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Abstract

Intelligent education stands as a prominent application of machine learning. Within
this domain, cognitive diagnosis (CD) is a key research focus that aims to diagnose
students’ proficiency levels in specific knowledge concepts. As a crucial task
within the field of education, cognitive diagnosis encompasses two fundamental
requirements: accuracy and fairness. Existing studies have achieved significant
success by primarily utilizing observed historical logs of student-exercise interac-
tions. However, real-world scenarios often present a challenge, where a substantial
number of students engage with a limited number of exercises. This data sparsity
issue can lead to both inaccurate and unfair diagnoses. To this end, we introduce
a monotonic data augmentation framework, CMCD, to tackle the data sparsity
issue and thereby achieve accurate and fair CD results. Specifically, CMCD inte-
grates the monotonicity assumption, a fundamental educational principle in CD,
to establish two constraints for data augmentation. These constraints are general
and can be applied to the majority of CD backbones. Furthermore, we provide
theoretical analysis to guarantee the accuracy and convergence speed of CMCD.
Finally, extensive experiments on real-world datasets showcase the efficacy of our
framework in addressing the data sparsity issue with accurate and fair CD results.

1 Introduction

Intelligent education is a significant domain within machine learning that focuses on exploring
students’ learning patterns. In the past decades, research in this interdisciplinary field has garnered
substantial attention from scholars across various disciplines [29, 26, 10, 45], including education,
machine learning, and psychology. Within intelligent education, cognitive diagnosis (CD) stands out
as a crucial research area that aims to measure students’ proficiency levels in specific knowledge
domains, such as Geometry [39, 15, 7, 21]. For instance, as illustrated in Figure 1, students practice
some exercises e1, e2, e3 and obtain associated responses indicating correctness, which are then
utilized to perform CD to infer the students’ mastery levels of the corresponding concepts. With
a comprehensive understanding of students’ abilities, CD can be applied to various applications,
including student assessment [4, 56] and educational recommendation systems [19].

As a crucial task within the field of education, CD encompasses two fundamental requirements: 1)
Accurate Diagnoses: It is imperative to precisely evaluate students’ mastery of knowledge to facilitate
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Figure 1: An illustrative example of cognitive diagnosis.
various downstream applications. For instance, this accuracy enables teachers to deliver personalized
instruction, tailored to the specific needs of each individual student. 2) Fair Diagnoses: CD plays
a pivotal role in high-stakes examinations like the GRE [30], significantly influencing individuals’
developmental opportunities. Therefore, ensuring fairness in CD is of paramount importance. In this
context, fairness means different student groups divided by sensitive attributes (e.g., gender, race)
should be treated fairly and equally.

To accomplish these dual objectives, prior research has made notable strides by harnessing historical
logs that document students’ interactions with exercises. However, in practical scenarios, many
students can only interact with a limited number of exercises within the vast exercise pool, leading to
the data sparsity issue that may cause both inaccurate and unfair diagnoses. A detailed analysis
is available in Section 4. Currently, several approaches have been proposed to mitigate this issue
from a model-centric perspective, which focus on developing more complex architectures to address
the challenges posed by data scarcity [14, 7]. However, the incorporation of additional architectures
often compromises the model’s interpretability, rendering it unsuitable for high-impact educational
environments. For instance, in high-stakes exams like the GRE, only IRT [29], a classical CD model,
has been applied due to their statistical superiority [30]. While other model-based models, despite
mitigating data sparsity to some extent, remain unused because of their lack of interpretability.

In contrast to these model-based approaches, in this paper, we tackle the data sparsity issue from
the perspective of data augmentation without altering the model architecture. However, we have
encountered the following challenges: 1) Monotonicity Assumption. The Monotonicity Assumption
is a fundamental theoretical premise in the field of CD. Specifically, it posits that a student’s
proficiency exhibits a monotonic relationship with the probability of providing a correct response to
an exercise. Using Figure 1 as an example, Sue, who correctly responds to exercise e1, is considered
to possess a higher proficiency level in the related concept C (i.e., Absolute Value) compared to
Bob, who provides an incorrect response. This ensures the interpretability of CD, contributing to its
widespread acceptance and application. Therefore, maintaining the model’s monotonicity assumption
during the data augmentation process is crucial. 2) Theoretical Guarantees. As data augmentation
emerges as a new paradigm in the CD domain, it becomes imperative to establish corresponding
theoretical guarantees for this novel approach.
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Figure 2: An example of monotonic augmentation.

To address these challenges, we propose a
monotonic data augmentation CD framework,
CMCD, complemented by theoretical guaran-
tees. Specifically, we integrate two data aug-
mentation constraints confronting the mono-
tonicity assumption. For each student, we
generate fake students by reversing one of
his responses while keeping other records un-
changed to train CD models. As illustrated
in Figure 2, Bob’s wrong answer to e1 is re-
versed to generate C-1 while his right answer to e6 is reversed to generate C-2. Following the
monotonicity assumption, we assume that Bob’s proficiency the corresponding knowledge concept
is lower than that of C-1 yet higher than that of C-2. Moreover, we provide theoretical analysis to
guarantee CMCD’s advantage in accuracy and convergence speed. Finally, we conduct extensive
experiments on real-world datasets, demonstrating the effectiveness of our method across various CD
models. Our key contributions can be summarized as follows:

• Problem Emphasis. Our paper strongly emphasizes the connection between data sparsity
and inaccurate and unfair diagnoses. To the best of our knowledge, we are the first to
highlight the relationship between data sparsity and educational fairness.
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• Framework Design. From the perspective of data augmentation, we combine the mono-
tonicity assumption in CD to propose a general framework, CMCD, which comes with
theoretical guarantees of accuracy and convergence speed.

