
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARCHITECT OF THE BITS WORLD: MASKED AU-
TOREGRESSIVE MODELING FOR CIRCUIT GENERA-
TION GUIDED BY TRUTH TABLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Logic synthesis, a critical stage in electronic design automation (EDA), optimizes
gate-level circuits to minimize power consumption and area occupancy in inte-
grated circuits (ICs). Traditional logic synthesis tools rely on human-designed
heuristics, often yielding suboptimal results. Although differentiable architec-
ture search (DAS) has shown promise in generating circuits from truth tables, it
faces challenges such as high computational complexity, convergence to local op-
tima, and extensive hyperparameter tuning. Consequently, we propose a novel
approach integrating conditional generative models with DAS for circuit genera-
tion. Our approach first introduces CircuitVQ, a circuit tokenizer trained based
on our Circuit AutoEncoder We then develop CircuitAR, a masked autoregressive
model leveraging CircuitVQ as the tokenizer. CircuitAR can generate preliminary
circuit structures from truth tables, which guide DAS in producing functionally
equivalent circuits. Notably, we observe the scalability and emergent capability in
generating complex circuit structures of our CircuitAR models. Extensive exper-
iments also show the superior performance of our method. This research bridges
the gap between probabilistic generative models and precise circuit generation,
offering a robust solution for logic synthesis.

1 INTRODUCTION

With the rapid advancement of technology, the scale of integrated circuits (ICs) has expanded expo-
nentially. This expansion has introduced significant challenges in chip manufacturing, particularly
concerning power and area metrics. A primary objective in IC design is achieving the same circuit
function with fewer transistors, thereby reducing power usage and area occupancy.

Logic synthesis (Hachtel & Somenzi, 2005a), a critical step in electronic design automation (EDA),
transforms behavioral-level circuit designs into optimized gate-level circuits, ultimately yielding the
final IC layout. The primary goal of logic synthesis is to identify the physical implementation with
the fewest gates for a given circuit function. This task constitutes a challenging NP-hard combi-
natorial optimization problem (Hachtel & Somenzi, 2005b). Current logic synthesis tools (Brayton
& Mishchenko, 2010; Wolf et al., 2013) rely on human-designed heuristics, often leading to sub-
optimal outcomes.

Differentiable architecture search (DAS) techniques (Liu et al., 2018; Chu et al., 2020) offer novel
perspectives on addressing challenges in this problem. Circuit functions can be represented through
truth tables, which map binary inputs to their corresponding outputs. Truth tables provide a precise
representation of input-output relationships, ensuring the design of functionally equivalent circuits.
Inspired by this, researchers (Hillier et al., 2023b; Wang et al., 2024) have begun exploring the ap-
plication of DAS to synthesize circuits directly from truth tables. Specifically, Hillier et al. (2023b)
proposed CircuitNN, a framework that learns differentiable connection structures with logic gates,
enabling the automatic generation of logic circuits from truth tables. This approach significantly
reduces the complexity of traditional circuit generation. Building on this, Wang et al. (2024) in-
troduced T-Net, a triangle-shaped variant of CircuitNN, incorporating regularization techniques to
enhance the efficiency of DAS.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite these advancements, several challenges remain. The computational complexity of DAS
grows quadratically with the number of gates, posing scalability issues. Although triangle-shaped
architecture (Wang et al., 2024) partially mitigates this problem, redundancy persists. Additionally,
DAS is susceptible to converging to local optima (Liu et al., 2018), where network depth and layer
width require extensive searches. The challenges arise from the vast search space in DAS. Intuitively,
limiting the search space through predefined parameters, including network depth, gates per layer,
and connection probabilities, can significantly reduce the complexity.

Recent advances (OpenAI, 2023; Abramson et al., 2024; Esser et al., 2024; Li et al., 2024a) in con-
ditional generative models have demonstrated remarkable performance across language, vision, and
graph generation tasks. Motivated by these developments, we propose a novel approach to circuit
generation that generates preliminary circuit structures to guide DAS in generating refined circuits
matching specified truth tables. Firstly, we introduce CircuitVQ, a tokenizer with a discrete code-
book for circuit tokenization. Built upon our Circuit AutoEncoder framework (Hou et al., 2022; Li
et al., 2023a; Wu et al., 2025), CircuitVQ is trained through a circuit reconstruction task. Specifi-
cally, the CircuitVQ encoder encodes input circuits into discrete tokens using a learnable codebook,
while the decoder reconstructs the circuit adjacency matrix based on these tokens. Subsequently, the
CircuitVQ encoder serves as a circuit tokenizer for CircuitAR pretraining, which employs a masked
autoregressive modeling paradigm (Chang et al., 2022; Li et al., 2023b). In this process, the discrete
codes function as supervision signals. After training, CircuitAR can generate discrete tokens pro-
gressively, which can be decoded into initial circuit structures by the decoder of CircuitVQ. These
prior insights can guide DAS in producing refined circuits that match the target truth tables precisely.
Our key contributions can be summarized as follows:

• We introduce CircuitVQ, a circuit tokenizer that facilitates graph autoregressive modeling
for circuit generation, based on our Circuit AutoEncoder framework;

• Develop CircuitAR, a model trained using masked autoregressive modeling, which gener-
ates initial circuit structures conditioned on given truth tables;

• Propose a refinement framework that integrates differentiable architecture search to pro-
duce functionally equivalent circuits guided by target truth tables;

• Comprehensive experiments demonstrating the scalability and capability emergence of our
CircuitAR and the superior performance of the proposed circuit generation approach.

2 PRELIMINARIES

2.1 MODELING CIRCUIT AS DAG

In this work, we model the circuit as a directed acyclic graph (DAG) (Brummayer & Biere, 2006),
which facilitates graph autoregressive modeling. Specifically, each node in the DAG corresponds to
a logic gate, while the directed edges represent the connections between these components.

