
Reproduction study - DECAF: Generating Fair Synthetic Data
Using Causally-Aware Generative Networks

Reproducibility Summary1

Scope of Reproducibility2

We conduct a reproduction study on the paper DECAF: Generating Fair Synthetic Data Using Causally-Aware3

Generative Networks by van Breugel et al. [2021]. We investigate the following claims: (1) DECAF is versatile4

and can remove undesired bias using several definitions of fairness including Fairness Through Unawareness (FTU),5

Demographic Parity (DP) and Conditional Fairness (CF) measured by FTU and DP metrics (2)DECAF is able to6

generate fair synthetic data with better quality compared to other existing methods as measured by precision, recall and7

AUROC of a downstream classifier. (3) DECAF relies on the provision of causal structure in the form of a Directed8

Acyclic Graph (DAG) and DECAF is robust to incorrect DAG specification and any DAG from the Markov equivalence9

class found through causal discovery can be used for data generation.10

Methodology11

We repeated the main experiments of the authors using two data sets and added some experiments. The provided12

author’s code was mostly used as a base, but we found various discrepancies between the paper and the code. Also, the13

provided code was not able to generate results yet and we had to alter it to do that. Therefore, our codebase consists of14

a combination of new and old code.15

Results16

The overall results from our study show that the DECAF method proposed by the authors removes undesired bias as17

claimed by the authors. We could reproduce the broad trends as reported by the authors for the Adult data set, but not18

for the Credit data set. Our results clearly show that DECAF could generate fair synthetic data while still maintaining19

high downstream utility for the first data set.20

What was easy21

The paper is intuitively written and includes clear graphs that supplement the explanation of the method. The paper also22

includes extensive appendices. The data sets that were used for the experiments were also provided, and easy to find.23

What was difficult24

The main difficulty was working with the code provided by the authors, which was an incomplete implementation of25

the DECAF pipeline and did not work yet. There were also various discrepancies between the paper and the code, e.g.26

additional terms in the training loss and the implementation of a XGBoost classifier instead of a Multilayer Perceptron.27

We put in much effort to debug and complement the code, which required a significant amount of work and took more28

time than expected.29

Communication with original authors30

The original authors answered some of our questions regarding the insufficient code and confirmed the code base is still31

under development. They kindly gave us additional code, but unfortunately this did not solve our problems.32

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction33

Machine learning models reflect the data on which they have been trained. As a result, the models might also reflect34

undesired biases in the data and potentially perpetuate the bias present in the data[Lu et al., 2020]. Having undesired35

biases could have adverse consequences, which could even be amplified by a feedback loop that strengthens the biases36

already present in the data when people act towards the bias in the algorithm prediction. For example, some crime data37

set may have historically unwanted bias towards a protected attribute ethnicity. Police officers could then determine38

some neighborhoods to be “problematic neighborhoods” based on the ethnicity of its inhabitants. If they would patrol39

those neighborhoods at a disproportionate rate based on their status, they would most likely report more crimes there,40

which will highlight the purported problem status for this ethnicity group even more. So later instances of crime might41

reinforce the initially biased data in this case.42

Fairness in machine learning has been a major focus area of research in recent years because of the challenges it43

poses and the huge societal impact it has. Fairness in machine learning can be approached broadly from two different44

perspectives. One can develop fair learning algorithms which can detect bias in the data and create fair predictors. A45

large body of work including Kilbertus et al. [2017] and Hardt et al. [2016] have adopted this approach. Alternatively,46

one can innovate effective methods to debias the data or generate fair synthetic data. The second approach is particularly47

advantageous because any downstream model trained using the fair data can be guaranteed to satisfy desired fairness48

requirements irrespective of whether the model is inherently fairness-aware or not.49

Many methods have been proposed and can be found in literature for fair synthetic data generation. Fairness-aware50

