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ABSTRACT

The discovery of governing differential equations from data is an open frontier in
machine learning. The sparse identification of nonlinear dynamics (SINDy) (Brun-
ton et al., 2016) framework enables data-driven discovery of interpretable models
in the form of sparse, deterministic governing laws. Recent works have sought to
adapt this approach to the stochastic setting, though these adaptations are severely
hampered by the curse of dimensionality. On the other hand, Bayesian-inspired
deep learning methods have achieved widespread success in high-dimensional
probabilistic modeling via computationally efficient approximate inference tech-
niques, suggesting the use of these techniques for efficient stochastic equation
discovery. Here, we introduce HyperSINDy, a framework for modeling stochastic
dynamics via a deep generative model of sparse governing equations whose para-
metric form is discovered from data. HyperSINDy employs a variational encoder
to approximate the distribution of observed states and derivatives. A hypernetwork
(Ha et al., 2016) transforms samples from this distribution into the coefficients
of a differential equation whose sparse form is learned simultaneously using a
trainable binary mask (Louizos et al., 2018). Once trained, HyperSINDy generates
stochastic dynamics via a differential equation whose coefficients are driven by a
Gaussian white noise. In experiments, HyperSINDy accurately recovers ground
truth stochastic governing equations, with learned stochasticity scaling to match
that of the data. Finally, HyperSINDy provides uncertainty quantification that
scales to high-dimensional systems. Taken together, HyperSINDy offers a promis-
ing framework for model discovery and uncertainty quantification in real-world
systems, integrating sparse equation discovery methods with advances in statistical
machine learning and deep generative modeling.

1 INTRODUCTION

Across numerous disciplines, large amounts of measurement data have been collected from dynamical
phenomena lacking comprehensive mathematical descriptions. It is desirable to model these data in
terms of governing equations involving the state variables, which typically enables insight into the
physical interactions in the system. To this end, recent years have seen considerable progress in the
ability to distill such governing equations from data alone (e.g., (Schmidt & Lipson, 2009; Brunton
et al., 2016)). Nonetheless, this remains an outstanding challenge for systems exhibiting apparently
stochastic nonlinear behavior, particularly when lacking even partial knowledge of the governing
equations. Such systems thus motivate probabilistic approaches that not only reproduce the observed
stochastic behavior (e.g., via generic stochastic differential equations (SDEs) (Friedrich et al., 2011)
or neural networks (Girin et al., 2021; Lim & Zohren, 2021)), but do so via discovered analytical
representations that are parsimonious and physically informative (Boninsegna et al., 2018).

We are particularly interested in model-free methods that seek to discover both the parameters and
functional form of governing equations describing the data. To this end, the sparse identification of
nonlinear dynamics (SINDy) framework (Brunton et al., 2016) has emerged as a powerful data-driven
approach that identifies both the coefficients and terms of differential equations, given a pre-defined
library of candidate functions. The effectiveness of SINDy for sparse model discovery derives from
the tendency of physical systems to possess a relatively limited set of active terms. Extensions of the
SINDy framework have sought to increase its robustness to noise, offer uncertainty quantification
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(UQ), and make it suitable for modeling stochastic dynamics (Boninsegna et al., 2018; Niven et al.,
2020; Messenger & Bortz, 2021; Hirsh et al., 2021; Callaham et al., 2021; Fasel et al., 2022; Wang
et al., 2022). However, these extensions have generally relied upon computationally expensive
approaches to learn the appropriate probability distributions. As such, a unified and computationally
tractable formulation of SINDy that meets these additional goals is presently lacking.

Variational inference (VI) methods represent a class of techniques for addressing the complex and
often intractable integrals arising in exact Bayesian inference, instead approximating the true posterior
via simple distribution(s). Recently, the combination of amortized VI (Ganguly et al., 2022) with
the representational capacity of neural networks has emerged as a powerful, efficient approach to
probabilistic modeling, with widespread application in the form of deep generative models (Kingma &
Welling, 2014; Rezende & Mohamed, 2015). Despite the success of these approaches for dynamical
modeling (e.g., (Girin et al., 2021)), applications thus far have utilized generic state space formulations
or parameter inference on a known functional form of the dynamics. Thus, the potential for VI to
facilitate probabilistic equation discovery remains largely unexplored.

1.1 CONTRIBUTIONS

In this work, we propose HyperSINDy, a VI-based SINDy implementation that learns a parameterized
distribution of ordinary differential equations (ODEs) sharing a common sparse form. Specifically,
HyperSINDy employs a variational encoder to parameterize a latent distribution over observed states
and derivatives, then uses a hypernetwork (Ha et al., 2016; Pawlowski et al., 2018) to translate
samples from this distribution into the coefficients of a sparse ODE whose functional form is learned
in a common optimization. In this way, HyperSINDy is able to model complex stochastic dynamics
through an interpretable analytical expression – technically, a random ODE (Han & Kloeden, 2017) –
whose coefficients are parameterized by a white noise process.

Specific contributions of the HyperSINDy framework include:

• Efficient and Accurate Modeling of Stochastic Dynamics at Scale. Through VI, we circumvent
the curse of dimensionality that hampers other methods in identifying sparse stochastic equations.
Specifically, HyperSINDy can accurately discover governing equations for stochastic systems
having well beyond two spatial dimensions, which existing approaches have not exceeded (e.g.,
(Boninsegna et al., 2018; Callaham et al., 2021; Wang et al., 2022; Huang et al., 2022)).

• Generative Modeling of Dynamics. Once trained, HyperSINDy generates a random dynamical
system whose vector field is parameterized by a Gaussian white noise. Hence, our approach effi-
ciently arrives at a generative model for both the system dynamics and the exogenous disturbances
(representing, e.g., unresolved scales). This permits simulations that reproduce the stochastic
dynamical behavior of the observed process, while providing a natural method for quantifying
uncertainty of the model parameters and propagating uncertainty in the probabilistic model forecast.

• Interpretable Governing Equations Discovery. In contrast to other deep generative approaches
for modeling stochastic dynamics, HyperSINDy discovers the analytical form of a sparse governing
equation without a priori knowledge. Sparsity promotes human readable models where each term
corresponds to an interpretable physical mechanism. This notion of interpretability, based on
sparsity, is appealing in the traditional perspective of engineering and physics.

In section 1.2, we discuss relevant literature. In section 2, we provide a background on the specific
methods and mathematics that inspired our method. In section 3, we describe HyperSINDy. In
section 4, we show results on various experiments. In section 5, we conclude with a discussion of our
method, its limitations, and possible future directions.

