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Abstract001

As the context length that large language mod-002
els can handle continues to increase, these mod-003
els demonstrate an enhanced ability to utilize004
distant information for tasks such as language005
modeling. This capability contrasts with hu-006
man reading and writing habits, where it is007
uncommon to remember and use particularly008
distant information, except in cases of fore-009
shadowing. In this paper, we aim to explore010
which kinds of words benefit more from long011
contexts in language models. By analyzing012
the changes in token probabilities with increas-013
ing context length, we find that content words014
(e.g., nouns, adjectives) and the initial tokens of015
words benefit the most. Frequent patterns in the016
context (N-grams) also significantly impact pre-017
dictions. Additionally, the model’s prior knowl-018
edge plays a crucial role in influencing predic-019
tions, especially for rare tokens. We also ob-020
serve that language models become more con-021
fident with longer contexts, resulting in sharper022
probability distributions. This overconfidence023
may contribute to the increasing probabilities024
of tokens with distant contextual information.025
We hope that our analysis will help the com-026
munity better understand long-text language027
modeling and contribute to the design of more028
reliable long-context models.029

1 Introduction030

Many studies have expanded the context window031

of Large Language Models (LLMs) to process032

longer inputs, leading to the development of long-033

context LLMs (Zhu et al., 2023; Chen et al., 2023c;034

Ding et al., 2023a; Peng et al., 2023a). To explore035

whether a model can effectively process extremely036

long texts, the language modeling task is frequently037

evaluated. This task is straightforward to calculate038

and can be extended to inputs of any length. Lan-039

guage modeling tests the accuracy of predicting the040

next word based on the previously input text. Pre-041

vious research has found that as the context length042

increases, the model’s performance in language 043

modeling improves, indicating that the model can 044

utilize more distant information. 045

When examining models’ performance on long- 046

context language modeling tasks, we discover an 047

interesting phenomenon: as the context length in- 048

creases, the model’s language modeling ability con- 049

tinues to improve, even when the input text is very 050

long, such as 32k tokens. This phenomenon does 051

not align with human writing and reading habits. 052

Except for cases involving foreshadowing, it is rare 053

for people to recall particularly distant information 054

in everyday writing or reading, let alone use such 055

distant information to assist in their subsequent 056

writing. This may be because humans, when solv- 057

ing problems, are limited by their working memory 058

and find it difficult to remember too much informa- 059

tion simultaneously (Cowan, 2010). 060

In long-context language modeling tasks, we 061

are curious (1)Does only a small number of words 062

benefit from ultra-long contexts, just like humans 063

perform foreshadowing? If not, (2)what kinds of 064

tokens benefit from the additional distant text in 065

long-context LLMs’ language modeling? 066

To answer this question, we compare the to- 067

kens’ probabilities among different context lengths. 068

We find that, when context length increases, there 069

are more tokens whose probability scores increase 070

while fewer whose scores decrease. This indicates 071

a large part of tokens can benefit from the addi- 072

tional distant text, different from human habits that 073

only a few tokens are related to distant foreshad- 074

owings. So we wonder, what kinds of tokens bene- 075

fit from the additional distant text in long-context 076

LLMs’ language modeling? To answer this ques- 077

tion, we plan to analyze it from three aspects: the 078

characteristics of the words themselves, the con- 079

text in which the tokens appear, and the priors 080

inherent in large language models. 081

We analyzed the changes in the predicted prob- 082

abilities of different tokens as context length in- 083
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creases, using Longlora, Yarn, and Yi as repre-084