• Experimental Evaluations. Extensive experiments on real-world datasets demonstrate the
effectiveness of our approach.

2 Related Works

2.1 Cognitive Diagnosis

CD plays a crucial role in various real-world educational scenarios [48, 49], including student
assessment [36, 31] and educational recommender systems [24, 19]. Initially rooted in psychometrics,
CD models such as Item Response Theory (IRT) [29] have been widely used, particularly in the
context of GRE [30]. Later, Multidimensional Item Response Theory (MIRT) [35] was introduced
to extend the single-trait features in IRT to multidimensions. While these models were effective
and provided interpretable diagnostic results based on psychometric theories, they heavily relied on
handcrafted interaction functions and could only leverage users’ numerical response records, which
were often affected by data sparsity [25]. With the advancements in machine learning, researchers
began developing CD models from a machine-learning perspective. One notable model in this regard
is NCDM [39], which employed neural networks to learn the interactions between students and
exercises, yielding satisfactory results. However, the majority of existing works have primarily
focused on designing more complex architectures to alleviate data sparsity. In contrast to traditional
model-based approaches, this paper embraces a data-centric perspective and introduces CMCD,
which comes with strong theoretical guarantees and is adaptable for integration with all cognitive
diagnosis models.

2.2 Data Augmentation

Data augmentation is a classical technique to address the problem of insufficient training data in the
machine learning community [42]. Over the past few years, this concept has achieved significant
success in the fields of neural language processing (NLP) [13, 57, 32] and computer vision (CV)
[38, 2, 6]. Later, this idea was applied to user modeling tasks, which necessitated the simulation of
user-item interaction data. The work most similar to ours involves data augmentation of user-item
interactions in recommendation systems. They typically answer questions such as: "What would
happen if...?" Through these responses, they can generate additional virtual data, thereby alleviating
the issue of data sparsity. For instance, Wang et al. [43] addressed the issue of data sparsity in the
sequential recommendation and provided an answer to the question: "What would a user like to
buy if their previously purchased items had been different?". Similarly, Xiong et al. [44] focused
on review-based recommendation and answered the question: "What would be the user’s decision
if their feature-level preference had been different?" Although these works have shown promising
results, when applied to cognitive diagnosis, they overlook the monotonicity assumption, a classic
theory in education. Additionally, they lack corresponding theoretical guarantees. In this paper, we
aim to bridge these gaps to alleviate data sparsity in cognitive diagnosis more effectively.

3 Preliminaries

3.1 Cognitive Diagnosis and Models

In this subsection, we formally define the CD problem. Assume there are m students, n exercises,
which are denoted as S = {si}mi=1, E = {ej}nj=1. Assume each student si has records on exercises
indexed by Qi ⊂ {1, 2, . . . , n}, the response logs Ri of student si are a set of triplets (si, ej , yi,j),
where j ∈ Qi, yi,j ∈ {0, 1} is the score obtained by student si on exercise ej . Given response logs
Ri of student si, the goal of CD is to mine the proficiency θi.

Cognitive Diagnosis Models (CDMs) are developed to depict student’s proficiency level on specific
knowledge concepts based on her responses to several test items. To do this, an objective function is
used to train CDMs on the student performance prediction task. More concretely, CDMs are expected
to minimize the difference of the predicted probability pj(θi) of a student si giving the right response
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to the exercise ej between the true response yi,j = pj(θi). In this paper, following the classical works
[14], we adopt the cross-entropy loss, the goal is,

L =
1

m

m∑
i=1

li(θi) = − 1

m

m∑
i=1

∑
j∈Qi

[yi,j log pj(θi) + (1− yi,j) log(1− pj(θi))]. (1)

In the past decades, lots of CDMs have been proposed such as IRT [29, 11], MIRT. Generally, CDMs
contain two parts: (1) the representations of trait features and (2) the interaction function. For example,
IRT models each student si as a proficiency variable θi, each exercise as a discriminating factor αj

and a difficulty factor βj , and a logistic function is used to forecast the likelihood that student si will
answer exercise ej correctly based on a logistic function 2, i.e., pj(θi) = 1/(1 + eαj(θi−βj)).

3.2 Fairness in Cognitive Diagnosis

With the advancement of machine learning technologies [20, 9], such as large language models [55],
which have found widespread applications in many important scenarios [51, 52], trustworthy AI has
become a very important topic [18, 27, 28, 34, 33, 17]. Among these concerns, the issue of fairness
has garnered widespread attention [22, 37, 8, 41, 53, 47, 40]. Given that cognitive diagnosis holds a
fundamental position in the field of education and is extensively applied in high-stakes exams such as
the GRE [30], which significantly shapes individuals’ developmental opportunities, ensuring fairness
in cognitive diagnosis becomes of utmost importance. In this paper, we follow the widely accepted
group fairness definition proposed by Li et al. [23], which states that a fair model should provide the
same level of utility performance for different user groups.

For analytical convenience, we focus on the case where the sensitive attribute is binary, which can
be easily extended to multiple values. The student group can be divided into two groups based on
their sensitive attributes, denoted as G0 and G1, where U = G0 ∪ G1, G0 ∩ G1 = ∅. We denote
the number of samples in each group as m0 and m1. Inspired by previous works [54, 50, 23], in
this paper, fairness in cognitive diagnosis is defined as follows, where a lower value indicates better
fairness performance:

Definition 3.1 (Fairness in Cognitive Diagnosis).