1.2 RELATED WORK

HyperSINDy bridges two parallel lines of work concerning data-driven modeling for stochastic
dynamics: namely, probabilistic sparse equation discovery and deep generative modeling.

Most probabilistic implementations of SINDy have concerned UQ and noise robustness in the deter-
ministic setting, rather than modeling stochastic dynamics per se. Of these approaches, ensembling
methods (E-SINDy) (Fasel et al., 2022) have achieved state-of-the-art UQ and noise robustness for
deterministic SINDy models, and were recently shown (Gao et al., 2023) to offer a computationally
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Figure 1: HyperSINDy Framework. HyperSINDy employs an inference model and generative
model to discover an analytical representation of observed stochastic dynamics in the form of a
random (nonlinear) ODE fz(x). The inference model is an encoder neural network that maps (x, ẋ)
to the parameters µ and σ of qϕ(z|x, ẋ). ẑ can be sampled using a simple reparameterization of
µ and σ. The generative model predicts the derivative via a hypernetwork H , which transforms z
into Ξz, the coefficients of the ODE. fz(x) comprises a function library Θ, the coefficients Ξz, and
sparse mask M . Once trained, stochastic dynamics can be generated by iteratively sampling z from
its prior z ∼ pθ(z), thus yielding new sample paths of the noise-paramterized vector field, Ξz. In
the legend, trainable parameters are shown in green. The loss function comprises terms related to 1)
the derivative reconstructions, 2) the latent distribution qϕ(z|x, ẋ), and 3) sparsity of the discovered
equation. See accompanying pseudocode 1 and 2 for details on batch-wise training.

efficient alternative to earlier Bayesian implementations of SINDy (Niven et al., 2020; Hirsh et al.,
2021) leveraging costly sampling routines to compute posterior distributions. Nonetheless, a model
of the process noise is crucial for accurate UQ in the stochastic dynamics setting. Multiple studies
have generalized the SINDy framework for the identification of parametric SDEs (Boninsegna et al.,
2018; Callaham et al., 2021), with three such studies recently performed in the Bayesian setting
(Wang et al., 2022; Huang et al., 2022; Tripura & Chakraborty, 2023). However, as discussed in these
works, existing methods for approximating the drift and diffusion terms of the SDE (e.g., constructing
histograms for the Kramers-Moyal expansion) are severely hampered by the curse of dimensionality,
with computational cost generally scaling exponentially with SDE state dimension. Thus, an efficient
and scalable formulation of SINDy for stochastic dynamics remains lacking.
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A separate line of work has leveraged advances in probabilistic deep learning for modeling stochastic
dynamics, with deep generative models achieving state-of-the-art performance across a range of
modeling tasks ((Yoon et al., 2019; Girin et al., 2021)). Although these models do not typically involve
explicit dynamical representations, advances in physics-informed machine learning (Karniadakis
et al., 2021) have motivated numerous developments at this intersection (e.g., (Lopez & Atzberger,
2021; Takeishi & Kalousis, 2021; Yang et al., 2020; Zhang et al., 2019). As for (stochastic) equation
discovery, several recent works have successfully employed VAEs to learn the coefficients of a
generic (or pre-specified) SDE within a (potentially lower-dimensional) latent space(Hasan et al.,
2022; García et al., 2022; Nguyen et al., 2021; Zhong & Meidani, 2023). We propose to similarly
leverage a VAE-like architecture to perform inference on a latent stochastic process; however, we seek
to additionally discover a structural representation of the governing laws, which can yield considerable
physical insight into the system (Boninsegna et al., 2018; Nayek et al., 2021; Wang et al., 2022). In
sum, we seek to bridge the above fields via a unified deep learning architecture (trainable end-to-end
with backpropagation) that enables discovery of the functional form of a governing stochastic process,
along with posterior distributions over the discovered system coefficients (e.g., for UQ).

2 BACKGROUND

We briefly overview the SINDy and VAE frameworks, as well as an implementation of an L0 loss,
before describing their integration within the HyperSINDy architecture.

Sparse Identification of Nonlinear Dynamics The SINDy (Brunton et al., 2016) framework
leverages sparse regression to enable discovery of a parsimonious system of differential equations
from time-ordered snapshots. Thus, consider a system with state x(t) ∈ Rd governed by the ODE:

ẋ(t) = f(x(t)) (1)

Given m observations of the system in time X = [x(t1),x(t2), ...,x(tm)]T and the estimated
time derivatives Ẋ = [ẋ(t1), ẋ(t2), ..., ẋ(tm)]T , we construct a library of candidate functions
Θ(X) = [θ1(X), θ2(X), ..., θl(X)]. We then solve the regression problem, Ẋ = Θ(X)Ξ, to identify
the optimal functions and coefficients in Θ and Ξ, respectively. A sparsity-promoting regularization
function R is typically added to this model discovery problem, yielding the final optimization,
Ξ̂ = argminΞ(Ẋ−Θ(X)Ξ)2 +R(Ξ). Although we focus on this basic implementation, we note
that there have been numerous extensions of the original SINDy framework (for a recent overview,
see (Kaptanoglu et al., 2022)), many of which can be easily incorporated into the present framework.

Variational Autoencoder The VAE framework (Kingma & Welling, 2014) elegantly integrates
variational inference (VI) with deep learning architectures, providing an efficient and powerful
approach toward probabilistic modeling. VAEs assume that a set of observations x derives from a
corresponding set of latent states z. VAEs construct an approximate posterior distribution qϕ(z|x)
and maximize the evidence lower bound (ELBO) of the log likelihood of the data pθ(x):

log pθ(x) ≥ ELBO(x, z) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||pθ(z)) (2)
where ϕ and θ and are the parameters of the inference (encoder) and generative (decoder) models,
respectively. The “reparameterization trick” enables sampling from qϕ(z|x) using z = µ(z)+σ(z)⊙ϵ
while still training the network end-to-end with backpropagation. After training, new observations are
easily generated by sampling from the prior pθ(z), typically a unit Gaussian with diagonal covariance.

L0 Regularization The L0 norm is ideal for sparse regression problems as it penalizes all nonzero
weights equally, regardless of magnitude. As L0 regularization poses an intractable optimization
problem, the L1 regularization (lasso) – which penalizes the actual values of the learned weights
– is a more common technique to achieve sparsity in practice. Nonetheless, incorporation of an
L0-norm penalty (Zheng et al., 2019) into SINDy was recently found to have considerable advantages
(Champion et al., 2020), motivating us to adopt a backpropagation-compatible L0 regularization.
Accordingly, we implement one such method recently proposed by Louizos et al. (2018), which
penalizes a trainable mask using the hard-concrete distribution.

