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Abstract

The problem of constrained reinforcement learning (CRL) holds significant impor-1

tance as it provides a framework for addressing critical safety satisfaction concerns2

in the field of reinforcement learning (RL). However, with the introduction of3

constraint satisfaction, the current CRL methods necessitate the utilization of4

second-order optimization or primal-dual frameworks with additional Lagrangian5

multipliers, resulting in increased complexity and inefficiency during implementa-6

tion. To address these issues, we propose a novel first-order feasible method named7

Constrained Proximal Policy Optimization (CPPO). By treating the CRL problem8

as a probabilistic inference problem, our approach integrates the Expectation-9

Maximization framework to solve it through two steps: 1) calculating the optimal10

policy distribution within the feasible region (E-step), and 2) conducting a first-11

order update to adjust the current policy towards the optimal policy obtained in the12

E-step (M-step). We establish the relationship between the probability ratios and13

KL divergence to convert the E-step into a convex optimization problem. Further-14

more, we develop an iterative heuristic algorithm from a geometric perspective to15

solve this problem. Additionally, we introduce a conservative update mechanism to16

overcome the constraint violation issue that occurs in the existing feasible region17

method. Empirical evaluations conducted in complex and uncertain environments18

validate the effectiveness of our proposed method, as it performs at least as well as19

other baselines.20

1 Introduction21

In recent years, reinforcement learning (RL) has achieved huge success in various aspects (Le22

et al., 2022; Li et al., 2022; Silver et al., 2018), especially in the field of games. However, due23

to the increased safety requirements in practice, researchers are starting to consider the constraint24

satisfaction in RL. Compared with unconstrained RL, constrained RL (CRL) incorporates certain25

constraints during the process of maximizing cumulated rewards, which provides a framework to26

model several important topics in RL, such as safe RL (Paternain et al., 2022), highlighting the27

importance of this problem in industrial applications.28

The current methods for solving the CRL problem can be mainly classified into two categories:29

primal-dual method (Paternain et al., 2022; Stooke et al., 2020; Zhang et al., 2020; Altman, 1999) and30

feasible region method (Achiam et al., 2017; Yang et al., 2020). The primal-dual method introduces31

the Lagrangian multiplier to convert the constrained optimization problem into an unconstrained dual32

problem by penalizing the infeasible behaviours, promising the CRL problem to be resolved in a33

first-order manner. Despite the primal-dual framework providing a way to solve CRL in first-order34

manner, the update of the dual variable, i.e., the Lagrangian multiplier, tends to be slow and unstable,35

affecting the overall convergent speed of the algorithms. In contrast, the feasible region method36

provides a faster learning method by introducing the concept of the feasible region into the trust37

region method. With either searching in the feasible region (Achiam et al., 2017) or projecting into38
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the feasible region (Yang et al., 2020), the feasible region method can guarantee the generated policies39

stay in the feasible region. However, the introduction of the feasible region in the proposed method40

relies on computationally expensive second-order optimization using the inverse Fisher information41

matrix. This approach can lead to inaccurate estimations of the feasible region and potential constraint42

violations, as reported in previous studies (Ray et al., 2019).43

To address the existing issues mentioned above, this paper proposed the Constrained Proximal44

Policy Optimization (CPPO) algorithm to solve the CRL problem in a first-order, easy-to-implement45

way. CPPO employs a two-step Expectation-Maximization approach to solve the problem by firstly46

calculating the optimal policy (E-step) and then conducting a first-order update to reduce the distance47

between the current policy and the optimal policy (M-step), eliminating the usage of the Lagrangian48

multiplier and the second-order optimization. The main contributions of this work are summarized as49

follows:50

• To our best knowledge, the proposed method is the first first-order feasible region method51

without using dual variables or second-order optimization, which significantly reduces the52

difficulties in tuning hyperparameters and the computing complexity.53

• An Expectation-Maximization (EM) framework based on advantage value and proba-54

bility ratio is proposed for solving the CRL problem efficiently. By converting the CRL55

problem into a probabilistic inference problem, the CRL problem can solved in first order56

manner without dual variables.57

• To solve the convex optimization problem in E-step, we established the relationship between58

the probability ratios and KL divergence, and developed an iterative heuristic algorithm59

from a geometric perspective.60

• A recovery update is developed when the current policy encounters constraint violation. In-61

spired by Bang-bang control, this update strategy can improve the performance of constraint62

satisfaction and reduce the switch frequency between normal update and recovery update.63

