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ABSTRACT

Despite the recent success of artificial neural networks on a variety of tasks, we
have little knowledge or control over the exact solutions these models imple-
ment. Instilling inductive biases—preferences for some solutions over others—
into these models is one promising path toward understanding and controlling
their behavior. Much work has been done to study the inherent inductive biases of
models and instill different inductive biases through hand-designed architectures
or carefully curated training regimens. In this work, we explore a more mechanis-
tic approach: Subtask Induction. Our method discovers a functional subnetwork
that implements a particular subtask within a trained model and uses it to instill
inductive biases towards solutions utilizing that subtask. Subtask Induction is
flexible and efficient, and we demonstrate its effectiveness with two experiments.
First, we show that Subtask Induction significantly reduces the amount of training
data required for a model to adopt a specific, generalizable solution to a modular
arithmetic task. Second, we demonstrate that Subtask Induction successfully in-
duces a human-like shape bias while increasing data efficiency for convolutional
and transformer-based image classification models. Our code is available at the
following anonymous repository link.

1 INTRODUCTION

Neural networks have come to dominate most fields of machine learning (He et al., 2015a; Brown
et al., 2020; Radford et al., 2022; Mildenhall et al., 2020), but we have little control over the algo-
rithms these models learn during training. To address this problem, much work has been done to
instill inductive biases — preferences for some solutions over others — into neural networks. Study-
ing inductive biases is interesting for at least two reasons: (1) From a practical standpoint, inductive
biases could be used to discourage models from adopting solutions that leverage incorrect or biased
information to make decisions (e.g. sorting job candidates on the basis of protected characteristics,
or exploiting heuristics that do not generalize to a larger domain). (2) From a theoretical standpoint,
human learning is thought to be mediated by a variety of inductive biases, which enable better sam-
ple efficiency and better generalization capabilities (Lake et al., 2017). Contemporary deep learning
systems demonstrate weaknesses related to both of the above: they require massive datasets and
computing power to train (Touvron et al., 2023; Radford et al., 2021; Dosovitskiy et al., 2020) and
can often be sensitive to small perturbations of inputs (Szegedy et al., 2014; Geirhos et al., 2019;
Hermann & Kornblith, 2019). Thus, a better understanding of inductive biases and how to induce
them could pave the way toward improving such systems.

Current approaches to instilling inductive biases in models require either (1) limiting model expres-
sivity through handcrafted architectural constraints, (2) metalearning over a large dataset (Griffiths
et al., 2019), or (3) training or fine-tuning on augmented datasets, which may (Andreas, 2020) or may
not (Huang et al., 2020; Khashabi et al., 2020) work. In contrast, we propose Subtask Induction, a
method of instilling inductive biases by (1) localizing a subnetwork within a trained neural network
that performs a specific subtask within an overall model, and (2) initializing another network with
only these subnetwork weights, leaving the remaining weights randomly initialized. This instills a
specific computation into a model from the outset, which provides a soft inductive bias towards so-
lutions that leverage that subtask. We demonstrate that Subtask Induction is effective on a range of
tasks and model architectures. While our results are an early proof of concept, they open a door for
future research on more mechanistic approaches to instilling inductive biases. This approach is more
flexible than architectural design, simpler and cheaper to train than metalearning-based approaches,
and more reliable than data augmentation based approaches.
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Figure 1: Subtask Induction localizes a subnetwork that implements a certain subtask in a trained
neural network and transfers it to a randomly initialized model, thereby instilling an inductive bias
towards solutions utilizing the specific subtask. The figure above illustrates the 3 stages of Subtask
Induction in our experiments: we first train for a binary weight-level mask representing the sub-
network for a specific subtask through subnetwork discovery, then perform subnetwork transfer by
copying the subnetwork weights to a newly initialized model and keep it frozen while optimizing
the re-initialized weights. We demonstrate through two experiments that transferring subnetworks
effectively and reliably instills desired inductive biases.

Our contributions are as follows:

1. We introduce Subtask Induction, a novel method that leverages recent advancements in
interpretability to instill inductive biases.