Specifically, let M ∈ Rd be the desired sparse mask. Let s be a binary concrete random variable
(Maddison et al., 2017; Jang et al., 2017) distributed in (0, 1) with probability density qϕ(s), cumula-
tive density Qϕ(s), location logα, and temperature β. Let ϕ = (logα, β). Suppose we have γ < 0
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and ζ > 1. We define each element m in M as a hard concrete random variable computed entirely as
a transformation of s. Thus, learning an optimal m necessitates learning qϕ(s), which simplifies to
optimizing logα (we fix β). Sampling from qϕ(s) and backpropagating into logα motivates use of
the reparameterization trick (as in the VAE above) with ϵ ∼ U(0, 1). Then, m is computed.

s = Sigmoid((log ϵ− log(1− ϵ) + logα)/β) m = min(1,max(0, s(ζ − γ) + γ)) (3)

After training, we obtain m using our optimized logα parameter:

m = min(1,max(0,Sigmoid(logα)(ζ − γ) + γ)) (4)

We train M using the following loss:

L0(M) =

d∑
j=1

Sigmoid(logαj − β log
γ

ζ
) (5)

Refer to (Louizos et al., 2018) for the full derivation. In short, this provides a backpropagation-
compatible approach to enforce sparsity via a trainable, element-wise mask.

3 HYPERSINDY

We combine advances in Bayesian deep learning with the SINDy framework to propose HyperSINDy,
a hypernetwork (Ha et al., 2016; Pawlowski et al., 2018) approach to parsimoniously model stochastic
nonlinear dynamics via a noise-parameterized vector field whose sparse, time-invariant functional
form is discovered from data. In brief, HyperSINDy uses a variational encoder to learn a latent
distribution over the states and derivatives of a system, whose posterior is regularized to match
a Gaussian prior. Once trained, a white noise process generates a time-varying vector field by
updating the coefficients of the discovered (random) ODE. Across a range of experiments, new noise
realizations generate stochastic nonlinear dynamics that recapitulate the behavior of the original
system, while also enabling UQ on the learned coefficients. Fig. 1 provides an overview of our
approach and problem setting, which we detail below.

Problem Setting Stochastic equations are fundamental tools for mathematically modeling dynam-
ics under uncertainty. In general, the precise physical source of uncertainty is unknown and/or of
secondary importance (Friedrich et al., 2011; Duan, 2015; Särkkä & Solin, 2019); as such, several
formulations exist. A common choice is the Langevin-type SDE with explicitly separated determin-
istic (drift) and stochastic (diffusion) terms. Alternatively, we may consider a deterministic ODE
with stochastic parameters, i.e., a random ODE (RDE), which is another well-established framework
(Arnold, 1998; Duan, 2015) with wide-ranging real-world applications (e.g., fluctuating resources
in biological systems (Kloeden & Pötzsche, 2013)). Here, we adopt the RDE formulation in the
widely studied setting of i.i.d. noise (Arnold, 1998; Caraballo & Han, 2016). We find this formulation
practically advantageous for integration with deep generative modeling and VI, enabling a powerful
and scalable approach to stochastic dynamics. Importantly, as any (finite-dimensional) SDE can
be transformed into an equivalent RDE and vice versa (Han & Kloeden, 2017); these practical
advantages can be exploited without compromising relevance to canonical SDE representations (as
we will empirically demonstrate).

As above, let x0:T be the observations from times 0 to T of the state of a system, xt ∈ Rn. We
assume these data are generated from some stochastic dynamics ẋ = fz(xt), where z is a latent
random variable modeled as an i.i.d. noise process. We wish to identify a family of sparse vector
field functions fz constrained to a common functional form for all z ∈ Rd (i.e., only the coefficients
of f are time-varying, reflecting the system’s dependence on fluctuating quantities).

With this framing, we seek to approximate both the functional form fz and a posterior estimate of
the latent noise trajectory z = [z0, z1, ..., zT ]

T associated with each observed trajectory x0:T. To
do so, we employ a variational encoder to learn an inference model for the latent space p(z|x, ẋ)
and a generative model p(ẋ|x, z) subject to ẋ = fz(x), as detailed below. Ultimately, once trained,
we may generate new trajectories of x simply by iteratively sampling z from its Gaussian prior (i.e.,
constructing new sample paths of the driving noise).
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Generative Model Consider a factorization of the conditional generative model with parameters
θ: pθ(ẋ, z|x) = pθ(ẋ|z,x)pθ(z). We assume that z is independent of x, so pθ(z|x) = pθ(z).
pθ(ẋ|z,x) describes how the state x and latent z are transformed into the derivative, while pθ(z)
is a prior over the latent distribution of states and their derivatives. We take pθ(z) to be a standard
Gaussian with diagonal covariance: pθ(z) = N (0, I). We seek to parameterize pθ(ẋ|z,x) according
to a nonlinear function, fz(x). Following the SINDy framework, which seeks interpretability in the
form of sparse governing equations, we adapt 1 to obtain the following implementation of fz(x):

fz(x) = Θ(x)(Ξz ⊙M). (6)

where ⊙ indicates an element-wise multiplication. Θ(x) is a matrix expansion of x using a pre-
defined library of basis functions, which can include any rational functions, such as polynomial (e.g.,
x2
1,x1x2) or trigonometric (e.g., sinx1) functions. Ξz is a matrix of coefficients that is output by

a hypernetwork H that takes in z as input: Ξz = H(z). M is a matrix of values Mij ∈ [0, 1] that
is trained with a close approximation to a differentiable L0 norm. Specifically, the values of M are
simulated using a hard concrete distribution. As such, M enforces sparsity in the terms of each
equation through the element-wise multiplication (Ξz ⊙M). See Background for more details.

We constrain fz to a d-parameter family of ODEs sharing a common functional form. Specifically, H
may be interpreted as an implicit distribution (Pawlowski et al., 2018) for pθ(Ξ) =

∫
pθ(Ξ|z)pθ(z)dz.

Although we cannot compute the density of pθ(Ξ) exactly, we can sample derivative functions by
feeding samples z ∼ pθ(z) into the hypernetwork: Ξz = H(z).