GAN (FairGAN) proposed by Xu et al. [2018] offers a very flexible framework for fair data generation but it does51

not allow for post-hoc changes of the synthetic data distribution. Xu et al. [2019a] propose a causal architecture for52

generating fair data but its application is limited as it can not be easily extended to multiple protected attributes. It is53

in this context, van Breugel et al. [2021] proposed DEbiasing CAusal Fairness (DECAF): a GAN-based model for54

generating fair synthetic data which represents the true data generating process using a Structural Causal Model (SCM).55

2 Scope of reproducibility56

The paper claims that DECAF is compatible with several definitions of fairness and it achieves high downstream utility57

of the generated data. Its inference-time fairness allows for post-hoc changes of the synthetic data distribution and is58

quite flexible for evolving definitions of fairness. The authors also provide theoretical guarantees on the generators59

convergence and the fairness of downstream models.60

We identified the following claims as central to the contributions of the paper:61

• Claim 1: DECAF is versatile and can remove undesired bias using several definitions of fairness including62

Fairness Through Unawareness (FTU), Demographic Parity (DP) and Conditional Fairness (CF) measured by63

FTU and DP metrics.64

• Claim 2: DECAF is able to generate fair synthetic data with better quality compared to other existing methods65

as measured by precision, recall and AUROC of a downstream classifier.66

• Claim 3: DECAF relies on the provision of causal structure in the form of a Directed Acyclic Graph (DAG)67

and DECAF is robust to incorrect DAG specification and any DAG from the Markov equivalence class found68

through causal discovery can be used for data generation.69

Claim 1 is the most important differentiating factor that makes DECAF a class apart from the rest of the methods. The70

flexibility to choose fairness definitions is at the core of the flexible framework that the paper offers. Claim 2 is quite71

fundamental to fair synthetic data generation and the adoption of DECAF for real world applications depends on its72

validity. We plan to run experiments using Adult data set and Credit Approval data set [Dua and Graff, 2017] that the73

authors have used and additionally Communities and Crime data set [Dua and Graff, 2017].74

Claim 3 is more involved and knowing causal structure of the data is a very strong assumption that the paper makes and75

it is very important to prove that DECAF produces good results from any of the Markov compatible DAGs generated76

using any causal discovery method. For the experiments, we plan to use TETRAD [Spirtes et al., 2019] for generating77

the DAGs using the causal discovery algorithm FGES [Ramsey et al., 2017].78
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3 DECAF: The Method79

DECAF is a GAN-based fair synthetic data generator and consists of multiple generators and a discriminator. There are80

two stages: the training stage and generation (inference) stage. In the training stage a causally-informed GAN learns81

the causal conditionals in the data. The features are generated in order of the underlying DAG, where each feature is82

modeled by its own generator. Each synthetic sample is passed to the discriminator, which is trained to distinguish real83

from synthetic samples. The generator and discriminator share a typical minmax objective:84

max{Gi}d
i=1

minDE[log D(G(Z)) + log(1−D(X))], (1)

with generator Gi : R|Pa(Xi)|+1 → R, discriminator D: Rd → R, Z the distributional parameter of a feature excluding85

the causal parents and X sampled from the original data. Pa(Xi) denotes the causal parents of Xi.86

At the inference stage, the learned conditionals are used to generate fair data by removing specific edges from the87

underlying DAG of the data.88

4 Methodology89

4.1 Data sets90

We reproduced the experiments of the paper on the Adult data set and Credit Approval data set from Dua and Graff91

[2017]. For both these data sets, the ground-truth DAG is unknown.92

The Adult data set contains over 65.000 samples and has 14 attributes. Its prediction task is to determine whether a93

person makes over $50K every year and there is a known bias between sex and income in this data set.94

The Credit Approval data set concerns credit card applications and contains 690 instances with 15 attributes each.95

Because there are some rows with missing values in this data set which we removed, we eventually end up with 67896

instances. The attributes have been changed to meaningless symbols and there is no known bias between attributes.97