2. We demonstrate the effectiveness of Subtask Induction on an arithmetic task, showing that
Subtask Induction provides a preference for learning a particular solution with minimal
training signal and significantly reduces the amount of data required for generalization.

3. We generate and release Mean-pooled ImageNet, a variant of the ImageNet dataset (Rus-
sakovsky et al., 2015) where the pixel values of each image are mean-pooled within seman-
tic segments of the image, effectively erasing local texture while retaining global shape.

4. We apply Subtask Induction to image classification on both ResNet18 and ViT models, in-
stilling a human-like inductive bias towards classifying based on shape information, rather
than texture information.

2 RELATED WORK

Inductive Bias from Architectural Constraints Imposing architectural constraints is the stan-
dard approach for instilling inductive biases in artificial neural networks. For example, convolutional
neural networks (LeCun et al., 1989) and recurrent neural networks (Hochreiter & Schmidhuber,
1997; Cho et al., 2014) are both designed to exploit useful properties of their input data (i.e. shift
invariance and sequential structure). Neurosymbolic approaches give even stronger inductive biases
by integrating neural networks with human-designed computations, thereby limiting the kinds of
solutions a model can learn (Andreas et al., 2016; Feinman & Lake, 2020; Ruis & Lake, 2022).
These approaches typically perform very well in the domain that they were crafted for, but require
extensive knowledge about the domain.

Inductive Bias from Data Augmentation and Meta-learning Data augmentation procedures
have also been proposed to provide inductive biases. This approach has been validated in both
vision (Geirhos et al., 2019; Hermann & Kornblith, 2019) and language (Andreas, 2020). How-
ever, the reliability of data augmentation for instilling inductive biases has been called into question
(Jha et al., 2020; Huang et al., 2020; Khashabi et al., 2020). Relatedly, some work has explored
a meta-learning approach toward instilling inductive biases (Griffiths et al., 2019; McCoy et al.,
2019; Kumar et al., 2022; Lake, 2019). However, this approach requires meta-learning on a large
dataset comprised of multiple related tasks, and the resulting model is still not guaranteed to adopt
the desired inductive bias (Kumar et al., 2020).
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Mechanistic Interpretability Our work is inspired by recent advances in mechanistic inter-
pretability – a burgeoning field whose goal is to reverse engineer the algorithms that neural networks
learn. Several recent works have succeeded at this goal for both toy models (Olsson et al., 2022;
Nanda et al., 2023; Chughtai et al., 2023) and more realistic models (Wang et al., 2022; Hanna et al.,
2023; Merullo et al., 2023). Most closely related to the present article is recent work analyzing neu-
ral networks through the lens of subnetworks (Csordás et al., 2021; Lepori et al., 2023; Casper et al.,
2022; Voss et al., 2021; Hamblin et al., 2022). This line of research has shown that trained neural
networks are often composed of modular subnetworks, each of which implements specific subtasks.

3 LOCALIZING AND TRANSFERRING SUBNETWORKS

Subtask Induction builds upon recent work in neural network intepretability and investigates the
hypothesis that one can transfer subtasks from one model to another by transferring a subnetwork
encoding that information, thereby instilling an inductive bias. If this hypothesis is true, transferring
a certain subtask should bias a model towards learning solutions that use that subtask. In addition,
we would also expect a greater sample efficiency and faster convergence if the inductive bias turns
out to be helpful to the task.

This section formalizes Subtask Induction as a two-stage process. We first localize a subnetwork
within a trained model through subnetwork discovery (Section 3.1), which seeks to isolate a func-
tional subtask captured by the original model. We then transfer the subnetwork (Section 3.2) to
randomly initialized neural networks and train with a different objective to test if the transferred
subtask provides significant inductive biases for solutions that rely on that subtask over those that do
not. We provide a graphical illustration of our method in Figure 1. Our implementation is integrated
with the Python package NeuroSurgeon (Lepori et al., 2023).

