
of previous works focused on jointly modeling images and texts (Su et al., 2019; Lu et al., 2019; Tan
& Bansal, 2019; Li et al., 2019; Zhou et al., 2019; Sun et al., 2019; Kiela & Bottou, 2014; Silberer
& Lapata, 2014; Zablocki et al., 2018; Wu et al., 2019). However, these studies rely on text-image

1There exists sentence-level syntactic ambiguity in languages as an example, the girl saw the man on the
hill with a telescope, shown in Appendix A.2, which is not the focus in this work. We left it in future research.
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Example: “An apple a day, keep the doctor away.”

apple doctor

Figure 1: Example of ambiguity. This sentence ambiguity which comes from polysemy ambiguities
cannot be solved only by text context.

annotations as the paired input. They thus are retrained only in vision-language and multimodal
tasks, such as image captioning and visual question answering. For natural language processing
(NLP) tasks, most text is not distributed with visual information; therefore, it is essential to break
the constraint of the annotation prerequisite when applying visual information to a wide range of
mono-modal (e.g., text-only) tasks. To solve the bottlenecks of the high cost of manual image
annotation, Zhang et al. (2020) proposed to build a lookup table from a multimodal dataset and
then used the search-based method to retrieve images for each input sentence. However, the lookup
table is constructed at sentence-level from Multi30K (Elliott et al., 2016), which would lead to the
relatively limited coverage of the related images for each sentence, and suffers from noise as well.
Different from the previous work that incorporates the visual modality as sentence-level guidance,
we propose to leverage word-level multimodal assistance inspired by our observation in Figure 1,
which offers more accurate means for disambiguation as word-level clues may conveniently help
solve sentence-level ambiguity.2 Meanwhile, multimodality derived from word representations can
also be more helpful to provide as many images as possible to alleviate the scarcity of images
retrieved for sentences. Furthermore, word-level operation enables the resultant model to benefit
broad NLP tasks more than machine translation as previous work focuses on.

In this paper, we propose a visual representation method to explicitly enhance each word with
multiple-aspect senses by the visual modality. In detail, based on the universal visual representation
method (Zhang et al., 2020), we build a word-image dictionary from the small-scale multimodal
dataset Multi30K where one word corresponds to diverse images,3 which can further be used for
text-only tasks. During training and decoding processes, multiple and diverse images corresponding
to the input word, which represent the multiple-aspect senses of the word, will be retrieved from the
dictionary and then be encoded as image representations by a pre-trained ResNet (He et al., 2016).
The texts and paired images are encoded in parallel, followed by an attention layer to fuse those
representations. Then, the fused representations are passed to downstream task-specific layers for
prediction. Experiments on various natural language understanding and machine translation tasks
verified the effectiveness and the generalization capability of the proposed approach.

2 BACKGROUND

2.1 LANGUAGE REPRESENTATION

Training machines to comprehend human language requires comprehensive and accurate modeling
of natural language texts, in which the fundamental component is language representation. Em-
pirically, distributed representations (Brown et al., 1992; Mikolov et al., 2013; Pennington et al.,
2014) have been widely applied in diverse NLP tasks, which benefit from the ability to capture the
local co-occurrence of words from the large-scale unlabeled text. Recently dominant pre-trained

2Instead of a linguistic term, “disambiguation” in this paper means a broad kind of practice for more distin-
guishable representation from diverse input sources.

3We describe our method by regarding the processing unit as word though this method can also be applied
to a subword-based sentence for which the subword is considered to be the processing unit.
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contextualized language models such as ELMo (Peters et al., 2018), GPT (Radford et al., 2018),
and BERT (Devlin et al., 2019) focus on learning context-dependent representations by taking into
account the context for each occurrence of a given word (Peters et al., 2018) The major techni-
cal improvement over the traditional embeddings of these newly proposed language models is that
they focus on extracting context-sensitive features, whose contextualized embedding for each word
will be different according to the sentence. When integrating these contextual word embeddings
with existing task-specific architectures, ELMo helps boost several major NLP benchmarks (Peters
et al., 2018), including question answering on SQuAD, sentiment analysis (Socher et al., 2013),
and named entity recognition (Sang & De Meulder, 2003). The latest evaluation shows that BERT
especially shows effectiveness in language understanding tasks on GLUE, MultiNLI, and SQuAD
(Devlin et al., 2019). Nevertheless, the word embeddings learned through these approaches are
completely based on the textual corpus. In practice, the meaning of the word itself would involve
multiple senses and naturally leads to ambiguity. In this work, we focus on more accurate word
representation with effective disambiguation for pre-trained contextualized language models.