• The proposed method is evaluated in several benchmark environments. The results manifest64

its comparable performance over other baselines in complex environments.65

This paper is organized as follows. Section 2 introduces the concept of constrained markov decision66

process and present an overview of related works in the field. The Expectation-Maximization67

framework and the technical details about the proposed constrained proximal policy optimization68

method are proposed in Section 3. Section 4 verifies the effectiveness of the proposed method through69

several testing scenarios and an ablation study is conducted to show the effectiveness of the proposed70

recovery update. Section 5 states the limitations and the boarder impact of the proposed method.71

Finally, a conclusion is drawn in Section 6.72

2 Preliminary and Related Work73

2.1 Constrained Markov Decision Process74

Constrained Markov Decision Process(CMDP) is a mathematical framework for modelling decision-75

making problems subjected to a set of cost constraints. A CMDP can be defined by a tuple76

(S,A, P, r, γ, µ, C), where S is the state space, A is the action space, P : S × A × S → (0, 1)77

is the transition kernel, r : S × A → R is the reward function, γ → (0, 1) is the discount factor,78

µ : S → (0, 1) is the initial state distribution, and C := {ci ∈ C | ci : S ×A → R, i = 1, 2, . . . ,m}79

is the set of m cost functions. For simplicity, we only consider a CRL problem with one constraint in80

the following paper and use c to represent the cost function. Note that, although we restrict our discus-81

sion to the case with only one constraint, the method proposed in this paper can be naturally extended82

to the multiple constraint case. However, the result may not as elegant as the one constraint case.83

Compared with the common Markov Decision Process(MDP), CMDP introduces a constraint on the84

cumulated cost to restrict the agent’s policies. Considering a policy π(s | a) : S×A → (0, 1), the goal85

of MDP is to find the π that maximizes the expected discounted returns Jr(π) = Eτ [
∑∞
t=0 γ

tr(st)],86

where τ is the trajectories generated based on π. Based on these settings, CMDP applied a threshold87

d on the expected discounted cost returns Jc(π) = Eτ [
∑∞
t=0 γ

tc(st)]. Thus, the CMDP problem88

can be formed as finding policy π∗ that π∗ = argmaxπ Jr(π) s.t. Jc(π
∗) ≤ d. The advan-89

tage function A and the cost advantage function Ac is defined as A(st, at) = Q(st, at) − V (st)90

2



and Ac(st, at) = Qc(st, at) − Vc(st) where Q(st, at) = Eτ [
∑∞
t=0 γ

tr | s0 = st, a0 = at] and91

V (st) = Eτ [
∑∞
t=0 γ

tr | s0 = st] are the corresponding Q-value and V-value for reward function,92

and Qc(st, at) = Eτ [
∑∞
t=0 γ

tc | s0 = st, a0 = at] and Vc(st) = Eτ [
∑∞
t=0 γ

tc | s0 = st] are the93

corresponding Q-value and V-value for cost function. Note that both A and Ac in the batch are94

centered to moves theirs mean to 0, respectively.95

2.2 Related Work96

2.2.1 Proximal Policy Optimization (PPO)97

Proximal policy optimization (PPO) (Schulman et al., 2017) is a renowned on-policy RL algorithm for98

its stable performance and easy implementation. Based on the first-order optimization methodology,99

PPO addresses the challenge of the unconstrained RL problem through the surrogate objective100

function that proposed in Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a). With101

the clipping and early stop trick, PPO can keep the new policy to stay within the trust region. Thanks102

to its stability and superior performance, the PPO algorithm has been employed in various subfields103

of RL like multi-agent RL (Yu et al., 2021), Meta-RL (Yu et al., 2020). However, due to the extra104

constraint requirements, the direct application of PPO in CRL problems is not feasible. The extra105

constraint requirements cause PPO not only restricted by the trust region but also the constraint106

feasible region, which significantly increases the challenge in conducting first-order optimization.107