3.1 LOCALIZING SUBNETWORKS

Given a trained neural network Mθ with parameters θ, we define a subnetwork as a model where a
binary mask γ ∈ {0, 1}|θ| is applied over the original model parameters, such that θsub = θ ⊙ γ. In
other words, a subnetwork is a variant of the original neural network where a subset of the parameters
is kept the same, and the rest are set to zero. We say that a subnetwork implements a subtask if
Mθsub produces the expected outcomes of a more basic task that potentially contributes to solving
the original task. E.g. a subtask for an image classification model could be a curve detector, and
a subtask in a language model could be a syntax parser. If we successfully find a subnetwork that
achieves a subtask, we say that such a subtask is implemented within a model.

Optimizing for a binary mask is practically intractable due to the 2|θ| possible combinations. We
thus apply continuous sparsification (Savarese et al., 2020) to train a continuous approximate of
the binary mask that is discretized at test time. Continuous sparsification re-parameterizes a binary
mask with element-wise sigmoid functions and schedules a scale coefficient β that increases through
training to “anneal” a soft mask to a hard one. Our implementation of this algorithm is described
in more details in Appendix A. In order to find a subnetwork for a particular subtask, we train the
mask by defining a new training objective that captures the subtask and perform gradient descent to
localize a set of parameters that minimizes loss on the subtask. We name this process subnetwork
discovery.

3.2 TRANSFERRING SUBNETWORKS

After obtaining a subnetwork with mask γ sub, we initiate a subnetwork transfer by transfering the
parameters within the subnetwork (i.e. parameters where γ sub i = 1) to a randomly initialized copy
of the model. We then train the network on the new training objective. During training, we only
optimize the randomly initialized parameters and keep the subnetwork frozen.

Let L new denote the optimization objective of the new task, θ original denote pretrained parameters,
and θ new denote the re-initialized parameters. The training objective then becomes

argmin
θ new ∈R|θ|

(
L new

(
Mγ sub ⊙ θ original+(1−γ sub) ⊙ θ new

))
. (1)

3



Under review as a conference paper at ICLR 2024

T1

S1 S2

a b

S1

S1

a b

T2

S1 S3

a b

Sn

x Tn

Sn

Computation node for
subtask 

Frozen computation node

Input Output

Subnetwork
Discovery

Original
Model

Subnetwork
Transfer

Ablated (zeroed-out)

Figure 2: Graphical illustration of our experimental setup. Tasks T1 and T2 are setup to be combi-
nations of three subtasks, S1, S2, and S3, where S1 is shared between the two. We train a model
on T1, then perform Subtask Induction by localizing and transferring the shared subtask S1 to instill
inductive biases towards a new model trained on T2. We find that transferring the subnetwork im-
proves the model’s ability to learn T2 significantly.

4 ARITHMETIC EXPERIMENTS

To verify the effectiveness of Subtask Induction, we train neural networks on an arithmetic dataset,
where subtasks can be easily defined and tested. For this, we use tasks in the form of those studied
by Power et al. (2022). In Power et al.’s experiments, an overparameterized neural network is trained
on a synthetic dataset of some computation a ◦ b = c, where a, b, and c are discrete symbols and
◦ denotes an arithmetic operation with two arguments (for example, a + b or a2 + ab). We isolate
a subnetwork implementing some particular subtask of the original training task. We then transfer
this subnetwork to a new task that should benefit from having access to this subtask.

4.1 DATASET

We algorithmically generate datasets by defining a computation ◦ and sampling two integers a and
b from a chosen range [ 0,max). We then formulate the expression into a sequence of four tokens
<a> <b> <sep> <c> where each element in a pair of brackets indicates a token. Here “sep”
represents the special separator token, and c is the expected output of the computation a ◦ b. This
formulation allows us to train a decoder-only transformer on the sequence with a standard next-token
prediction objective.

In all of the following experiments, we fix max = 1000. We tokenize each number into a discrete
symbolic token, rather than an integer or floating point representation, and each token embedding is
learned individually. Since each number is represented by a discrete token, we constrain the dataset
such that each of the possible tokens must appear at least once in the training set. Following prior
work (Power et al., 2022; Nanda et al., 2023), we take modulo of the output by a prime number p to
restrict the output space (i.e. the operation is always in the form “a ⋆ b (mod p)”, where the modulo
is taken after the two-place operator “⋆”). In all our experiments we fix p = 7.