sentative long contexts. The greater the increase085

in a token’s predicted probability with increasing086

context length, the more we consider that token’s087

prediction to be influenced by the long context. By088

comparing the changes in predicted probabilities089

for different types of tokens, we derived the follow-090

ing conclusions:091

(1). From the perspective of the words them-092

selves, we found that content words such as nouns093

and adjectives benefit more from longer con-094

texts. On the other hand, in current large mod-095

els, words are often split into several tokens. We096

discovered that the first token of a word is more097

influenced by the length of the context, while the098

predicted probabilities of subsequent subwords re-099

main relatively stable. (2). From the perspective of100

the context, frequent patterns in long texts, i.e.,101

N-grams, have a significant impact on the pre-102

diction of the next word. We observed that if the103

additional context frequently provides an N-gram104

containing the token to be predicted, the model can105

predict this token with a higher probability. (3).106

We also found that the model’s prior has an in-107

fluence, though possibly not as significant as the108

impact of the context. We observed that if a token109

appears very frequently in the pre-training corpus,110

meaning the model has a strong grasp of this token,111

its predicted probability is less likely to be affected112

by the length of the context. However, for tokens113

that are rare in the training corpus, their predicted114

probabilities are more likely to change with the115

context length. The above conclusions hold only116

when the impact from the frequent patterns does117

not change as the context length increases. Other-118

wise, the probability changes are mainly influenced119

by the context and have no significant correlation120

with the model’s prior.121

We also find that, apart from the tokens afore-122

mentioned benefit from the distant text, tokens that123

are incorrectly predicted by LLMs also show a124

higher average probability. We speculate that long-125

context LLMs are more confident as the context126

length increases. Specifically, with longer input,127

the probability distribution predicted by LLMs be-128

comes sharper, i.e., the max probability becomes129

larger, regardless of whether the model correctly130

predicts the token. Therefore, overconfidence may131

be one of the reasons that perplexity continuously132

decreases as the context length increases.133

To summarize, the contributions are as follows:134

1) We find the inconsistency between humans’ 135

behavior and LLMs’ performance on long- 136

context language modeling. Humans are un- 137

likely to use distant information for their sub- 138

sequent writing, while for long-context LLMs, 139

a large number of tokens can benefit from dis- 140

tant text to have a higher probability. 141

2) We analyze what kinds of tokens are more 142

likely to benefit from distant context from as- 143

pects of the characteristics of the words them- 144

selves, the context where the tokens appear, 145

and the priors inherent in LLMs, providing 146

insights for a better understanding of long- 147

context LLMs. 148

3) We find the growing confidence of LLMs as 149

the context length increases, which may be 150

one explanation for the continuously decreas- 151

ing perplexity. Thus, researchers should care- 152

fully consider the impact of overconfidence to 153

design more reliable long-context LLMs. 154

2 Preliminary 155

2.1 Perplexity 156

Perplexity is widely used to evaluate language mod- 157

els. As it can be calculated on any text with- 158

out length limitation, perplexity is widely used 159

for LLMs’ long context processing ability eval- 160

uation (Press et al., 2021; Ding et al., 2023b; Zhu 161

et al., 2023). Following Press et al. (2021), we 162

use the sliding window evaluation of perplexity in 163

evaluating long-context LLMs. Specifically, given 164

M documents {D1, ..., DM} and context length K, 165

long-context LLMs predict each token xti in each 166

document Dt based on previous K tokens when 167

i ≥ K, otherwise, based on all its previous tokens: 168

pK(xti) = P (xti|xt0, ..., xti−1), i ∈ [0,K) (1) 169
170

pK(xti) = P (xti|xti−K , ..., xti−1), i ∈ [K, |Dt|)
(2) 171

We illustrate the sliding window evaluation on the 172

left of Figure 1.After obtaining all tokens’ proba- 173

bilities in Dt, perplexity (PPL) is calculated in the 174

same way as Chen et al. (2023c): 175

p̄K(xti) = −log(pK(xti)), i ∈ [0, |Dt|) (3) 176
177

PPLK =
1

M

M∑
t=1

(
1

|Dt|

|Dt|−1∑
i=0

p̄K(xti)) (4) 178

where we denote p̄K(xti) as token-perplexity in 179

our paper. According to the definition of perplexity, 180
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the lower perplexity indicates a better language181

