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ABSTRACT

In cooperative multi-agent reinforcement learning, a team of agents works together
to achieve a common goal. Different environments or tasks may require varying
degrees of coordination among agents in order to achieve the goal in an optimal
way. The nature of coordination will depend on the properties of the environment—
its spatial layout, distribution of obstacles, dynamics, etc. We term this variation
of properties within an environment as heterogeneity. Existing literature has not
sufficiently addressed the fact that different environments may have different levels
of heterogeneity. We formalize the notions of coordination level and heterogene-
ity level of an environment and present HECOGrid, a suite of multi-agent RL
environments that facilitates empirical evaluation of different MARL approaches
across different levels of coordination and environmental heterogeneity by pro-
viding a quantitative control over coordination and heterogeneity levels of the
environment. Further, we propose a Centralized Training Decentralized Execution
learning approach called Stateful Active Facilitator (SAF) that enables agents to
work efficiently in high-coordination and high-heterogeneity environments through
a differentiable and shared knowledge source used during training and dynamic
selection from a shared pool of policies. We evaluate SAF and compare its per-
formance against baselines IPPO and MAPPO on HECOGrid. Our results show
that SAF consistently outperforms the baselines across different tasks and different
heterogeneity and coordination levels. We release the code for HECOGrid1 as well
as all our experiments.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) studies the problem of sequential decision-making
in an environment with multiple actors. A straightforward approach to MARL is to extend single
agent RL algorithms such that each agent learns an independent policy (Tan, 1997). de Witt et al.
(2020) recently showed that PPO, when used for independent learning in multi-agent settings (called
Independent PPO or IPPO) is in fact capable of beating several state-of-the-art approaches in MARL
on competitive benchmarks such as StarCraft (Samvelyan et al., 2019). However, unlike most single-
agent RL settings, learning in a multi-agent RL setting is faced with the unique problem of changing
environment dynamics as other agents update their policy parameters, which makes it difficult to
learn optimal behavior policies. To address this problem of environment non-stationarity, a class of
approaches called Centralized Training Decentralized Execution (CTDE) such as MADDPG (Lowe
et al., 2017), MAPPO (Yu et al., 2021), HAPPO and HTRPO (Kuba et al., 2021) was developed. This
usually consists of a centralized critic during training which has access to the observations of every
agent and guides the policies of each agent. In many settings, MARL manifests itself in the form
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of cooperative tasks in which all the agents work together in order to achieve a common goal. This
requires efficient coordination among the individual actors in order to learn optimal team behavior.
Efficient coordination among the agents further aggravates the problem of learning in multi-agent
settings.

Benchmark Cooperative Partial Image Coordination Heterogeneity
Obs. Obs. Control Control

SMAC ✓ ✓ × × ×
MeltingPot ✓ ✓ ✓ ✓ ×

MPE ✓ ✓ × × ×
SISL ✓ × × × ×

DOTA 2 ✓ ✓ × × ×
HECOGrid ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between our newly developed HECOGrid environments and widely used
multi-agent reinforcement learning environments including SMAC (Vinyals et al., 2017), MeltingPot
(Leibo et al., 2021), MPE (Lowe et al., 2017), SISL (Gupta et al., 2017) and DOTA2 (Berner et al.,
2019)
Another challenge in practical multi-agent learning problems is heterogeneity in the environment.
Environment heterogeneity in reinforcement learning has previously been studied in the context
of federated learning in Jin et al. (2022) which considers the problem of jointly optimizing the
behavior of n agents located in n identical environments (same state space, same action space,
and same reward function) with differing state-transition functions. However, in some real-world
multi-agent learning problems, environment properties such as structure, dynamics, etc, may also
vary within an environment, as compared to varying across different environments. Unmanned guided
vehicles (UGVs) used for search and exploration may encounter different conditions, such as different
distribution of obstacles or different terrains leading to differing dynamics in different regions.
Warehouse robots coordinating to pick up a bunch of items might have to work in conditions varying
from one section of the warehouse to another such as different organization of aisles. Similarly,
as argued in Jin et al. (2022), an autonomous drone should be able to adapt to different weather
conditions that it encounters during its flight. We build upon the formulation of Jin et al. (2022) to
address the broader problem of heterogeneity within the environment.

We formally define two properties of an environment: heterogeneity, which is a quantitative measure
of the variation in environment dynamics within the environment, and coordination which is a
quantitative measure of the amount of coordination required amongst agents to solve the task at hand
(we formally define heterogeneity and coordination in Section 3). The difficulty of an environment
can vary based on the amount of heterogeneity and the level of coordination required to solve it. In
order to investigate the effects of coordination and environmental heterogeneity in MARL, we need to
systematically analyze the performance of different approaches on varying levels of these two factors.
Recently, several benchmarks have been proposed to investigate the coordination abilities of MARL
approaches, however, there exists no suite which allows systematically varying the heterogeneity
of the environment. A quantitative control over the required coordination and heterogeneity levels
of the environment can also facilitate testing the generalization and transfer properties of MARL
algorithms across different levels of coordination and heterogeneity. A detailed analysis of the
existing benchmarks can be found in Appendix A.1

Previous MARL benchmarks have largely focused on evaluating coordination. As a result, while,
there has been a lot of work which attempts addressing the problem of coordination effectively,
environment heterogeneity has been largely ignored. Heterogeneity so far has been an unintentional
implicit component in the existing benchmarks. Hence, the problem of heterogeneity hasn’t been
sufficiently addressed. This is also apparent from our results where the existing baselines do not
perform very competitively when evaluated on heterogeneity, since they were mainly designed to
address the problem of coordination. Moreover, the fact that heterogeneity has been an unintentional
implicit component of existing benchmarks, further strengthens our claim that heterogeneity is an
essential and exigent factor in MARL tasks. Coordination and heterogeneity are ubiquitous factors
for MARL. We believe that explicitly and separately considering these two as a separate factor and
isolating them from other factors contributing to environment difficulty, will help motivate more
research in how these can be tackled.
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To address these limitations, we propose HECOGrid, a procedurally generated Multi-Agent Bench-
mark built upon MARLGrid (Ndousse et al., 2021). HECOGrid consists of three different envi-
ronments which allow the testing of algorithms across different coordination and environmental
heterogeneity levels. Each environment consists of N agents and M treasures, where the goal is to
maximize the total number of treasures picked up by the agents in one episode. c agents are required
to pick up a single treasure, where c is the coordination level of the environment. The environment is
spatially divided into h zones, and the environment dynamics vary from zone to zone. h is the level
of heterogeneity of the environment. c, h, N , and M are controllable parameters. Table 1 presents a
qualitative comparison between HECOGrid and other commonly used Multi-Agent RL environment
suites.