4.2 EXPERIMENTAL SETUP

We generate training data for two tasks, T1 := a+ab (mod p) and T2 := a2+ab (mod p). Note that
the two tasks can be described as the combination of results from subtasks S1 := ab (mod p), S2 :=
a (mod p), S3 := a2 (mod p), and T1 and T2 share the computation node S1. We perform Subtask
Induction from T1 to T2 by transferring S1. Figure 2 demonstrates this procedure graphically. The
experiment follows three steps:

1. Train a neural network on T1, where it is expected to solve an arithmetic task.
2. Performing subnetwork discovery to localize a subnetwork that solves S1.
3. Transferring the subnetwork to T2 and test for inductive bias towards solutions utilizing S1.

In step 1, we generate training data for the computation T1 by randomly sampling 20% of the total
10002 combinations, which gives us 200,000 rows of training data. We use another independently
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generated set of 20,000 samples for test data. We train a decoder-only transformer on this dataset
with a standard next token prediction objective, and report accuracy/loss on the last token, as the last
token represents the solution to the problem.

This task a + ab (mod p) can be intuitively broken down into constituent subroutines: computing
a (mod p), computing ab (mod p), and combining the results into the final output. We hypothesize
that models also implicitly decompose the task in this manner. To probe for a subroutine responsible
for the computation ab (mod p), we generate 50,000 samples of the computation ab (mod p), and
perform subnetwork discovery. This step gives us a binary mask γ sub, and the subnetwork Mθ ⊙ γ sub

should perform the computation ab(mod p) instead of the original training objective a+ab(mod p).

We then investigate if the subnetwork provides an inductive bias toward a solution utilizing the
subtask. We intentionally make the training objective T2 appear ambiguous by supplying the model
a minimal dataset of 1000 samples of the format Xn=1000

i = <i>, <i>, <sep>, <i ◦ i>,
where the two inputs are identical. This ensures that each discrete token has appeared at least once
while leaving the training task ambiguous. Concretely, the objective would be ambiguous between
computations 2a2 (mod p), 2b2 (mod p), and a2 + b2 (mod p).

In addition to the minimal dataset above, we manipulate the number of disambiguation samples
present in the training set, i.e., training examples in which the two inputs are no longer constrained
to be identical. These are randomly sampled from the input space of {0, 1, 2, ..., 999}2, and provides
information to disambiguate the correct computation T2 from other possible computations.

We vary the number of disambiguation samples to quantify the inductive bias of neural networks.
With a strong inductive bias towards the correct rule, a small number of disambiguating examples
would be enough to disambiguate the task1. If Subtask Induction is effective, it should enable the
model to achieve higher accuracies with fewer disambiguating examples. The evaluation set and the
test set always contain 1000 data points, each of which is generated independently from a random
sample over all possible combinations.

We experiment with several GPT2 configurations, varying the number of layers from 2 to 12. We
vary the number of disambiguation samples from 10 to 104 (0.001% to 1% of total possible combi-
nations, respectively) with constant intervals for a total of 16 different sample sizes on each model.
After transferring subnetwork weights, we train each model for 100 epochs and save the model
with best accuracy on the evaluation set, and then report the accuracy achieved on the test set (See
Appendix B.1 for model configuration and training details).

4.3 RESULTS

If Subtask Induction successfully instills an inductive bias, we would expect our model to achieve
higher test accuracy with less training data, relative to a randomly initialized model. We find this
to be the case: as shown in Figure 3, models initialized with subnetworks with as few as 3.2% of
total parameters (see Table 2) representing subtask S1 gain significant inductive bias towards the
solution utilizing S1. This is evidenced by the significantly higher sample efficiency: all model
configurations trained with Subtask Induction achieve near-perfect accuracy with as few as 1000
disambiguation training samples (0.1% of total possible combinations). As a comparison, models
trained from scratch only average 50.6% test accuracy when trained on the same data and never
reach perfect generalization accuracy within the range of training samples tested (0 to 104).