2.2 DIFFERENTIABLE CIRCUITNN

As depicted in Figure 1, CircuitNN (Hillier et al., 2023b) replaces traditional neural network layers
with logic gates (e.g., NAND) as basic computational units, learning to synthesize circuits by opti-
mizing logic correctness based on truth tables. During training, input connections of each gate are
determined through learnable probability distributions, enabling adaptive circuit architecture mod-
ification. To enable gradient-based learning, CircuitNN transforms discrete logic operations into
continuous, differentiable functions using NAND gates for simplicity. The NAND gate is logically
complete, allowing the construction of any complex logic circuit. Its continuous relaxation can be
defined as:

NAND(x, y) = 1− x · y, where x, y ∈ [0, 1]. (1)
Additionally, CircuitNN employs Gumbel-Softmax (Jang et al., 2016) for stochastic sampling of
gate inputs. Through stochastic relaxation, gate and network outputs are no longer binary but take
continuous values ranging from 0 to 1 instead. This end-to-end differentiability allows the model
to learn gate input distributions using gradient descent. After training, the continuous, probabilistic
circuit is converted back into a discrete logic circuit by selecting the most probable connections
based on the learned probability distributions, as shown in Figure 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1
0
0
1
0

PIs

Searching Wires

DAS

Connected WiresSkip Connections NAND Gate

1
0
0
1
0

0
1

PIs

POs
0
1

POs
0.4
0.7

Predicted

MSE Loss

Figure 1: Illustration of differentiable CircuitNN.

3 METHODOLOGY

In this section, we first introduce CircuitVQ (Section 3.2), a model built upon the Circuit AutoEn-
coder framework (Section 3.1) and trained with the task of circuit reconstruction. Utilizing Cir-
cuitVQ as a tokenizer, we subsequently train CircuitAR (Section 3.3) with graph autoregressive
modeling paradigm, which can generate preliminary circuit structures conditioned on a provided
truth table. Finally, the initial circuit structure generated by CircuitAR serves as a guide for DAS
(Section 3.4) to refine and generate circuits functionally equivalent to the given truth table.

3.1 CIRCUIT AUTOENCODER

Let G = (V,A) represent a circuit, where V denotes the set of N nodes, with each node vi ∈ V.
Following the architecture of CircuitNN (Hillier et al., 2023b), each node vi can be classified into
one of three types: primary inputs (PIs), primary outputs (POs), and NAND gates, each labeled by
ui ∈ U, i ∈ {1, 2, 3} respectively. The adjacency matrix A ∈ {0, 1}N×N captures the connectivity
between nodes, where Ai,j = 1 indicates the presence of a directed edge from vi to vj . In the circuit
autoencoder framework, an encoder, denoted as gE , encodes the circuit G into a latent representation
Z ∈ RN×d with dimensionality d. The encoding process for a circuit can be formulated as:

Z = gE(V,A). (2)

Simultaneously, a decoder gD aims to reconstruct the original circuit G from the latent representation
Z. Since node types can be directly derived from the truth table, the decoder is designed to focus on
reconstructing the adjacency matrix A, which can be formalized as follows:

G̃ = (V, Ã) = (V, f(gD(Z,V))), (3)

where Ã ∈ RN×N denotes the reconstructed adjacency matrix, obtained by decoding Z through gD
and applying a mapping function f : RN×d → RN×N . Meanwhile, G̃ represents the reconstructed
graph. A robust encoder gE capable of capturing fine-grained structural information is essential to
facilitate the circuit reconstruction task. We incorporate the Graphormer (Ying et al., 2021) archi-
tecture into gE . For the decoder gD, we adopt a simple Transformer architecture.

3.2 CIRCUITVQ

As mentioned in Section 3.1, we propose a circuit autoencoder architecture for the circuit reconstruc-
tion task. The outputs of gE and the inputs of gD are continuous. The circuit tokenizer is required
to map the circuit to a sequence of discrete circuit tokens for masked autoregressive modeling, il-
lustrated in Section 3.3. Specifically, a circuit G can be tokenized to Y = [y1, y2, · · · , yN] ∈ RN

using the circuit quantizer C which contains K discrete codebook embeddings. Here, each token yi
belongs to the vocabulary set {1, 2, . . . ,K} of C. Consequently, we develop a circuit tokenizer, Cir-
cuitVQ, based on the circuit autoencoder by integrating a circuit quantizer C. As shown in Figure 2,
the tokenizer comprises three components: a circuit encoder gE , a circuit quantizer C, and a circuit
decoder gD.

Firstly, gE encodes the circuit into vector representations Z. Subsequently, C identifies the nearest
neighbor in the codebook for zi ∈ Z. Let {e1, e2, . . . , eK} represent the codebook embeddings
and eK ∈ Rd. For the i-th node, the quantized code yi is determined by:

yi = argmin
j

||ℓ2(zi)− ℓ2(ej)||2, (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

921

3

92

3823

Codebook
Embeddings

l2-norm

Encoder Decoder

l2-norm

PI PO NAND Gate

… … …

Gradients

Nearest
Neighbor
Lookup

…

0 0 000 1
000
000

0 00 0 00
0 0 0 00
00 0 0

0
0 0

00
0 0

1
0

0
0
0

0 0 0
00

0 0

0 0 0
0 0

0

1 0

… … … …

…

…

…
…
…

…

Figure 2: The training process of CircuitVQ.