HECOGrid also allows complete control over size of the map, number of obstacles, number of
treasures, number of agents in addition to the coordination and heterogeneity levels. This provides
ease of use of environments from small to very large scale with respect to the aforementioned
parameters. This allows HECOGrid to be used as a standard challenging benchmark for evaluating
not only coordination and heterogeneity but a lot of other factors. A lot of existing benchmarks
(Vinyals et al., 2017; Samvelyan et al., 2019; Berner et al., 2019) focus on moving away from toy-like
grid world scenarios, using more complex scenarios with high dimensional observation and action
spaces, continuous control, challenging dynamics and partial observability. Although HECOGrid has
partial and image observations, it has a relatively small and discrete action space. Hence, HECOGrid
cannot be used to test how an algorithm fares in continuous control and high dimensional action space
scenarios. However, in most of existing standard benchmarks, it is non-trivial to modify environment
parameters and hence it is difficult to perform a wide range of generalization and robustness studies.
Melting Point (Leibo et al., 2021) allows evaluating for out of distribution generalization, where the
OOD scenarios can be defined by changing the background population of the environment. Unlike
HECOGrid however, the physical layout of the environment (substrate) however, cannot be changed.
HECOGrid, providing complete control over these environment parameters, make it easy to perform
a wide range of experiments.

Further, to enable efficient training of MARL agents in high coordination and heterogeneity, we
introduce a novel approach called Stateful Active Facilitator (SAF). SAF uses a shared knowledge
source during training which learns to sift through and interpret signals provided by all the agents
before passing them to the centralized critic. In this sense, the knowledge source acts as an information
bottleneck and helps implement a more efficient form of centralization by refining the information
being passed to the critic. Further, recent work in modular deep learning (Goyal et al., 2021a;d;b;
Rahaman et al., 2021) has shown that different neural modules trained on a common objective lead to
the emergence of specialist neural modules which help in improving performance via decomposition
of the task. We hypothesize that a similar form of modularity can also be helpful in tackling the
problem of heterogeneity. Instead of each agent using an individual monolithic policy, we propose
the use of a pool of policies that are shared across different agents (Goyal et al., 2021a). At each
time step, each agent picks one policy from the pool which is used to determine its next action
where the selection being conditioned on the current state of the agent. During execution the
parameters of the shared pool of policies can be distributed to each agent which can then operate in a
completely decentralized manner. Hence our method falls under the umbrella of Centralized Training
Decentralized Execution (CTDE) methods.

Contributions. We introduce a set of cooperative MARL environments with adjustable coordination
and heterogeneity levels. We also propose SAF- which consists of a shared knowledge source which is
empirically shown to improve performance in high-level coordination settings, and a pool of policies
that agents can dynamically choose from, which helps in tackling environmental heterogeneity. We
show that the proposed approach consistently outperforms established baselines MAPPO (Yu et al.,
2021) and IPPO (de Witt et al., 2020) on environments across different coordination and heterogeneity
levels. The knowledge source is the key to improved performance across different coordination levels
whereas further ablation studies show that the pool of policies is the key to good performance across
different levels of environmental heterogeneity.
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2 RELATED WORK

Centralized Training Decentralized Execution (CTDE). These approaches are among the most
commonly adopted variations for MARL in cooperative tasks and address the problem of environment
non-stationarity in multi-agent RL. They usually involve a centralized critic which takes in global
information, i.e. information from multiple agents, and decentralized policies whose learning are
guided by the critic. Lowe et al. (2017) first proposed an extension of DDPG (Lillicrap et al., 2016)
to a multi-agent framework by using a shared critic and agent specific policies during training, and
decentralized execution. Yu et al. (2021) proposes the extension PPO (Schulman et al., 2017) to a
multi-agent framework in a similar manner. Kuba et al. (2021) extends trust region learning to a
cooperative MARL setting in a way that the agents do not share parameters. Foerster et al. (2018)
uses the standard centralized critic decentralized actors framework with a counterfactual baseline. Li
et al. (2021) uses an information theory-based objective to promote novel behaviors in CTDE-based
approaches. Value Decomposition (Sunehag et al., 2018; Rashid et al., 2018; Wang et al., 2020;
Mahajan et al., 2019), (Rashid et al., 2018) approaches learn a factorized state-action value function.
Sunehag et al. (2018) proposes Value Decomposition Networks (VDN) which simply add the state-
action value function of each agent to get the final state-action value function. Rashid et al. (2018)
uses a mixing network to combine the action-value functions of each agent in a non-linear fashion.

Coordination in Multi Agent Reinforcement Learning. There have been several definitions of
coordination in MARL, most of which come from the agents’ perspective. Guestrin et al. (2002)
and Busoniu et al. (2008) define coordination as the ability of agents to find optimal joint actions.
Kapetanakis & Kudenko (2004) defines coordination as consensus among agents. Choi & Ahn
(2010) defines coordination as agents’ ability to achieve a common goal. In contrast, we analyze
coordination levels from the angle of the RL environment. Developing MARL algorithms that train
coordinated policies requires sufficient exploration due to the presence of multiple equilbria. A large
section of recent approaches revolves around explicitly taking into account the states and actions
of other agents by learning differentiable communication channels between agents in order to train
coordinated policies. Foerster et al. (2016) proposes DRQN-based communication protocols DIAL
and RIAL. Sukhbaatar et al. (2016) proposes CommNet which uses a shared recurrent module which
calculates the state of each agent conditioned on the previous state and the mean of messages received
from all the other agents. Jiang & Lu (2018) and Das et al. (2019) use attention based communication
protocols where attention is used to transmit and integrate messages sent by other agents. Similar
to our work, Kim et al. (2020a) attempts to learn coordinated behavior in a CTDE setting without
introducing explicit communication, by using the mutual information of the agents’ actions.