GF =

∣∣∣∣∣ 1

m0

∑
si∈G0

M(si)−
1

m1

∑
si∈G1

M(si)

∣∣∣∣∣ , (2)

where M represents a metric for evaluating utility performance, such as MAE or MSE score, and
M(si) denotes the utility performance for student si.

After introducing the fairness definition in cognitive diagnosis, our objective extends beyond accu-
rately identifying students’ proficiency. We should also strive to meet fairness requirements, with the
goal of minimizing GF .

4 Data Sparsity Analysis

In this section, we explore data sparsity in cognitive diagnosis through the real-world dataset, Math
(detailed information will be introduced in the Experiment). Firstly, we conduct an analysis of data
sparsity within the dataset, partitioning it based on the number of responses per student. The statistical
data is illustrated in Figure 3(a). From the figure, it is evident that the majority of users have a low log
count, highlighting the widespread presence of data sparsity. Following the methodology outlined in
[46], we classify records with fewer than 50 responses as the sparse group. Next, we validate whether
data sparsity affects the accuracy and fairness of cognitive diagnosis.

Inaccurate Result From the perspective of accuracy, we conduct a comparative analysis between
the sparse and non-sparse groups, as illustrated in Figure 3(b). The results indicate a notable decrease
in performance for the sparse group across different backbones compared to the non-sparse group.
This outcome strongly implies that data sparsity can result in inaccurate diagnostic results.

2Here we adopt two-parameter logistic IRT model.
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Figure 3: The impact of data sparsity on CD models

Unfair Result From the perspective of fairness, we examine the performance of the two groups
divided by sensitive attributes. In the Math dataset, the student group is divided into Area1 and
Area2 by sensitive attribute region, with Area1 representing the disadvantaged group. The results are
depicted in Figure 3(c), unveiling significant variations in performance outcomes among different
groups and indicating the presence of unfairness. Following this, we delve into the disparity in
sparsity levels between the two groups, as shown in Figure 3(d). The results highlight significantly
divergent sparsity levels, notably with the disadvantaged groups exhibiting higher sparsity. This
discrepancy is attributed to the likelihood that disadvantaged groups may have fewer opportunities
to engage in relevant online learning platforms compared to their advantaged counterparts. This
statistical outcome directly implies that data sparsity has a greater impact on the disadvantaged group
(Area1). Based on this observation, we can conclusively state that data sparsity can lead to unfair
diagnostic results.

So far, we have validated that data sparsity in cognitive diagnosis can result in inaccurate and unfair
diagnostic outcomes. Consequently, mitigating the issue of data sparsity in cognitive diagnosis is of
paramount importance. In the following sections, we will demonstrate how to address data sparsity
from the perspective of data augmentation.

5 The Proposed Framework
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Figure 4: The CMCD framework.

In this section, we propose a monotonic data
augmentation framework, CMCD, as depicted
in Figure 4. It can address the issue of data
sparsity and ensure accurate and fair diagnos-
tic results. Firstly, we present the constraints
of our proposed monotonic data augmentation
approach. Subsequently, we offer theoretical as-
surances regarding the effectiveness of CMCD.

5.1 Monotonic Data Augmentation

In CD, there is a fundamental assumption called
the monotonicity assumption [1], which plays
a vital role in ensuring interpretability. In this
paper, we introduce a novel approach that integrates the monotonicity assumption with data aug-
mentation. This combined technique allows us to generate more realistic student response data that
conforms to educational principles. As a result, we can effectively address the challenge of data
sparsity. The monotonicity assumption is defined as follows:

Monotonicity Assumption The probability of correct response to the exercise is monotonically
increasing at any dimension of the student’s knowledge proficiency.

Building upon the monotonicity assumption, suppose two students si and si′ have answered exactly
the same exercises, i.e., Qi = Qi′ ≜ Q, we propose two specific hypotheses as follows:

Hypothesis 1: If si answered exercise ej correctly, while si′ answered ej incorrectly, and answers for
other exercises are the same, then the proficiency level of si should not be lower than si′ . Formally,
for only one j ∈ Q, ri,j = 1, ri′,j = 0, while for k ∈ Q, k ̸= j, ri,k = ri′,k, we have θi ≥ θi′ .
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Hypothesis 2: If si answered exercise ej incorrectly, while si′ answered ej correctly, and answers for
other exercises are the same, then the proficiency level of si should not be greater than si′ . Formally,
for only one j ∈ Q, ri,j = 0, ri′,j = 1, while for k ∈ Q, k ̸= j, ri,k = ri′,k, we have θi ≤ θi′ .

To leverage these hypotheses and enhance the training data to mitigate the data sparsity issue, we first
need to construct suitable interaction records for students. Specifically, for student si, we randomly
select one of his answered exercise ej ∈ Ei and flip the corresponding score on the interaction record
(changing 1 to 0 or 0 to 1), and keep other records unchanged. By doing so, we generate the records
for si′ . Assume the proficiency of si′ is θi,j , the fitting function for student si′ can be expressed as:

li,j(θi,j) = −
∑

k∈Qi,k ̸=j

[yi,k log pk(θi,j) + (1− yi,k) log(1− pk(θi,j))]

− [(1− yi,j) log pj(θi,j) + yi,j log(1− pj(θi,j))].

(3)

Next, we consider the partial order relationship between si, si′ . Two scenarios need to be considered.