We set up the following controls to validate the effectiveness of Subtask Induction:

1. Comparison with full model transfer: Since the subnetwork captures S1, the only shared
computation between T1 and T2, we hypothesize that it carries all the “helpful” information
a neural network trained on T1 could provide, and thus expect Subtask Induction to have
comparable performance as transferring the entire model trained on T1. This turns out to
be the case: Across sample sizes and model configurations, transferring subnetworks of
around 3% to 7% parameters achieves at least as good generalization accuracy and sample
efficiency as transferring the entire model.

1Ideally, with a sufficiently strong inductive bias, no unambiguous examples would be required, though in
practice we do not obtain such a strong inductive bias.
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Figure 3: Test accuracy vs number of disambiguation training samples. Left: average over all
model configurations (GPT-2, 2 to 12 layers), right: One configuration (GPT-2, 12 layers) with
standard deviation across 5 runs. The horizontal axis is in log scale. Trials shown in Figure include
Subtask Induction compared against 3 controls: randomly initialized model, transferring randomly
sampled subnetworks, and transferring the entire model trained on T1. Despite transferring less than
10% of all parameters, Subtask Induction yields comparable and often higher accuracy compared to
transferring the entire model and boosts data efficiency significantly compared to random controls.

2. Comparison with randomly sampled subnetwork: Intuitively, transferring a subset of pa-
rameters from a model trained on T1 could provide benefits for training on T2 purely due
to the similarity of the two tasks. We control for this by sampling a random subnetwork
containing the same number of parameters as a subnetwork localized through subnetwork
discovery2 and transferring the sampled subnetwork. This gives uniformly worse results:
while still better than random initialization, a randomly sampled subnetwork requires on
average around 6 times as much data in order to reach perfect generalization accuracy.

In addition to the results in Figure 3, all of the patterns reported above hold in each of the individual
model configurations as well. We also experiment with a range of different arithmetic tasks (e.g.
a3 + ab) and subnetworks. We report these extended results and additional analysis in Appendix B.

5 VISION EXPERIMENTS

In this section we apply Subtask Induction on image classification tasks, a highly complex domain
for which no complete algorithmic solutions are known. While contemporary deep neural networks
are able to meet or even exceed human-level accuracy on image classification (He et al., 2015b;a;
Dosovitskiy et al., 2020), they often rely on a very different set of cues than humans do, thereby lim-
iting their robustness and generalization capabilities (Dodge & Karam, 2017). Prominently, while
human learners overwhelmingly rely on shape information (Landau et al., 1988), convolutional neu-
ral networks are primarily reliant on local texture (Geirhos et al., 2019). We show that by localizing
and transferring subnetworks within pretrained models, it is possible to instill a more human-like
bias towards shape information.

5.1 DATASET: MEAN-POOLED IMAGENET

In order to quantify the shape and texture biases of image classification models, we introduce Mean-
pooled ImageNet, a variant of ImageNet where local, high-frequency texture information of images
is removed while maintaining global shape information. We use Segment Anything (Kirillov et al.,

2To ensure as fair a comparison as possible, the randomly sampled subnetwork is sampled over the same
layers as the subnetwork (i.e. all the attention layers and feed-forward MLPs, but not the embedding layers),
and the number of parameters sampled at each individual layer is controlled to be the same as the trained
subnetwork on the respective layer. This eliminates possibilities that simply sampling the right number of
parameters per layer gives equivalent results.
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Figure 4: Qualitative evaluation of Mean-pooled ImageNet. Semantic segmentation followed by
mean pooling retains most shape information in a naturalistic way while erasing local texture.

2023) to partition the image into semantic segments. After obtaining an image embedding, we query
each image with a 16×16 grid of points to obtain semantic segments corresponding to each segment.
To ensure that small but semantically relevant patches are not missed by the initial sampling, we
further query on a 2×2 crop of the image and collect masks returned by the query. We then filter out
masks that are smaller than 100 pixels and combine all masks for a non overlapping set of segments
covering the entire image. Lastly, we replace each pixel value in the image by the mean pixel value
of the segment it belongs to. We provide a few samples of Mean-pooled ImageNet for qualitative
evaluation in Figure 4 and invite the reader to guess their corresponding classes.