Environmental Heterogeneity in MARL. Environmental heterogeneity is a relatively uncharted
land in MARL and has only been explored to a very limited extent in RL as a whole. Jin et al.
(2022) analyzed environmental heterogeneity in a federated learning setting. The authors define
heterogeneity as different state transition functions among siloed clients in the federated system,
while for each client the environment is homogeneous. In another more recent study by Xie & Song
(2022), heterogeneity of initial state distribution and heterogeneity of environment dynamics are both
taken into consideration. Our problem is also closely related to Hidden Parameter Markov Decision
Processes (HiP-MDPs) (Doshi-Velez & Konidaris, 2016) which consider a set of closely related
MDPs which can be fully specified with a bounded number of latent parameters. Our approach can
also be seen as being related to the multi-task reinforcement learning setting, where the goal is to
learn an optimal policy that can be generalized to a set of closely related tasks. In all of the above
works, heterogeneity is considered to be arising from variations across different environments or
tasks. In contrast, we focus on heterogeneity within an environment.

Extended related works can be found in appendix A.1.

3 PRELIMINARIES

Notation. In this work, we consider a multi-agent version of decentralized Partially Observable
Markov Decision Processes (Dec-POMDP) (Oliehoek & Amato, 2016). The environment is defined as
(N ,S,O,O,A, T ,Π, R, γ). N = {1, ..., N} denotes a set of N > 1 agents and S is the set of global
states. A = A1× · · ·×AN denotes the joint action space and ai,t ∈ Ai refers to the action of agent i
at time step t. O = O1 × · · · ×ON denotes the set of partial observations where oi,t ∈ Oi stands for
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partial observation of agent i at time step t. The joint observation o ∈ O is given by the observation
function O : (at, st+1) → P (ot+1|at, st+1) where at, st+1 and ot+1 are the joint actions, states
and observations respectively. Π is the set of policies available to the agents. To choose actions at
timestep t, agent i uses a stochastic policy πθi(ai,t|hi,t) conditioned on its action-observation history
hi,t = (oi,0, ai,0, . . . , oi,t−1, ai,t−1). Actions from all agents together produce the transition to the
next state according to transition function T : (st, a1,t, . . . , aN,t) 7→ P (st+1|st, a1,t, . . . , aN,t).
R : S ×A 7→ R is the global reward function conditioned on the joint state and actions. At timestep
t, the agent team receives a reward rt = R(st, a1,t, . . . , aN,t) based on the current joint state st and
the joint action a1,t, . . . , aN,t. γ is the discount factor for future rewards.

Coordination level in cooperative MARL task. Here, we quantitatively define the coordination
level required in a cooperative MARL task used in this study. Recall that R : S × A 7→ R is the
global reward function conditioned on the joint state and actions. At time step t, the agent team
receives a reward rt = R(st, at) based on the current total state of all agents st and joint action
at. Just as in the previous section, the joint state is factorized as follows: st = (se,t, s1,t, . . . , sN,t)
where se,t is the state of the external environment and si,t is the local state of agent i at timestep t
and i ∈ N .

Let G ⊂ N denote a subset of |G| = k agents and different subsets can overlap. We define
RG(st, at) = RG(se,t, s

G
t , a

G
t ) as the joint reward that can only be obtained when a subset of k agents

cooperate, where sGt = {si,t}i∈G and aGt = {ai,t}i∈G . We can then write the joint reward as the sum
of rewards contributed by all subset of agents:

R(st, at) =
∑
G⊂N

RG(se,t, s
G
t , a

G
t )

Hence, the level of coordination ct can be defined as the positive reward that can be obtained at time
t if no less than ct agents are involved in it:

ct = min
k=1,...,N

{k|∃G ⊂ N s.t |G| = k : RG(se,t, s
G
t , a

G
t ) > 0}

Where |G| is the number of elements in G. The global coordination level of the environment c can
then simply be defined as: c = maxt≥0{ct}. This means that if there’s at least one task in the
environment that must be solved using the largest number of agents, then that number of agents (ct)
is defined as the coordination level of that environment.

It is worth mentioning the difference between the problem we explore and the formulation in previous
studies such as (Zhang & Lesser, 2013). We define coordination in a way that some rewards require
at least k agents to coordinate with each other to obtain but different subsets of agents Gj do not have
to be disjoint, i.e., one agent can be involved in obtaining more than one reward in a single time step.

Heterogeneity level of cooperative MARL task. Another aspect we like to explore is the hetero-
geneity of the RL environment. It is worth pointing out that the heterogeneity of the RL environment
is different from the heterogeneity of agents or heterogeneity of policies as explored in previous
studies (Mondal et al. (2022); Kapetanakis & Kudenko (2004).

For simplification, we define heterogeneity in a single-agent RL environment, which can be easily
unwrapped into a multi-agent setting. We assume that the environment has a collection of K different
state-transition functions {Tk : (st, at) 7→ st+1}1≤k≤K . At each timestep t, whenever the agent
takes an action, its next state is governed by one of the K state-transition functions, and that choice is
decided according to some (possibly latent) variable νt. K is then defined as the level of heterogeneity
of the environment, if K = 1 then the environment is said to be homogeneous. In this study, we
implement νt as the position of the agent in the environment, which means the state-transition
function depends on where the agent is in the environment.
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Figure 1: HECOGrid: Three cooperative multi-agent reinforcement learning environments developed
in this study that allow quantitative control of coordination and environmental heterogeneity levels
to adjust difficulty of cooperative tasks: (a) TeamTogether environment, (b) TeamSupport
environment and (c) KeyForTreasure environment.

4 HECOGRID: MARL ENVIRONMENTS FOR VARYING COORDINATION AND
ENVIRONMENTAL HETEROGENEITY LEVELS

We introduce a set of three cooperative MARL environments, which we collectively call HECOGrid,
that allows manipulation of coordination and environmental heterogeneity levels in addition
to several other properties. HECOGrid consists of TeamSupport, TeamTogether and
KeyForTreasure environments as shown in Fig. 1. In this section, we describe each HECOGrid
environment in detail.

TeamTogether Environment. The cooperative team task in this environment is to collect as many
treasures as possible in a limited number of time steps. Each treasure is presented as a bright box in
the environment and becomes grey once collected. In order for a treasure to be collected, a certain
number of agents need to step onto it simultaneously. The number of agents required for collection is
the level of coordination of the task.