PI PO NAND Gate

CircuitAR Layer 1

CircuitAR Layer2

CircuitAR Layer LRec HeadCircuitVQ
Encoder

…

Masking

CircuitAR

Truth Table

Figure 3: The training process of CircuitAR un-
der the condition of the truth table, leveraging Cir-
cuitVQ as the tokenizer.

where j ∈ {1, 2, . . . ,K} and ℓ2 normaliza-
tion is applied during the codebook lookup (Yu
et al., 2021). This distance metric is equiva-
lent to selecting codes based on cosine similar-
ity. Consequently, the output of C for each node
representation zi the can be calculated based on
the given Equation (4):

z̃i = C(zi) = ℓ2(eyi
), where z̃i ∈ Z̃. (5)

After quantizing the circuit into discrete tokens,
the ℓ2-normalized codebook embeddings Z̃ =
{z̃i}Ni=1 are fed to gD. The output vectors X̃ =

{x̃i}Ni=1 = gD(Z̃,V) are used to reconstruct
the original adjacency matrix A of the circuit G.
Specifically, the reconstructed adjacency matrix Ã is derived from the output vectors X̃ as follows:

Ã = f(X̃) = σ
(
f1(X̃) · f2(X̃)⊤

)
, (6)

where both f1 : Rd → Rd and f2 : Rd → Rd are learnable projection functions, and σ(x) denotes
the sigmoid function. The training objective of the circuit reconstruction task is to minimize the
binary cross-entropy loss between the reconstructed adjacency matrix Ã and the original adjacency
matrix A, which can be calculated as follows:

Lrec = − 1

N2

N∑
i=1

N∑
j=1

[
Aij log(Ãij) + (1−Aij) log(1− Ãij)

]
. (7)

Given that the quantization process in Equation (4) is non-differentiable, gradients are directly
copied from the decoder input to the encoder output during backpropagation, which enables the
encoder to receive gradient updates. Intuitively, while the quantizer selects the nearest codebook
embedding for each encoder output, the gradients of the codebook embeddings provide meaningful
optimization directions for the encoder. Consequently, the overall training loss for CircuitVQ is:

Lvq = Lrec + ∥Z − sg[E]∥22 + β · ∥sg[Z]−E∥22, (8)

where sg[·] stands for the stop-gradient operator, which is an identity at the forward pass while
having zero gradients during the backward pass. E = {eyi

}Ni=1 and β denotes the hyperparameter
for commitment loss (Van Den Oord et al., 2017).

3.3 CIRCUITAR

After completing the CircuitVQ training, we train CircuitAR using a graph autoregressive modeling
paradigm as shown in Figure 3, where CircuitVQ functions as the tokenizer. Let Y = [yi]

N
i=1

represent the discrete latent tokens of the input circuit G, tokenized by CircuitVQ. During the masked

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

autoregressive training process, we sample a subset of nodes Vs ⊂ V and replace them with a special
mask token m . For the masked Y , the latent token ȳi is defined as:

ȳi =

{
yi, if vi /∈ Vs;

m, if vi ∈ Vs.
(9)

Following Chang et al. (2022) and Li et al. (2024a), we employ a cosine mask scheduling function
γ(r) = cos(0.5πr) in the sampling process. This involves uniformly sampling a ratio r from the
interval [0, 1] and then selecting ⌈γ(r) · N⌉ tokens from Y to mask uniformly. Let Ȳ = [ȳi]

N
i=1

denote the output after applying the masking operation to Y . The masked sequence Ȳ is then fed
into a multi-layer transformer with bidirectional attention to predict the probabilities p(yi|Ȳ ,T) for
each vi ∈ Vs under the condition of the truth table. The transformer is designed based on Llama
models, each CircuitAR layer consists of a self-attention block, a cross-attention block, and an FFN
block. Specifically, the info of the truth table is conditioned by serving T as the input key and value
of the cross-attention block. The training loss for CircuitAR is defined as:

Lar = −
∑
D

∑
vi∈Vs

log p(yi|Ȳ ,T), (10)

where D represents the set of training circuits.

Autoregressive decoding. We introduce a parallel decoding method, where tokens are generated in
parallel. This approach is feasible due to the bidirectional self-attention mechanism of CircuitAR.
At inference time, we begin with a blank canvas Ȳ = [m]N and the decoding process of CircuitAR
follows Algorithm 1. Specifically, the decoding algorithm generates a circuit in T steps. At each
iteration, the model predicts all tokens simultaneously but retains only the most confident predictions
following the cosine schedule (Chang et al., 2022; Li et al., 2024a). The remaining tokens are
masked and re-predicted in the next iteration. The mask ratio decreases progressively until all tokens
are generated within T iterations.

3.4 DIFFERENTIABLE ARCHITECTURE SEARCH

After completing the training process of CircuitAR, autoregressive decoding is performed based on
the input truth table T to generate preliminary circuit structures represented by the reconstructed
adjacency matrix Ã. This matrix Ã can serve as prior knowledge for DAS, enabling the generation
of a precise circuit that is logically equivalent to T.

DAG Search. The reconstructed adjacency matrix Ã is a probability matrix that denotes the prob-
abilities of connections between gates. However, Ã may contain cycles and identifying the opti-
mal DAG with the highest edge probabilities is an NP-hard problem. Consequently, we employ a
greedy algorithm to obtain a suboptimal DAG. As illustrated in Algorithm 2, the algorithm initial-
izes Ā ∈ RN×N with edge probabilities and enforces basic structural rules: PIs have no indegree,
POs have no outdegree, and self-loops are prohibited in circuit designs. Following this initializa-
tion, a depth-first search (DFS) is conducted to detect cycles in Ā. If no cycles are found, Ā is a
valid DAG, and the algorithm terminates. If a cycle is detected, the edge with the lowest probability
within the cycle is identified and removed by setting the corresponding edge in Ā to 0. This process
repeats iteratively until no cycles remain. This greedy approach ensures the derivation of a valid
DAG Ā that approximates the optimal structure while preserving the acyclic property necessary for
circuit design. The resulting DAG serves as a foundation for further refinement in the DAS process,
ultimately generating a precise circuit that is logically equivalent to T.