2.2 MULTIMODAL PERCEPTION

As a special kind of language shared by people worldwide, visual modality may help machines
have a more comprehensive perception of the real world. Recently, there has been a great deal
of interest in integrating image presentations into pre-trained Transformer architectures (Su et al.,
2019; Lu et al., 2019; Tan & Bansal, 2019; Li et al., 2019; Zhou et al., 2019; Sun et al., 2019).
The common strategy is to take a Transformer model (Vaswani et al., 2017), such as BERT, as the
backbone and learn joint representations of vision and language in a pre-training manner inspired
by the mask mechanism in pre-trained language models (Devlin et al., 2019). All these works
require the annotation of task-dependent sentence-image pairs, which are limited to vision-language
tasks, such as image captioning and visual question answering. Notably, Glyce (Wu et al., 2019)
proposed incorporating glyph vectors for Chinese character representations. However, it can only
be used for Chinese and only involves single image enhancement. Zhang et al. (2020) proposed
using multiple images for neural machine translation (NMT), based on a text-image lookup table
trained over a sentence-image pair corpus. However, the number of images is fixed because of the
lack of similarity measurement in the simple lookup method, so that it would possibly suffers from
the noise of irrelevant images. Compared with Zhang et al. (2020), this paper mainly differs by both
sides of motivation and technique.

1) The lookup table constructed at sentence-level as that in Zhang et al. (2020) would lead to the
relatively limited coverage of the related images for each sentence, and suffers from noise as well.
Different from the previous work that incorporates the visual modality as sentence-level guidance,
we propose to leverage word-level multimodal assistance, which offers more accurate means for
disambiguation as word-level clues may conveniently help solve sentence-level ambiguity. Mean-
while, multimodality derived from word representations can also be more helpful to provide as many
images as possible to alleviate the scarcity of images retrieved for sentences.

2) Technically, we extend the word embeddings with discriminative image features, enabling the
resultant model to benefit broad NLP tasks more than machine translation as previous work focuses
on. Intuitively, our method is more fine-grained which can result in adequate word-image overlap.
According to the analysis in Section 5, we see that in most of our datasets, over 50% tokens have
paired images, effectively addressing the drawback of sentence-level method in Zhang et al. (2020)
as it is hard to guarantee adequate images for each sentence. Further, the results in Table 3 show
that our method is indeed better than the previous methods, especially in the small-scale datasets,
indicating that our method would be useful for low-resource scenarios.

As a result, the major contributions of this work are as follows:

1) Instead of retrieving images for each sentence sparsely, this work focuses on word-level modeling,
by enriching word representations with related images as fine-grained visual hints.

2) The proposed approach does not rely on large-scale aligned sentence-image corpus and can
achieve modest results with only a few seed images.

3) Our method is light-weight and is not limited to specific tasks; it is generally motivated to apply
visual guidance to a wide range of NLP tasks and can easily be applied to other NLP models.
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3 MODEL

In this section, we will first introduce the word-image dictionary for word-image(s) retrieval, and
then elaborate the proposed visual representation method to enhance word representations with vi-
sual guidance.