Despite the difficulties in the direct application of PPO in CRL, researchers are still searching for a108

PPO-like method to solve CRL problems with stable and superior performance.109

2.2.2 Constrained Reinforcement Learning110

The current methods for solving the CRL problem can be mainly divided into two categories: primal-111

dual method (Paternain et al., 2022; Stooke et al., 2020; Zhang et al., 2020) and feasible region112

method (Achiam et al., 2017; Yang et al., 2020). The primal-dual method converts the original113

problem into a convex dual problem by introducing the Lagrangian multiplier. By updating the policy114

parameters and Lagrangian multiplier iteratively, the policies obtained by the primal-dual method115

will gradually converge towards a feasible solution. However, the usage of the Lagrange multiplier116

introduces extra hyperparameters into the algorithm and slows down the convergence speed of the117

algorithm due to the characteristic of the integral controller. Stooke et al. (2020) tries to solve this118

issue by introducing PID control into the update of the Lagrangian multiplier, but this modification119

will introduce more hyperparameters and cause the algorithm to be complex. Different from the120

primal-dual method, the feasible region method estimates the feasible region within the trust region121

using linear approximation and subsequently determines the new policy based on the estimated122

feasible region. A representative method is constrained policy optimization (CPO). By converting123

the CRL to a quadratically constrained linear program, CPO (Achiam et al., 2017) can solve the124

problem efficiently. However, the uncertainties inside the environment may cause an inaccurate cost125

assessment, which will affect the estimation of the feasible region and cause the learned policy to fail126

to meet the constraint requirements, as shown in Ray et al. (2019). Another issue of CPO is that it127

uses the Fisher information matrix to estimate the KL divergence in quadratic approximation, which128

is complex in computing and inflexible in network structure.129

To address the second-order issue in CRL, several researchers (Zhang et al., 2020; Liu et al., 2022)130

proposed the EM-based algorithm in a first-order manner. FOCOPS (Zhang et al., 2020) obtain the131

optimal policy from advantage value, akin to the maximum entropy RL, and perform a first-order132

update to reduce the KL divergence between the current policy and the optimal policy. Despite its133

significant improvement in performance compared to CPO, FOCOPS still necessitates the use of a134

primal-dual method to attain a feasible optimal policy, which introduces a lot of hyperparameters for135

tuning, resulting in a more complex tuning process. CVPO (Liu et al., 2022) extends the maximum136

a posteriori policy optimization (MPO) (Abdolmaleki et al., 2018) method to the CRL problem,137

allowing for the efficient calculation of the optimal policy from Q value in an off-policy manner.138

However, this algorithm still requires the primal-dual framework in optimal policy calculation and139

necessitates additional samplings during the training, increasing the complexity of implementation.140

Thus, the development of a simple-to-implement, first-order algorithm with superior performance,141

remains a foremost goal for researchers in the CRL subfield.142
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3 Constrained Proximal Policy Optimization (CPPO)143

As mentioned in Section 2, existing CRL methods often require second-order optimization for144

feasible region estimation or the use of dual variables for cost satisfaction. These approaches can be145

computationally expensive or result in slow convergence. To address these challenges, we proposed a146

two-step approach in an EM fashion named Constrained Proximal Policy Optimization (CPPO), the147

details will be shown in this section.148

3.1 Modelling CRL as Inference149

Instead of directly pursuing an optimal policy to maximize rewards, our approach involves concep-150

tualizing the problem of Constrained Reinforcement Learning (CRL) as a probabilistic inference151

problem. This is achieved by assessing the reward performance and constraint satisfaction of state-152

action pairs and subsequently increasing the likelihood of those pairs that demonstrate superior153

reward performance while adhering to the constraint requirement. Suppose the event of state-action154

pairs under policy πθ can maximize reward is represented by optimality variable O, we assume155

the likelihood of state-action pairs being optimal is proportional to the exponential of its advantage156

value: p(O = 1|(s, a)) ∝ exp(A(s, a)/α) where α is a temperature parameter. Denote q(a | s)157

is the feasible posterior distribution estimated from the sampled trajectories under current policy158