Inference Model Our inference model is defined by the approximate posterior, qϕ(z|x, ẋ), with
parameters ϕ. qϕ(z|x, ẋ) is implemented by a neural network E and the reparameterization trick, i.e.,
µq, σq = E(x, ẋ); ẑ = µq + ϵ⊙ σq .

Training We train the model end-to-end with backpropagation to minimize the following loss:

loss = (ẋ− fẑ(x))
2 + βDKL(qϕ(z|x, ẋ)||pθ(z)) + λL0(M) (7)

where β and λ are hyperparameters. The loss function optimizes the parameters ϕ and θ, where ϕ
are the parameters of E (i.e., the variational parameters) and θ are the parameters of H and M (note
that pθ(z) has fixed parameters). Refer to the Appendix for a full derivation of this loss function, and
to Background for details on the sparsity-related loss L0(M) (especially equation 5). To speed up
training, every set number of epochs, we permanently set values of M equal to 0 if the magnitude of
corresponding coefficients fall below a specific threshold value.

4 RESULTS

We evaluate the performance of HyperSINDy on four stochastic dynamical systems. Across a range
of (dynamical) noise levels, we seek to assess the accuracy of models identified by HyperSINDy and
the degree to which uncertainty estimates faithfully reflect the level of simulated noise. Refer to the
Appendix for full details on data generation, training, and simulations.

4.1 STOCHASTIC EQUATION DISCOVERY

First, we show results for 3D Stochastic Lorenz and 3D Stochastic Rössler datasets, simulated by:

ẋ = ω(y − x) ẏ = x(ρ− z)− y ż = xy − βz Lorenz (8)
ẋ = −y − z ẏ = x+ ay ż = b+ z(x− c) Rössler (9)

where parameters (ω, ρ, β) and (a, b, c) are each modeled as random processes, simulated by itera-
tively sampling (at each timestep) from normal distributions with scale σ and means (10, 28, 8

3 ) and
(0.2, 0.2, 5.7), respectively (i.e., each parameter is driven by an independent white noise). We train a
HyperSINDy model on three trajectories from each system, with σ = 1, 5, 10.

We find that HyperSINDy correctly identifies most terms in each equation (Fig. 2). Notably,
increasing noise has little impact on the mean coefficients learned by HyperSINDy; instead, the
estimated standard deviations of these coefficients proportionately scale with the dynamical noise.
Furthermore, HyperSINDy only increases the standard deviation on the terms modeled to have
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Figure 2: 3D Stochastic Lorenz and Rössler. HyperSINDy models trained on trajectories simulated
with three levels of noise (σ) for each of the two systems. For each σ, the mean and standard
deviation of the discovered governing equation coefficients are shown (refer to 8 and 9 for ground
truth equations). Coefficients in green are those iteratively sampled from Gaussian distributions in
the original system. Red trajectories are sample test trajectories simulated with the given σ. Purple
trajectories are generated from HyperSINDy using the mean of the discovered governing equations.
Blue trajectories are generated by iteratively sampling from HyperSINDy’s learned generative model.
See Fig. S1 for additional samples; E-SINDy samples are shown in Fig. S2.

additional noise, while maintaining tight bounds on other terms (e.g. xy in ẏ for Lorenz). Moreover,
HyperSINDy is able to simulate the original (stochastic) dynamical behavior even as the noise level
increases (blue trajectories). On the other hand, because HyperSINDy also successfully identifies the
deterministic functional form despite process noise, it is able to produce smooth trajectories (purple)
by forecasting with the mean of the discovered equation ensemble.

We sought to benchmark HyperSINDy performance against a leading model for probabilistic model
discover, ensemble SINDy (E-SINDy) (Fasel et al., 2022). We trained a total of 30 HyperSINDy and
30 E-SINDy models using Lorenz and Rössler trajectories (see appendix for all simulation details).
We evaluated the RMSE of the mean and standard deviation of the discovered equation coefficients, as
compared to ground truth. HyperSINDy outperforms E-SINDy on both mean and standard deviation
for each experiment (1). Refer to appendix Table S4 for complementary precision and recall results.
This pattern of results was minimally sensitive to latent space dimension (Fig. S5). See Table S6 for
further quantitative results validating HyperSINDy’s strength at equation discovery on a 2D system.

4.2 RECOVERING DRIFT-DIFFUSION DYNAMICS

The preceding analyses validate HyperSINDy’s capacity for stochastic equation discovery. As
HyperSINDy adopts an RDE-based modeling strategy (i.e., a noise-parameterized ODE, as opposed
to an SDE with separable drift and diffusion), ground truth equations were explicitly modeled as
RDEs rather than SDEs to enable straightforward comparison. As RDEs are conjugate to SDEs
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Table 1: Total coefficient RMSE (↓) relative to ground truth equations

Lorenz Rossler

Param HyperSINDy E-SINDy HyperSINDy E-SINDy

1 MEAN 0.082 ± 0.004 0.18 ± 0.029 0.029 ± 0.035 0.077 ± 0.04
STD 0.598 ± 0.045 1.296 ± 0.083 0.828 ± 0.059 0.849 ± 0.012

5 MEAN 0.117 ± 0.022 0.268 ± 0.064 0.086 ± 0.047 0.296 ± 0.199
STD 0.4 ± 0.055 0.971 ± 0.024 0.807 ± 0.012 0.875 ± 0.023

10 MEAN 0.203 ± 0.047 0.349 ± 0.103 0.228 ± 0.138 0.699 ± 0.551
STD 0.279 ± 0.085 0.913 ± 0.016 0.812 ± 0.014 0.875 ± 0.028

Figure 3: Recovering drift and diffusion behavior in the stochastic Lotka-Volterra model.. K-M
coefficients computed on sample trajectories from each of the three models. From left to right: the
ground truth SDE, the HyperSINDy-discovered system, and the Stochastic SINDy-discovered system.

(Han & Kloeden, 2017), this distinction is not fundamental. Nonetheless, this leaves unaddressed the
question of how HyperSINDy would learn to represent dynamics explicitly simulated as SDEs.

To address this question, we simulate a 2D SDE to enable direct comparison against the leading
method, stochastic SINDy (Boninsegna et al., 2018; Nabeel et al., 2022) (which cannot easily scale
to higher dimensions). Specifically, we simulate a widely used model for population dynamics, the
stochastic Lotka-Volterra system with state-dependent diffusion:(

dx
dy

)
=

(
x− xy
−y + xy

)
dt+

(
σxx 0
0 σyy

)(
dWx

dWy

)
(10)

where σxx(t) = 0.25x − 0.09y and σyy(t) = −0.09x + 0.25y give the state-dependent diffusion
coefficients, and Wx(t),Wy(t) are independent Wiener processes with i.i.d. increments (i.e., ∆Wt =
Wt+1 −Wt ∼ N (0,∆t)). The system is simulated with Euler-Maruyama integration (∆t = 0.01).