3.1 WORD-IMAGE DICTIONARY

During the preprocessing, we set up a dictionary for subsequent word-to-images queries inspired by
Zhang et al. (2020). Specifically, as described in Algorithm 1, the default input setting of the mul-
timodal dataset (i.e., Multi30K) is a sentence-image pair denoted as (Xi, ei)i∈{1,2,...,k} ∈ (S,E),
where S = {X1, X2, . . . Xk} is the set of input sentences and E = {e1, e2, . . . , ek} is the set
of paired images. Both sets have the same length k. The input sentence Xi is first filtered by
a stop word list4 and is further segmented to subwords by a specified tokenizer that depends on
downstream tasks, which ensures the token overlap with task datasets to the maximum extent. We
denote the formed token sequence of Xi as Ti = {ti1, ti2, . . . , tin}. Then, for each subword token
tij , j ∈ {1, 2, . . . , n}, we map the paired image ei to tij in the dictionary D. At the end of process-
ing the whole multimodal corpus, we form a word-image dictionary where each subword contains
diverse images sorted by the number of image occurrence, which are later converted to the image
representation as visual hints.5

Algorithm 1 Word-image Dictionary Conversion Algorithm
Require: Input sentence set S = {X1, X2, . . . Xk} and paired image set E = {e1, e2, . . . , ek}
Ensure: Word-image dictionary D where each word is associated with a group of images

1: procedure D
2: for each sentence-image pair (Xi, ei)i∈{1,2,...,k} ∈ (S,E) do
3: Filter stop words in the sentence Xi

4: Segment the sentence by a specified tokenizer that depends on downstream tasks
5: The formed subword set is denoted as Ti = {ti1, ti2, . . . , tin}
6: for each word (tij)j∈{1,2,...,n} ∈ Ti do
7: Add ei to the corresponding meaning terms D[tij ] for word tij
8: return Word-image dictionary D

3.2 INTEGRATION OF THE WORD AND IMAGE REPRESENTATIONS

Figure 2 overviews the framework of our visual representation method. First, we employ the same
preprocessing method as making the word-image dictionary, that is to filter stop words and tok-
enize the input sentence X into a sequence of subwords T = {t1, t2, . . . , tn}. The consistency
of preprocessing method guarantees the maximum word overlap between the task datasets and the
word-image dictionary. After that, the subword sequence T is fed into a specified text encoder that
depends on downstream tasks to learn the source text representation:

T = Tokenizer(Filter(X)),H = Encoder(T ), (1)

where H = {h1,h2, . . . ,hn} is the text representation of length n. Synchronously, to obtain
the corresponding image representation, we look up the word-image dictionary to retrieve top m
images for each subword in T as the input to the image encoder. The image encoder is composed of
a pre-trained ResNet and a pooling layer:

I = D[T ],M = Pooling(ResNet(I)), (2)

where I = {I1, I2, . . . , In} in which Ii = {imgi1, imgi2, . . . , imgim} are the sequence of re-
trieved images for the i-th token, D is the word-image dictionary and M = {M1,M2, . . . ,Mn} ∈
Rn×m×2048 is the source image representation of dimension 2048 as fined-grained visual guidance.
Then, in aim of extracting the region of interest from image representation, on the top of a linear

4https://github.com/stopwords-iso/stopwords-en.
5Examples of paired images for tokens are shown in the Appendix A.1.
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Figure 2: Overview of the framework of our proposed method.

transformation which reduces the dimension of image representation to that of text representation,
we apply an attention mechanism following Zhang et al. (2020) to model the interactions of the text
and image representations, which takes text representation as query and image representation as key
and value:

M = Linear(M),hi = ATTMi
(hi,KMi

,VMi
), (3)

where (hi,M i)i∈{1,2,...,n} ∈ zip(H,M) are respectively the source text, image representation
of subword ti, and {KMi

, VMi
} are packed from the image representation M i. Then, we have

H = {h1,h2, . . . ,hn} as the text-conditioned image representation. Finally, we apply a gated
aggregation method to fuse text representation and image representation in concern of learning the
weights of the two independently:

λ = σ(Linear(Concat(hi,hi))),Hi = (1− λ)hi + λhi, (4)

where Concat, Linear and σ are respectively a concatenation layer, a linear transformer and a logistic
sigmoid function. λ ∈ [0, 1] is to weight the expected importance of image representation for the
source token. The joint representation H = {H1,H2, . . . ,Hn} will be fed into downstream tasks
for prediction.