Mean-pooled ImageNet employs a naturalistic augmentation strategy as it does not shift the over-
all color scheme of images or intentionally occlude any information apart from local texture. For
humans, this augmentation is unlikely to dramatically raise the difficulty of the task or impact a clas-
sification decision. However, we find this dataset to be challenging for image classfication models.
While ResNet18 reaches 95.4% accuracy when fine-tuned on 16-class ImageNet, its accuracy on
the mean-pooled counterpart is only 36.8%. ViT performs much better on this dataset, but still only
achieves 57.3% accuracy.

5.2 EXPERIMENTAL SETUP

Similar to the experiments on arithmetic tasks, we instill different inductive biases into image clas-
sification models by localizing a subnetwork within a pretrained image classification model using
Mean-pooled ImageNet, and then transferring the subnetwork into a re-initialized model.

We perform all our experiments on 16-class ImageNet (Geirhos et al., 2019) and its mean-pooled
counterpart. Each class label is aggregated from one or multiple ImageNet classes. The dataset
contains a total of 213k images from 16 common classes in the train split of ImageNet. As the dataset
is unbalanced between classes, we additionally create two smaller but class-balanced subsets: a total
of 13.9k randomly downsampled mean-pooled images are used to discover the subnetwork within a
pretrained model, and an additional 1.54k images are used for evaluation and model selection. We
de-duplicate our evaluation dataset with our training datasets and report accuracy on the validation
split of ImageNet, which is not used for either training or model selection.

We experiment with two model architectures: ResNet18 (He et al., 2015a) and ViT-base (Doso-
vitskiy et al., 2020). We perform subnetwork discovery on both models to localize a subnetwork
that maximizes accuracy on mean-pooled images. Lastly, we transfer the subnetwork weights and
re-train the model on 16-class ImageNet. As baselines, we compare against pretrained models that
are finetuned on a data mixture of 213K 16-class ImageNet images and 15.4K mean-pooled images.
This approach mimics the data augmentation approach to instilling inductive biases that have been
explored in prior work (Andreas, 2020). We also compare against training these models from scratch
and fine-tuning only the classification head of base models, which quantifies inherent inductive bias
of the architecture and the performance base models, respectively.

5.3 RESULTS

Pretrained Models Capture Shape Subtasks For both ResNet18 and ViT, we are able to dis-
cover subnetworks achieving significantly higher accuracy on mean-pooled images than the original
model, suggesting that shape-reliant subtasks exist within the original model. Within ResNet18,
we find a subnetwork with 14.9% of the parameters achieving 73.8% classification accuracies on
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Figure 5: Training dynamics Comparison, Subtask Induction and training from scratch for ResNet18
and ViT. Left: evaluation accuracy on original ImageNet images, right: evaluation accuracy on
Mean-Pooled Imagenet. Models initialized with Subtask Induction reach higher accuracies with
fewer optimization steps and retain a much higher accuracy on Mean-pooled ImageNet.

Table 1: Test accuracy of Subtask Induction compared with other training strategies. We note that:
(1) Subtask Induction instills a strong shape bias (18.8% performance increase on Mean-pooled
ImageNet for ResNet18, 8.7% for ViT) despite the re-initialized network never being directly trained
on mean-pooled images, while data augmentation does not provide such bias, (2) Subtask Induction
increases sample efficiency, as both ResNet and ViT reach much higher accuracy compared to from-
scratch models when trained on 16-class ImageNet, (3) Subtask Induction gives much more robust
models as seen on the Cue Conflict results, where our ResNet18 outperforms pretrained ResNet18
and reaches levels comparable to pretrained ViT. While ViT trained with Subtask Induction is not as
strong, it still performs significantly better than data mixture and from-scratch baselines and has the
best performance on mean-pooled images.