According to Hypothesis 1, when θi ≥ θi,j should hold but θi < θi,j in fact, we need to add a
regularization term (θi,j − θi)

2 to impose the constraint. Similarly, as for Hypothesis 2, when
θi ≤ θi,j should hold but θi > θi,j in fact, we need to add a regularization term (θi−θi,j)

2 as penalty.
As a result, we establish two regularization terms:

Ω1(θi, θi,j) = 1[θi<θi,j ](θi,j − θi)
2, Ω2(θi, θi,j) = 1[θi>θi,j ](θi − θi,j)

2, (4)

where 1 is the indicator function. Then we summarize the final regularization term as:

Ω(yi,j , θi, θi,j) = yi,jΩ1 + (1− yi,j)Ω2. (5)

Moreover, to enhance the monotonicity assumption, for each student si, we consider generating
multiple fake students and comparing them with si by randomly sample a subset Ci ⊂ Qi. For each
exercise in Ci, we perform a flipping operation on the corresponding score while keeping the other
records unchanged, resulting in |Ci| versions of student si.

As a result, the final loss function in CMCD is:

LA =
1

m

m∑
i=1

li(θi) + ∑
j∈Ci

(li,j(θi,j) + c · Ω(yi,j , θi, θi,j))

 , (6)

where c represents the strength of constraint.

5.2 Theoretical Guarantees

In this section, we provide theoretical guarantees of CMCD’s effectiveness in terms of accuracy and
convergence speed. For theoretical analysis, we will focus on the most classic cognitive diagnostic
model, IRT (introduced in Section 3.2), which serves as the foundation for many other cognitive
diagnostic models and has been widely implemented in GRE [30]. Please note that the following
theoretical analysis can be easily extended to other CDMs.

Firstly, we analyze the accuracy of CMCD. Given that the core objective of cognitive diagnostic
tasks is to estimate the true proficiency θi of student si, to assess the accuracy of our CMCD, we
theoretically analyze the Maximum Likelihood Estimation (MLE) of θi through the optimization of
LA (Eq. (6)). Let Θ = (θ1, θ2, · · · , θm), we assert that CMCD has accurate estimation stated as:
Proposition 5.1 (Accuracy). CMCD can accurately estimate the student proficiency level Θ.

To validate the above proposition, we prove that the MLE under CMCD is a consistent estimation:
Theorem 5.2. Suppose a student si with ability θi has records Ri on exercises indexed by Qi, and
θ̂∗i denote the MLE of θi under LA, then θ̂∗i is a consistent estimation of θi, formally,

∀ε > 0, δ > 0,∃n0 ∈ Z+, |Qi| ≥ n0, s.t.P
(
|θ̂∗i − θi| ≥ ε

)
< δ. (7)

Detailed proofs for Theorem 5.2 can be found in Appendix A.1. The consistency estimation ensures
the accuracy of CMCD. Next, we explore the superiority of CMCD in convergence speed compared
to traditional CD models (the loss function L is introduced in Eq.(1)).
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Proposition 5.3 (Convergence Speed). In terms of the estimation of proficiency level Θ, CMCD has
a faster convergence speed than the original approach.

To validate the above proposition, we first notice that L and LA are both convex. Then, in the specific
zone that violates the monotonicity assumption, we prove that LA are strong-convex in terms of Θ.
Finally we can analyze and compare the convergence speed in optimizations of L and LA.
Theorem 5.4. L and LA are convex in terms of Θ. In addition, LA is strong-convex when

Θ ∈ D = {(θ1, θ2, . . . , θm)|∀i ∈ [m],∃j ∈ Ci, yi,j1[θi<θi,j ] + (1− yi,j)1[θi>θi,j ] = 1}, (8)

and, meanwhile, we can also conclude ∇2LA > ∇2L when Θ ∈ D.
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Figure 5: The number of instances violating our hypotheses
during the optimization process.

Detailed proofs for Theorem 5.4 are
provided in Appendices A.2. When
performing the gradient descent algo-
rithm to optimize the loss function, it
is widely known that strong-convex
functions converge faster than convex
functions [3]. Overall, this represents
the primary distinction between LA
and L. By examining the frequency
of occurrences of this expression dur-
ing the optimization process, we can
analyze the convergence speeds of the
two functions. The more frequent
the occurrences, the faster the conver-
gence of LA. Simultaneously, this ex-
pression also indicates a violation of
our hypotheses, necessitating the in-
corporation of regularization. To validate the superior convergence speed, we calculated instances
of hypothesis violation across different datasets, with the results illustrated in Figure 5. It reveals a
prevalent occurrence of strong convexity in LA across various datasets and backbones. Therefore, by
optimizing LA, CMCD converges faster.

6 Experiments

In this section, we first introduce the dataset and experimental setup. Then, we conduct extensive
experiments on real-world datasets to answer the following questions:

• RQ1: Does CMCD learn fair and accurate cognitive diagnosis results?
• RQ2: How does the constraint of data augmentation impact CMCD?
• RQ3: Does CMCD have a faster convergence speed compared to other baseline models?
• RQ4: How do different hyper-parameter settings (i.e. c, |Ci|) affect the performance?

The code is released at https://github.com/Mercidaiha/CMCD.

6.1 Experimental Setup and Baselines

Datasets In this paper, we conduct experiments in two diagnostic datasets, namely Math and AS-
SIST. The Math dataset was collected from an online educational system that provides homework, and
evaluation for students. It collected records of junior high school students on mathematical exercises.
In this dataset, we take the region as the sensitive attribute. The ASSIST dataset (ASSISTments
2009-2010 “skill builder") is an open dataset collected by the ASSISTments online tutoring systems
[12], which includes student response logs and knowledge concepts 3. Given that the ASSIST dataset
does not provide sensitive attribute information, we follow [23] and categorize users into two groups
based on whether the number of their responses exceeds 50. Regarding the dataset division, we
allocate 80% of each student’s response log for training and the remaining 20% for testing. The
overview of basic statistics can be found in Appendix Table 2.