Therefore, we inject a synthetic bias into the data for this experiment.98

In addition, we use the Communities and Crime data set from Dua and Graff [2017], which combines socio-economic99

data, law enforcement data, and crime data. It contains around 2000 samples and has 128 attributes. The prediction task100

is to determine whether a given community is violent or not. This is determined by the number of violent crimes per101

population. Since this data set already contains bias, it is not necessary to inject it ourselves. The ground truth DAG for102

this data set is also unknown, but can be found using TETRAD [Spirtes et al., 2019]. The choice for this data set as103

additional data set was made, because it is one of the most widely used data sets in the fairness domain as stated by104

Mehrabi et al. [2021].105

4.2 Experimental setup106

We tried to keep the experimental setup close to the paper by performing the two experiments as described in the paper:107

one on the Adult data set (Experiment 1) and one on the Credit Approval data set (Experiment 2).108

In Experiment 1, we perform DECAF on the biased Adult data set and treat sex as the protected attribute. Synthetic109

data is generated using the different fairness definitions and a separate MLP is trained on this data to classify the110

income. The utility of the generated data is measured by how well the downstream classifier performs on the true data111

distribution which can be evaluated using a hold-out set of the original data set.112

In addition to Experiment 1 as performed by the authors, we repeated this experiment using a different DAG, which we113

discovered by the causal discovery algorithm FGES [Ramsey et al., 2017] using TETRAD [Spirtes et al., 2019]. We114

repeated this experiment with a different DAG in order to be able to test Claim 3 further and see if the DECAF results115

still hold up with a different appropriate DAG.116

In Experiment 2, bias is directly injected into the Credit Approval data set to show (with the same data set without bias117

as benchmark) that DECAF can remove (injected) bias. The bias is synthetically injected by decreasing the probability118

that someone with a specific ethnicity could get their credit approved. Similarly to the paper, we chose everyone with119

ethnicity class 4 to be the minority ethnicity group. We test this for different fractions of injected bias. The same DAG120

as the one used in the paper is used.121
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In Experiment 3, we repeat the approach of Experiment 1 on a different data set to verify the authors claims about122

DECAF more thoroughly. In this experiment on the Communities and Crime data set, the attribute racepctblack was123

set to protected attribute since there is already bias for this attribute in the data set. This attribute states the percentage124

of black people in a given community. The underlying DAG was found using TETRAD [Spirtes et al., 2019], which,125

due to the large number of nodes, resulted in a number of 970 edges.126

4.3 Model descriptions127

For each of these experiments, we have trained multiple relevant models. Firstly, the baseline classifier was trained on128

the original data itself, such that we are able to report the predictions of the original data and evaluate them against129

the multiple DECAF models, namely a new model for every definition of fairness. We were able to discriminate130

between the different definitions of fairness by removing edges in the DAG. So each of these models were trained131

with the same MLP Classifier, but the difference is the synthetic data these models were trained on, because for the132

generation of the synthetic data a different dictionary with the biased edges was specified, depending on the fairness133

definition. Therefore, we got multiple models such as DECAF-ND, DECAF-FTU, DECAF-CF, DECAF-DP, each134

indicating on which synthetic the classifier is trained. Additionally, for Experiment 1 we obtained various models that135

function as baseline models, namely GAN [Goodfellow et al., 2014], GAN-PR, WGAN-GP [Arjovsky et al., 2017] and136

WGAN-GP-PR. The PR stands for protected removal, which entails that the protected attribute is removed.137

4.4 Code base138

The authors of the article have provided a code base containing DECAF and some toy examples that train the model139

on small, artificial data. We use it basis for our code, but make some substantial changes. Firstly, we complemented140

the code to include all experiments. Secondly, we made some changes to follow the paper more, because there were141

multiple discrepancies between the paper and the code. For example, we changed the implementation of DECAF to142

also generate the labels of synthetic data, because this is needed to impose the fairness criteria. After all, if no labels are143

generated, then no edges can be removed.144

The code base is written in PyTorch-Lightning and Python, and is structured per model, and there is a separate file145

where the different data sets are read and processed. 1146

4.5 Hyperparameters147

We set the hyperparameters as described in the paper. We used the Adam optimizer with a learning rate of 0.001 for148