Initialization. After executing Algorithm 2, the adjacency matrix of a valid DAG Ā ∈ RN×N and
its corresponding probability matrix Â = Ā · Ã, where Â ∈ RN×N , are obtained. Using Ā, we
derive the hierarchical structure H = {h1, h2, . . . , hl}, where hl represents the node list of the l-th
layer. The set H encapsulates the layer count l and the width information of each layer, which is
used to initialize CircuitNN illustrated in Figure 1. For connection probabilities, since each node
can only connect to nodes from preceding layers, we normalize the connection probabilities such
that their summation equals 1. This yields the weights w ∈ RNp for possible connections, where
Np denotes the number of nodes in the previous layer. To ensure compatibility with the Softmax
function applied in CircuitNN, we initialize the logits ŵ ∈ RNp such that the Softmax output

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Autoregressive Decoding
Input: Masked tokens Ȳ = [ȳi]

N
i=1, ∀ȳi = m , token length N ,

total iterations T .
Output: Predicted tokens Ỹ = [ỹi]

N
i=1∀ỹi ̸= m .

1: for t← 0 to T − 1 do
2: Initialize the number of masked tokens n;
3: Compute probabilities p(ȳi) ∈ RK for each ȳi ∈ Ȳ ;
4: Initialize S ← [si]

N
i=1, where si = 0, and Ỹ ← Ȳ ;

5: for i← 1 to N do
6: if ȳi = m then
7: Sample a token oi ∈ {1, . . . , K} from p(ȳi);
8: si ← p(ȳi)[oi] and ỹi ← oi;
9: else
10: si ← 1;
11: end if
12: end for
13: for i← 1 to N and ȳi ̸= m do
14: r ← sorted(S)[n]; // Select the n-th highest score

from the sorted S in decending order

15: ȳi ←
{
ỹi, if si < r,

ȳi, otherwise;

16: end for
17: Ỹ ← Ȳ ;
18: end for

Algorithm 2 DAG Search
Input: Adjacency matrix Ã, PI node list Qi, PO node list Qo.
Output: Adjacency matrix Ā of a valid DAG.
1: Initialize Ā← Ã.
2: for each edge (i, j) in Ã (i ̸= j) do
3: Ā[i][j]← 0.
4: if i /∈ Qo and j /∈ Qi and Ã[i][j] > 0.5 then
5: Ā[i][j]← 1;
6: end if
7: end for
8: while True do
9: c ← cycleDetect(Ā); // Detect a cycle using DFS and re-

turn the list of nodes forming the cycle.
10: if len(c) = 0 then
11: break; // No cycles detected; Ā is a valid DAG.
12: end if
13: Initialize s←∞.
14: for i← 0 to len(c)− 1 do
15: j ← c[i] and k ← c[(i + 1) mod len(c)];
16: if Ã[j][k] < s then
17: s← Ã[j][k] and r ← (j, k);
18: end if
19: end for
20: Ā[r[0]][r[1]]← 0;
21: end while

matches the normalized connection probabilities. The logits are initialized as follows:

ŵ = log(w + ϵ)− 1

Np

Np∑
i=1

log(wi + ϵ), (11)

where ϵ is a small constant for numerical stability. After initialization, the precise circuit structure
is obtained through DAS, guided by the input truth table. Notably, if DAS converges to a local
optimum, the weights of the least initialized nodes can be randomly selected and reinitialized using
Equation (11) to facilitate further optimization.

3.5 BITS DISTANCE

DAS introduces inherent randomness, complicating the evaluation of CircuitAR’s circuit generation
capability using post-DAS metrics. To overcome this, we introduce Bits Distance (BitsD), a metric
offering a more reliable assessment of CircuitAR’s conditional generation ability. BitsD quantifies
the discrepancy between the outputs of an untrained CircuitNN, initialized via CircuitAR, and the
labels from the truth table. It measures how well CircuitAR generates circuits conditioned on the
truth table. Specifically, after initializing CircuitNN, we feed it with the truth table inputs and
compute the mean absolute error (MAE) between the untrained CircuitNN outputs and the truth
table labels. This MAE is defined as Bits Distance. A smaller BitsD indicates that the untrained
CircuitNN is closer to the target circuit described by the truth table.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Data Augmentation. We provide more details about data augmentation in Appendix D and investi-
gate the impact of the idle of NAND gates in Appendix E.

Training Details. We generate a training dataset with around 400k circuits (average 200 gates
per circuit) from the open-source datasets (Bryan, 1985; Albrecht, 2005; Amarú et al., 2015). The
training dataset construction details will be illustrated in Appendix C. We also provide more details
about the training processes of CircuitVQ and CircuitAR in Appendix B.1 and Appendix B.2.

Baseline Selection. For baseline selection, we choose CircuitNN (Hillier et al., 2023b) and T-
Net (Wang et al., 2024) due to their state-of-the-art (SOTA) performance in circuit generation guided

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

300M 600M 1B 2B
Model Parameter

0.41
0.42
0.43
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55

Bi
ts

 D
is

ta
nc

e
(B

it
sD

)

300M 600M 1B 2B

Figure 4: Scaling behavior of CircuitAR with
different model parameters.

1.38 2.64 4.97 9.24
GFLOPs/token

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

Bi
ts

 D
is

ta
nc

e
(B

it
sD

)

300M 600M 1B 2B

Figure 5: The performance of different
model sizes under a fixed compute budget.

1B 2B 3B 4B
Training Tokens

0.42
0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
0.61

Bi
ts

 D
is

ta
nc

e
(B

it
sD

)

300M 600M 1B 2B

Figure 6: Training with more tokens im-
proves BitsD for CircuitAR.

300M 600M 1B 2B
Model Parameters

30

32

34

36

38

40

D
ep

th

Depth #NAND

110

112

115

118

120

122

125

128

130

#
N

AN
D

Figure 7: Emergent capability in generating
complex circuit structures of our CircuitAR.

by truth tables. Additionally, several other studies (Tsaras et al., 2024; Li et al., 2024b; Zhou et al.,
2024) have explored circuit generation using different paradigms. We discuss these approaches in
Appendix A, as they diverge from the DAS paradigm employed in this work.