modeling ability1.182

2.2 Perplexity Decreases as Context Length183

increases184

Recently, many LLMs have been proposed with185

the ability to handle extremely long context. For186

example, GPT-4 (OpenAI, 2023) has a context win-187

dow of 128k, while Yi (AI et al., 2024) can even188

process 200k tokens.189

When using perplexity to evaluate the language190

modeling ability of long-context LLMs, a vast ma-191

jority of previous works (Press et al., 2021; Zhu192

et al., 2023; Chen et al., 2023c; Peng et al., 2023b)193

unanimously report that perplexity decreases as194

the context length K increases. This indicates195

the model can understand the entire document bet-196

ter (Zhang et al., 2023). Such a phenomenon still197

exists when K scales up from 32k to 64k (Chen198

et al., 2023c; Peng et al., 2023b). However, this199

phenomenon does not align with human writing200

habits. With limited working memory capabilities,201

it is difficult for humans to remember all informa-202

tion that is too far away (Cowan, 2010). Therefore,203

except for foreshadowings, humans may seldom re-204

fer to distant information when writing subsequent205

words. Words in the document are more likely to206

be related to local text. So we wonder if the models207

perform like humans so that the decrease in per-208

plexity comes from a few tokens, such as tokens209

related to foreshadowing. If not, this indicates that210

not only tokens related to foreshadowings, but also211

some other tokens written based on local informa-212

tion by humans can benefit from the distant text by213

long-context LLMs, which provokes us to wonder,214

what kinds of these tokens are?215

3 Experimental Setup216

To answer the aforementioned questions, we need217

to have a detailed analysis regarding the token-218

perplexity of each token in documents predicted by219

long-context LLMs.220

Models We select three representative long-221

context LLMs for experiments, which use differ-222

ent methods to scale up the context window to223

more than 100k. 1) Yi-6B-200K (AI et al., 2024),224

which adjusts the base frequency of position em-225

bedding Rotary Position Embeddings (RoPE) (Su226

et al., 2023a) for context window extension. 2)227

1Please refer to Press et al. (2021) for more details about
sliding window perplexity evaluation.

Input Text |Dt| = 8 : Predicted 
token

Context Length 𝐾𝐾 = 5 New Context Original Context

Context Length from 𝐾𝐾 to 2𝐾𝐾:

Figure 1: Left part: an illustration for sliding window
method of perplexity calculation. Right part: an illustra-
tion of original context and new context.

YaRN-7B-128K (Peng et al., 2023a), which extends 228

RoPE by interpolating frequencies unevenly and 229

keeping high frequencies intact. 3) LongLoRA-7B- 230

100K (Chen et al., 2023c), which proposes shifted 231

sparse attention (S2-Attn) to approximate long con- 232

text learning while retaining the original attention 233

architecture during inference. 234

Dataset Following (Chen et al., 2023c), we cal- 235

culate perplexity on PG-19 (Rae et al., 2019), a 236

language modeling benchmark, including a set of 237

books derived from the Project Gutenberg books 238

project2. Due to the computation resources limita- 239

tion, we randomly sample 6 books from the test set 240

of PG-19 as our test corpus for experiments. The 241

lengths of selected books are all larger than 64k 242

after tokenization. 243

Setup First of all, the sliding window evaluation 244

method mentioned in 2 is time-consuming because 245

every time LLMs predict a token, the input text 246

needs to be re-encoded. Following Press et al. 247

(2022), we make predictions on S tokens instead 248

of one every inference pass to improve the compu- 249

tational efficiency. Please refer to Appendix A for 250

more details about stride S. 251

Secondly, we use the change of token-perplexity 252

when context length increases to determine whether 253

the token benefits from the additional text. Specifi- 254

cally, we compare the token-perplexity between 255

the context length of K and 2K in our experi- 256

ment. The illustration is shown in the right part 257

of Figure 1. For simplicity, we name the input con- 258

text when context length is K as "original context" 259

[xti−K+1, ..., x
t
i−1], while naming the newly added 260

context when context length is extended to 2K 261

as "new context" [xti−2K+1, ..., x
t
i−K ] in our paper. 262

When the token-perplexity decreases, we say that 263

the token can benefit from the new context. 264

2https://www.gutenberg.org
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K 2k 4k 8k 16k 32k

Decrease
Ratio

Yi 52.6% 52.0% 49.2% 45.8% 39.8%
YaRN 55.0% 53.0% 51.4% 49.0% 44.5%

LongLoRA 54.6% 54.1% 54.7% 50.1% 45.3%

Increase
Ratio

Yi 43.7% 43.8% 41.8% 39.8% 35.4%
YaRN 45.0% 45.3% 45.2% 44.2% 41.8%

LongLoRA 45.3% 45.8% 45.1% 43.1% 41.0%

Table 1: Ratio of tokens with token-perplexity decrease
and increase.

K 2k 4k 8k 16k 32k 64k

Yi 2.105 2.078 2.055 2.037 2.024 2.015
YaRN 1.944 1.918 1.896 1.880 1.867 1.859

LongLoRA 2.084 2.051 2.022 2.001 1.985 1.976

Table 2: Perplexity on test corpus.