π, pπ(a | s) is the probability distribution under policy π, and θ is the policy parameters. We can159

have following evidence lower bound(ELBO) J (q, θ) using surrogate function(see Appendix B for160

detailed proof)161

log pπθ
(O = 1) ≥ Es∼dπ,a∼π

[
q(a|s)
pπ(a|s)

A(s, a)

]
− αDKL(q ‖ πθ) + log p(θ) = J (q, θ), (1)

where dπ is the state distribution under current policy π, p(θ) is a prior distribution of policy162

parameters. Considering q(a | s) is a feasible policy distribution, we also have following constraint163

(Achiam et al., 2017)164

Jc(π) +
1

1− γ
Es∼dπ,a∼π

[
q(a|s)
pπ(a|s)

Ac(s, a)

]
≤ d, (2)

where d is the cost constraint. By performing iterative optimization of the feasible posterior distri-165

bution q (E-step) and the policy parameter θ (M-step), the lower bound J (q, θ) can be increased,166

resulting in an enhancement in the likelihood of state-action pairs that have the potential to maximize167

rewards.168

3.2 E-Step169

3.2.1 Surrogate Constrained Policy Optimization170

As mentioned in the previous section, we will firstly optimize the feasible posterior distribution q to171

maximize ELBO in E-step. The feasible posterior distribution q plays a crucial role in determining172

the upper bound of the ELBO since the KL divergence is non-negative. Consequently, q needs to be173

theoretically optimal to maximize the ELBO. By converting the soft KL constraint in Equation (1)174

into a hard constraint and combining the cost constraint in Equation (2),the optimization problem of175

q can be expressed as follows:176

maximize
q

Es∼dπ,a∼π
[
q(a|s)
pπ(a|s)

A(s, a)

]
s.t. Jc(π) +

1

1− γ
Es∼dπ,a∼π

[
q(a|s)
pπ(a|s)

Ac(s, a)

]
≤ d, DKL(q ‖ π) ≤ δ,

(3)

where δ is the reverse KL divergence constraint that determine the trust region. During the E-step, it is177

important to note that the optimization is independent of θ, meaning that the policy πθ remains fixed178

to the current sampled policy π. Even we know the closed-form expression of pπθ
, it is impractical to179

solve the closed-form expression of q from Equation (3), as we still needs the closed-form expression180

of dπ for calculating. Therefore, we we opt to represent the solution of q in a non-parametric manner181

by calculating the probability ratio v = q(a|s)
pπ(a|s) for the sampled state-action pairs, allowing us to182

4



avoid explicitly parameterizing q and instead leverage the probability ratio to guide the optimization183

process. After relaxing the reverse KL divergence constraint with the estimated reverse KL divergence184

calculated through importance sampling, we can obtain185

maximize
v

Es∼dπ,a∼π [vA(s, a)]

s.t. Es∼dπ,a∼π [vAc(s, a)] ≤ d′

E
s∼dπ
a∼π

[v log v] ≤ δ.
(4)

where d′ the scaled cost margin d′ = (1 − γ)(d − Jc(π)). Although Equation (4) is convex186

optimization problem that can be directly solved through existing convex optimization algorithm, the187

existence of non-polynomial KL constraint tends to cause the optimization to be computationally188

expensive. To overcome this issue, the following proposition is proposed to relax Equation (4) into189

an linear optimization problem with quadratic constraint.190

Proposition 3.1. Denote v as the probability ratios q(a|s)
pπ(a|s) calculated from sampled trajectories. If191

there are a sufficient number of sampled v, we have E[v] = 1 and E [v log v] ≤ Var(v − 1).192

