Under review at the ICLR 2022 workshop on Objects, Structure and Causality

IMPROVING GENERALIZATION WITH APPROXIMATE
FACTORED VALUE FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning in general unstructured MDPs presents a challenging
learning problem. However, certain kinds of MDP structures, such as factoriza-
tion, are known to make the problem simpler. This fact is often not useful in more
complex tasks because complex MDPs with high-dimensional state spaces do not
often exhibit such structure, and even if they do, the structure itself is typically
unknown. In this work, we instead turn this observation on its head: instead of
developing algorithms for structured MDPs, we propose a representation learning
algorithm that approximates an unstructured MDP with one that has factorized
structure. We then use these factors as a more convenient state representation
for downstream learning. The particular structure that we leverage is reward fac-
torization, which defines a more compact class of MDPs that admit factorized
value functions. We show that our proposed approach, Approximately Factored
Representations (AFaR), can be easily combined with existing RL algorithms,
leading to faster training (better sample complexity) and robust zero-shot trans-
fer (better generalization) on the Procgen benchmark. An interesting future work
would be to extend AFaR to learn factorized policies that can act on the individual
factors that may lead to benefits like better exploration. We empirically verify the
effectiveness of our approach in terms of better sample complexity and improved
generalization on the ProcGen benchmark and the MiniGrid environments.

1 INTRODUCTION

Reinforcement Learning problems are often modeled as Markov Decision Processes (MDPs). While
the MDP formulation is quite general, it is not always the most optimal. Recent works Zhang et al.
(2021); Sodhani et al. (2021a) have proposed introducing additional assumptions to leverage the
structure underlying the given task(s). But these approaches may not be useful when working with
complex MDPs with high-dimensional state spaces where the structure is often not apparent.

In this work, we propose leveraging structure in the reverse direction. Instead of developing algo-
rithms for structured MDPs, we propose mapping an unstructured MDP to an approximate struc-
tured MDP. We exploit the structure for improved sample efficiency and generalization. In the scope
of this work, we focus on the Factored Reward MDP which has factorized states and reward and
provides computational benefit as they are more compact than standard MDPs.

We propose a representation learning technique, called Approximately Factored Representations
(AFaR), that can map any unstructured MDP into an approximate Factored Reward MDP. We show
that Factored Reward MDPs exhibit factored value functions which may allow for better generaliza-
tion to novel combinations of those factors. Existing RL algorithms can be extended to exploit the
structure of the Factored Reward MDP, and we show that this can lead to sample efficiency gains
and improved generalization even when that mapping is approximate.

2 PRELIMINARIES

A Markov Decision Process (MDP) Puterman (1995) is defined by a tuple (S, A, R, T, ~y), where
S is the set of states, A is the set of actions, R : S x A — R is the reward function, 7 : S x A —
Dist(S) is the environment transition probability function, and vy € [0, 1) is the discount factor. The

Under review at the ICLR 2022 workshop on Objects, Structure and Causality

© ® @
Ve [mean}——[V() |
@ V) (o]
(d) (h)
Vi) v} [of]
;
2 0]
(=] (6 —m]
(k) (1)
@)

Figure 1: Architecture of the AFaR model: Given an input state s (component a), an mixture of
k encoders,¢; - - - ¢, (component b), is used to compute k factor representations, denoted as z{ =
¢i(s1)Vi € {1,-- -k} (component ¢). State value is computed for each factor (components d and e)
and the overall state value is obtained by averaging over the individual state values (components f
and g). The state values are also used to compute the attention scores o (components 4 and i)
which is used to for aggregating the factor representations(component k). Dashed lines indicate that
gradient does not flow through those components or computations. The blue box/arrows connecting
components ¢ and j show that the factor representations are detached before pass to the feature
aggregation module, 6. The aggregated feature representation is used to select the action from the a
given policy (component /).

value function of policy is defined as: V. (s) = Ex[>_,=, V" R(s¢+1)|So = s]. The optimal value
function V* is the maximum value function over the class of stationary policies.

A Factored Reward Markov Decision Process (Factored Reward MDP) is an MDP where the state
and the reward can be factored into variables. For example, a state s; can be factored into & state
factors s%, cee sf We rely on the assumption that for given full states sy, s441 € S, action a; € A,
and s; denoting the i factor of the state s;, we have R(syy1|s¢,ar) = >, R(st q]s¢, ap).