50 epochs and update the generator once for every 10 discriminator updates. We hold out a test set of 10% for all149

experiments and we train a MLP using the default scikit-learn hyperparameters. We chose a test set of 10% since150

the data sets used are relatively small and we wanted to have enough data for training. For the Credit data set we trained151

for 250 epochs instead of 50, because convergence was not achieved after 50 epochs. All experiments are repeated 10152

times with different seeds.153

We use the DAGs of both the first two data sets as given in the paper and for Communities and Crime data set it154

is discovered by the causal discovery algorithm FGES [Ramsey et al., 2017] using TETRAD [Spirtes et al., 2019].155

Additionally, for the Adult data set we trained using another DAG we found in the same way with TETRAD [Spirtes156

et al., 2019].157

4.6 Computational requirements158

All models were trained on Nvidia GeForce 1080Ti GPUs.159

5 Results160

Overall, only some results support the claims from the original paper. We were able to generate new synthetic data161

using the DECAF pipeline for different data sets, showing that DECAF is compatible with different definitions of162

fairness by removing edges in the causal graph. However, we were not able to observe better fairness metrics after163

1Codebase can be found at https://anonymous.4open.science/r/DECAF-615B
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applying DECAF for every data set. Furthermore, we found that our data quality results from different benchmarks (e.g.164

GAN [Goodfellow et al., 2014] and WGAN [Arjovsky et al., 2017]) are higher than reported by the original authors,165

which contradicts the claim that DECAF generates fair synthetic data of higher quality.166

The results are shown for each separate experiment. They are expressed in 5 metrics that express the data quality and167

fairness. The metrics for data quality are precision, recall and AUROC. These range from 0 to 1, where 1 indicates a168

perfect score. The AUROC is the area under the ROC curve of the downstream model (MLP in all experiments) that is169

trained on the synthetic data and indicates the performance of the downstream model. The fairness metrics are FTU and170

DP, which indicate perfect fairness at 0. The FTU metric indicates the direct influence of the protected attribute on the171

prediction and the DP indicates the difference between the predictions of a downstream classifier between the different172

classes of the protected variable.173

5.1 Experiment 1174

Table 1 and 2 show the data quality and fairness metrics (respectively) after bias removal on the Adult data set of the175

original experiment and our own. In particular, we see that the FTU and DP scores go down when removing more176

biased edges, while the data quality scores decrease. So, as expected, the fairness increases at the cost of data quality.177

This observation is in line with the original authors and supports Claim 1. However, Claim 2 cannot be verified. Our178

benchmark models (GAN, WGAN-GP, GAN-PR, WGAN-GP-PR) report similar (if not higher) data quality metrics179

than DECAF, unlike the original authors. These models do report lower scores on fairness than DECAF. Another180

unexpected trend we notice is that the recall increases when we remove more biased edges.181

Model Precision Recall AUROC
Original Our Original Our Original Our

Original data 0.920 ± 0.006 0.883 ± 0.010 0.936 ± 0.008 0.932 ± 0.014 0.807 ± 0.004 0.914 ± 0.002
GAN 0.607 ± 0.080 0.803 ± 0.033 0.439 ± 0.037 0.928 ± 0.067 0.567 ± 0.132 0.754 ± 0.051
WGAN-GP 0.683 ± 0.015 0.843 ± 0.039 0.914 ± 0.005 0.889 ± 0.063 0.798 ± 0.009 0.818 ± 0.025
GAN-PR 0.632 ± 0.077 0.835 ± 0.019 0.509 ± 0.110 0.839 ± 0.085 0.612 ± 0.106 0.756 ± 0.047
WGAN-GP-PR 0.640 ± 0.019 0.804 ± 0.022 0.848 ± 0.028 0.928 ± 0.043 0.739 ± 0.034 0.690 ± 0.017
DECAF-ND 0.780 ± 0.023 0.810 ± 0.023 0.920 ± 0.045 0.906 ± 0.044 0.781 ± 0.007 0.802 ± 0.011
DECAF-FTU 0.763 ± 0.023 0.793 ± 0.024 0.925 ± 0.040 0.927 ± 0.039 0.765 ± 0.010 0.792 ± 0.010
DECAF-CF 0.743 ± 0.022 0.758 ± 0.003 0.875 ± 0.038 0.985 ± 0.012 0.769 ± 0.004 0.707 ± 0.019
DECAF-DP 0.781 ± 0.018 0.754 ± 0.002 0.754 ± 0.002 0.987 ± 0.016 0.672 ± 0.014 0.641 ± 0.032