TeamSupport Environment. This environment is similar to TeamTogether except that in order
for an agent to collect a treasure, instead of being on the treasure together simultaneously with other
agents, it needs to step onto the box and with a certain number of agents within a fixed distance
(set to 2 by default) to support the collection. This number of agents required for collection support
(including the agent that actually collects) is defined as the level of coordination of the task. Rewards
are distributed equally across all agents in the whole team.

KeyForTreasure Environment. This environment is similar to TeamSupport except that an agent
can only collect a treasure if it is carrying a key, and to collect the treasure, a certain number of agents
need to be on the box simultaneously. This additional key-searching step increases the difficulty of
the task. If an agent picks up a key, its color changes.

In all the environments, all the rewards are distributed equally across all agents on the team.

Environmental heterogeneity in HECOGrid. We implement environmental heterogeneity by
dividing the grid into K zones. For each zone, the transition function T is different. Concretely, each
action leads to a different state depending on which zone the agent is in (e.g. action number 1 may
make the agent turn left, right, move forward or perform some other action depending on what zone
of the grid the agent is present in).

5 SAF: THE STATEFUL ACTIVE FACILITATOR

In this section we describe the proposed method that consists of two main components: a Knowledge
Source (KS) that enhances coordination among the agents and a policy pool (PP) that allows agents
to dynamically select a policy, enabling agents to exhibit diverse behaviors and have distinct goals, as
well as handling heterogeneous environments.

After receiving the local observations, the agents produce messages conditioned on the observations
and send them to the KS. These messages are integrated into the KS via a soft attention mechanism.
This enables the KS to sift through the information shared by the agents and filter out the irrelevant
information, before sending it back to the agents. The agents then utilize this message to define
a more informative state which is then used by the critic. Hence, the KS acts as an information

6



Published as a conference paper at ICLR 2023

A
tt

en
ti

on

K V

Q

Attention

K V

Q

P
er

ce
iv

er
-I

O

Gumbel-Softmax

C
ri

ti
c

10index

Knowledge Source Policy Pool

concatenate

Figure 2: STATEFUL ACTIVE FACILITATOR (SAF) algorithm: during training, agents read and
write from Knowledge source (KS) and pick a policy from the shared policy pool. First, each agent
generates a message and competes for write-access into the KS. Next, all agents read messages from
the KS and use it with their internal state as inputs into critic during training. Each agent selects
their policy from a pool of policy using a trainable signature key and their states. After training, the
execution is conducted in a decentralized manner as the policy is conditioned on the observation only.

bottleneck, which by filtering out irrelevant information, aids the centralized critic in coordinating
the agents better. Further, each agents dynamically selects a policy from the shared pool of policies
conditioned on its current state. The current state of an agent is simply an encoding of the local
observation received by the agent. By using a pool of policies, we aim to train specialists which are
suited to tackle different environmental conditions, hence aiding in tackling heterogeneity.

Technically, SAF can be obtained by augmenting any of the existing Centralized Training Decentral-
ized Execution (CTDE) with the KS and PP. The setup used in our experiments closely resembles
that of MAPPO (Yu et al., 2021) with the centralized critic augmented with the KS and the policies
of agents replaced by a shared pool of policies. SAF is trained in the same manner as MAPPO,
where the centralized critic and the KS are used for guiding the policies. These are not used during
execution, which allows is to retain the CTDE nature. We train SAF end to end by using the same
loss function and standard implementation practices as discussed in MAPPO in Yu et al. (2021).

In the following subsection, we explain each step. For further details, see Algorithm 1 in Ap-
pendix A.3.

Step 1: Generating the messages. Each agent i receives a partial observation oi,t at each time step t.
These observations are encoded into messages which are written into the KS by a common encoder
gθ: m′

i,t = gθ(oi,t); m′
i,t ∈ Rdm . We denote the set of messages generated by the agents at time step

t by M ′
t :

M ′
t = {m′

i,t|1 ≤ i ≤ N}

Step 2: Writing into the Knowledge Source. The messages M ′
t generated in step one are distilled

into a latent state which we term as a Knowledge Source or KS. We represent the KS state at time
step t by Ft. Ft consists of L slots {l0, l1, ..lL−1}, each of dimension dl so that Ft ∈ RL×dl .

The messages in M ′
t compete with each other to write into each KS’s state slot via a cross-attention

mechanism. The query, in this case, is a linear projection of the Ft, i.e., Q̃ = FtW̃
q, whereas the

keys and values are linear projections of the messages M ′
t . KS state is updated as:

Ft ← softmax
(

Q̃(M ′
tW̃

e)T√
de

)
M ′

tW̃
v

After this, self-attention is applied to the KS using a transformer encoder tower constituting a
Perceiver-IO architecture (Jaegle et al., 2022).

Step 3: Reading from the Knowledge Source. The KS makes the updated state available to the
agents should they deem to use it. We again utilize cross attention to perform the reading operation.
All the agents create queries Qs

t = {qsi,t|1 ≤ i ≤ N} ∈ RN×de where qsi,t = W q
readsi,t and
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si,t = gω(oi,t) are encoded partial observations . Generated queries are matched with the keys
κ = FtW

e ∈ RL×de from the updated state of SAF. As a result, the attention mechanism can be
written as:

Mt = softmax

(
Qs

tκ
T

√
de

)
FtW

v (1)

where Mt = {mi,t|1 ≤ i ≤ N}. Consequently, the read messages are used to define a more
informative state sSAF

i,t = gϕ([si,t,mi,t]), where gϕ is parameterized as a neural network. Finally, the
new state sSAF

i,t is used by the critic to compute values. Interestingly, since sSAF
i,t is exclusively used

by the critic, which is only used during training, SAF do not uses communication during execution.

Step 4: Policy Selection. In order to perform policy selection for each policy we define an associated
signature key which is initialized randomly at the start of the training: kΠ = {kπu |1 ≤ u ≤ U}.
These keys are matched against queries computed as deterministic function of the encoded partial
observation qpolicyi,t = gpsel(si,t), where gpsel is parametrized as a neural network.

indexi = GumbelSoftmax

(
qpolicyi,t (kΠ)

T

√
dm

)
(2)

As a result of this attention procedure, agent i selects a policy πindexi . This operation is performed
independently for each agent, i.e. each agent selects a policy from the policy pool. Therefore, it does
not involve communication among different agents.