4 Most Tokens’ Token-perplexity265

Decrease266

We first verify that the phenomenon that perplexity267

decreases as K increases still exists in our experi-268

mental setting. In Table 2, we report the perplexity269

of three long-context LLMs with K ranging from270

2k to 64k. The results show that perplexity consis-271

tently decreases as K increases.272

Therefore, we want to figure out whether the de-273

crease in perplexity comes from a uniform decrease274

in most token-perplexity or from a drastic decrease275

in some token-perplexity. We count the proportion276

of tokens with a decreased token-perplexity to the277

total number of tokens when the context length is278

extended from K to 2K.279

The experimental results are shown in Table 1.280

The sum of each decrease ratio and its counter-281

part is less than 100% since some token-perplexity282

remains unchanged. In almost all settings, the283

token-perplexity decrease ratios are larger than284

40%, and consistently surpass the increase ratio285

as well. Therefore, we can conclude that the de-286

crease in perplexity comes from a decrease in the287

token-perplexity of a large number of tokens, which288

contradicts human habits that most tokens are only289

written with local information.290

5 What Tokens Benefit from Distant Text291

To investigate this issue, we conduct the analy-292

sis from three perspectives: characteristics of the293

words themselves, the context where the tokens294

appear, and priors inherent in long-context LLMs.295

5.1 Properties of Words 296

Lexical Property. Function words, such as ad- 297

positions that play a grammatical role, and con- 298

tent words (semantically richer words), such as 299

proper nouns that contain more information, are 300

two major groups of parts of speech (POS). Bell 301

et al. (2009) mentions that function words are much 302

more frequent and predictable than content words. 303

As content words contain more information while 304

function words rarely change form or meaning in 305

different contexts, we wonder, provided with addi- 306

tional text, whether content words can benefit more 307

than function words as content words may be more 308

related to global information. Specifically, we want 309

to investigate the correlation between the types of 310

POS and the decreased value of token-perplexity 311

in longer context length. 312

To determine the POS of each token xi, we 313

first find its corresponding word wi in the docu- 314

ment before tokenization. Then we use Stanford 315

CoreNLP (Manning et al., 2014) to obtain the POS 316

of wi, and we treat it as the POS of token xi as 317

well. According to the definition of the POS tag 318

set 34, we divide them into six main classes: noun, 319

verb, adj, adv, closed (such as adposition, parti- 320

cle, pronoun, etc.) and other (not a word, such as 321

punctuation, symbols, etc.). Among the six classes, 322

noun, verb, adj, and adv are called "open words" 323

(content words), which usually contain important 324

information, while closed means "closed words" 325

(function words), which are used to stitch "open 326

words" together. 327

To compare the token-perplexity between the 328

context length of K and 2K, we calculate the 329

token-perplexity decrement of each token xi as: 330

∆p̄2KK (xi) = −(p̄2K(xi)− p̄K(xi)) (5) 331

The larger ∆p̄2KK (xi), the larger decrement of to- 332

ken xi’s token-perplexity. For brevity, we abbrevi- 333

ate it as ∆p̄(xi) 334

We further calculate the average token- 335

perplexity decrement in each class of POS tags 336

on the test corpus, with original context length K 337

ranging from 2k to 32k. The results are shown in 338

Figure 2. We can observe that "noun" and "adj" 339

deliver the largest token-perplexity decrement in 340

all context length K while tokens in "closed" and 341

3https://www.ling.upenn.edu/courses/Fall_
2003/ling001/penn_treebank_pos.html

4https://web.stanford.edu/~jurafsky/slp3/
slides/8_POSNER_intro_May_6_2021.pdf
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Figure 2: The average token-perplexity decrement in each class of POS tags.

"other" show the minimal decrease in most cases.342

These results indicate the additional information in343

new context benefits "noun" and "adj" most.344

5.1.1 Structures inside Words345

Apart from examining tokens that are easily influ-346

enced by new context from a lexical perspective,347

we can also consider the structure inside the word348

itself. Specifically, after tokenization, a word wj349

may be split into multiple tokens [xwj ,0, ..., xwj ,n].350

The first token xwj ,0 can only be predicted based351

on previous words while subsequent tokens can352

be predicted by leveraging previous tokens in the353

same word. Therefore, we wonder whether LLMs354

need more information to infer the starting token355

xwj ,0, that is, whether the first token of a word will356

benefit more from the new context, resulting in a357

larger decrement in token-perplexity.358

To evaluate the relationship between the tokens’359

position in words, we compare the token-perplexity360

decrement ∆p̄(xi) of the first tokens xwj ,0 and the361

later tokens xwj ,i(i ̸=0) in words. Specifically, we362

separate all tokens in the test corpus into two sets:363

Fir(st) and Lat(ter) according to whether the token364

is the first token of its original word. Then we calcu-365

late the average token-perplexity decrement of each366

set and compare the decrement value between two367

sets. The difference between the token-perplexity368

decrement of the two sets is computed as:369

∆D =
1

|Fir|
∑
i∈Fir

∆p̄(xi)−
1

|Lat|
∑
i∈Lat

∆p̄(xi)