3.3 APPLICATION IN SPECIFIC NLP TASKS

As a general approach, the visual guidance can be easily applied to standard NLP models. Here,
we introduce the specific implementation parts of our proposed method for downstream tasks by
taking natural language understanding (NLU) and NMT tasks as examples. For NLU, the baseline
model is BERT (Devlin et al., 2019), and we apply the BERT Tokenizer for subword segmentation.
The pooled representation of H will be fed to a feed-forward layer to make the prediction, which
follows the same downstream procedure as BERT. For NMT, the text encoder is designated as a
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self-attention based encoder with multiple layers (Vaswani et al., 2017), and the byte pair encoding
algorithm is adopted for tokenization. The fused representation H will be directly fed to the decoder
to predict the target translation.

4 EXPERIMENTS

In this section, we first introduce our evaluation tasks and model implementations. For the experi-
ments, we start by presenting experiments on a disambiguation task, and then further conduct a wide
range of evaluations on the major natural language understanding and translation tasks, involving 12
NLP benchmark datasets for natural language inference (NLI), semantic similarity, text classifica-
tion, and machine translation. Part of the NLU tasks are available from the recently released GLUE
benchmark (Wang et al., 2018), which is a collection of nine NLU tasks.

4.1 TASKS

4.1.1 NATURAL LANGUAGE UNDERSTANDING

The NLU task involves natural language inference, semantic similarity, and classification subtasks.

Natural Language Inference involves reading a pair of sentences and assessing the relationship
between their meanings, such as entailment, neutral, or contradiction. We evaluated the proposed
method on four diverse datasets: SNLI (Bowman et al., 2015), MNLI (Nangia et al., 2017), QNLI
(Rajpurkar et al., 2016), and RTE (Bentivogli et al., 2009).

Semantic Similarity aims to predict whether two sentences are semantically equivalent. Three
datasets were used: Microsoft Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005), Quora Ques-
tion Pairs (QQP) dataset (Chen et al., 2018), and Semantic Textual Similarity benchmark (STS-B)
(Cer et al., 2017).

Classification CoLA (Warstadt et al., 2018) is used to predict whether an English sentence is lin-
guistically acceptable. SST-2 (Socher et al., 2013) provides a dataset for sentiment classification
that needs to determine whether the sentiment of a sentence is positive or negative.

4.1.2 NEURAL MACHINE TRANSLATION

The proposed method was evaluated on three widely-used translation tasks, including Multi30K
for WMT’16 and WMT’17 multimodal tasks, WMT’14 English-to-German (EN-DE) and WMT’16
English-to-Romanian (EN-RO) for text-only NMT, which are standard corpora for machine transla-
tion evaluation.

Multi30K contains 30K English→{German, French} parallel sentence pairs with visual annota-
tions, which is an extension of Flickr30k (Brown et al., 2003). For WMT’16 and WMT’17 tasks,
we have two Test sets, test2016 and test2017, with 1,000 pairs for each. For test2016, we report
the results on English-Czech (EN-CS). We also report results on the MSCOCO testset of test2017
that has 461 more challenging out-of-domain instances that contain ambiguous verbs (Elliott et al.,
2017).

WMT’14 EN-DE 4.43M bilingual sentence pairs of the WMT14 dataset were used as training
data, including Common Crawl, News Commentary, and Europarl v7. The newstest2013 and new-
stest2014 datasets were used as the Dev set and Test set, respectively.

WMT’16 EN-RO we experimented with the officially provided parallel corpus: Europarl v7 and
SETIMES2 from WMT’16 with 0.6M sentence pairs. We used newsdev2016 as the Dev set and
newstest2016 as the Test set.

4.2 MODEL IMPLEMENTATION

Since our task involves text understanding and translation, there are two types of model architectures
served as our baselines, the NLU model for language understanding and the NMT model for trans-
lation. According to our preliminary experiments, we set the default maximum number of imagesm
for each word as 5. More detailed analysis ofm is presented in Section 5. Besides standard NLU and
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NMT baseline models as described below, we also compare to two baselines: 1) + Random: random
baseline where each word is randomly paired with images; 2) + Params: the baseline that has the
same number of parameters with our proposed method (+ VG) by replacing the image features with
the default standard normal distribution as commonly used in the initialization of Embedding layer.6

4.2.1 NLU MODEL

For the NLU tasks, the baseline was BERT (Devlin et al., 2019).7 We used the public pre-trained
weights of BERT and followed the same fine-tuning procedure as BERT. We use BERT base as
default.8 The initial learning rate was set in the range {2e-5, 3e-5} with a warm-up rate of 0.1 and
L2 weight decay of 0.01. The batch size was selected from {16, 24, 32}. The maximum number of
epochs was set in the range [2, 5]. Text was tokenized using SentencePiece (Sennrich et al., 2016),
with a maximum length of 128.9 We report the average Dev set accuracy from 5 random runs.