6 EXPERIMENTS

In this section, we design empirical experiments to understand the performance of SAF and its
potential limitations by exploring the following questions: (a) how much difficulty do high levels
of coordination and environmental heterogeneity cause to cooperative MARL tasks? (b) does SAF
perform well when coordination or/and heterogeneity levels are high? (c) Is SAF robust to changes of
coordination and heterogeneity levels? and (d) SAF has two components. How does each component
contribute to the performance at high coordination and heterogeneity levels?

Baseline Methods. We compare SAF with two widely used algorithms with related architectural
designs and similar number of parameters to SAF, namely Independent PPO (IPPO) (de Witt et al.,
2020) and multi-agent PPO (MAPPO) (Yu et al., 2021) (Table A.3). In IPPO, each agent has its
own actor and critic and does not share information with other agents. In MAPPO, instead of being
trained in a decentralized manner, the critic takes information from all agents in each step as inputs
during training, and agents operate in a decentralized manner without sharing information during
execution. Since, the agents in our environments are homogeneous, we use the parameter sharing for
MAPPO, where the the actor and critic parameters are shared across all agents (Christianos et al.,
2021; Terry et al., 2020). SAF has similar training and execution strategy as MAPPO but uses an
added component - the KS before passing information to the critic during training, and a shared pool
of policies instead of a single shared policy for each agent.

High levels of coordination and environmental heterogeneity. To understand how much diffi-
culty high levels of coordination in the environment cause, we conducted experiments in all three
HECOGrid environments for coordination levels 1 to 3 with heterogeneity level set to 1. We train
all methods for 10M steps for all experiments. Our results, as shown in Figure 3 show that the
performance of all three methods decreases dramatically as coordination levels increase. Performance
of all three methods show a more than 50% decrease in performance at coordination level 2, as
compared with coordination level 1, in all environments. At a coordination level of 3, all methods fail
to show meaningful behavior. These observations indicate that tasks requiring more agents to work
together for reward collection are extremely challenging in a cooperative MARL setting.

To understand how much difficulty high levels of environmental heterogeneity cause, we conducted
experiments in all three HECOGrid environments for heterogeneity levels 1 to 5 with coordination
level set to 1. All methods show a decrease in performance as the environments become more
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Figure 3: Test-time results for SAF, MAPPO and IPPO on TeamTogether, TeamSupport and
KeyForTreasure environments on varying levels of coordination. The heterogeneity level is
fixed at 1. Performance of all algorithms decreases as coordination levels increase with SAF showing
better performance across all environments.

heterogeneous, though to a smaller extent as compared with coordination levels (see Figure 4). We
provide further results for experiments performed in cases where coordination and heterogeneity
levels are high simultaneously in Appendix A.2.
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Figure 4: Test-time results for SAF, MAPPO and IPPO on TeamTogether, TeamSupport and
KeyForTreasure environments on varying levels of heterogeneity. The coordination level is
fixed at 1. All algorithms show decreased performance as heterogeneity increases. SAF shows better
performance in more cases.

Contribution of each component of SAF. In the method section, we design SAF by hypothesizing
that in order to tackle coordination and environment heterogeneity, two key elements are necessary:
the use of a shared knowledge source (KS) and a shared pool of policies (PP) from which the agents
can dynamically choose. We wish to understand how much each component contributes to the
performance of SAF in different scenarios. To investigate this question, we conduct experiments
using different ablated versions of SAF in cooperative tasks with different levels of heterogeneity
and coordination. As seen in Figure 5 in the Appendix, our experimental results indicate that the
knowledge source contributes to the performance of SAF in all cooperative tasks while the shared
pool of policies significantly improves the performance of the agents in heterogeneous environments
and has minimal contribution to tasks requiring high coordination.

7 CONCLUSION

In this work, we explore coordination and heterogeneity levels of cooperative MARL environments by
developing a set of environments, HECOGrid, which allows full quantitative control over coordination
and heterogeneity levels. Moreover, we propose a novel algorithm that enables agents to perform
well in difficult environments with high levels of coordination and heterogeneity. Our experimental
results suggest that high coordination and heterogeneity do make cooperative tasks challenging and
our SAF method allow agents to gain better performance in these environments.
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8 ETHIC STATEMENT AND REPRODUCIBILITY

To the best of the authors’ knowledge, this study does not involve any ethical issues.The authors aim
to maximize the reproducibility of the study. The codes of this project including the new environment
constructed will be released in the camera-ready version. In the methods section, notions align with
existing literature. A detailed description of each step in the SAF algorithm is given in the method
section and a full algorithm is provided in the appendix.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Information Bottleneck. With the emergence of modular deep learning architectures (Vaswani
et al., 2017; Goyal et al., 2021b; Scarselli et al., 2008; Bronstein et al., 2017; Kipf et al., 2018;
Battaglia et al., 2018) which require communication among different model components, there
has been a development of methods that introduce a bottleneck in this communication to a fixed
bandwidth which helps to communicate only the relevant information. (Liu et al., 2021) use a VQ-
VAE (Oord et al., 2017) to discretize the information being communicated. Inspired by the theories
in cognitive neuroscience (Baars, 1988; Shanahan, 2006; Dehaene et al., 2017), (Goyal et al., 2021c)
proposes the use of a generic shared workspace which acts as a bottleneck for communication among
different components of multi-component architectures and promotes the emergence of specialist
components. We use SAF, which is similar to the shared workspace that different agents compete to
write information to and read information from.