Evaluation Details. To validate the effectiveness of our CircuitAR models, we conduct evaluations
using circuits from the IWLS competition (Mishchenko et al., 2022), which include five distinct
function categories: random, basic functions, Espresso (Rudell, 1985), arithmetic functions, and
LogicNets (Umuroglu et al., 2020). Random circuits consist of random and decomposable Boolean
functions, basic functions include majority functions and binary sorters, and arithmetic functions
involve arithmetic circuits with permuted inputs and dropped outputs. Furthermore, we evaluate
the BitsD for CircuitAR models with different sizes to assess their conditional circuit generation
capability. This evaluation is performed on our circuit generation benchmark with 1000 circuits
separate from the training dataset.

4.2 SCALABILITY AND EMERGENT CAPABILITY

To analyze CircuitAR’s scaling behavior, we perform experiments along two primary dimensions:
parameter scaling (Figure 4) and data scaling (Figure 6). Our results reveal distinct performance
patterns quantified through BitsD, demonstrating how these scaling axes influence performance.
Additionally, we observe emergent capability in generating complex circuit structures of CircuitAR.

Parameter Scaling. As illustrated in Figure 4, increasing model capacity exhibits robust scaling
laws. The 300M parameter model achieves 0.5317 BitsD, while scaling to 2B parameters yields
0.4362 BitsD. This progression follows a power-law relationship (Kaplan et al., 2020), where per-
formance scales predictably with model size. Notably, marginal returns diminish at larger scales.
The 0.3B→0.6B transition provides a 7.94% improvement versus 6.07% for 1B→2B, highlighting
practical trade-offs between capacity and computational costs. These findings corroborate theoreti-
cal expectations (Thomas & Joy, 2006), confirming that larger models compress logical information
more efficiently. Moreover, as shown in Figure 5, larger models achieve better performance under
a fixed compute budget despite training on fewer tokens, owing to their superior capacity. Figure 5
also illustrates that BitsD scales inversely with the computing budget, which aligns with the scaling
law (Kaplan et al., 2020) during LLM training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experiment results of circuit generation accuracy and DAS steps. Impr. is the percentage
decrease in DAS steps.

Benchmark CircuitNN T-Net CircuitAR-2B

Category IWLS # PI # PO Acc.(%)↑ Steps↓ Acc.(%)↑ Steps↓ Impr.(%)↑ Acc.(%)↑ Steps↓ Impr.(%)↑

Random ex00 6 1 100 88715 100 85814 3.27 100 52023 41.36
ex01 6 1 100 64617 100 68686 -6.30 100 29636 54.14

Basic
Functions

ex11 7 1 100 104529 100 49354 52.78 100 47231 54.81
ex16 5 5 100 115150 100 121108 -5.17 100 45434 60.54
ex17 6 6 100 90584 100 57875 36.11 100 58548 35.66

Expresso ex38 8 7 100 86727 100 86105 0.71 100 74847 13.70
ex46 5 8 100 75726 100 75603 0.16 100 26854 64.54

Arithmetic
Function

ex50 8 2 100 87954 100 65689 25.31 100 42729 51.42
ex53 8 2 100 92365 100 75140 18.65 100 68246 38.26

LogicNet ex92 10 3 100 220936 100 206941 6.33 100 134192 39.26

Average 100 102730 100 88831 13.19 100 57974 45.37

Table 2: Experiment results of circuit generation size. Impr. represents the percentage decrease in
search space and used NAND gates.

Benchmark CircuitNN T-Net CircuitAR-2B

Category IWLS # NAND↓ # NAND↓ Impr.(%)↑ # NAND↓ Impr.(%)↑
Search Space Used Search Space Used Search Space Used Search Space Used Search Space Used

Random ex00 700 58 400 68 42.86 -17.24 126 61 82.00 -5.17
ex01 700 66 400 62 42.86 6.06 138 66 80.29 0.00

Basic
Functions

ex11 300 52 180 52 40.00 0.00 98 45 67.33 13.46
ex16 700 78 400 59 42.86 24.36 113 57 83.86 26.92
ex17 800 109 500 98 37.50 10.09 196 95 75.50 12.84

Expresso ex38 800 98 500 94 37.50 4.08 178 86 77.75 12.24
ex46 800 77 500 78 37.50 -1.30 161 79 79.88 -2.60

Arithmetic
Functions

ex50 300 59 180 56 40.00 5.09 77 48 74.33 18.64
ex53 1000 118 600 116 40.00 1.70 185 111 81.50 5.93

LogicNet ex92 1000 99 600 90 40.00 9.09 168 86 83.20 13.13

Average 710 81.40 426 77.30 40.11 4.19 144 73.40 78.56 9.54

Data Scaling. Figure 6 illustrates consistent performance gains with increased training tokens across
all sizes. For the 2B model, BitsD improves by 8.13%, 0.4748→0.4362, when scaling from 1B to
4B tokens. Moreover, larger models exhibit superior data efficiency. Specifically, the 2B model
achieves better performance with 4B tokens than the 1B model, emphasizing the interplay between
model capacity and training scale.

Emergent Capability. Figure 7 highlights CircuitAR’s emergent capability in generating complex
circuit structures. A clear phase transition is observed at the 2B parameter threshold, where cir-
cuit depth increases significantly compared to the 1B model, indicating an emergent capacity for
handling structural complexity. Moreover, an inverse correlation between model scale and NAND
gate count reveals an efficiency paradigm. Although models with small parameters maintain similar
component counts, the 2B model achieves a reduction in NAND gates despite its increased depth,
suggesting enhanced topological optimization capabilities at scale. This emergent behavior demon-
strates that increasing model parameters can enhance structural efficiency in circuit generation.

4.3 SOTA CIRCUIT GENERATION

Given the superior performance of CircuitAR-2B, as demonstrated in Section 4.2, we employ it to
generate preliminary circuit structures conditioned on truth tables, which are subsequently refined
using DAS. Detailed experimental results are presented in Table 1 and Table 2.