(6)370

Considering POS classes are an important factor371

of token-perplexity decrement, we calculate ∆D372

for each class of POS. The results are shown in Fig-373

ure 3. The results of class "other" are not reported374

because all words in "other" can not be tokenized375

into multiple tokens. Except for "closed", ∆D of376

all classes of POS is larger than 0, which demon-377

strates that long-context LLMs deliver a larger378

token-perplexity decrement in the first tokens with379

K 2k 4k 8k 16k 32k

Yi 0.530 0.347 0.417 0.410 0.356
YaRN 0.342 0.455 0.461 0.349 0.345

LongLoRA 0.380 0.408 0.344 0.340 0.307

Table 3: Correlation coefficients between the token-
perplexity decrement ∆p̄ and the N-gram’s new occur-
rence ratio ∆N . All reported correlation coefficients
have p-values < 0.005.

additional text. We can also observe that, the first 380

tokens of POS classes "noun" and "adj" decrease 381

more than other POS classes in most cases. There- 382

fore, the first token of open words, especially for 383

POS classes "noun" and "adj", can benefit most 384

from the new context. 385

5.2 Influence of Context 386

Effect of N-gram’s Occurrence. If a phrase fre- 387

quently appears in the context, LLMs are more 388

likely to pay attention to this phrase. Therefore, 389

when given the first few words of the phrase, LLMs 390

may attend to the phrase which appears multiple 391

times in the previous context, and predict the lat- 392

ter words accurately. From this perspective, we 393

want to figure out whether the more an N-gram 394

appears in the input text, the more possible the 395

long-context LLMs refer to the N-gram for predic- 396

tion, i.e., whether there is a correlation between the 397

token xi’s token-perplexity and the number of the 398

token’s N-gram gi = [xi−N+1, ..., xi] occurrences. 399

We first count the number of N-gram gti’s occur- 400

rences in the original context [xti−K+1, ..., x
t
i−1] 401

and the new context [xti−2K+1, ..., x
t
i−K ] of docu- 402

ment Dt, which we denote as N t
ori,i and N t

new,i 403

respectively. The ratio between N t
ori,i and N t

new,i 404

represents how the N-gram’s occurrence frequency 405

changes when adding new context, which we de- 406

note as new occurrence ratio: 407

∆N 2K
K (gti) =

N t
new,i + 1

N t
ori,i + 1

, i ∈ [2K − 1, |Dt|)

(7) 408
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Figure 3: ∆D of each class of POS tags.