With Proposition 3.1, the relationship between reverse KL divergence and l2-norm of vector v − 1193

is constructed. Also, consider that the expectation of v equals 1, the optimization variable can be194

changed from v to v − 1. Let v denote the vector consists of v − 1 and replace the reverse KL195

divergence constraint with the l2-norm constraint, Equation (4) can be rewritten in the form of vector196

multiplication197

maximize
v

v ·A

s.t. v ·Ac ≤ Nd′, ‖v‖2 ≤ 2Nδ′

E(v) = 0, v > −1 element-wise,

(5)

where A and Ac are the advantage value vectors for reward and cost (for all sampled state-action pairs198

in one rollout) respectively, N is the number of state-action pair samples, δ′ is l2-norm constraint, and199

the element-wise lower bound of v is −1, as v > 0. Thus, the optimal feasible posterior distribution200

q expressed through v can be obtained by solving the aforementioned optimization problem.201

Remark 3.2. By replacing the non-polynomial KL constraint with an l2-norm constraint, the original202

optimization problem in Equation (4) can be reformulated as a geometric problem. This reformulation203

enables the use of the proposed heuristic method to efficiently solve the problem without the need204

for dual variables.205

Remark 3.3. Our proposed method builds upon the idea presented in CVPO (Liu et al., 2022) of206

treating the CRL problem as a probabilistic inference problem. However, our approach improves207

upon their idea in two significant ways. Firstly, the probabilistic inference problem in our method is208

constructed based on advantage value, which is more effective in reducing the bias in estimating the209

cost return, compared to the Q-value used in CVPO. Secondly, while CVPO tries to directly calculate210

the value of q(a|s), our method employs the probability ratio v to represent q. By replacing q(a|s)211

with v, our method only needs to find a vector of v whose elements are positive and E[v] = 1, thereby212

negating the need to sample multiple actions in one state to calculate the extra normalizer that ensures213

q is a valid distribution. This results in a significant reduction in computational complexity.214

3.2.2 Recovery update215

Although the optimal solution q in Section 3.2.1 is applicable when the current policy is out of216

the feasible region, the inconsistent between optimal q and πθ and the inaccurate cost evaluations217

tends to result in the generation of infeasible policies, as demonstrated in Ray et al. (2019) where218

CPO fail to satisfy constraint. To overcome this issue, a recovery update strategy is proposed for219

pushing the agent back to the feasible region. This strategy aims to minimize costs while preserving220

or minimizing any reduction in overall reward return. In the event that it is not possible to recover221

from the infeasible region without compromising the reward return, the strategy aims to identify an222

optimal policy within the feasible region that minimizes the adverse impact on the reward return. The223

optimization problem in recovery update can be expressed as224

if v ·A ≥ 0 not exists when v ·Ac ≤ Nd′: maximize
v

v ·A

else: minimize
v

v ·Ac

s.t. ‖v‖2 ≤2Nδ′, E(v) = 0, v > −1 element-wise.

(6)
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Figure 1 illustrates the recovery update strategy from the perspective of geometry. The blue, red,225

and yellow arrows represent the direction of minimizing cost, maximizing reward and the recovery226

update, respectively. The reward preservation region is defined by the zero reward boundary, which is227

depicted as the dashed line perpendicular to the red arrow. As a result, the semi-circle encompassing228

the red arrow indicates a positive increment in reward. Case 1 and Case 3 illustrate the case when the229

reward preservation region has an intersection with the feasible region. In these cases, we choose230

the direction of minimizing cost within the reward preservation region, e.g., the recovery update231

direction is coincident with the dashed line in Case 1, and the recovery update direction is coincident232

with the blue arrow in Case 3. Case 2 shows the case when there is no intersection between the233

reward preservation region and the feasible region. In this case, the direction with the least damage234

to reward is chosen. If we use an angle α to represent the direction of update, then we can have235

α = Clip(α,max(θf , θA + π/2), π), where θA represents the direction of A, θf is the minimum236

angle that can point toward the feasible region.237

Infeasible region

A

-Ac

A

-Ac

Update direction

A

-Ac

Feasible region Zero reward boundary

Case 1 Case 2 Case 3

Figure 1: The illustration of recovery update.