Table 1: The data quality metrics after the bias removal experiment on the Adult data set.

Model FTU DP
Original Our Original Our

Original data 0.116 ± 0.028 0.045 ± 0.015 0.180 ± 0.010 0.205 ± 0.013
GAN 0.023 ± 0.010 0.057 ± 0.077 0.089 ± 0.008 0.132 ± 0.123
WGAN-GP 0.120 ± 0.014 0.056 ± 0.045 0.189 ± 0.024 0.187 ± 0.100
GAN-PR 0.0 ± 0.0 0.0 ± 0.0 0.120 ± 0.012 0.161 ± 0.063
WGAN-GP-PR 0.0 ± 0.0 0.0 ± 0.0 0.078 ± 0.014 0.115 ± 0.042
DECAF-ND 0.152 ± 0.013 0.047 ± 0.019 0.198 ± 0.013 0.205 ± 0.020
DECAF-FTU 0.004 ± 0.004 0.014 ± 0.009 0.054 ± 0.005 0.151 ± 0.014
DECAF-CF 0.003 ± 0.006 0.017 ± 0.008 0.039 ± 0.011 0.035 ± 0.013
DECAF-DP 0.001 ± 0.002 0.009 ± 0.007 0.001 ± 0.001 0.013 ± 0.012

Table 2: The fairness metrics after the bias removal experiment on the Adult data set.

Using a different DAG182

Table 3 shows the results of experiment 1 on a different DAG. The fairness still increases when using different fairness183

metrics and the data utility numbers are similar to the first experiment. This supports Claim 3.184
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Model Data Quality Fairness
Precision Recall AUROC FTU DP

DECAF-ND 0.853 ± 0.016 0.924 ± 0.020 0.867 ± 0.015 0.037 ± 0.021 0.200 ± 0.022
DECAF-FTU 0.852 ± 0.012 0.931 ± 0.019 0.858 ± 0.007 0.010 ± 0.007 0.169 ± 0.011
DECAF-CF 0.760 ± 0.006 0.995 ± 0.006 0.634 ± 0.035 0.005 ± 0.005 0.018 ± 0.009
DECAF-DP 0.759 ± 0.007 0.995 ± 0.006 0.570 ± 0.040 0.010 ± 0.011 0.013 ± 0.010

Table 3: Experiment 1 using a different DAG

5.2 Experiment 2185

Our results of performing the second experiment can be found in Figure 1. The data quality metrics are in Figure 1a, 1b,186

and 1c and the results of the fairness metrics are in Figure 1d and 1e. We see that all models perform fairly similar187

in terms of the data utility metrics, which is also what the authors of the DECAF paper found. However, they overall188

had slightly higher scores for these metrics, with precision around 0.94 and recall around 0.91 over all bias strengths.189

Their AUROC score was around 0.89, but vastly dropped to 0.70 when moving towards a bias strength of 1 for the190

DECAF-ND case. We also do not see this drop in our results.191

As for the fairness metrics, our results significantly differ from those of the authors. The first major difference we see is192

that the DP score is not lower for the DECAF-FTU and DECAF-DP case than for the DECAF-ND case. Therefore, in193

our reproduction of the experiment we were not able to remove bias as measured by the DP metric in the same way the194

authors of the DECAF paper were able to. As can be seen in Figure 1e our DP score is consistently around 0.075, while195

the DP score of the authors for the DECAF-ND experiment went up to about 0.5 as the bias strength became 1.196

This brings us to the second major difference, which is that the scores for both bias metrics for the DECAF-ND197

experiment stayed very constant over the amount of bias injected, while we would have expected the FTU and DP score198

to go up for this experiment when more bias is injected, similarly to what the authors saw.199

(a) Precision (b) Recall (c) AUROC

(d) FTU (e) DP

Figure 1: Plot of precision, recall, AUROC, FTU, and DP over bias strength β.