Then we calculate the average token-perplexity409

decrement ∆p̄2KK and the average N-gram’s new410

occurrence ratio ∆N 2K
K over all documents:411

∆p̄2KK =
1

M

M∑
t=1

(
1

|Dt|

|Dt|−1∑
i=2K−1

p̄2KK (xti)) (8)412

413

∆N 2K
K =

1

M

M∑
t=1

(
1

|Dt|

|Dt|−1∑
i=2K−1

N 2K
K (gti)) (9)414

which we abbreviate as ∆p̄ and ∆N for brevity.415

To figure out the relationship between the token-416

perplexity decrement ∆p̄ and the N-gram’s new417

occurrence ratio ∆N , we adopt a widely used met-418

ric, Spearman’s rank correlation coefficient, for419

analysis. Specifically, Spearman’s rank correlation420

coefficient is computed over ∆p̄(xti) and ∆N (gti)421

of all tokens xti in the test corpus. Here we show422

the result of N=5 and K ranges from 2k to 32k,423

and we will discuss the effect of N later.424

As the results shown in Table 3, there is a strong425

correlation coefficient in every experimental set-426

ting. For example, with K = 32k, Yi delivers a427

correlation coefficient of 0.356. When K = 2k,428

the correlation coefficient is even higher, up to 0.53,429

demonstrating the positive correlation between the430

token-perplexity decrement ∆p̄ and N-gram’s new431

occurrence ratio ∆N . The larger the new occur-432

rence ratio of a token’s N-gram, the more its token-433

perplexity decreases. Therefore, tokens with a434

higher frequency of N-gram in new context can435

benefit more from the additional long text.436

Effect of N. We further analyze the effect of N437

on the correlation between ∆p̄ and ∆N . We fix438

K to 32k and calculate the Spearman’s rank corre-439

lation coefficient with N ranging from 3 to 20, as440

shown in Figure 4. Circle markers represent cor-441

relation coefficients with p-value < 0.005 while x442

markers represent p-value ≥ 0.005, which indicates443

there is no correlation.444

4 6 8 10 12 14
N

0.2

0.3

0.4

0.5

0.6

C
or

re
la

tio
n

Yi YaRN LongLoRA

Figure 4: Correlation coefficients between the token-
perplexity decrement ∆p̄ and the N-gram’s new occur-
rence ratio ∆N under different values of N.

There are always correlations between ∆p̄ and 445

∆N when N ranges from 4 to 8. In LongLoRA, 446

we can see the correlation become stronger with 447

the increase of N , indicating under the same ∆N , 448

a longer N-gram may more easily affect its cor- 449

responding token’s prediction. Considering the 450

impressive in-context learning ability (Brown et al., 451

2020) of LLMs, it may be one possible explanation 452

for the strong correlation between ∆p̄ and ∆N 453

that LLMs tend to learn the N-grams frequently 454

appearing in the input text. 455

5.3 Priors in Long-context LLMs 456

Priors in long-context LLMs may affect their per- 457

formance in language modeling. For example, as 458

pre-training is a crucial part of LLM training, the 459

composition of pre-training data can greatly affect 460

the LLMs’ performance in downstream tasks. So, 461

in the language modeling task, is the decrease in 462

token-perplexity also affected by pre-training data? 463

Specifically, if a token appears more frequently in 464

the pre-training data and the LLM is fully familiar 465

with this token, will the LLM be more sensitive, 466

i.e., less affected by changes in the context, when 467

predicting this token? From this perspective, we 468

will explore the relationship between the frequency 469

of tokens appearing in pre-training data and the 470
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∆N (0, 1) {1} (1,∞)

Yi 0.049 0.463* 0.086
YaRN 0.014 0.330* 0.107

LongLoRA 0.047 0.385* 0.111

Table 4: Correlation coefficients between the token-
perplexity decrement ∆p̄ and the token frequencies fr
under different N-gram’s new occurrence ratio ∆N .
K=32k, N=5. *: p-value < 0.005.