Figure 3 illustrates the results of this analysis. Notably, HyperSINDy learns an expression whose
terms correspond to those of the original drift function, thus enabling physical insight into the
system. Nonetheless, the analytical expressions are not directly comparable, as the SDE represents
stochasticity in terms of a separate diffusion term, while HyperSINDy represents stochasticity as
coefficient noise. To enable direct comparison of the deterministic and stochastic aspects of the
dynamics discovered by the two methods, we may numerically estimate drift and diffusion coefficients
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from the simulated trajectories. Specifically, we may estimate the first two Kramers-Moyal (K-M)
coefficients, which derive from a Taylor expansion of the master equation, and which fully describe
the Markovian dynamics. Notably, HyperSINDy captures the appropriate deterministic (drift) and
stochastic (diffusion) behavior of the system, recapitulating the state-dependence of these terms as
seen in the original system – even performing favorably to stochastic SINDy in this setting.

4.3 HIGH DIMENSIONAL STOCHASTIC DISCOVERY

Figure 4: 10D Stochastic Lorenz-96. A sample test trajectory with σ = 10 (top) and sample
HyperSINDy trajectory (middle) after training on a dataset with σ = 10. The bottom boxes show the
mean and standard deviation of coefficients in the discovered governing equations (cf. Eq. 11).

Lastly, we assess HyperSINDy’s capacity for Bayesian inference/stochastic modeling for high
dimensional stochastic systems, which are not amenable to existing analytical SDE discovery methods
(e.g., (Boninsegna et al., 2018; Callaham et al., 2021)). Thus, we simulate a stochastic version of the
Lorenz-96 system using:

ẋi = Fi + xi+1xi−1 − xi−2xi−1 − xi (11)

for i = 1, ..., 10 where x−1 = x9, x0 = x10, and x11 = x1. We iteratively sample each Fi from a
normal distribution: Fi ∼ N (8, 10). As shown in Fig. 4, HyperSINDy correctly identifies all terms
in the system, while also correctly learning a high variance coefficient exclusively for the forcing
terms, Fi. In addition, HyperSINDy produces sample trajectories that match the stochastic dynamical
behavior of ground truth sample trajectories. Refer to appendix Table S5 for quantitative comparisons
between HyperSINDy and E-SINDy on the 10D Lorenz-96 system.

5 DISCUSSION

We have provided an overview of HyperSINDy, a neural network-based approach to sparse equa-
tion discovery for stochastic dynamics. HyperSINDy is unique in its ability to provide analytical
representations and UQ in the setting of high-dimensional stochastic dynamics. The present work
represents a proof of concept for this architecture. We envision numerous future directions for
extending the algorithmic and theoretical aspects of HyperSINDy – e.g., evaluation in the context of
other noise types and with respect to convergence in the continuous limit. Moreover, while we employ
a fairly straightforward implementation of SINDy, numerous developments of the SINDy framework
(Kaptanoglu et al., 2022) may be easily incorporated into the HyperSINDy architecture. Finally, the
integration of SINDy into a neural network framework paves the way for future developments that
incorporate advances in probabilistic machine learning with interpretable equation discovery.
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APPENDIX A DERIVATION OF LOSS FUNCTION

We assume independence of z with respect to x, such that pθ(z|x) = pθ(z). Then, as described in
the Methods section, our generative model factorizes as follows (Bayes’ rule):

pθ(ẋ, z|x) = pθ(ẋ|z,x)pθ(z) (12)

Given the chain rule for conditional probability, we also have:

pθ(ẋ|z,x) =
pθ(ẋ, z,x)

pθ(z,x)
Conditional Probability

=
pθ(z|ẋ,x)pθ(ẋ|x)pθ(x)

pθ(z|x)pθ(x)

=
pθ(z|ẋ,x)pθ(ẋ|x)

pθ(z)
pθ(z|x) = pθ(z)

By substituting into the first factorization, we obtain the second factorization:

pθ(ẋ, z|x) = pθ(z|ẋ,x)pθ(ẋ|x) (13)

We seek to learn a model that captures the dynamics ẋ, given the state x. Specifically, we seek
to maximize the log-likelihood log pθ(ẋ|x) by performing inference over z. We follow a similar
derivation as in (Kingma & Welling, 2019):

log pθ(ẋ|x) = Eqϕ(z|ẋ,x) [log pθ(ẋ|x)]

= Eqϕ(z|ẋ,x)

[
log

pθ(ẋ, z|x)
pθ(z|ẋ,x)

]
see Eq. 13

= Eqϕ(z|ẋ,x)

[
log

pθ(ẋ, z|x)qϕ(z|ẋ,x)
pθ(z|ẋ,x)qϕ(z|ẋ,x)

]
= Eqϕ(z|ẋ,x)

[
log

pθ(ẋ, z|x)
qϕ(z|ẋ,x)

]
+ Eqϕ(z|ẋ,x)

[
log

qϕ(z|ẋ,x)
pθ(z|ẋ,x)

]
= ELBO +DKL(qϕ(z|ẋ,x)||pθ(z|ẋ,x))

Since DKL(qϕ(z|ẋ,x)||pθ(z|ẋ,x)) ≥ 0, we maximize the ELBO, which lower bounds log pθ(ẋ|x).