5.3 Experiment 3200

The results of Experiment 3 are shown in Table 4. When more biased edges are removed, the fairness metrics improve201

overall, e.g. the FTU of DECAF-ND is 0.482, while the FTU of DECAF-CF is 0.079. In addition, the data quality202
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metrics are decreasing when more biased edges are removed, e.g. the precision decreases from 0.649 of DECAF-ND203

to 0.437 for DECAF-DP. This is also expected from the trade-off between data quality and fairness, as mentioned204

previously. However, two remarks must be made. Firstly, low data quality is undesirable for a downstream classifier.205

For illustration, the same classifier will have a precision of 0.901 on the original data set, but 0.437 on the synthetic data206

generated by DECAF-DP, which is a high cost. Secondly, the FTU metric is higher for DECAF than for the original207

data, while the DP metric of DECAF is lower. We think further hyperparameter tuning is necessary for making DECAF208

work for this dataset.209

Model Data Quality Fairness
Precision Recall AUROC FTU DP

Original data 0.901 ± 0.008 0.801 ± 0.022 0.950 ± 0.003 0.010 ± 0.006 0.604 ± 0.014
DECAF-ND 0.649 ± 0.134 0.672 ± 0.094 0.765 ± 0.089 0.482 ± 0.113 0.551 ± 0.158
DECAF-FTU 0.529 ± 0.119 0.664 ± 0.192 0.665 ± 0.132 0.094 ± 0.079 0.220 ± 0.057
DECAF-CF 0.462 ± 0.073 0.695 ± 0.185 0.594 ± 0.114 0.079 ± 0.059 0.091 ± 0.078
DECAF-DP 0.437 ± 0.085 0.654 ± 0.180 0.514 ± 0.124 0.122 ± 0.059 0.141 ± 0.102

Table 4: The Data Quality and Fairness metrics after the bias removal experiment on the Communities and Crime data
set

6 Discussion210

From our results as presented above we conclude that the claims listed in Section 2 are partly supported. We will discuss211

each claim individually:212

• Claim 1: This claim was partly supported by our results. The results of Experiment 1 supported this claim as213

well as the results of Experiment 1 with a different DAG. However, our reproduction of Experiment 2 did not214

support these claims as the DP metric was not lowered for our DECAF-FTU and DECAF-DP model.215

• Claim 2: We have to look at the results of Experiment 1 for this claim, where we saw our benchmarks report216

similar or higher data quality metrics than DECAF, but they do perform worse on the fairness metrics. If we217

only look at these benchmarks we used the claim should be constrained to: DECAF is not able to generate218

data of better quality, but of better fairness than other existing methods. If we take into account the results for219

FairGAN [Xu et al., 2018] on the same experiment as presented in the DECAF paper and assume them to be220

true this claim would be supported as we find higher data utility scores for DECAF than those.221

• Claim 3: This claim was supported by our results from performing Experiment 1 with a different DAG that we222

generated using TETRAD [Spirtes et al., 2019] method for causal discovery. The results show that DECAF223

performs similarly for any DAG from the Markov equivalence class.224

6.1 Experiments225

With regards to Experiment 1, our benchmark models could generate synthetic data of higher quality than those of the226

authors both for the regular and the PR cases, as can be seen in Table 1. We believe that with proper hyperparameter227

tuning, a GAN or a WGAN-GP should be able to generate synthetic data with a quality close to the original data and228

we do not expect any debiasing in the generated data.229

Another unexpected thing we saw in Experiment 1 was that the recall went up when performing the experiment230