To further improve the constraint satisfaction performance, a switching mechanism inspired by bang-238

bang control (Lasalle, 1960) is introduced. As shown in Figure 2, the agent will initially conduct239

normal update in Section 3.2.1; when the agent violates the cost constraint, it will switch to recovery240

update to reduce the cost until the cost is lower than the lower switch cost. By incorporating this241

switching mechanism, a margin is created between the lower switch cost and the cost constraint.242

This margin allows for a period of normal updates before the recovery update strategy is invoked.243

As a result, this mechanism prevents frequent switching between the two strategies, leading to244

improved performance in both reward collection and cost satisfaction. This switching mechanism245

effectively balances the exploration of reward-maximizing actions with the need to maintain constraint246

satisfaction.247

CostCost 

constraint

Switch 

cost

Normal 

update

Recovery 

update

Figure 2: The switch mechanism inspired by bang-bang control. Once the current policy violates the
cost constraint, the agent will switch to recovery update until it reaches the switch cost.

3.3 Heuristic algorithm from geometric interpretation248

Section 3.2 and Section 3.4 provide a framework for solving CRL problem in theory. However,249

solving Equation (5) and Equation (6) in Section 3.2 is a tricky task in practice. To reduce the250

computation complexity, an iterative heuristic algorithm is proposed to solve this optimization251

problem from geometric interpretation. Recall Equation (5), the l2-norm can be interpreted as a radius252

constraint from the geometric perspective. Additionally, both the objective function and the cost253
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function are linear, indicating that the optimal solution lies on the boundary of the feasible region. By254

disregarding the element-wise bounds in Equation (5), we can consider the optimization problem as255

finding a optimal angle θ′ on the A-Ac plane, in accordance with Theorem 3.4. The optimal solution256

can be expressed as v = 2Nδ′(cos θ′Ãc+sin θ′Ã), where Ã and Ãc are the orthogonal unit vectors257

of A and Ac respectively. Considering Assumption 3.5, we proposed a iterative heuristic algorithm258

to solve Equation (5) by firstly calculating the optimal angle θ′ regardless the element-wise bound259

and obtain a initial solution v, then clip v according to the element-wise bound and mask the clipped260

value, and iteratively update the rest unmasked elements according to aforementioned steps until all261

elements in v are satisfy the element-wise bound. The detailed steps are outlined in Appendix C. For262

the recovery update in Section 3.2.2, the same algorithm can be used to find the angle that satisfy263

v ·Ac = Nd′ or v ·A = 0.264

Theorem 3.4. Given a feasible optimization problem of the form:265

maximize
v

v ·A

s.t. v ·Ac ≤ D, ‖v‖2 ≤ 2Nδ′

E(v) = E(A) = E(Ac) = 0

where v, A, and Ac are N -dimensional vectors, then the optimal solution v will lie in the A-Ac266

plane determined by Ac and A.267

Assumption 3.5. If the optimization problem in Theorem 3.4 has a optimal solution vopt =268

[v1, v2, . . . ], and the same problem with element-wise lower bound constraint b has a optimal269

solution v′opt = [v′1, v
′
2, . . . ], then v′t = b where vt ≤ b.270

Remark 3.6. By utilizing the proposed heuristic algorithm, the optimal solution to Equation (5) can271

be obtained in just a few iterations. The time complexity of each iteration is O(n), where n represents272

the number of unmasked elements. As a result, the computational complexity is significantly reduced273

compared to conventional convex optimization methods.274

3.4 M-Step275

After determining the optimal feasible posterior distribution q to maximize the upper bound of ELBO,276

an M-step is implemented to maximize ELBO by updating policy parameters θ in a supervised277

learning manner. Recall the definition of ELBO in Equation (1) in Section 3.1, by dropping the part278

that independent from θ, we will obtain following optimization problem279

maximize
θ

−αDKL(q ‖ πθ) + log p(θ). (7)

Note that if we assume p(θ) is a Gaussian distribution, then log p(θ) can be converted into DKL(π ‖280