ELBO = Eqϕ(z|ẋ,x)

[
log

pθ(ẋ, z|x)
qϕ(z|ẋ,x)

]
= Eqϕ(z|ẋ,x) [log pθ(ẋ, z|x)− log qϕ(z|ẋ,x)]
= Eqϕ(z|ẋ,x) [log pθ(ẋ|z,x) + log pθ(z)− log qϕ(z|ẋ,x)] see Eq. 12

= Eqϕ(z|ẋ,x) [log pθ(ẋ|z,x)−DKL(qϕ(z|ẋ,x)||pθ(z))]

Equivalently, we can minimize the −ELBO, given by the following loss:

loss = (ẋ− fẑ(x))
2 +DKL(qϕ(z|x, ẋ)||pθ(z))

Given our goal to learn a sparse set of governing equations, we need to train M , which is multiplied
elementwise with Ξz . To do so, we add L0(M) (main text Eq. 5) to the loss, yielding:

loss = (ẋ− fẑ(x))
2 + βDKL(qϕ(z|x, ẋ)||pθ(z)) + λL0(M)

= (ẋ− fẑ(x))
2 + βDKL(qϕ(z|x, ẋ)||pθ(z)) + λ

k∑
j=1

Sigmoid(logαj − βL0
log

γ

ζ
)

where β, λ, βL0
, γ, and ζ are hyperparameters, k is the dimension of a vectorized M , and ẑ ∼

qϕ(z|x, ẋ) using the reparameterization trick. logαj are location parameters for the distribution that
M is transformed from, as described in the Background section of the main text.
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Table S1: Matrix shapes for different experiments

System n C Θ(x) Ξz M Θ(x)(Ξz ⊙M)

Lorenz 3 F 250× 19 250× 19× 3 250× 19× 3 250× 3
Rössler 3 T 250× 20 250× 20× 3 250× 20× 3 250× 3
Lotka-Volterra 2 T 250× 10 250× 10× 2 250× 10× 2 250× 2
Lorenz-96 10 T 250× 286 250× 286× 10 250× 286× 10 250× 10

Table S2: Dataset initial conditions

System Train Test

Lorenz (0, 1, 1.05) (-1, 2, 0.5)
Rössler (0, 1, 1.05) (-1, 2, 0.5)
Lotka-Volterra (4, 2) (2.1, 1.0)
Lorenz-96 (8.01, 8, 8, 8, 8, 8, 8, 8, 8, 8) (7.8, 8.7, 8.5, 6.0, 9.9, 9.5, 7.5, 6.9, 6.9, 8.7)

APPENDIX B GENERATIVE AND INFERENCE MODELS

Matrix dimensions are variable. Consider x ∈ Rn and a library with l terms. Then, we have:

Θ(x) ∈ Rl Ξz ∈ Rl×n M ∈ Rl×n (Ξz ⊙M) ∈ Rl×n Θ(x)(Ξz ⊙M) ∈ Rn

However, we use minibatches during training. Consider a batch of x of size b, meaning x ∈ Rb×n.
Then, we have:

Θ(x) ∈ Rb×l Ξz ∈ Rb×l×n M ∈ Rb×l×n (Ξz ⊙M) ∈ Rb×l×n Θ(x)(Ξz ⊙M) ∈ Rb×n

After training, we do not sample M using the reparameterization trick, since α has been learned.
So, M has shape l × n (note that k = l · n). For all experiments, we included polynomials up to
order 3 in the library and used a batch size of 250 during training. Refer to Table S1 for a breakdown
of matrix shapes for each experiment during training (note that C refers to whether a constant is
included in the library).

APPENDIX C DATA

Each trajectory in the main manuscript was generated for 10000 timesteps with ∆t = 0.01. Refer
to Table S2 for data generation initial conditions. Note that the test initial condition for Lorenz-96
is rounded (the exact values can be found in the accompanying code, as we used Gaussian noise to
choose the initial condition). Derivatives are estimated using finite differences without smoothing.

APPENDIX D TRAINING

D.1 ALGORITHM

A “best practice” for the HyperSINDy training algorithm is choosing low initial β and λ values and
evaluating the results before adjusting in future runs. Moreover, we also utilize beta warmup Castrejon
et al. (2019), which is useful for avoiding posterior collapse in VAEs. Specifically, we increase the
β value from 0.01 to the chosen low initial β value over 100 epochs. If the prior did not learn the
function well enough, we increased (“spiked”) the β value at a later epoch in training to βspike. Note
that, although we knew the ground truth coefficients in our simulations, one can determine whether
the prior learned “well enough” by comparing the similarity between the coefficients generated from
the prior to the coefficients generated from the approximate posterior. See (Yacoby et al., 2022) for
more information on this tradeoff between the posterior and prior. If the learned model was not sparse
enough, we increased the λ value at a later epoch in training to λspike.

Every 100 epochs, we permanently set values in M to be zero if the corresponding coefficients (using
the mean over a batch of coefficients) falls below the threshold value T . This is done using an auxiliary
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matrix of shape l× n, where the values are all initially set to 1 and then set to 0 throughout training if
the corresponding value in M should be 0 permanently. This mask is multiplied elementwise with
M to enforce this permanent sparsity. During training, we sample one M for each example in a
minibatch of data using the reparameterization trick.

D.2 HYPERPARAMETERS

Hyperparamater tuning mostly consists of adjusting the β and λ value for the Kl divergence and
L0 terms in the loss function, respectively. Hyperparameters that stay constant for all experiments
are listed here: learning_rate = 0.005, num_hidden = 5, stat_size = 250, batch_size = 250.
stat_size refers to the number of coefficient matrices that are sampled from the prior to calculate the
coefficient means used for the permanent thresholding described in the Training section. We used a
hidden dimension of 64 in all neural networks for all experiments except on Lorenz-96, for which we
used a hidden dimension of 128. We warm up to a low initial β value of 10 for every experiment.
We use an initial L0 regularization weight of λ = 0.01. For M , we use βL0

= 2/3, γ = −0.1, and
ζ = 1.1. Note that an exhaustive list of hyperparameters and training settings can be found in the
accompanying code. All experiments were run on an NVIDIA GeForce RTX 2080 Ti GPU. We ran
all experiments in PyTorch (Paszke et al., 2019) using the AdamW optimizer (Loshchilov & Hutter,
2019) with a weight decay value of 0.01 and amsgrad (Reddi et al., 2019) enabled. Refer to Table S3
for a list of hyperparameters that we tuned to obtain the results in the main text. Refer to the attached
code for more details on the RMSE experiments, as well as information on settings used to generate
the supplemental figures.

APPENDIX E RMSE, PRECISION, AND RECALL METRICS

We use the following RMSE, precision, and recall metrics (as computed in Sun et al. (2022)):

rmse =
||CTrue −CPred||2

||CTrue||2

precision =
||CTrue ⊙CPred||0

||CPred||0

recall =
||CTrue ⊙CPred||0

||CTrue||0

where CTrue is the true mean or standard deviation of a given coefficient, and CPred is the mean or
standard deviation of the predicted coefficients. For terms that are not included in the ground truth or
predicted equations, we consider their mean or standard deviation to be zero.