4.2.2 NMT MODEL

Our NMT baseline was a text-only Transformer (Vaswani et al., 2017). We used six layers for both
encoder and decoder. The number of dimensions of all input and output layers was set to 512 (the
base setting in Vaswani et al. (2017)). The inner feed-forward neural network layer was set to 2048.
The heads of all multi-head modules were set to eight in both encoder and decoder layers. The
learning rate was varied under a warm-up strategy with 8,000 steps. In each training batch, a set
of sentence pairs contained approximately 4096×4 source tokens and 4096×4 target tokens. For
the Multi30K dataset, we trained the model up to 10,000 steps, and the training was early-stopped
if dev set BLEU score did not improve for ten epochs. The dropout rate was 0.15. For the EN-DE
and EN-RO tasks, the training steps are 200,000. The signtest (Collins et al., 2005) is a standard
statistical-significance test. All experiments were conducted with fairseq (Ott et al., 2019).10

4.3 DISAMBIGUATION EXPERIMENT

A natural intuition of using visual clues for text representation is the advantage of alleviating the am-
biguation of language. To evaluate the model performance for disambiguation, we use a dataset from
the HVG (Parida et al., 2019), which served as a part of WAT’19 Multimodal Translation Task.11

The dataset consists of a total of 31,525 randomly selected images from Visual Genome (Krishna
et al., 2017) and a parallel image caption corpus in English-Hindi for selected image segments. The
training part consists of 29K English and Hindi short captions of rectangular areas in photos of
various scenes, and it is complemented by three test sets: development (Dev), evaluation (Test), and
challenge test set (Challenge). The challenge test set was created by searching for (particularly)
ambiguous English words based on the embedding similarity and manually selecting those where
the image helps to resolve the ambiguity. We did not make any use of the images and use the same
settings as the experiments on Multi30K.

Model Dev Test Challenge

Baseline 47.32 39.61 20.66
Ours 48.56 (+1.24) 41.54 (+1.93) 22.86 (+2.20)

Table 1: Accuracy (here we use BLEU4 scores) of the multimodal disambiguation experiments on
WAT’19 English to Hindi dataset.

We employ the above Transformer model as our baseline and strengthen it with visual guidance (de-
scribed in Section 3). As the results shown in Table 1, we observe that our model works effectively

6https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#
Embedding

7https://github.com/huggingface/transformers.
8Detailed comparisons of different pre-trained weights are shown in the Appendix A.3.
9https://github.com/google/sentencepiece.

10https://github.com/pytorch/fairseq.
11http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html.
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Method Classification Natural Language Inference Semantic Similarity
CoLA SST-2 MNLI QNLI RTE SNLI MRPC QQP STS-B
(mc) (acc) (acc) (acc) (acc) (acc) (F1) (F1) (pc)

BERT 57.3 92.6 84.6 90.8 66.4 90.6 88.9 87.2 89.4
BERT + Random 58.5 92.4 83.9 89.9 62.3 90.5 89.8 87.7 86.7
BERT + Params 57.6 92.3 83.8 89.8 61.7 90.4 89.3 87.6 86.8
BERT + VG 59.4++ 93.0+ 84.7 91.1 69.0++ 90.7 89.8++ 88.2++ 89.6

Table 2: Results on GLUE benchmark. mc and pc denote the Matthews correlation and Pearson
correlation, respectively. “++/+” indicate that the proposed method was significantly better than the
corresponding baseline at significance level p<0.01/0.05.