πθ) (see Appendix B for details). Using the same trick in Section 3.2.1 to convert soft KL constraint281

to hard KL constraint, the supervised learning problem in M-step can be expressed as282

minimize
θ

DKL(q ‖ πθ)

s.t. DKL(πθ ‖ π) ≤ δ,
(8)

Note that DKL(πθ ‖ π) is chosen to lower than δ so that the current policy π can be reached during283

the E-step in next update iteration to achieve robust update.284

For Equation (7), it is a common practice for researchers to directly minimize the KL divergence,285

like CVPO (Liu et al., 2022) and MPO (Abdolmaleki et al., 2018). However, recall Equation (6), it286

is evident that the value of surrogate reward and cost are deeply connected to the projection of v287

onto the A-Ac plane, while KL divergence can hardly reflect this kind of relationship between v and288

surrogate value. Consequently, Consequently, we choose to replace the original KL objective function289

with the l2-norm E [‖v − pπθ
/pπ‖2], where v is the optimal probability ratio obtained in E-step and290

pπθ
/pπ is the probability ratio under policy parameter θ. With this replacement, the optimization291

problem can be treated as a fixed-target tracking control problem. This perspective enables us to plan292

tracking trajectories that can consistently satisfy the cost constraint, enhancing the ability to maintain293

cost satisfaction throughout the learning process. The optimization problem after replacement can be294

rewritten as295

minimize
θ

E
[
‖v − pπθ

pπ
‖2
]

s.t. DKL(πθ ‖ π) ≤ δ, (9)
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To ensure the tracking trajectories can satisfy cost constraint at nearly all locations, we calculated the296

several recovery v′ under different δ′′ and guide pπθ

pπ
to different v according to the l2-norm of pπθ

pπ
,297

so that even ‖pπθ

pπ
‖2 is much smaller than 2Nδ′, the new policy can still satisfy the cost constraint.298

Moreover, inspired by the proportional navigation (Yanushevsky, 2018), we also modify the recovery299

update gradient from (v − pπθ

pπ
)∂πθ

∂θ to ((β(v − pπθ

pπ
) + (1 − β)A′c)∂πθ

∂θ to reduce the cost during300

the tracking, where A′c is the projection of v − pπθ

pπ
on cost advantage vector Ac. In according with301

Theorem 3.7, the lower-bound clipping mechanism similar with PPO is applied on updating pπθ

pπ
in302

M-step to satisfy the forward KL constraint (see Appendix C for details).303

Theorem 3.7. For a probability ratio vector v, if the variance of v is constant, then the upper bound304

of the approximated forward KL divergence DKL(πθ ‖ π), will decrease as the element-wise lower305

bound of v increase.306

Apart from E-step and M-step introduced in Section 3.2 and Section 3.4, our method shares the same307

Generalized Advantage Estimator (GAE) technique (Schulman et al., 2015b) with PPO in calculating308

the advantage value A and Ac. The main steps of CPPO are summarized in Appendix C.309

4 Experiment310

In this section, Safety Gym (Ray et al., 2019) benchmark environments and Circle environment311

(Achiam et al., 2017) are used to verify and evaluate the performance of the proposed method. Five312

test scenarios, namely CarPush, PointGoal, PointPush, PointCircle, and AntCircle are evaluated.313

The detailed information about the test scenarios can be seen in Appendix D. Three algorithms314

are chosen as the benchmarks to compare the learning curves and the constraint satisfaction: CPO315

(Achiam et al., 2017), PPO-Lagrangian method (simplified as PPO_lag), and TRPO-Lagrangian316

method (simplified as TRPO_lag) (Ray et al., 2019). CPO is chosen as the representative of the317

feasible region method. PPO_lag and TRPO_lag are treated as the application of the primal-dual318

method in first-order optimization and second-order optimization. TRPO and PPO are also used in319

this section as unconstrained performance references. For a fair comparison, all of the algorithms320

use the same policy network and critic network. The detail of the hyperparameter setting is listed in321

Appendix E.322
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Figure 3: The learning curves for comparison, CPPO is the method proposed in this paper.