It can be shown that the Factored Reward MDPs emit factored value kfunctions‘ i.e. the state-action
value functions for any policy 7 can be factorized as: V™ (s;) = >, V;"(s}) and Q™ (s¢,a;) =

k . . ’ . .
2im1 Q7 (21 ar), where Vi (s7) = 3507, 9" 32, T(svqalse, aw)r(sy, ar)) and QF (s}, ar) =
r(star) + Yo7 Der sy Tlseaalse, ay)r(si,, ar)) are the state value and the state-action

value functions for the i‘" factor, respectively.

3 AFAR: LEARNING APPROXIMATE FACTORED REPRESENTATIONS

In Section 2, we noted that Factored Reward MDPs emit factored value functions. We now re-
verse this observation to propose a representation learning technique that induces such factorization.
Specifically, we approximate the value of a state as the sum of the values corresponding to the
different factors. These factors are learnt using Factor Encoders (denoted as ¢) and are described
in Section 3.1. This factorization can be seen as applying the mean-field principle to approximate the
value function of a state in terms of the value function of the factors, similar to Peyrard & Sabbadin
(2006). We refer to our proposed approach as Approximately Factored Representations, or AFaR.
Next, we discuss how to leverage this form of structured representation for downstream control.

3.1 FACTOR ENCODERS

The system comprises k encoders, denoted as ¢q,--- , ¢, corresponding to k different factors.
Here, k is a hyper-parameter. These encoders learn the factor representations, which are denoted
as z{ = ¢;(s4),Vi € {1,--- ,k}. For each factor encoder ¢;, we compute the corresponding state
value. The overall state value is obtained by averaging over the state values corresponding to the
individual factors. The value functions and encoders are trained using the critic loss. We note that
the value functions are shared across all factors.

Under review at the ICLR 2022 workshop on Objects, Structure and Causality

4 EXTRACTING A POLICY FROM FACTORIZED Q-FUNCTIONS

Previous works have shown that factorized state and value functions need not lead to factorized
policies Liberatore (2002). As such, we need to combine the factorized representation into a single
representation that can be fed into a universal policy (shared across the factors). The learning agent
aggregates the representations using an Aggregation Module, denoted by 6, that selects one (or more)
factors to attend over at every timestep. The selection mechanism enables the policy to condition
only on the important factors and ignore the irrelevant factors. For example, if the agent is searching
for a key to open a door, it may not have to attend to the door till it finds the key.

4.1 ATTENDING TO THE FACTORIZED REPRESENTATIONS

Given a set of factor representations 2/, - - - ,zf, we want to learn attention scores v}, - - - ,af (rep-
resented jointly as o) that correspond to the relative importance of the factors. This would enable
the policy to attend to the most relevant factors. Note that the output of the state value function V'
(trained as a component of actor-critic algorithms) already captures the value of a given factor in
terms of the expected returns. Comparing the state-value functions for two states can approximate
what state is expected to lead to higher returns for the learning agent. Extending this argument to the
factors, a factor with a higher value of the state value function will lead to a higher expected return
than a factor with a lower value. Motivated by this insight, we use the state value for the factors as
a proxy for computing the relative importance of the factors. Specifically, we compute the attention
scores as: oy = (V (2}), ---,V(2F)), where 1 represents the attention module (instantiated using
the softmax operation). The state values are detached from the computation graph before feeding to
the attention module to ensure that only the critic loss updates the value function.

4.2 AGGREGATION MODULE

Given the factor representations, ztl . zf, and attention weights, a% cee af, we consider the follow-
ing operations: (i) soft-attention where the factor representations are first weighted using the atten-
tion values « and are then averaged to obtain an aggregated representation, and (ii) sparse, top-m at-
tention where we select the factor representations corresponding to the top-m values from «. These
selected representations are averaged using the attention values to compute the aggregated represen-
tation. Here m is a hyper-parameter. For the case of soft-attention, the aggregated output can be

computed as 0(z}, -+, 27, al, -+ ,af,) = > i, zi x ai. For the case of sparse, top-m attention,
1 ko1 k —_ vk i i ,
the aggregated output can be computed as 6(z;, -+, z;,a;,- -+ ,af,m) = > .| 2} X af X Lo s

where 1,; is an indicator variable set to 1 if ! is among the largest m values and 0 otherwise.