Communication in MARL. Communication involves deciding which message to be shared and
determining how the message-sending process is implemented. Foerster et al. (2016) and Sukhbaatar
et al. (2016) implemented learnable inter-agent communication protocols. Jiang & Lu (2018) first
proposed using attention for communication where attention is used for integrating the received
information as well as determining when communication is needed. Das et al. (2019) uses multiple
rounds of direct pairwise inter-agent communication in addition to the centralized critic where the
messages sent by each agent are formed by encoding its partial observation, and the messages received
by each agent are integrated into its current state by using a soft-attention mechanism. Kim et al.
(2020b) uses intentions represented as encoded imagined trajectories as messages where the encoding
is done via a soft-attention mechanism with the messages received by the agent. Wang et al. (2021)
trains a model for each agent to infer the intentions of other agents in a supervised manner, where
the communicated message denotes the intentions of each agent. The above-mentioned approaches
require a computational complexity that is quadratic in the number of agents whereas our approach
has a computational complexity that is linear in the number of agents. Moreover, we show that our
approach is able to outperform several standard baselines using messages which can be computed as
simply encoding each agent’s partial observation. Weis et al. (2020) developed a transformer-based
multi-agent reinforcement learning method that models MARL decision-making as a sequential
model.

Coordination in MARL and the Pareto-optimal Nash equilibrium. In the field of MARL,
coordination is usually defined as the ability for agents to make optimal decisions to achieve a
common goal by finding an optimal joint action in a dynamic environmentChoi & Ahn (2010);
Kapetanakis & Kudenko (2004). One way to find the optimal joint actions by a group of agents is by
studying the Pareto-optimal Nash equilibrium Zhukovskiy & Kudryavtsev (2016), which describes
the optimal solution as one in which no agent’s expected gain can be further increased without
compromising other agents’ gain. However, there exist several challenges in cooperative MARL
systems to achieve Pareto-optimal solutions. In the following sections, we are going to explain
three of these challenges, which are the ones we seek to tackle in this study as well as their links to
coordination and environmental heterogeneity levels.

Environmental heterogeneity and the non-stationarity problem In MARL, the transition prob-
abilities associated with the action of a single agent change over time as the action dynamics of
the other agents change (Bowling & Veloso, 2000). To solve this problem of non-stationarity, most
recent MARL methods follow the Centralized Training Decentralized Execution paradigm. The most
extreme case of centralized training is when all agents share the same set of parameters. However,
parameter sharing also assumes that all agents have the same behaviors, which is not true when there
is heterogeneity either among the agents themselves or in the environment. Previous studies use
indicator-based methods to personalize a shared policy in a group of heterogeneous agents(Terry
et al., 2020), however, environmental heterogeneity has been less explored in the literature (Jin et al.,
2022).

Environmental heterogeneity and the alter-exploration problem Another problem environmental
heterogeneity may cause in cooperative MARL is the alter-exploration problem. The balance between
exploration and exploitation is crucial for all reinforcement learning tasks. In cooperative MARL
this problem arises when exploration of one agent may penalize other agents and their corresponding

14



Published as a conference paper at ICLR 2023

policies during training as the cooperative agents share rewardsBoutoustous et al. (2010); Matignon
et al. (2012). Environmental heterogeneity could potentially lead to worse alter-exploration problems
as there tend to be more unseen states for an exploring agent which may result in higher and more
frequent penalties. In this study, we seek to solve the above-mentioned problem using a combination
of inter-agent communication via an active facilitator and a shared pool of policies.

Existing Environments in MARL. Some of the existing benchmarks based on online multiplayer
games, attempt to move away from the toy-like grid world setting for MARL environments in favor
of more realistic environments, by making use of high-dimensional observation and action spaces,
continuous action spaces, challenging dynamics, and partial observability (Vinyals et al., 2017; Berner
et al., 2019; Leibo et al., 2021; Zheng et al., 2017). These benchmarks focus on decentralized control
in cooperative tasks and agents are heterogeneous (i.e., different types of agents having different
abilities). In principle, it is possible to vary the levels of coordination and heterogeneity since the
difficulties of different environments vary. However, there is no well-defined notion of the two
concepts and these can’t be varied in a controlled fashion. MeltingPot, which was recently proposed
in (Leibo et al., 2021) focuses on test-time generalization abilities of a group of agents includes a
wide range of scenarios: competitive games, games of pure common interest, team-based competitive
games, and mixed motion games which stress test the coordination abilities of the agents. However,
similar to other benchmarks, there is no systematic decomposition nor a quantitative notion of the
concepts of coordination and environmental heterogeneity.

A.2 ADDITIONAL RESULTS

In this section, we show the training curves for SAF, MAPPO and IPPO on KeyForTreasure,
TeamSupport and TeamTogether environments. We additionally present more ablation results
in the Out-of-Distribution setting.

Performance when increasing coordination or/and heterogeneity levels. SAF shows significant
performance improvement upon MAPPO and IPPO at coordination levels 1 and 2 (Figure 3). In
addition, SAF shows faster performance increase at an early stage of the training process (figure A.2).
This suggests potential advantages for training agents using SAF in cooperative tasks requiring high
coordination. At most heterogeneity levels, SAF shows performance improvement upon MAPPO
and IPPO in all HECOGrid environments and a faster increase in performance at early stages of
the training (Figure 4 and A.2). This suggests potential advantages for training agents using SAF
in a cooperative environment which are heterogeneous. In addition to manipulating coordination
and heterogeneity levels separately, experiments are conducted to understand if SAF can perform
well in environments in which both parameters are high. In the relatively easy TeamSupport
environment with both coordination and heterogeneity set at 2, 3 and 4, SAF again shows improved
performance over IPPO and MAPPO (Figure 6(c)). Figure 6(a) shows the training curves for SAF,
MAPPO, and IPPO on KeyForTreasure, TeamSupport and TeamTogether environments
for a coordination level of 2. It shows a gap in performance between SAF and the baselines and this
gap is further enlarged when it comes to a heterogeneity level of 2 (see Figure 6(b)) which shows that
SAF is effectively able to handle changes in the environment’s dynamics.