Efficiency. As illustrated in Table 1, CircuitAR-2B achieves a 45.37% average improvement in
optimization steps compared to CircuitNN, while maintaining 100% accuracy according to the pro-
vided truth tables. This performance significantly surpasses T-Net’s 13.19% improvement. The
substantial reduction in optimization steps indicates that the preliminary circuit structures generated
by CircuitAR-2B effectively prune the search space without compromising the quality of DAS.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Effectiveness. Table 2 demonstrates that CircuitAR-2B reduces NAND gate usage by an average
of 9.54% compared to CircuitNN, while simultaneously reducing the search space by 78.56%. No-
tably, for both basic functions (e.g., ex16, with a 26.92% reduction) and complex benchmarks (e.g.,
ex92, with a 13.13% reduction), our method exhibits superior hardware resource utilization com-
pared to the baseline approaches. This dual improvement in search space compression and circuit
compactness underscores the effectiveness of the preliminary circuit structures generated by our
CircuitAR-2B under the condition of the truth tables.

Critically, the 100% accuracy across all benchmarks confirms that our method maintains functional
correctness while achieving these efficiency gains. This is guaranteed by the DAS process. Specifi-
cally, the training does not terminate until the loss converges to a near-zero threshold. At this point,
the generated circuit is functionally equivalent to the target truth table, ensuring perfect accuracy.
This is not merely an empirical observation but a direct result of the rigorous optimization process in
DAS, which enforces logical correctness by design. These results validate our hypothesis that inte-
grating learned structural priors with CircuitAR enables more efficient circuit generation compared
to CircuitNN (Hillier et al., 2023b) and template-driven (Wang et al., 2024) DAS approaches.

Circuit Size. Compared to prior probabilistic generative models (Li et al., 2024b; Tsaras et al., 2024;
Zhou et al., 2024), our method achieves an order-of-magnitude improvement in directly generatable
circuit scale, which is a significant advance, especially given the exponential complexity growth typ-
ical in the scaling of circuit size. In practical circuit optimization (Hillier et al., 2023a), large circuits
are typically partitioned into smaller subcircuits for tractable optimization. Our primary focus is to
explore the direct capabilities of generative models in circuit generation. Current evaluation allows
us to evaluate the core contributions of our approach without focusing on the additional complexity
of decomposition and reintegration.

4.4 ABLATION STUDY Figure 8: Ablation study on the initialization with
edge probability generated by CircuitAR-2B.

Benchmark CircuitAR-2B w/o init CircuitAR-2B
Category IWLS Acc.(%)↑ Steps↓ Acc.(%)↑ Steps↓

Random ex00 100 72364 100 52023
ex01 100 40528 100 29636

Basic
Functions

ex11 100 64517 100 47231
ex16 100 76066 100 45434
ex17 100 88609 100 58548

Expresso ex38 100 99594 100 74847
ex46 100 40892 100 26854

Arithmetic
Function

ex50 100 69958 100 42729
ex53 100 89627 100 68246

LogicNet ex92 100 162651 100 134192

Average 100 80481 100 57974

We conducted an ablation study to evaluate
the effectiveness of the probability matrix Â
generated by CircuitAR-2B. As summarized in
Section 4.4, the experiment results reveal that
both variants achieve 100% accuracy across all
benchmarks, suggesting that the initialization
process does not impair the ability to generate
functionally equivalent circuits. The primary
distinction lies in the efficiency of the search
process, quantified by the number of search
steps. Section 4.4 underscores the significance
of the initialization process, demonstrating that
our CircuitAR models can produce high-quality
preliminary circuit structures, which can guide the subsequent DAS process effectively.

5 CONCLUSION

Our work introduces a novel approach for circuit generation that combines conditional generative
models with DAS. We begin by training CircuitVQ, a circuit tokenizer, and then use it with Cir-
cuitAR, a masked autoregressive model. CircuitAR generates preliminary circuit structures from
truth tables, which are then refined by DAS to produce functionally equivalent circuits. This ap-
proach shows the potential of masked autoregressive models for structured data and offers a new
framework for graph generation in other specialized fields.

DECLARATION OF LLM USAGE

The usage of LLMs is strictly limited to aid and polish the paper writing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate Structure
Prediction of Biomolecular Interactions with AlphaFold 3. Nature, pp. 1–3, 2024.

Christoph Albrecht. IWLS 2005 Benchmarks. In IEEE/ACM International Workshop on Logic
Synthesis, 2005.

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL Combinational
Benchmark Suite. In IEEE/ACM International Workshop on Logic Synthesis, 2015.

Robert Brayton and Alan Mishchenko. ABC: An Academic Industrial-Strength Verification Tool.
In Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings 22, pp. 24–40. Springer, 2010.

Robert Brummayer and Armin Biere. Local Two-Level and-Inverter Graph Minimization Without
Blowup. Proc. MEMICS, 6:32–38, 2006.

David Bryan. The ISCAS’85 Benchmark Circuits and Netlist Format. North Carolina State Univer-
sity, 1985.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. MaskGIT: Masked gen-
erative image transformer. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. DARTS-: Ro-
bustly stepping out of performance collapse without indicators. arXiv preprint arXiv:2009.01027,
2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling Rectified Flow Transformers
for High-Resolution Omage Synthesis. URL https://arxiv. org/abs/2403.03206, 2, 2024.

Gary D Hachtel and Fabio Somenzi. Logic Synthesis and Verification Algorithms. Springer Science
& Business Media, 2005a.

Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer Science
& Business Media, 2005b.

A Hillier et al. Learning to design efficient logic circuits. IWLS, 2023a.

Adam Hillier, Ngân (NV) Vũ, Daniel J. Mankowitz, Daniele Calandriello, Edouard Leurent,
Georges Rotival, Ivan Lobov, Kshiteej Mahajan, Marco Gelmi, and Natasha Antropova.
Learning to Design Efficient Logic Circuits. 2023b. doi: 10.52843/cassyni.wyw879.
URL https://app.dimensions.ai/details/publication/pub.1167668620.
https://cassyni.com/events/S2LPTWZeMh9TGcLJe5jpqK.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
GraphMAE: Self-Supervised Masked Graph AutoEncoders. In ACM International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 594–604, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax.
arXiv preprint arXiv:1611.01144, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

10

https://app.dimensions.ai/details/publication/pub.1167668620

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. What’s Behind the Mask: Understanding Masked Graph Modeling
for Graph Autoencoders. In ACM International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 1268–1279, 2023a.

Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. MAGE:
Masked generative encoder to unify representation learning and image synthesis. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2023b.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive Image
Generation without Vector Quantization. arXiv preprint arXiv:2406.11838, 2024a.

Xihan Li, Xing Li, Lei Chen, Xing Zhang, Mingxuan Yuan, and Jun Wang. Circuit Transformer:
End-to-end Circuit Design by Predicting the Next Gate. arXiv preprint arXiv:2403.13838, 2024b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.
arXiv preprint arXiv:1806.09055, 2018.

Alan Mishchenko, Satrajit Chatterjee, Luca Amarú, Eleonora Testa, and Walter Lau Neto.
IWLS 2022 Programming Contest. https://github.com/alanminko/
iwls2022-ls-contest/, 2022.

OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

Richard Rudell. Espresso-mv: Algorithms for multiple-valued logic minimization. In Proceedings
of IEEE Custom Integrated Circuit Conference, pp. 230–234, 1985.

MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-Interscience, 2006.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. In Annual Conference on Neural Information
Processing Systems (NIPS), 2024.

Dimitrios Tsaras, Antoine Grosnit, Lei Chen, Zhiyao Xie, Haitham Bou-Ammar, and Mingxuan
Yuan. ShortCircuit: AlphaZero-Driven Circuit Design. arXiv preprint arXiv:2408.09858, 2024.

Yaman Umuroglu, Yash Akhauri, Nicholas James Fraser, and Michaela Blott. Logicnets: Co-
designed neural networks and circuits for extreme-throughput applications. In International Con-
ference on Field-Programmable Logic and Applications (FPL), pp. 291–297. IEEE, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural Discrete Representation Learning. In Annual
Conference on Neural Information Processing Systems (NIPS), 2017.

Zhihai Wang, Jie Wang, Qingyue Yang, Yinqi Bai, Xing Li, Lei Chen, HAO Jianye, Mingxuan Yuan,
Bin Li, Yongdong Zhang, et al. Towards Next-Generation Logic Synthesis: A Scalable Neural
Circuit Generation Framework. In Annual Conference on Neural Information Processing Systems
(NIPS), 2024.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Haoyuan Wu, Haisheng Zheng, Yuan Pu, and Bei Yu. Circuit Representation Learning with Masked
Gate Modeling and Verilog-AIG Alignment. In International Conference on Learning Represen-
tations (ICLR), 2025. URL https://openreview.net/forum?id=US9k5TXVLZ.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Annual
Conference on Neural Information Processing Systems (NIPS), 2021.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-Quantized Image Modeling with Improved VQ-
GAN. arXiv preprint arXiv:2110.04627, 2021.

Xinyi Zhou, Xing Li, Yingzhao Lian, Yiwen Wang, Lei Chen, Mingxuan Yuan, Jianye Hao, Guangy-
ong Chen, and Pheng Ann Heng. SeaDAG: Semi-autoregressive Diffusion for Conditional Di-
rected Acyclic Graph Generation. arXiv preprint arXiv:2410.16119, 2024.

11

https://github.com/alanminko/iwls2022-ls-contest/
https://github.com/alanminko/iwls2022-ls-contest/
https://openreview.net/forum?id=US9k5TXVLZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 AUTOREGRESSIVE MODELING

The autoregressive modeling paradigm (OpenAI, 2023; Tian et al., 2024) has been widely adopted
for generation tasks in language and vision domains. Built on the transformer architecture, au-
toregressive models are commonly implemented using causal attention mechanisms in language
domains (OpenAI, 2023), which process data sequentially. However, information does not inher-
ently require sequential processing in vision and graph generation tasks. To address this, researchers
have employed bidirectional attention mechanisms for autoregressive modeling (Li et al., 2024a;
Tian et al., 2024; Chang et al., 2022; Li et al., 2023b). This approach predicts the next token based
on previously predicted tokens while allowing unrestricted communication between tokens, thereby
relaxing the sequential constraints of traditional autoregressive methods. In this paper, we adopt
masked autoregressive modeling for circuit generation, leveraging its ability to provide a global
perspective and enhance the modeling of complex dependencies.

A.2 CIRCUIT GENERATION

In addition to the DAS-based approaches, researchers have also explored next-gate prediction tech-
niques inspired by LLMs for circuit generation. Circuit Transformer (Li et al., 2024b) predicts the
next logic gate using a depth-first traversal and equivalence-preserving decoding. SeaDAG (Zhou
et al., 2024) employs a semi-autoregressive diffusion model for DAG generation, maintaining graph
structure for precise control. ShortCircuit (Tsaras et al., 2024) uses a transformer to generate
Boolean expressions from truth tables via next-token prediction. However, these methods are lim-
ited by their global view, restricting circuit size and failing to reduce the search space. In contrast,
our approach uses global-view masked autoregressive decoding to generate circuits while ensuring
logical equivalence and significantly reducing the search space during the DAS process.

B IMPLEMENTATION DETAILS

B.1 CIRCUITVQ

The training process of CircuitVQ employs a linear learning rate schedule with the AdamW op-
timizer set at a learning rate of 2 × 10−4, a weight decay of 0.1, and a batch size of 2048. The
model is fine-tuned for 20 epochs on 8×A100 GPUs with 80G memory each. Moreover, we use
the Graphormer (Ying et al., 2021) as our CircuitVQ architecture, as mentioned before. Specifically,
CircuitVQ comprises 6 encoder layers and 1 decoder layer. The hidden dimension and FFN interme-
diate dimension are 1152 and 3072, respectively. Additionally, the multi-head attention mechanism
employs 32 attention heads. For the vector quantizer component, the codebook dimensionality is set
to 4 to improve the codebook utilization, and the codebook size is configured to 8192.