5 EXPERIMENTS

We use the Procgen benchmark Cobbe et al. (2020) and the MiniGrid Environments Chevalier-
Boisvert et al. (2018) for verifying the usefulness of the AFaR technique. The Procgen bench-
mark comprises 16 procedurally generated environments, each representing a distribution of lev-
els. We train the agent on a fixed set of levels while testing on the full distribution of lev-
els (generated by sampling levels at random). MiniGrid is a grid-world environment where
the agent has to find a key, unlock a door and pickup an object. For MiniGrid, we use the
MiniGrid-KeyCorridorSxRy environments where x denotes the size of a room and y denotes
the number of rows. The agent is trained on the MiniGrid-KeyCorridorS3R3 environment
and evaluated on the MiniGrid-KeyCorridorS3R2 environment in a zero-shot manner.

Since AFaR is a representation learning technique, we need to combine it with some policy algo-
rithm. For MiniGrid environments, we use Rewarding Impact-Driven Exploration (RIDE) Raileanu
& Rocktischel (2020), and for Procgen environments, we use Data-regularized Actor-Critic
(DrAC) Raileanu et al. (2020). Demonstrating that AFaR can improve the performance of both
baselines shows that AFaR is useful for a variety of actor-critic algorithms. We do not change any
hyper-parameters when training the adapted model, showing that AFaR can be used with existing
baselines without tuning all the hyper-parameters from scratch. We run all experiments with 10
seeds and report mean and standard error.

Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Environment DrAC AFaR
Bigfish 8.88 4 0.89 12.53 £ 0.53*
Bossfight 7074021 7.79 +0.21
Caveflyer 4374021 5.63 + 0.25% MiniGrid-KeyCorridorS3R3-v0 MiniGrid-KeyCorridorS3R2-v0
Chaser 6.56 +0.24 7.07 £0.22 —r 7 —T
Climber 6.76 +0.14 714 +0.1% 0.8 AR 08 ARR
Coinrun 8621006 8622009 S | srarmean E™|= arakmean
Dodgeball 4.78 £0.23 5.24+0.18 Los6 &6
Fruitbot 27.85+£0.28 2822+015 g g
Heist 3.96 4+ 0.12 4.93 £0.15% 804 S
Jumper 58+0.11 5.58 +0.09 a” & 0.4
Leaper 40403 5.19+0.33x c <
Maze 6.33+0.11 6.72+£0.07+ §02 802
Miner 9.63+£0.13 10.11+0.09« = =
Ninja 5.41+0.13 5.49+0.11 0.0 0.0
Plunder 8.12 £ 0.48 9.27+0.34 00 02 04 06 08 10 12 00 02 04 06 08 10 12
Starpilot 29.67 +0.85 28.89 £ 0.65 Steps le7 Steps le7

Figure 2: In the table, we compare the performance of AFaR with DrAC (baseline approach) in
terms of the score (on the evaluation environments) at the end of training when training with 200
levels. We report the mean and the standard error over 10 runs. The results marked in bold are the
best performances for each environment and the results marked with * are denote statistically sig-
nificant results (Welch’s ¢-test, with the significance level (p) is set to 0.05). The proposed approach
improves over the baseline in 13 (out of 16) environments, with statistically significant improve-
ment in 7 environments. In the plots, we compare the performance of AFaR with RIDE (baseline
approach) on MiniGrid-KeyCorridorS3R3-v0 and MiniGrid-KeyCorridorS3R2-v0
environments (middle and right frames respectively). We note that the agent was trained on
MiniGrid-KeyCorridorS3R3-v0 and evaluated on MiniGrid-KeyCorridorS3R2-v0
environment at regular intervals in a zero-shot manner. We also include a modified version of AFaR
algorithm where we replace the attention mechanism with the mean operation, denoted as AFaR-
mean. For both the environments, the AFaR approach improves the sample efficiency of the baseline
and sparse attention always outperforms the case of using mean operation.

Results. In the table in Figure 2, we note that AFaR significantly outperforms the DrAC base-
line on 7 environments, while improving the performance on 13 environments. On the MiniGrid
environments, AFaR improves the sample efficiency of the RIDE baseline for both the training
environment (MiniGrid-KeyCorridorS3R3-v0) and the zero-shot evaluation environment
(MiniGrid-KeyCorridorS3R2-v0).