Model Multi30K 2016 Multi30K 2017 Multi30K 2017 WMT’14 WMT’16
(flickr) (mscoco)

EN-DE EN-FR EN-CS EN-DE EN-FR EN-DE EN-FR EN-DE EN-RO

Existing NMT systems
Trans. N/A N/A N/A N/A N/A N/A N/A 27.30 N/A
MMT 35.09 57.40 N/A 27.10 N/A 48.02 N/A N/A N/A
UVR 35.72 58.32 N/A 26.87 48.69 N/A N/A 28.14 33.78

Our systems
Trans. 36.02 57.88 30.08 28.26 49.66 27.16 41.73 27.31 32.66
Trans. + Random 36.16 58.87 29.79 28.36 50.62 27.12 41.64 27.22 32.46
Trans. + Rarams 36.06 57.62 28.56 28.06 50.24 26.98 42.14 27.16 32.51
Trans. + VG 36.69+ 59.47++ 30.77+ 30.74++ 51.75++ 27.53+ 42.99++ 27.80+ 33.81++

Table 3: BLEU scores on MMT and NMT tasks. Trans. is short for the transformer (Vaswani et al.,
2017). The MMT and UVR are from Zhang et al. (2020). “++/+” after the BLEU score indicate
that the proposed method was significantly better than the corresponding baseline Transformer at
significance level p<0.01/0.05.

on the challenge disambiguation set, indicating that the visual information induced by retrieved im-
ages allows disambiguation of translation, which inspires us to apply visual modality as word-level
auxiliary information for general language representation.

4.4 MAIN RESULTS

Tables 2-3 show the results for the 12 NLU and NMT tasks, respectively. According to the results,
we make the following observations:

1) Table 2 shows that our method (+ VG) outperforms the baselines consistently, indicating that it is
generally helpful for a wide range of NLU tasks.12 The results verified the effectiveness of modeling
visual information for language understanding.

2) Results in Table 3 show that our model also outperformed the Transformer baseline in both
multimodal (Multi30K) and text-only machine translation (WMT) tasks. As seen, the proposed
method significantly outperformed the baseline, demonstrating the effectiveness of modeling visual
information for NMT. In particular, the effectiveness was adapted to the translation tasks of the
different language pairs, which have different scales of training data, verifying that the proposed
approach is a universal method for improving translation performance.

3) Our method introduced a few parameters over our baselines. Taking the NMT model as an ex-
ample, the extra trainable parameter number is only +4.2M, which is around 6.3% of the baseline
parameters as we used the fixed image embeddings from the pre-trained ResNet feature extractor.
Besides, the training time was basically the same as the baseline model. Since both of the + Random
and + Param have the same number of parameters with our proposed method + VG, our method still
outperform those augmented baselines. The comparison indicates our method does not simply bene-

12Since the test set of GLUE is not publicly available, we conducted the comparison with our baselines on
the Dev set. More detailed results including the Test results are presented in the Appendix A.3.
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fit from more parameters. Meanwhile, we notice that + Random showed slightly better performance
than the baseline on the Multi30K dataset though it might involve some noise, which is reasonable
due to the possible regularization effect and would alleviate over-fitting on the small-scale dataset
(Brown et al., 2003; Noh et al., 2017; Brownlee, 2019).

5 ANALYSIS

The influence of numbers of paired images To investigate the influence of the maximum number
of images m paired for each word, we constrained m in {1, 2, 3, 4, 5, 6, 7} for experiments on the
EN-DE Test2017 set, as shown in Figure 4. All models outperformed the baseline Transformer
(base), indicating the effectiveness of visual guidance. As the number of images increases, the
BLEU score generally showed an upward trend at the beginning from 27.32 to 28.13 and dropped
sightly after reaching the peak when m = 5.

Image coverage analysis One possible drawback of the sentence-level method in Zhang et al.
(2020) would suffer from relatively limited coverage of the related images because it is hard to
guarantee adequate images for each sentence, which could be alleviated by our fine-grained word-
level method. To investigate how many tokens in our tasks can be paired with related images, we
calculate the token overlap ratio between the tokens from the multimodal seed dataset and the task
datasets. Figure 5 depicts the statistics. We see that in most of our datasets, over 50% tokens have
paired images, which indicates that our tasks could enjoy adequate overlap through our method.