APPENDIX F RDE-SDE TRANSFORMATION

Any finite dimensional SDE can be transformed into an RDE (Imkeller & Schmalfuss, 2001; Han &
Kloeden, 2017). For an SDE with additive noise, the standard procedure involves replacement of the
white noise with a stationary Ornstein Uhlenbeck process. Thus, following Han & Kloeden (2017)
(section 3.5), the SDE

dXt = f(Xt)dt+ dWt (14)

becomes

Żt = f(Zt +Ot) +Ot, (15)

where Zt := Xt −Ot and Ot is the stationary Ornstein-Uhlenbeck process, which is the solution to
the SDE dOt = −Otdt+ dWt (with Wt denoting the Wiener process).

In the multiplicative case, again following Han & Kloeden (2017), the SDE:
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Table S3: Hyperparameters

Lorenz

σ d βspike epochβspike
λspike epochλspike

epochs T

1 6 100 400 10 400 999 0.05
5 6 400 400 10 400 999 0.05
10 6 400 400 10 400 999 0.05

Rössler

σ d βspike epochβspike
λspike epochλspike

epochs T

1 6 100 200 0.1 200 499 0.01
5 6 100 200 0.1 300 600 0.01
10 6 100 200 1 300 600 0.01

Lorenz RMSE

σ d βspike epochβspike
λspike epochλspike

epochs T

1 6 100 400 10 400 999 0.05
5 6 400 400 10 400 999 0.05
10 6 400 400 10 400 999 0.05

Rössler RMSE

σ d βspike epochβspike
λspike epochλspike

epochs T

1 6 100 200 0.1 200 499 0.01
5 6 200 200 0.1 300 600 0.01
10 6 300 200 1 300 600 0.01
Lotka-Volterra

σ d βspike epochβspike
λspike epochλspike

epochs T

N/A 4 None None 0.1 100 250 0.1

Lorenz-96

σ d βspike epochβspike
λspike epochλspike

epochs T

10 20 None None 10 400 999 0.05

dXt = f(t,Xt)dt+ b(t)XtdWt (16)

may be combined with the random transformation

z(t) = T (t)Xt, T (t) := exp

(
1

2

∫ t

0

b2(s) ds−
∫ t

0

b(s) dWs

)
(17)

to obtain the RDE:

dz
dt

= T (t)f
(
t, T−1(t)z(t)

)
. (18)

In general, explicit RDE-SDE transformations may not always be straightforward to implement
(see Imkeller & Schmalfuss (2001); Caraballo & Han (2016); Han & Kloeden (2017) for extended
discussion of this topic). The present manuscript does not seek to establish equivalence or explicit
mappings between particular RDE and SDE expressions, nor are claims contingent on the ability to
carry out this transformation. Rather, for our purposes, we simply note that the conjugacy between
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the two formulations implies that results obtained within one framework are directly pertinent to the
other Han & Kloeden (2017).

More generally, the chief motivation for stochastic equations (whether SDEs or RDEs) lies simply
in the mathematical modeling of dynamics under uncertainty; for many (if not most) modeling
applications, the precise physical nature of this uncertainty -– e.g., a diffusion process or fluctuating
system parameters — is unknown and/or of secondary importance (Friedrich et al., 2011; Duan, 2015;
Särkkä & Solin, 2019). From this perspective, SDEs and RDEs simply emerge as alternative modeling
frameworks, each with unique practical (dis)advantages to be considered in context (e.g., see Bauer
et al. (2017)). Nonetheless future work may examine the possibility of equipping our approach
with an explicit SDE prior (e.g., (Solin et al., 2021)), thus strengthening theoretical connections to a
broader stochastic dynamics literature.

APPENDIX G ALGORITHMS

Algorithm 1 Generation of Governing Equations Coefficients, Ξz , to predict ẋ

1: if z not given then:
2: z ∼ N (0, I) ▷ Generate batch of z
3: Ξz = H(z) ▷ Generate 1 coefficient matrix for each z in batch
4: ẋ = fz(x) = Θ(x)(Ξz ⊙M) ▷ Unless training, uses Eq 4 to get M

Algorithm 2 Training Loop for Each Epoch

1: for each minibatch x, ẋ do
2: µq, σq = E(x, ẋ) ▷ Encode each element of batch
3: ẑ = µq + σq ⊙ ϵ ▷ Reparameterization Trick
4: Obtain training M through transformations ▷ See Background, specifically Eq 3
5: ˆ̇x = fẑ(x) = Algorithm 1(ẑ) ▷ Give ẑ to H
6: loss = (ẋ− ˆ̇x)2 + βDKL(qϕ(z|x, ẋ)||pθ(z)) + λL0(M)
7: Backprop loss and update θ, ϕ

8: Sample batch of z ∼ N (0, 1)
9: Ξz = H(z)

10: Ξzmean
= mean over batch of Ξz

11: if (epoch % threshold_interval) == 0 then: ▷ If we must threshold this epoch
12: M = 0 permanently where abs(Ξzmean

) < threshold ▷ Permanently threshold M

APPENDIX H FURTHER SIMULATION DETAILS

To generate results for Figure 1 and Table S4, we ran separate experiments generating 10 trajectories
(each with a different random seed, and each generated from a different initial condition) for each
noise level of both systems. In total, we trained one HyperSINDy model and one E-SINDy model on
each trajectory, yielding 30 HyperSINDy models and 30 E-SINDy models.

APPENDIX I FIGURES AND TABLES

We include here additional sample trajectories (all from the test initial condition) to highlight
HyperSINDy’s generative capabilities. Refer to Figure S1 for HyperSINDy trajectories generated
for various noise levels on the Lorenz and Rössler system, and refer to Figure S2 for sample test
trajectories. HyperSINDy captures the same dynamical behavior as the original system. Refer to
Figure S3 for HyperSINDy trajectories generated for the Lorenz-96 system. Refer to Figure S5 for
results on a Lotka-Voltera system simulated as an RDE with half-normal noise on the coefficients.
We compare the distribution of discovered HyperSINDy coefficients and E-SINDy coefficients with
the ground truth coefficients.
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Furthermore, we include numerous tables of quantitative comparisons between HyperSINDy, E-
SINDy, and Bayesian Spline Learning (BSL) (Sun et al., 2022). Refer to Table S4 for precision and
recall comparisons between HyperSINDy and E-SINDy on the Lorenz and Rössler systems (the
experimental setup in this comparison is analogous to that of 1). Refer to Table S5 for comparisons
between HyperSINDy and E-SINDy on Lorenz-96 systems. Refer to Table S6 for comparisons
between HyperSINDy, E-SINDy, and BSL on a Lotka-Voltera system simulated as a RDE (i.e.
with random gaussian noise on each coefficient, which differs from Figure 3, which used an SDE
formulation).