3https://sites.google.com/site/assistmentsdata
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Table 1: The utility (U) and fairness (F) results on Math datasets. The best results on each backbone
are highlighted in bold. ↓ indicates the lower, the better. ↑ indicates the higher, the better. We compare
our CMCD with the Origin and get the p-value in the t-test. (∗ ∗ ∗ : p < 0.001, ∗∗ : p < 0.01, ∗ :
p < 0.05.)

IRT MIRT NCDM

U

Approach RMSE↓ MAE↓ AUC↑ ACC↑ RMSE↓ MAE↓ AUC↑ ACC↑ RMSE↓ MAE↓ AUC↑ ACC↑
Origin 0.409 0.325 0.821 0.751 0.409 0.309 0.822 0.757 0.414 0.317 0.812 0.748

CD+Reg 0.412 0.332 0.814 0.747 0.409 0.310 0.821 0.755 0.416 0.348 0.806 0.744
CD+EO 0.412 0.334 0.813 0.744 0.413 0.317 0.814 0.750 0.420 0.321 0.803 0.740
CD+DP 0.409 0.329 0.818 0.749 0.410 0.314 0.819 0.753 0.414 0.331 0.811 0.748
CF-IRT 0.409 0.314 0.821 0.753 0.411 0.304 0.823 0.755 0.420 0.316 0.804 0.743

CF-MIRT 0.408 0.324 0.820 0.752 0.417 0.300 0.816 0.751 0.418 0.318 0.808 0.743
CF-NCDM 0.406 0.318 0.824 0.756 0.406 0.312 0.826 0.758 0.417 0.312 0.809 0.747

CMCD 0.394*** 0.300*** 0.842*** 0.772*** 0.406*** 0.279*** 0.834*** 0.767*** 0.413** 0.316** 0.814*** 0.749*

F

Approach ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓ ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓ ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓
Origin 0.038 0.052 0.027 0.058 0.032 0.035 0.018 0.045 0.034 0.070 0.032 0.054

CD+Reg 0.037 0.049 0.024 0.056 0.032 0.035 0.018 0.045 0.036 0.066 0.030 0.052
CD+EO 0.041 0.041 0.022 0.062 0.036 0.025 0.020 0.047 0.040 0.054 0.027 0.057
CD+DP 0.038 0.059 0.033 0.059 0.033 0.036 0.020 0.043 0.035 0.076 0.032 0.050
CF-IRT 0.038 0.042 0.023 0.055 0.034 0.040 0.013 0.047 0.042 0.056 0.039 0.056

CF-MIRT 0.034 0.048 0.020 0.050 0.040 0.032 0.022 0.047 0.038 0.067 0.037 0.060
CF-NCDM 0.034 0.044 0.022 0.050 0.031 0.042 0.018 0.043 0.039 0.055 0.034 0.052

CMCD 0.025*** 0.029*** 0.009*** 0.034*** 0.028*** 0.020*** 0.005*** 0.029*** 0.033*** 0.059*** 0.028*** 0.050

Evaluation. In this paper, we evaluate the results of user modeling by predicting scores. This
evaluation can be divided into two aspects: utility and fairness evaluation. For utility evaluation,
following previous works [39, 14], we adopt different metrics from the perspectives of both regression
(MAE, RMSE) and classification (AUC, ACC). For fairness evaluation, we adopt the Definition
introduced in Section 3.2. For the M in Eq. (2), we adopt MAE, RMSE, AUC, ACC (denoted as
∆MAE, ∆RMSE, ∆AUC, ∆ACC in the experiment).

Baseline approaches. CMCD is a versatile framework applicable to various CD models. To
validate its generality, we employed CMCD in three classical CD backbones, IRT [29], MIRT [5],
NCDM [39]. For the baselines, we compare our methods with two categories of methods. Firstly, we
compare our methods with the data augmentation baseline. To the best of our knowledge, there are
currently no data augmentation methods specifically applied to diagnostics. Therefore, following
the approach [44], we constructed the following baselines: CF-IRT, CF-MIRT, and CF-NCDM.
Secondly, as our model enhances fairness, we compare it with several classical fairness baselines,
such as CD+GF [23], CD+EO [47], CD+DP [47]. Further details regarding these baselines and the
implementation of our methods can be found in Appendix A.3.

6.2 Experimental Results

RQ1. In this section, we discuss whether CMCD framework can alleviate the issue of data sparsity,
thereby enhancing both the accuracy and fairness of the model. Specifically, we conducted compara-
tive experiments with baselines on the Assistment and Math datasets, and the results of Math datasets
results are presented in Table 1, the results of Assistment datasets can be found in Appendix A.4.
From these results, we can draw the following findings:

(1) From the perspective of utility, we observed a significant enhancement in CMCD across different
datasets and various backbones. This underscores the effectiveness of our approach. Furthermore,
we noted that, compared to backbone models like NCDM that rely on neural networks, CMCD
demonstrates more pronounced improvements on traditional backbones (IRT). We attribute this to the
fact that models dependent on neural network backbones, such as NCDM, exhibit superior data fitting
capabilities, thereby alleviating issues related to data sparsity. Consequently, the gains achieved by
CMCD on NCDM are less conspicuous. In contrast, traditional IRT models are more susceptible to
the impact of data sparsity, making CMCD’s influence more substantial in such cases.