6 RELATED WORK

Factored MDPs Boutilier et al. (1995; 1999) are a special class of MDPs where the state, dynamics
and reward can be factored into variables. However, factored transitions are a strong assumption
and do not necessarily give rise to factored value functions. We operate on Factored Reward MDPs,
which admits factorized value functions. Such factorization is related to the work on Successor
Features Dayan (1993); Barreto et al. (2017) where the value functions are represented as a special
class of basis functions. Koller & Parr (1999) is quite close to our work as they also proposed impos-
ing the additive structure on the value function. However, they use hand-designed basis functions
while we learn the factorization as part of the training process. Our work is also related to Mixture
of Experts (MoE) which have been used in the context of multi-task learning Sodhani et al. (2021b),
hierarchical reinforcement learning Goyal et al. (2020) and multi-agent learning He & Boyd-Graber
(2016). In contrast to these works, we use MoE to map a given MDP to an approximate Factored
Reward MDP and train RL agents on the Factored Reward MDP.

7 CONCLUSION

In this work, we study a form of structured environment with additively factorized rewards. We call
this setup Factored Reward MDP. A nice feature of this structured MDP is that the value function
also factorizes. We design an algorithm, AFaR, that learns an approximate Factored Reward MDP
of any given environment. We show that AFaR can be easily combined with existing RL algorithms,
leading to improved sample efficiency and generalization performance in both MiniGrid and Proc-
gen environments. An interesting future work would be to extend AFaR to learn factorized policies
that can act on the individual factors that may lead to benefits like better exploration.

Under review at the ICLR 2022 workshop on Objects, Structure and Causality

REFERENCES

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and Hado
van Hasselt. Successor features for transfer in reinforcement learning. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4055-4065, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
350db081a661525235354dd3el19b8c05-Abstract.html.

Craig Boutilier, Richard Dearden, Moisés Goldszmidt, et al. Exploiting structure in policy construc-
tion. In IJCAI, volume 14, pp. 1104-1113, 1995.

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 11:1-94, 1999.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 2048-2056. PMLR, 2020. URL http://proceedings.
mlr.press/v119/cobbe20a.html.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613-624, 1993.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Ben-
gio. Reinforcement learning with competitive ensembles of information-constrained primitives.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
ryxgJTEYDr.

He He and Jordan L. Boyd-Graber. Opponent modeling in deep reinforcement learning. In Maria-
Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, vol-
ume 48 of JMLR Workshop and Conference Proceedings, pp. 1804—1813. IMLR.org, 2016. URL
http://proceedings.mlr.press/v48/hel6.html.

Daphne Koller and Ronald Parr. Computing factored value functions for policies in structured mdps.
In IJCAI volume 99, pp. 1332-1339, 1999.

Paolo Liberatore. The size of mdp factored policies. In AAAI/IAAL pp. 267-272, 2002.

Nathalie Peyrard and Régis Sabbadin. Mean field approximation of the policy iteration algorithm
for graph-based markov decision processes. In Proceedings of the 2006 Conference on ECAI
2006: 17th European Conference on Artificial Intelligence August 29 — September 1, 2006, Riva
Del Garda, Italy, pp. 595-599, NLD, 2006. IOS Press. ISBN 1586036424.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. Journal
of the Operational Research Society, 1995.

Roberta Raileanu and Tim Rocktdschel. RIDE: rewarding impact-driven exploration for
procedurally-generated environments. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rkg-TJBFPB.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. 2020.

Shagun Sodhani, Franziska Meier, Joelle Pineau, and Amy Zhang. Block contextual mdps for
continual learning. arXiv preprint arXiv:2110.06972, 2021a. URL https://arxiv.org/
abs/2110.06972.

https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://github.com/maximecb/gym-minigrid
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
https://openreview.net/forum?id=ryxgJTEYDr
https://openreview.net/forum?id=ryxgJTEYDr
http://proceedings.mlr.press/v48/he16.html
https://openreview.net/forum?id=rkg-TJBFPB
https://arxiv.org/abs/2110.06972
https://arxiv.org/abs/2110.06972

Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning (ICML), 2021b.

Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust state abstrac-
tions for hidden-parameter block {mdp}s. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=fm0O0I2a3tQP.

https://openreview.net/forum?id=fmOOI2a3tQP

	Introduction
	Preliminaries
	AFaR: Learning Approximate Factored Representations
	Factor Encoders

	Extracting a Policy from Factorized Q-Functions
	Attending to the Factorized Representations
	Aggregation Module

	Experiments
	Related Work
	Conclusion