Robustness to changes in coordination and heterogeneity levels. In most real-world applications,
such as robots in warehouses, the coordination levels as well as environmental heterogeneity levels
can change over time and may even be unknown to the agents. Therefore, the agents’ robustness
to such changes is important. To understand if agents trained with SAF can still function well in
these out-of-distribution (OOD) settings, we conduct experiments to test the agents’ performance on
TeamSupport and TeamTogether environments with heterogeneity or coordination levels that
are different as compared to the ones used during training. First, we train the agents in environments
with a coordination level of 2 and a heterogeneity level of 1 and test their performance at coordination
levels between 1 and 3, and a heterogeneity level of 1. As shown in Figure 7, SAF shows better transfer
in the more difficult TeamTogether environment than other methods but fails to perform as well
as MAPPO in the TeamSupport environment. Next, we train the agents in environments with a
coordination level of 1 and a heterogeneity level of 2 and test their performance at a coordination level
of 1 and heterogeneity levels between 1 and 5. As shown in figure 7, SAF shows superior performance
in TeamTogether environment and matches the performance of MAPPO in TeamSupport envi-
ronments. This suggests that SAF has similar robustness to changes in coordination and heterogeneity
levels as some of the widely used baselines in the MARL community.
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Figure 5: Ablation study to understand the contribution of the Knowledge Source (KS) and the shared
policy pool (PP) to the performance of SAF in HECOGrid environments. In the legend, KS indicatess
SAF without the Pool of Policies whereas KS-PP essentially means SAF (a) Performance of the KS
and the pool of policies against baselines in increasing levels of heterogeneity. (b) Performance of the
KS and the pool of policies against baselines in increasing levels of coordination. KS contributes to
performance in all settings and PP especially improves performance in heterogeneous environments.

Ablation Study for OOD generalization Figure 8(a) shows test-time generalization results on
the TeamTogether and TeamSupport environments where the training coordination level was
set to 2 and the heterogeneity was set to 1. The pool of policies in SAF is important in getting good
performance especially when it’s tested on levels of coordination not seen during training. Moreover,
Figure 8(b) further validates that the pool of policies is important in handling varying environment
dynamics as SAF was trained on a heterogeneity level of 2 and a coordination level of 1 and the
results on unseen levels of heterogeneity are better than SAF trained without a pool of policies. These
ablations show that the introduced pool of policies in SAF is key to its performance.

Comparison with QPLEX baseline Performance of QPLEX and QPLEX with a shared pool of
policies are compared in different environments with 5 agents. The reason only pool of policies
but not share knowledge source was used is because QPLEX already has a similar mechanism.
The results suggest that a shared pool of policies among agents improve learning efficiency when
coordination level is high (Figure 9).

A.3 ALGORITHM

In this section, we summarize the components of SAF and its computations in the form of a pseudo-
code outlined in algorithm 1.
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Figure 6: Examples of training curves for SAF, MAPPO and IPPO on the KeyForTreasure,
TeamSupport and TeamTogether at different coordination and Heterogeneity levels. At the
initial stage of the SAF show a faster increase in performance. After convergence, SAF shows
improved performance in most tasks compared to IPPO and MAPPO.
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Figure 7: Out-of-Distribution generalization study to understand the robustness of SAF to changes
in coordination and heterogeneity levels in HECOGrid environments. Agents are trained at certain
heterogeneity and coordination levels, and tested on unseen levels. In general, SAF matches MAPPO
in robustness to shifts in coordination or heterogeneity level
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Figure 8: Ablation study for Out-of-Distribution generalization. In order to understand the robustness
of different ablated models to shifts in either coordination or heterogeneity levels, models trained
with coordination level 2 and heterogeneity level 1 are tested across different coordination levels
(Figure 8(a)). In a similar manner, The models trained on coordination level 1 and heterogeneity level
2 are tested across different heterogeneity levels (Figure 8(b)). KS indicates SAF without pool of
policies whereas, KS PP means SAF.

A.4 IMPLEMENTATION DETAILS

In this section, we present the necessary implementation details for reproducing our results. We first
present the algorithm’s hyperparameters, next, we present the architectures used for each algorithm,
finally, we present the environments hyperparameters.

A.4.1 ALGORITHMS HYPERPARAMETERS

In this section, we present the relevant hyperparameters related to training the algorithms showcased
in our paper. The hyperparameters shown in this section are kept fixed throughout all three environ-
ments. MAPPO, IPPO and SAF are all trained using Proximal Policy Optimization and Table A.4.1
summarizes the training hyperparameters for each algorithm. IPPO and MAPPO are trained with
Generalized Advantage Estimation (GAE) while SAF is not. All algorithms are trained with Adam
optimizer with a fixed learning rate of 0.0007 throughout training, a weight decay of 0 and ϵ = 10−5.

A.4.2 ARCHITECTURAL HYPERPARAMETERS

In this section, we present the exact architectures along with the hyperparameters that were used for
each algorithm.

Actor and Critic Architectures Listing 1 illustrates the pytorch-style implementations of the actor
and critic architectures. While MAPPO shares parameters for both the actor and the critic, IPPO
trains separate networks for both the actor and the critic. SAF uses the same architecture (and the
same hyperparameters) as IPPO and MAPPO for the actor network, with the difference that SAF
initializes a pool of policies for each agent. Listing 2 shows a pytorch-style implementation of a
CNN that acts as our feature extractor. For IPPO and MAPPO, each agent’s observation is fed to the
CNN to generate a feature vector z ∈ RN×C where N = 10 is the number of agents and C = 64
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(a)

(b)

(c)

Figure 9: Performance comparison between QPLEX baseline and QPLEX with pool of policies in
different environments with 5 agents. The reason only pool of policies but not share knowledge
source was used is because QPLEX already has a similar mechanism. The results suggest that a
shared pool of policies among agents improve learning efficiency when coordination level is high
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for t← 1 to T do
Step 1: Each agent i having state information oi,t (encoded partial observation), generates a

message.

∀i ∈ {1, . . . , N},m′
i,t = gθ(oi,t)

M ′
t = (m′

1,t,m
′
1,t,m

′
2,t...,m

′
N,t)

Step 2: KS integrates information from all agents

Q̃ = FtW̃
q

Ft ← softmax
(

Q̃(M ′
tW̃

e)T√
de

)
M ′

tW̃
v

KS state Ft is then updated trough self-attention

Step 3: Information from KS is made available to each agent

qsi,t = W q
readsi,t, ∀i ∈ {1, . . . , N}

κ = (FtW
e)T

Mt = softmax
(

Qs
tκ√
de

)
FtW

v

Step 4: Policy Selection from the pool

∀i ∈ {1, . . . , N}


qpolicyi,t = gpsel(si,t)

indexi = GumbelSoftmax

(
q
policy
i,t (KΠ

t )T

√
dm

)
ai,t = ai,indexi,t

end
Algorithm 1: Detailed algorithm for learning MARL policies with SAF

Method No. of parameters
MAPPO 2,477,296

IPPO 1,740,016
SAF (Our Method) 2,698,342

Table 2: Comparing the number of parameters used in our implementations of the discussed ap-
proaches