(2) From the perspective of fairness, we observed that CMCD can, to a certain extent, alleviate unfair
phenomena in cognitive diagnostic models. Particularly noteworthy is its performance on the Math
dataset, where our model achieved the best fairness outcomes across different backbones (IRT, MIRT).
This underscores that CMCD, while mitigating data sparsity issues, concurrently promotes fairness in
model outcomes.
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(3) From the perspective of the trade-off between fairness and utility, our model consistently surpasses
the baselines with data augmentation in both performance and fairness outcomes. While compared
to fairness-aware baselines, our model may not always outperform dedicated fairness-enhancing
methods on specific datasets, it is important to note that these baselines often come at the expense of
utility. In contrast, CMCD not only enhances fairness but also improves performance. This highlights
that CMCD achieves the optimal trade-off between fairness and utility.
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Figure 6: The ablation experiment on Math dataset.

RQ2. To address the issue of data
sparsity, we introduce two hypotheses
for data augmentation. In this section,
we validate the effectiveness of these
two hypotheses. Specifically, we con-
duct ablation experiments on the Math
dataset, where we systematically re-
moved the corresponding hypothesis
strategies. The results are illustrated
in Figure 6. It is evident that after
removing different hypothesis strate-
gies, both Fairness and Utility perfor-
mances exhibited varying degrees of
decline, providing evidence for the ef-
ficacy of each strategy. Additionally,
we observed that these two hypotheses yield different effects on various backbones. In comparison to
NCDM, a neural network-dependent model, hypotheses perform better on traditional models like
IRT and MIRT. We attribute this to the powerful data-fitting capability of NCDM, which alleviates
issues related to data sparsity. In contrast, models such as IRT and MIRT, constrained by data sparsity,
exhibit limited capabilities.

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
L

os
s

IRT

0 5 10 15
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
L

os
s

MIRT

0 1 2 3 4
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
L

os
s

NCDM

Origin

CMCD

CD+Reg

CD+EO

CD+DP

CF-IRT

CF-MIRT

CF-NCD

Figure 7: Convergence against training epoch for different
backbones on Math dataset.

RQ3. In Section 5.2, we theoreti-
cally demonstrated that CMCD ex-
hibits a faster convergence rate. In
this section, we empirically validate
the superiority of CMCD in terms of
convergence speed. Specifically, we
compared the convergence speeds (the
epoch at which early stopping occurs)
of different baselines on various back-
bones using the Math dataset, as de-
picted in Figure 7. It is observed that
in the early stages, CMCD shows min-
imal differences compared to other
baselines. We attribute this to the fact
that, initially, the effectiveness of the backbone models is not optimal, resulting in less precise
enhancement of the monotonicity assumption. However, as the number of epochs increases, CMCD
significantly outpaces other baselines, demonstrating a faster convergence.

RQ4. In CMCD, two hyperparameters control the effectiveness. Specifically, c controls the strength
of the constraints, and |Ci| regulates the number of generated students. In this section, we investigate
the impact of adjusting these two hyperparameters on CMCD using the Math dataset. The specific
results are presented in Figure 8 and Figure 9. In Figure 8, a consistent trend is observed across
different backbones. Initially, with the strengthening of c, both fairness and utility show improvement,
indicating the efficacy of our monotonicity enhancement. However, as c reaches a certain intensity,
both fairness and utility experience a decline. We attribute this to the possibility that an excessively
large c might interfere with the model’s normal training, leading to a decrease in effectiveness.
Moving to Figure 9, diverse trends are identified across different backbones. Specifically, in the
case of IRT, as the number of contrasts increases, both fairness and utility consistently improve.
Conversely, for NCDM, as the quantity of contrasts grows, there is a continuous decline in utility. We
attribute these observations to inherent differences in the nature of the models. IRT is more affected
by data sparsity, so enhancing Ci effectively mitigates data sparsity, yielding improved results. On
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the other hand, NCDM, benefiting from its neural network’s fitting capacity, partially alleviates data
sparsity issues. Consequently, an increase in contrasts may interfere with its intrinsic performance.

7 Conclusion and Discussion

In this paper, we conducted a focused study on addressing data sparsity in CD. Initially, we empirically
validated that data sparsity leads to inaccurate and unfair diagnostic results. Subsequently, by
integrating data augmentation and the monotonicity assumption, we introduced two constraints to
alleviate the issue of data sparsity. Moreover, we provided theoretical guarantees regarding accuracy
and convergence speed. The experiments on real-world datasets demonstrated the effectiveness of
our approach in addressing the data sparsity issue, culminating in fair and accurate diagnosis results.

CD is a highly significant task in intelligent education. The generated diagnostic results can be applied
to various areas, e.g., personalized tutoring and intelligent question recommendations. This can
reduce the burden on teachers and students, providing effective learning experiences for students. Our
CMCD mitigates the unfairness and inaccuracy issues arising from data sparsity, thereby promoting
educational equity to a certain extent. Simultaneously, we recognize that CD relies on students’
response records that might be inaccessible due to privacy concerns. In the future, we will contemplate
incorporating federated learning to enhance diagnostic services and ensures student privacy.
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A Appendix

A.1 Proof of Theorem 5.2.

Theorem A.1. Suppose a student si with ability θi has records Ri on exercises indexed by Qi, and
θ̂∗i denote the MLE of θi under LA, then θ̂∗i is a consistent estimation of θi, formally,

∀ε > 0, δ > 0,∃n0 ∈ Z+, |Qi| ≥ n0, s.t.P
(
|θ̂∗i − θi| ≥ ε

)
< δ. (9)

Proof. We denote θ̂i as the maximum likelihood estimate (MLE) of θi for the loss function L (Eq.(1)).
The mean negative log-likelihood function of student si is

li(θ) = −
∑
j∈Qi

[yi,j log pj(θ) + (1− yi,j) log(1− pj(θ))] (10)

We can further validate that

l′i(θ) = −
∑
j∈Qi

[αj(yi,j − pj(θ))],

l′′i (θ) =
∑
j∈Qi

α2
jpj(θ)(1− pj(θ)).