change in token-perplexity.471

Token’s Frequency Calculation. As the data472

used to pre-train LLMs are rarely disclosed, we use473

RedPajama (Computer, 2023), a fully open-source474

reproduction of LLaMA (Touvron et al., 2023), as475

a proxy for calculating the tokens’ frequency in476

LLMs’ pretraining dataset. We randomly sample477

20G tokens from RedPajama, where the propor-478

tion of each subset is determined according to the479

pretraining data sampling proportion mentioned in480

LLaMA. We calculate the frequency of each token481

fr(xi) in the sampled dataset to approximate the482

token frequency in the pre-training data.483

Correlation between fr and ∆p̄ under Different484

∆N . To evaluate the relationship between the485

token frequency and its token-perplexity change,486

we calculate the correlation between the token487

frequency and the degree of changes in token-488

perplexity. Note that, unlike the token-perplexity489

decrement ∆p̄ in the previous experiments, this ex-490

periment examines the degree of token-perplexity491

changes affected by the token frequency, which is492

calculated as:493

δp̄2KK (xi) = abs(p̄2K(xi)− p̄K(xi)) (10)494

which we denoted as δp̄(xi) for brevity.495

Considering that the new occurrence ratio of a496

token’s n-gram ∆N (gti) will also affect its token-497

perplexity change δp̄(xi), we classified tokens into498

4 groups based on ∆N (gti). This guarantees that499

the ∆N (gti) of the token xi within the same group500

are close to each other, thus mitigating the impact501

of context information on token-perplexity changes.502

We group the tokens according to the following503

rules: Group A: {xi|∆N < 1}, Group B: {∆N =504

1}, Group C: {xi|∆N > 1}. For each group, we505

calculate the correlation coefficient between δp̄ and506

fr.507

The results are shown in Table 4. Only when508

∆N = 1, i.e., the frequency of N-gram gi does not509

change when adding new context, there is a strong510

correlation between fr(xi) and δp̄(xi), such as 511

correlation coefficient of 0.463 in Yi. In other cases, 512

there is no correlation as their p-value > 0.005. 513

The results indicate that the context information 514

dominates the influence on the token-perplexity 515

changes than tokens’ frequency in the pretraining 516

dataset. The long-context LLMs are more likely to 517

use what they learned during the pretraining stage 518

to predict the current token xi when the N-gram 519

gi’s frequency does not change in the context. 520

6 Why Perplexity Decreases 521

We also find that, apart from the tokens aforemen- 522

tioned benefit from the distant text, tokens that are 523

incorrectly predicted by LLMs also show a higher 524

average probability. So we wonder, whether long- 525

context LLMs exhibit overconfidence when the 526

context length increases. Specifically, we explore 527

the probability distribution P output by the model 528

when predicting each token. If the model becomes 529

more confident, no matter whether or not the model 530

correctly predicts the token xi, the probability dis- 531

tribution PK,i will become sharper, i.e., the entropy 532

of PK,i decreases and the max(PK,i) increases. 533

Therefore, we calculate the entropy EK,i = 534

entropy(PK,i) and the max probability MPK,i = 535

max(PK,i) of each token’s probability distribution 536

PK,i. Specifically, we split the tokens in the whole 537

test corpus into two groups, T and F, based on 538

whether the tokens are correctly predicted (T) by 539

the model or not (F). Given context length K, for 540

each group, we calculate the average entropy EK 541

and the average max probability MPK of all tokens 542

in the group following the equation: 543

ET
K =

1

|T|
∑
i∈T

Et
K,i (11) 544

545

MPT
K =

1

|T|
∑
i∈T

MP t
K,i (12) 546

Here we use group T as an example, EF
K and MPF

K 547

of group F are calculated in the same way. 548

Figure 5 shows that, as the context length K in- 549

creases, there are consistent trends between group 550

T and F in both EK and MPK . Especially in 551

group F, where LLMs make incorrect predictions, 552

EF
K decreases and MPF

K increases, indicating the 553

longer inputs lead to sharper probability distribu- 554

tions. Such a phenomenon shows that long-context 555

LLMs are more confident with longer inputs. 556

7



2k 4k 8k 16k 32k 64k

Context Length K
1.0

1.1

1.2

1.3

1.4

1.5
En

tro
py

T: Entropy

Yi
YaRN
LongLoRA

2k 4k 8k 16k 32k 64k

Context Length K
2.7

2.8

2.9

3.0

3.1

3.2
F: Entropy

Yi
YaRN
LongLoRA

2k 4k 8k 16k 32k 64k

Context Length K
0.70

0.72

0.74

0.76

M
ax

 P
ro

b.

T: Max Prob.

Yi
YaRN
LongLoRA

2k 4k 8k 16k 32k 64k

Context Length K
0.34

0.35

0.36

0.37

0.38

0.39
F: Max Prob.

Yi
YaRN
LongLoRA

Figure 5: The entropy EK and the max probability MP of groups T and F respectively.