B.2 CIRCUITAR

The training process of CircuitAR employs a linear learning rate schedule with the AdamW opti-
mizer set at a learning rate of 2×10−4, a weight decay of 0.1, and a batch size of 4096. The model is
fine-tuned for 20 epochs on 16×A100 GPUs with 80G memory each. Moreover, we use the Trans-
former variant of Llama (Dubey et al., 2024) as our CircuitAR architecture as mentioned before. To
form different model sizes, we vary the hidden dimension, FFN intermediate dimension, number of
heads and number of layers. We present the details of our CircuitAR architecture configurations in
Table 3. For the rest of the hyperparameters, we keep them the same as the standard Llama model.

Table 3: Model architecture configurations of CircuitAR.

hidden dim FFN dim heads layers

CircuitAR-300M 1280 3072 16 16
CircuitAR-600M 1536 4096 16 20
CircuitAR-1B 1800 6000 24 24
CircuitAR-2B 2048 8448 32 30

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C TRAINING DATASETS

This section presents a multi-output subcircuit extraction algorithm designed for generating training
datasets. The algorithm processes circuits represented in the And Inverter Graph (AIG) format by
iterating over each non-PI node as a pivot node. The extraction process consists of three key stages:

1. Single-Output Subcircuit Extraction. The algorithm extracts single-output subcircuits
by analyzing the transitive fan-in of the pivot node. The transitive fan-in includes all nodes
that influence the output of the pivot node, encompassing both direct predecessors and
nodes that propagate signals to it. The extraction process employs a breath-first search
(BFS) algorithm, constrained by a maximum input size, to ensure comprehensive coverage
of relevant nodes associated with the pivot node.

2. Multi-Output Subcircuit Expansion. Single-output subcircuits are expanded into multi-
output subcircuits through transitive fan-out exploration. The transitive fan-out comprises
all nodes influenced by the pivot node, including immediate successors and downstream
nodes reachable through signal propagation. This expansion captures the broader network
of nodes that either influence or are influenced by the subcircuits of the pivot node.

3. Truth Table Generation. The algorithm computes truth tables for the extracted subcir-
cuits to serve as training labels. Additionally, these truth tables help identify functionally
equivalent subcircuits. Recognizing these equivalences is essential, as it can lead to data
imbalance in the training set.

To mitigate data imbalance, a constraint is imposed, limiting each truth table to at most M distinct
graph topologies. For truth tables with fewer than M representations, logic synthesis techniques
(specifically rewriting algorithms) are applied to generate functionally equivalent subcircuits with
distinct topologies. This approach ensures topological diversity while maintaining functional equiv-
alence. Finally, the training datasets with around 400000 circuits (average 200 gates per circuit)
are generated using circuits from the ISCAS’85 (Bryan, 1985), IWLS’05 (Albrecht, 2005), and
EPFL (Amarú et al., 2015). M is set to 5 during the generation process. The sizes of PI and PO are
capped at 15 each in the training dataset, ensuring manageable truth table sizes while maintaining
complexity.

D DATA AUGMENTATION

Following dataset generation, we identified that the data volume was still insufficient. To address this
limitation, we implemented data augmentation techniques. Leveraging the topological invariance of
graphs, we randomly shuffled the order of graph nodes, as this operation does not alter the underlying
structure of the circuit. Furthermore, since inserting idle nodes preserves the circuit structure, we
randomly introduced idle nodes into the graphs. The proportion of idle nodes is randomly selected
ranging from 0% to 80%. Moreover, incorporating idle nodes enables CircuitAR to identify which
nodes can remain inactive for a fixed number of nodes. This allows CircuitAR to generate circuits
logically equivalent to the truth table while utilizing fewer graph nodes. This strategy can improve
CircuitAR’s efficiency and enhance its generalizability.

E IDLE NAND GATES

As shown in Figure 9, all models exhibit a gradual decline in BitsD as the isolated gates propor-
tion increases from 0% to 45%. Large model with 2B parameters demonstrates significantly greater
robustness, maintaining BitsD values within a narrow range across varying isolation ratios. In con-
trast, the small model with 300M parameters shows a more pronounced degradation, with BitsD
increasing from 0.5317 to 0.5484 under the same conditions. This disparity highlights the enhanced
ability of larger models to efficiently utilize NAND gates for implementing the same truth table.
The consistently low BitsD observed in the 2B model underscores its practical utility in predefining
search spaces for DAS, offering a notable advantage over smaller models.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 0.15 0.3 0.45
Ratios of Idle NAND Gates

0.42
0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
0.61

Bi
ts

 D
is

ta
nc

e
(B

it
sD

)

300M 600M 1B 2B

Figure 9: The impact of idle NAND gates on BitsD for CircuitAR with different ratios of isolated
NAND gates.

LIMITATIONS

This study presents a preliminary investigation of scaling laws under current computational con-
straints. Due to limited computing resources, the research is intentionally bound to models operating
within restricted model parameters and training data. Although our experimental framework demon-
strates a tenfold increase in circuit complexity compared to prior works (Li et al., 2024b; Zhou et al.,
2024; Tsaras et al., 2024), there is substantial potential for further improvement in circuit scale.

14

	Introduction
	Preliminaries
	Modeling Circuit as DAG
	Differentiable CircuitNN

	Methodology
	Circuit AutoEncoder
	CircuitVQ
	CircuitAR
	Differentiable Architecture Search
	Bits Distance

	Experiments
	Experiment Settings
	Scalability and Emergent Capability
	SOTA Circuit Generation
	Ablation Study

	Conclusion
	Related Works
	Autoregressive Modeling
	Circuit Generation

	Implementation Details
	CircuitVQ
	CircuitAR

	Training Datasets
	Data Augmentation
	Idle NAND Gates