(11)

On the other hand, the MLE θ̂i satisfies l′i(θ̂i) = 0, by taking Taylor expansion,

0 = l′i(θ̂i) = l′i(θi) + l′′i (ξi)(θ̂i − θi), (12)

where ξi is between θ̂i and θi. We can further get∣∣∣θ̂i − θi

∣∣∣ = ∣∣∣∣− l′i(θi)

l′′i (ξi)

∣∣∣∣ =
∣∣∣∣∣

∑
j∈Qi

αj(yi,j − pj(θi))∑
j∈Qi

α2
jpj(ξi)(1− pj(ξi))

∣∣∣∣∣ (13)

We can see that {yi,j : j ∈ Qi} are independent and E[yi,j ] = pj(θi). Through Chebyshev’s Law of
Large Numbers, ∀ε > 0, δ > 0, there exists n0 such that

P

∣∣∣∣∣∣ 1

|Qi|
∑
j∈Qi

αjyi,j −
1

|Qi|
∑
j∈Qi

αjpj(θi)

∣∣∣∣∣∣ ≥ 1

4
α2ε

 < δ, (14)
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when |Qi| ≥ n0 holds, here α = maxj αj . Considering

1

|Qi|
∑
j∈Qi

α2
jpj(ξi)(1− pj(ξi)) ≤

1

4|Qi|
∑
j∈Qi

α2
j ≤ 1

4|Qi|
∑
j∈Qi

α2 =
1

4
α2, (15)

we can see when |Qi| ≥ n0, with probability less than δ,∣∣∣θ̂i − θi

∣∣∣ ≥ α2ε/4

α2/4
= ε, (16)

which means θ̂i is a consistent estimation of θi. Then, we denote θ̂i,j = argminθ li,j(θ), and we
have

l′i,j(θ̂i) = l′i(θ̂i) + (li,j − li)
′(θ̂i) = −αj(1− 2yi,j). (17)

If yi,j = 1, l′i,j(θ̂i) = αj > 0 and it means θ̂i is bigger than the zero point, i.e., θ̂i > θ̂i,j . If yi,j = 0,
l′i,j(θ̂i) = −αj < 0 and it means θ̂i is smaller than the zero point, i.e., θ̂i < θ̂i,j . Overall, we can
check that Ω(yi,j , θ̂i, θ̂i,j) = 0.

In this way, θ̂i makes li(θ) the smallest, θ̂i,j makes li,j(θ) the smallest, and with them the regularized
terms are always 0. Therefore, such θ̂i and θ̂i,j are the minimum points of LA, and this fact results in
θ̂∗i = θ̂i. Combining the conclusion that θ̂i is a consistent estimation of θi, we can conclude that θ̂∗i is
a consistent estimation of θi.

A.2 Proof of Theorem 5.4.

Theorem A.2. L and LA are convex in terms of Θ. In addition, LA is strong-convex when

Θ ∈ D = {(θ1, θ2, . . . , θm)|∀i ∈ [m],∃j ∈ Ci, yi,j1[θi<θi,j ] + (1− yi,j)1[θi>θi,j ] = 1}, (18)

and, meanwhile, we can also conclude ∇2LA > ∇2L when Θ ∈ D.

Proof. For the loss function L (Eq.(1)), the mean negative log-likelihood function of student si is

li(θ) = −
∑
j∈Qi

[yi,j log pj(θ) + (1− yi,j) log(1− pj(θ))] (19)

We can further validate that

l′i(θ) = −
∑
j∈Qi

[αj(yi,j − pj(θ))], l′′i (θ) =
∑
j∈Qi

α2
jpj(θ)(1− pj(θ)) ≥ 0. (20)

For any i, j we have ∂2L
∂θ2

i
≥ 0 and ∂2L

∂θi∂θj
= 0, hence ∇2L ≥ 0 and L is convex in terms of Θ.

In addition, we can see that

∂2LA

∂θ2i
=

∂2L
∂θ2i

+ 2c
∑
j∈Ci

(
yi,j1[θi<θi,j ] + (1− yi,j)1[θi>θi,j ]

)
≥ ∂2L

∂θ2i
≥ 0, (21)

and ∂2L
∂θi∂θj

= 0 for all i, j. Hence ∇2LA ≥ ∇2L ≥ 0 and LA is also convex in terms of Θ.

When Θ ∈ D, we can see that

2c
∑
j∈Ci

(
yi,j1[θi<θi,j ] + (1− yi,j)1[θi>θi,j ]

)
> 0. (22)

Based on Eq.(21), we can conclude that LA is strong-convex and ∇2LA > ∇2L when Θ ∈ D. In
fact, we have ∇2L ≥ 2c ·mini{

∑
j∈Ci

yi,j1[θi<θi,j ] + (1− yi,j)1[θi>θi,j ]} when Θ ∈ D.
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Table 2: The statistics of the datasets.
Math ASSIST

#Students 7,177 4,163

#Exercises 12,129 17,746

#Knowledge concepts 2,076 123

#Response logs 384,356 324,572

Sparsity 99.558% 99.561%

A.3 Experiment Details

Baseline approaches. CMCD is a versatile framework applicable to various CD models. To
validate its generality, we employed CMCD in three classical CD backbones, IRT [29], MIRT [5],
NCDM [39]. The details of baselines are as follows:

• IRT [29] is a cognitive diagnosis method that models the cognitive processes from students’
exercise records with a logistic-like function.