Therefore, for group T, the MPT
K ’s increase557

may be partly due to the sharper probability dis-558

tributions from the more confident long-context559

LLMs. Note that, all tokens in T satisfy560

argmax(PT
K,i) = i, i.e., MPK,i = pK(xi). Ac-561

cording to the definition of perplexity in Equation 3,562

an increase in MPK,i will lead to a decrease in563

token-perplexity, which demonstrates that the in-564

creasing confidence of the long-context LLMs may565

be one of the reasons for the perplexity decrease.566

7 Related Work567

Long-Context LLMs. Extensive studies have568

aimed to scale up the context window of Large569

Language Models (LLMs) to handle long-context570

inputs (OpenAI, 2023; Anthropic, 2023; Chen et al.,571

2023b,a; Xiong et al., 2023; Ding et al., 2023a;572

Chen et al., 2023c). For example, GPT-4 (OpenAI,573

2023) has a 128k context window, and Yi (AI et al.,574

2024) supports a context window of 200k.575

Some long-context LLMs use the length ex-576

trapolation approach in Transformers (Vaswani577

et al., 2017), which is trained on short sequences578

while inferring on long sequences, to handle long579

text (Press et al., 2022; Sun et al., 2023; Su et al.,580

2023b). While some other research, such as Po-581

sition Interpolation (Chen et al., 2023b), NTK-582

aware position embeddings (bloc97, 2023), and583

YaRN (Peng et al., 2023a), propose positional in-584

terpolation methods for long text processing.585

Besides, LLMs like LongLoRA (Chen et al.,586

2024) and LongNet (Ding et al., 2023a) focus on587

the efficient attention calculation. Retrieval-based588

approaches (Tworkowski et al., 2023; Wang et al.,589

2024; Borgeaud et al., 2022), recurrent transform-590

ers (Bulatov et al., 2022; Staroverov et al., 2024)591

and prompt compression (Jiang et al., 2023) are592

also effective methods for context window exten-593

sion.594

Long-context LLMs Evaluation. Multiple 595

benchmarks have been proposed for long-context 596

LLMs evaluation. ZeroSCROLLS (Shaham et al., 597

2023) is a zero-shot benchmark containing ten 598

natural language tasks. L-Eval (An et al., 2024) 599

encompasses 18 realistic natural language tasks, 600

such as QA, summarization, and math. Similarly, 601

LongBench (Bai et al., 2023) incorporates 21 602

tasks of four categories. InfiniteBench (Zhang 603

et al., 2024) is proposed with average data length 604

surpassing 100K tokens. RULER (Hsieh et al., 605

2024) proposes synthetic tasks of four categories, 606

aiming to provide flexibility to control the context 607

lengths and task complexities. 608

Apart from downstream tasks such as QA, sum- 609

marization and retrieval, language modeling is 610

also widely used for long-context LLMs evalua- 611

tion (Chen et al., 2024; Peng et al., 2023a; AI et al., 612

2024; Ding et al., 2023b; Men et al., 2024), which 613

use Perplexity (PPL) as the evaluation metric to ac- 614

cess LLMs’ long text language modeling ability. 615

8 Conclusion 616

Different from human habits, a great number of 617

tokens can benefit from additional distant text in 618

long-context language modeling of LLMs. Specif- 619

ically, content words and the starting token of a 620

word benefit most from the long text. Patterns’ 621

frequency (N-gram) also plays an important role 622

in token predictions. Besides, tokens of high fre- 623

quency in the pre-training dataset show less sen- 624

sitivity to the extension of the text. Furthermore, 625

we observe that the overconfidence of long-context 626

LLMs when the context length increases may be 627

one possible reason for the perplexity decrease. We 628

hope our analysis can provide insights for a bet- 629

ter understanding of long-context LLMs and help 630

the community design more reliable long-context 631

LLMs. 632
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Limitations633

Due to the computational resources limitation, we634

can only conduct experiments with context length635

K ranging from 2k to 64k. We get out-of-memory636

when K=128k. Besides, it is worthy to further637

investigate why some tokens continuously benefit638

from the additional text even if the text is extremely639

far away. We will leave it as our future work.640
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A Sliding Window Evaluation of829

Perplexity830

Input Text |Dt| = 10

Context Length 𝐾𝐾 = 6

Stride S = 2

: Predicted 
token

Figure 6: An illustration for sliding window method
with stride S=2.

K 2k 4k 8k 16k 32k 64k

S 10 25 50 100 200 400

Table 5: Context length K and its corresponding stride
S.

Here, we will briefly introduce the sliding win-831

dow evaluation (Press et al., 2021) of perplexity832

in evaluating long-context LLMs. Given M docu-833

ments {D1, ..., DM}, each Dt is split into chunks834

with stride S and the length of each chunk is K,835

which is also denoted as context length K. In each836

chunk, long-context LLMs predict token xi based837

on previous tokens in the chunk Cq, and output the838

probability of token xi:839

pK(xtq,i) = P (xtq,i|xtq,0, ..., xtq,i−1), i ∈ [0,K)
(13)840

As illustrated in Figure 6, we obtain the proba-841

bilities of all tokens in the first chunk. Meanwhile,842

for other chunks, we only obtain the probability of843

the last S tokens. This way, we can finally get all844

tokens’ probabilities in Dt. Then perplexity (PPL)845

is calculated as Equation 4. The calculation method846

we mentioned in Section 2 is the case where S=1.847

Note that, except for the first chunk, probabilities848

of tokens in other chunks are only recorded when849

i ∈ [K − S,K). For fair comparison among all850

tokens’ token-perplexity, we need to ensure every851

token is predicted based on a similar length of input852

text. Therefore, in our experiment, we set K >> S853

to ensure all tokens are predicted by long-context854

LLMs based on nearly the same number of previ-855

ous tokens. The values of K and S are shown in856

Table 5.857
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