Performance and Constraint Satisfaction: Figure 3 compares the learning curves of the proposed323

method and other benchmark algorithms in terms of the episodic return and the episodic cost. The324

first row records the undiscounted episodic return for performance comparison, and the second row is325

the learning curves of the episodic cost for constraint satisfaction analysis, where the red dashed line326

indicates the cost constraint. The learning curves for the Push and Goal environments are averaged327

over 6 random seeds, while those for the Circle environments are averaged over 4 random seeds.328

The curve itself represents the mean value, and the shadow indicates the standard deviation. In329

terms of performance comparison, it was observed that CPO can achieve the highest reward return330

in PointGoal and PointCircle. The proposed CPPO method, on the other hand, achieves similar or331

even higher reward return in the remaining test scenarios. However, when considering constraint332

satisfaction, CPO fails to satisfy the constraint in all four tasks due to approximation errors, as333
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previously reported in Ray et al. (2019). In contrast, CPPO successfully satisfies the constraint334

in all five environments, showing the effectiveness of the proposed recovery update . Referring to335

the learning curves in Circle scenarios, it can be seen that the primal-dual based CRL methods, i.e.,336

PPO_lag and TRPO_lag, suffer from the slow and unstable update of the dual variable, causing the337

conservative performance in PointCircle and slow cost satisfaction in AntCircle. On the other hand,338

CPPO can achieves a faster learning speed in Circle environment by eliminating the need for the339

dual variable. Overall, the experimental results demonstrate the effectiveness of CPPO in solving340

the CRL problem.341

Ablation Study: An ablation study was conducted to investigate the impact of the recovery update in342

CPPO. Figure 4 presents the reward performance and cost satisfaction of CPPO with and without the343

recovery update in the PointCircle environment. The results indicate that without the recovery update,344

CPPO achieves higher reward performance; however, the cost reaches 15, which significantly violates345

the cost constraint. In contrast, when the recovery update is applied, CPPO successfully satisfies346

the constraint, thereby demonstrating the importance of the recovery update in ensuring constraint347

satisfaction.
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Figure 4: The comparison between CPPO with and without recovery update in PointCircle.
348

5 Limitations and Boarder Impact349

Although our proposed method has shown its ability in test scenarios, there still exist some limitations.350

Firstly, CPPO method is an on-policy constrained RL, which suffers from lower sampling efficiency351

compared to other off-policy algorithms, potentially limiting its applicability in real-world scenarios.352

Additionally, the convergence of our method is not yet proven. However, we believe that our work353

will offer researchers a new EM perspective for using PPO-like algorithms to solve the problem354

of constrained RL, thereby leading to the development of more efficient and stable constrained RL355

algorithms.356

6 Conclusion357

In this paper, we have introduced a novel first-order Constrained Reinforcement Learning (CRL)358

method called CPPO. Our approach avoids the use of the primal-dual framework and instead treats the359

CRL problem as a probabilistic inference problem. By utilizing the Expectation-Maximization (EM)360

framework, we address the CRL problem through two key steps: the E-step, which focuses on deriving361

a theoretically optimal policy distribution, and the M-step, which aims to minimize the difference362

between the current policy and the optimal policy. Through the non-parametric representation of the363

policy using probability ratios, we convert the CRL problem into a convex optimization problem364

with a clear geometric interpretation. As a result, we propose an iterative heuristic algorithm that365

efficiently solves this optimization problem without relying on the dual variable. Furthermore, we366

introduce a recovery update strategy to handle approximation errors in cost evaluation and ensure367

constraint satisfaction when the current policy is infeasible. This strategy mitigates the impact of368

approximation errors and strengthens the capability of our method to satisfy constraints. Notably, our369

proposed method does not require second-order optimization techniques or the use of the primal-dual370

framework, which simplifies the optimization process. Empirical experiments have been conducted to371

validate the effectiveness of our proposed method. The results demonstrate that our approach achieves372

comparable or even superior performance compared to other baseline methods. This showcases373

the advantages of our method in terms of simplicity, efficiency, and performance in the field of374

Constrained Reinforcement Learning.375
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