with different fairness definitions, while all data utility metrics decreased for the authors. We think this is due to the231

unbalanced data set with many more positive than negative samples and we think the downstream classifier highly232

prefers the positive label, causing very little false negatives and thus a high recall but a worse performance for the other233

metrics.234

We were not able to reproduce Experiment 2, we think this might be because of the very small data set size. We made a235

train-test split with a test size of 10% of the data, which is extremely small for a data set of 678 instances. For future236

research on the reproducibility of the DECAF paper we would like to try with cross-validation to see if this improves237

our results of Experiment 2. Moreover, even with the small test set we would not expect the bias metrics to return238

7



constant results over the amount of injected bias for the DECAF-ND experiment. This suggests that the way we injected239

bias might not be correct.240

Experiment 3 partially supports the effects we have seen earlier, where the fairness criteria overall improve, as the241

fairness definition becomes stricter. However, the FTU metric of the original data performs suspiciously well, meaning242

that the DECAF model does not provide better fairness metrics than the original data. Furthermore, we again see the243

data utility versus fairness trade-off happening. However, the data utility metrics are decreasing rapidly as the fairness244

definition gets stricter. This steep drop suggests that DECAF might not work well on all data sets, or that different245

hyperparameters are needed for different datasets.246

6.2 What was easy247

The paper is well-written and made it easy for us to understand both the context and the main contributions of the248

research. More specifically, the preliminaries and required definitions of fairness are clearly explained. This provides249

an excellent start in the theory. In addition, there are many appendices that provide relevant background and prove250

additional claims of the paper. For example, the authors explain why protected variable removal is a sub-optimal method251

for satisfying FTU fairness. Even though the appendices do not contribute to the main claims of the paper, they made it252

easy to put this research paper into context.253

6.3 What was difficult254

The main difficulty we faced, was getting the code provided by the authors to work. There were two main problems.255

Firstly, the toy examples did not work. These examples trained DECAF on a small, artificial data set, but the DECAF256

model was not able to learn and it generated synthetic data with extremely low variance. After debugging the training257

steps and the model itself, we found that the loss is a large negative value and did not decrease over the epochs.258

Eventually, we found that the authors made strong assumptions about feature ranges in their implementation and the259

data has to be preprocessed and normalized to [0,1] for it to work. We managed to solve the problem by using a MinMax260

scaler, but finding the root cause did take more time than anticipated.261

The second problem arose from multiple discrepancies between the paper and the code. There were additional settings262

mentioned in the paper that were not present in the code, such as splitting the data in a train and test. Additionally, there263

were extra terms in the code that were not present in the paper, such as additional terms in the training loss.264

We could not get the FairGAN code the authors have shared to work.265

6.4 Future research266

As mentioned before, the DECAF model originally provided in the code base of the authors did not learn well and267

could only generate data with low variance. When looking into this issue, we found existing research describing similar268

problems when training GANs on tabular data (consisting of discrete and continuous data) [Xu et al., 2019b]. The269

article proposes mode-specific normalization, which (simply put) entails that each attribute in the data is normalized270

independently. This model (called CTGAN) supposedly deals better with imbalanced discrete columns and ensures271

stable learning on tabular data. We made an attempt to include the described mode-specific normalization into DECAF,272

but did not succeed due to time constraints. It would be interesting future research to include a CTGAN in DECAF,273

because it might improve the data quality of the synthetic data when DECAF learns better.274

6.5 Communication with original authors275

We contacted the original authors with some questions regarding the code base they have provided online. They replied276

shortly after and confirmed the code base is still under development. Even though they could not directly answer each277

question, they kindly shared additional code to help us further. However, since this code was not intended to publish278

(yet), it was not clearly structured and it was unclear which files were directly related to the paper. Nonetheless, it gave279

us a better understanding of the perspective and work of the authors, and the Python package (PyCausal) was brought to280

our attention this way, which is able to obtain graphs of data sets.281
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