• MIRT [5] is a variant of the basic IRT model, which extends the unidimensional latent traits
of students and exercises in IRT to multidimensional vectors.

• NCDM [39] is a deep neural cognitive diagnosis framework that models the complex
interaction from students’ exercising records with a multilayer perceptron (MLP).

CMCD can alleviate the issue of data sparsity in diagnostic models, enhancing both accuracy and
fairness. To validate the effectiveness of our approach, we compare it with two categories of methods.
The first category is data augmentation methods. To the best of our knowledge, there are currently
no data augmentation methods specifically applied to diagnostics. Therefore, we adapt the data
augmentation concept "What would ... if ...?" from traditional recommendation systems to the
cognitive diagnostic field. Specifically, following the approach in [44], we apply a causal rule: "What
would the student’s response be if they encountered a new question?" Additionally, considering the
characteristics of CD domain, we make appropriate adaptations by using classic IRT, MIRT, and
NCDM models to predict responses to new questions. Ultimately, we extend the data augmentation
baseline to CF-IRT, CF-MIRT, and CF-NCDM. The second category is fairness-aware methods. Since
our model enhances fairness, we compare it with several classical fairness baselines, CD+GF [23],
CD+EO [47], CD+DP [47]. The details of baselines are as follows:

• CD+GF: a well-known fairness improvement strategy that considers the fairness metric as a
regularization for the loss and has been used in prior fairness works [47, 23]. In our work,
we use Eq. (4) as a regularization for Eq. (2);

• CD+EO: a method regards Equal opportunity (EO) as a regularization [16].
• CD+DP: a method regards Demographic Parity (DP) as a regularization [16].

Implementation detail. In terms of model parameter configuration, NCDM adheres to the settings
outlined in [39]. The fully connected layers have dimensions of 512, 256, and 1. The sigmoid
function serves as the activation function for all layers. MIRT’s dimension of student proficiency
parameters matches those in NCDM. For all models, we set the learning rate to 0.001 and the dropout
rate to 0.2. We apply Adam as the optimization algorithm to update the model parameters. We
implement all models with PyTorch and conduct all experiments on four 2.0GHz Intel Xeon E5-2620
CPUs and a Tesla K20m GPU.

A.4 The results on Assistment dataset (RQ1)

The results for the Assistment datasets can be found in Table 3. They exhibit similar patterns as those
introduced in RQ1.
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Table 3: The utility (U) and fairness (F) results on Assistment datasets. The best results on each
backbone are highlighted in bold. ↓ indicates the lower, the better. ↑ indicates the higher, the better.
We compare our CMCD with the Origin and get the p-value in the t-test. (∗ ∗ ∗ : p < 0.001, ∗∗ : p <
0.01, ∗ : p < 0.05.)

IRT MIRT NCDM

U

Approach RMSE↓ MAE↓ AUC↑ ACC↑ RMSE↓ MAE↓ AUC↑ ACC↑ RMSE↓ MAE↓ AUC↑ ACC↑
Origin 0.449 0.372 0.707 0.693 0.447 0.344 0.733 0.707 0.433 0.352 0.745 0.726

CD+Reg 0.446 0.375 0.713 0.695 0.451 0.355 0.719 0.698 0.433 0.372 0.742 0.725
CD+EO 0.447 0.378 0.708 0.693 0.449 0.348 0.725 0.706 0.433 0.366 0.742 0.725
CD+DP 0.451 0.389 0.693 0.685 0.450 0.350 0.723 0.701 0.434 0.362 0.741 0.721
CF-IRT 0.448 0.381 0.704 0.691 0.449 0.340 0.730 0.709 0.434 0.339 0.748 0.726

CF-MIRT 0.447 0.372 0.712 0.695 0.449 0.338 0.733 0.707 0.434 0.343 0.747 0.724
CF-NCDM 0.448 0.377 0.707 0.693 0.448 0.344 0.732 0.705 0.436 0.336 0.748 0.725

CMCD 0.437*** 0.346*** 0.745*** 0.715*** 0.432*** 0.337*** 0.758*** 0.724*** 0.439*** 0.326* 0.751** 0.727*

F

Approach ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓ ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓ ∆RMSE↓ ∆MAE↓ ∆AUC↓ ∆ACC↓
Origin 0.035 0.043 0.028 0.057 0.039 0.042 0.032 0.052 0.019 0.026 0.006 0.027

CD+Reg 0.035 0.041 0.025 0.056 0.036 0.036 0.021 0.050 0.018 0.025 0.007 0.029
CD+EO 0.035 0.031 0.018 0.064 0.038 0.024 0.032 0.044 0.020 0.023 0.005 0.030
CD+DP 0.034 0.048 0.031 0.060 0.036 0.038 0.022 0.049 0.021 0.038 0.003 0.039
CF-IRT 0.038 0.041 0.027 0.060 0.045 0.048 0.040 0.060 0.019 0.027 0.004 0.025

CF-MIRT 0.037 0.041 0.027 0.060 0.043 0.040 0.032 0.053 0.017 0.025 0.410 0.026
CF-NCDM 0.035 0.042 0.027 0.057 0.044 0.058 0.048 0.062 0.018 0.026 0.005 0.024

CMCD 0.031*** 0.042** 0.027*** 0.042*** 0.035* 0.036** 0.027 0.048** 0.018*** 0.023* 0.002*** 0.021

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides the full set of assumptions and a complete proof in section
5.2 and section 9.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results in section 6

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the code in section 6

Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details in section 6.1 and section
9.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper report error bars suitably and correctly defined in Section 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in section
9.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are introduced in section 7
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t use data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset used is introduced in Section 6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t introduce new assets.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t conduct crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t conduct experiments by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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