Note that, in our experiments, we simulate a total of three types of Lotka-Voltera systems. In Figure
3, we simulate the Lotka-Voltera system as an SDE, using equation 10. As noted in the main text, we
use dt = 0.01. In Figure S5, we simulate the Lotka-Voltera system as an RDE:

ẋ = α1x− α2xy ẏ = −β1y + β2xy (19)

At each timestep in the simulation, we draw samples of the coefficients from HalfNormal (HN)
distributions:

{α1, α2, β1, β2} ∼ {HN(1, 5), HN(1, 5), HN(1, 5), HN(1, 5)}

Note that here, we use dt = 0.005. In Table S6, we again simulate the Lotka-Voltera system as
an RDE using equation 19. However at each timestep in the simulation, we draw samples of the
coefficients from Gaussian distributions:

{α1, α2, β1, β2} ∼ {N (1, σ),N (1, σ),N (1, σ),N (1, σ)}

Here, we also use dt = 0.005.

Moreover, we attempted to fairly tune hyperparameters when training E-SINDy and BSL, using only
the best model we could produce for comparisons. In the case of BSL, we tested out the following hy-
perparameters (refer to the publicly available BSL code): lam = {0.001, 0.0001, 0.000001}, eta =
{0.05, 0.01, 0.025, 0.005, 0.0005}, ADOlearningrate = {0.05, 0.005}. Note that, for E-SINDy,
HyperSINDy, and BSL, the strength of the sparsity parameter can significantly impact precision and
recall, as it helps determines which terms get thresholded out.

Table S4: Total Term Precision and Recall relative to ground truth equations

Lorenz Rössler

STD HyperSINDy E-SINDy HyperSINDy E-SINDy

1 Precision 0.9857 ± 0.0452 0.6045± 0.0274 0.9375 ± 0.0884 0.7534± 0.0850
Recall 0.8714± 0.0452 1.0000 ± 0.0000 0.9571± 0.0690 1.0000 ± 0.0000

5 Precision 0.9875 ± 0.0395 0.4588± 0.0468 0.9250 ± 0.0645 0.5502± 0.0456
Recall 0.9429± 0.0738 1.0000 ± 0.0000 0.9857± 0.0452 1.0000 ± 0.0000

10 Precision 0.9875 ± 0.0395 0.6491± 0.0268 0.9260 ± 0.0829 0.4846± 0.0699
Recall 0.9857± 0.0452 1.0000 ± 0.0000 0.9571± 0.0690 1.0000 ± 0.0000
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Figure S1: Additional 3D Stochastic Lorenz and Rössler Samples. HyperSINDy models trained
on trajectories of varying noise (σ). Blue trajectories are generated by iteratively sampling from
HyperSINDy’s learned generative model.

Table S5: Lorenz-96

Experiment Method RMSE Mean RMSE STD Precision Recall
σ = 0 HyperSINDy 0.05227 N/A 1.0 1.0

E-SINDy 0.006756 N/A 1.0 1.0
σ = 5 HyperSINDy 0.05370 0.7375 1.0 1.0

E-SINDy 0.1591 0.8240 0.4348 1.0
σ = 10 HyperSINDy 0.1106 0.2117 1.0 1.0

E-SINDy 0.1729 0.8544 0.3077 1.0
We simulate the Lorenz-96 with varying levels of Gaussian noise (σ) on the forcing term. We report
the RMSE between the mean and standard deviation of discovered coefficients, as compared to
ground truth; we also report precision and recall of the terms. Note that for σ = 0, we cannot report
the RMSE of the learned STD, as the ground truth standard deviation is 0.
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Figure S2: 3D Stochastic Lorenz and Rössler Ground Truth Samples. Samples generated using
the ground truth equations for varying noise levels (σ).

22



Under review as a conference paper at ICLR 2024

Figure S3: Lorenz-96 Samples (σ = 10). Each row contains a different sample trajectory. Trajectories
are generated by iteratively sampling from HyperSINDy’s learned generative model.

Figure S4: E-SINDY 3D Stochastic Lorenz and Rössler Samples. Samples generated using
discovered E-SINDy equations for varying noise levels (σ).

Figure S5: Lotka-Volterra System with Half-Normal Noise (σ = 5). Comparison of ground truth
(red), HyperSINDy (blue) and E-SINDy (yellow) coefficient distributions for each of the dynamical
terms. We simulate this system using an RDE formulation with half-normal noise (with the given σ)
on each coefficient.
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Table S6: Lotka-Volterra system with Gaussian noise on every coefficient.

Experiment Method RMSE Mean Precision Recall
σ = 0 HyperSINDy 0.0028 1.0 1.0

E-SINDy 0.0025 1.0 1.0
Bayesian Spline 0.1870 1.0 1.0

σ = 1 HyperSINDy 0.0415 1.0 1.0
E-SINDy 0.1763 0.5714 1.0

Bayesian Spline 0.2880 0.6667 1.0
σ = 2 HyperSINDy 0.0902 1.0 1.0

E-SINDy 0.9480 0.2857 1.0
Bayesian Spline 0.4665 0.4444 1.0

σ = 3 HyperSINDy 0.1694 0.8000 1.0
E-SINDy 1.4953 0.3077 1.0

Bayesian Spline 0.7577 0.4 1.0
We simulate the Lotka-Volterra system as an RDE, i.e. with Gaussian noise (with the given σ) on
each coefficient. For each σ, we train a HyperSINDy model with the given z dimension, then evaluate
the RMSE of the mean and standard deviation of the discovered coefficients, as compared to the
ground truth mean and standard deviation.

Figure S6: 3D Stochastic Lorenz with varying z dimension. We simulate the 3D Lorenz system, as
in 2, then train HyperSINDy models with different z dimension on each trajectory. Here, we plot
the RMSE of the discovered mean and standard deviation of coefficients, as compared to the ground
truth. Note that, for each σ, even though the RMSE can vary significantly for different z dimensions,
it is still always lower than E-SINDy (see Table 1).

24


	Introduction
	Contributions
	Related Work

	Background
	HyperSINDy
	Results
	Stochastic Equation Discovery
	Recovering drift-diffusion dynamics
	High Dimensional Stochastic Discovery

	Discussion
	Derivation of Loss Function
	Generative and Inference Models
	Data
	Training
	Algorithm
	Hyperparameters

	RMSE, Precision, and Recall Metrics
	RDE-SDE transformation
	Algorithms
	Further Simulation Details
	Figures and Tables