SAF MAPPO IPPO

Learning rate 0.0007 0.0007 0.0007
PPO update epochs 10 10 10
Number of minibatches 1 1 1
Discount rate γ 0.99 0.99 0.99
GAE No Yes Yes
GAE’s λ - 0.95 0.95
Entropy loss coefficient 0.01 0.01 0.01
Value loss coefficient 0.5 0.5 0.5
Advantage Normalization Yes Yes Yes
Value loss clipping value 0.2 0.2 0.2
Gradient norm clipping value 9 10 10
Value loss coefficient 0.5 0.5 0.5
Optimizer Adam Adam Adam
Optimizer’s epsilon (ϵ) 1e-5 1e-5 1e-5
Weight decay 0 0 0

Table 3: Hyperparameters used for training the MARL algorithms across all the HECOGrid environ-
ments.
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the hidden dimension. The feature vector z is fed to the actor network to get the action probabilities.
For IPPO, the feature vector z is fed as is to the critic to get the value function, while for MAPPO, a
vector z̃ = concatenate(z,dim=-1) ∈ RNC is formed by concatenating feature vectors from
all agents and then fed to the critic, that’s why we make the distinction between different critic
architectures in Listing 1.

1 from torch import nn
2

3

4 n_agents = 10
5

6 def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
7 nn.init.orthogonal_(layer.weight, std)
8 nn.init.constant_(layer.bias, bias_const)
9 return layer

10 # actor's output is a vector of 7 channels which corresponds to the
number of actions.

11 actor = nn.Sequential(
12 layer_init(nn.Linear(64, 128)),
13 nn.Tanh(),
14 layer_init(nn.Linear(128, 128)),
15 nn.Tanh(),
16 layer_init(nn.Linear(128, 7))
17 )
18

19 critic_ippo = nn.Sequential(
20 layer_init(nn.Linear(64, 128)),
21 nn.Tanh(),
22 layer_init(nn.Linear(128, 128)),
23 nn.Tanh(),
24 layer_init(nn.Linear(128, 1))
25 )
26

27 critic_mappo = nn.Sequential(
28 layer_init(nn.Linear(64 * n_agents, 128)),
29 nn.Tanh(),
30 layer_init(nn.Linear(128, 128)),
31 nn.Tanh(),
32 layer_init(nn.Linear(128, 1))
33 )

Listing 1: Pytorch-style implementation of the actor and critic architectures with the hyperparameters
used in the paper for IPPO and MAPPO. We also provide implementation for the orthogonal
initialization scheme.

1 from torch import nn
2 import torch.nn.functional as F
3

4 class CNN(nn.Module):
5 def __init__(
6 self,
7 in_channels=3,
8 channels=[32, 64],
9 kernel_sizes=[4, 3],

10 strides=[2, 2],
11 hidden_layer=512,
12 out_size=64):
13

14 super().__init__()
15

16 self.conv1 = nn.Conv2d(in_channels, channels[0], kernel_sizes[0],
strides[0])

17 self.conv2 = nn.Conv2d(channels[0], channels[1], kernel_sizes[1],
strides[1])

18 self.linear1 = nn.Linear(2304, hidden_layer)
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19 self.linear2 = nn.Linear(hidden_layer, out_size)
20

21 def forward(self, inputs):
22 x = F.relu(self.conv1(inputs / 255.))
23 x = F.relu(self.conv2(x))
24 x = x.reshape(x.shape[0], -1)
25 x = F.relu(self.linear1(x))
26 x = self.linear2(x)
27

28 return x

Listing 2: Pytorch-style implementation of the CNN that generates a feature vector from the
observations. The feature vector is then input to the actor and the critic.

Mapping function Architectures SAF makes use of MLPs architectures to encode the partial
observations, messages, policies and to combine encoded state and encoded messages. Each agent’s
observation is encoded with a gθ that is a CNN (see Listing 2) which generates a feature vector z.
The agent’s states are derived from the observation encoding using gw which is the State Projector.
gϕ projects the concatenation of the agent’s state and message. Finally, gpsel is an MLP that encodes
z and is used to select a policy from the pool of policies. See Table A.4.2 for an overview of the MLP
architectures and their hyperparameters.

gθ
FC(64)
FC(128)

Input State [64]

gw
FC(64)

FC(128)
Input State [64]

gpsel
FC(64)

FC(128)
Input State [64]

gϕ
FC(64)
FC(128)

Input State [128]

Table 4: Mapping functions used to encode partial observations, messages, policies and to combine
encoded state and encoded messages.

Knowledge Source Hyperparameters We present the hyperparameters used in the
Perceiver-IO architecture (Jaegle et al., 2022) that makes up the knowledge source. We use 2
Perceiver layers and use L = 4 slots for the knowledge source. The number of policies in the pool is
set to 4. Table A.4.2 summarizes the hyperparameters used to define both the Perceiver Encoder and
the Cross Attention Layer.

Perceiver-IO Hyperparameters Values

PerceiverEncoder Hyperparameters
latent dimension 4

num latent channels 64
cross attention channels 64

self attention heads 1
self attention layers per block 1

self attention blocks 1
dropout No

CrossAttention Hyperparameters
query dimension 64

key, value dimension 64
num query, key channels 64

num value channels 64
dropout No

Table 5: Hyperparameters used to define the Perceiver-IO architecture used within the Knowl-
edge Source.
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A.4.3 ENVIRONMENT HYPERPARAMETERS

This section presents the hyperparameters for our three environments excluding coordination/hetero-
geneity levels since those are experiment dependent and are clarified in the main text. The agents

TeamTogether TeamSupport KeyForTreasure

Gym Observation Space Box(0,255,(28,28,3),dtype=uint8)
Gym Action Space Discrete(7)
Number of treasures 100 100 100
Grid size 30 30 30
Max. number of steps/episode 50 50 50
Partial View Size 7 7 7
View Tile Size 4 4 4
Clutter Density 0.1 0.1 0.1

Hyperparameters used in the paper for all three environments. The partial view size parameter
controls how much of the grid the agent can see.
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