The influence of using different images corpora We are interested in whether extra large-scale
seed image data could render better model performance. Therefore, we evaluate the performance by
further using the larger-scale MS COCO image caption dataset (Lin et al., 2014). The BLEU score
of Multi30K EN-DE Test2017 is boosted from 28.13 to 28.36. We contemplate that additional data
may further improve the performance, even that image-only data can also be annotated by image
caption models and then employed to enhance the model capability, which is left for future work.

6 CONCLUSION

In this paper, we present a visual representation method to explicitly enhance conventional word
embedding with multiple-aspect senses by the visual modality. Empirical studies on a range of NLP
tasks verified the effectiveness, especially the advance for disambiguation. The implementation of
our method in the existing deep learning NLP systems demonstrates its flexibility and versatility.
In future work, we consider investigating non-parallel text and image data to improve the language
representation ability of deep learning models.
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A APPENDIX

A.1 RETRIEVED IMAGE EXAMPLES

Figure 5 shows examples to interpret the image retrieval process intuitively, where the words in bold
face contain various meanings, for example:
glass: a drinking container or an optical instrument; cook: an action or a profession;
bank: financial establishment or the land alongside or sloping down to a river or lake;
body: physical structure of a person or a body of water;
guitar: different shapes and colors;
shirt: different shapes and colors.
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a man in green holds a guitar while the other man observes his shirt .

a small group of people are sitting on the bank of a large body of water in the grass .

guitar: shirt:

bank: body:

a chef with glasses cooks french bread in a giant oven .
glass cook

Figure 5: Retrieved image examples.

A.2 GRAMMATICAL AMBIGUITY

Grammatically ambiguous sentences are not covered by our model, such as the girl saw the man on
the hill with a telescope shown in Figure 6 and 7.

Figure 6: the girl saw the man on the hill with
a telescope

Figure 7: the girl saw the man on the hill with a
telescope

A.3 GLUE RESULTS

Table 4 shows the complete Dev and Test results for the GLUE benchmark.
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Method Classification Natural Language Inference Semantic Similarity
CoLA SST-2 MNLI QNLI RTE SNLI MRPC QQP STS-B
(mc) (acc) (acc) (acc) (acc) (acc) (F1) (F1) (pc)

Dev set results for Comparison
BERTLARGE 60.6 93.2 86.6 92.3 70.4 91.0 88.0 88.0 90.0
MT-DNN 63.5 94.3 87.1 92.9 83.4 92.2 87.5 89.2 90.7
BERTBASE 57.3 92.6 84.6 90.8 66.4 90.6 88.9 87.2 89.4
BERTBASE + VG 59.4 93.0 84.7 91.1 69.0 90.7 89.8 88.2 89.6
BERTLARGE 60.8 93.3 86.3 92.4 71.1 91.3 89.5 88.0 89.5
BERTLARGE + VG 62.8 93.6 86.6 92.5 73.6 91.5 90.5 88.5 90.1
BERTWWM 63.6 93.6 87.2 93.6 77.3 92.1 90.8 88.8 90.5
BERTWWM + VG 64.9 93.9 87.4 93.9 78.5 92.2 90.9 88.9 91.4

Test set results for single model with standard single-task training
GPT 45.4 91.3 82.1 88.1 56.0 89.9 82.3 70.3 82.0
GPT on STILTs 47.2 93.1 80.8 87.2 69.1 - 87.7 70.1 85.3
BERT 60.5 94.9 86.7 92.7 70.1 - 89.3 72.1 87.6
MT-DNN 61.5 95.6 86.7 - 75.5 91.6 90.0 72.4 88.3
BERTBASE + VG 50.7 93.1 84.3 90.5 66.7 91.0 84.9 71.0 85.8
BERTLARGE + VG 57.4 94.5 85.4 92.9 70.1 91.1 88.1 71.4 87.3
BERTWWM + VG 61.6 94.9 87.1 94.0 78.6 91.7 90.6 72.6 88.8

Table 4: Results on GLUE benchmark. The public results are from GPT (Radford et al., 2018),
BERT (Devlin et al., 2019), MT-DNN (Liu et al., 2019). mc and pc denote the Matthews correlation
and Pearson correlation, respectively.
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