Model Train Set Size ImageNet Cue Conflict
Original Pooled Accuracy Robustness

RN18 + Subtask Induction 213k 80.7% 55.6% 27.1% 77.4%
RN18 from scratch 213k 68.9% 24.7 % 15.9% 75.3%
RN18 + Data Mixture 1.28M + 15.4k1 91.9% 38.3% 18.9% 55.3%
RN18 Pretrained 1.28M 95.4% 36.8% 18.9% 56.0%

ViT + Subtask Induction 213k 83.4% 66.0% 20.0% 72.1%
ViT from scratch 213k 58.4% 23.4% 12.1% 70.3%
ViT + Data Mixture 14.2M + 15.4k1 84.3% 35.1% 15.0% 64.7%
ViT Pretrained 14.2M 97.1% 57.3% 28.5% 73.8%
1 Data Mixture refers to the fine-tuning of a pretrained model with a mixture of original images and additional mean-pooled images
(the same 15.4k used for subnetwork discovery) in order to instill a bias towards shape-based classification

mean-pooled images. In ViT, we were able to localize a 14.6% parameter subnetwork achieving
76.1% accuracy on mean-pooled ImageNet. Both achieve a significant accuracy boost compared to
pretrained models.

Subtask Induction Increases Sample Efficiency In Figure 5, we show the training dynamics
of ResNet and ViT trained with Subtask Induction compared against those trained from random
initialization. We see that models initialized from subnetworks are much more data and computation
efficient: on ResNet18, we observe that it achieves 11.8% better accuracy when trained on the same
dataset; ViT proves to be much more data hungry as it fails to achieve competitive accuracies when
trained on the 213k images of 16-class ImageNet. We also observe that the performance on mean-
pooled images is maintained throughout training, suggesting that solutions learned by both models
rely on the transferred subtask. In comparison, models trained from scratch with our small dataset
do not generalize to mean-pooled images.
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Transferring Subnetworks Instills Stronger Shape Bias We present results of Subtask Induction
compared against various baselines in Table 1. When the subnetworks are transferred and re-trained
on 16-class ImageNet, we find that they achieve competitive accuracies on the original images and
significantly better accuracies on mean-pooled images, suggesting a much stronger shape bias. In
comparison, fine-tuning pretrained models and training from scratch with the mean-pooled data
augmentation both fail to generalize to the held-out mean-pooled images. Notably, we show that
Subtask Induction successfully instills a shape bias into ResNet, allowing it to achieve an accuracy
comparable to pretrained ViT and 18.8% better than pretrained ResNet18, all while being trained
on a much smaller dataset (17% and 1.5% the size of ResNet and ViT training set, respectively).
While Subtask Induction gives weaker performance boosts to ViT, it still increases accuracy on
mean-pooled images by 8.7% and performs much better in every benchmark compared to training a
model from scratch on the same dataset.

In addition, we also observe that fine-tuning the model with data augmentation achieves uniformly
worse overall accuracy compared to using the pretrained model and only adapting the classifier layer,
suggesting that the small mean-pooled dataset used for subnetwork discovery does not give model
a shape bias when used for fine-tuning. This resonates with the finding in Jha et al. (2020): when a
model is finetuned on a small out-of-domain dataset, data augmentation often hurts especially if the
useful information in augmented data is hard to extract.

5.4 ANALYSIS: CUE CONFLICT

Next, we evaluate all of our models on the cue-conflict dataset introduced in Geirhos et al. (2019),
a dataset consisting of images in which texture and shape cues are dissociated from one another.
For example, this dataset contains images of dogs with the texture of an elephant overlaid on them.
Cue-conflict images attempt to exploit a model’s texture bias to change their prediction. For each
model, we report two metrics: (1) accuracy is the proportion of cue-conflict images that are classi-
fied correctly according to shape cues, (2) robustness is the proportion of image that are not classified
according to misleading texture cues. Ideally we would want a model to achieve high performance
on both accuracy and robustness. From the Cue Conflict columns of Table 1, we see that Subtask
Induction consistently yields more accurate and robust models than fine-tuning with data augmen-
tation. Consistent with our ImageNet results, we find that pretrained ViT already has a strong shape
bias. However, it was also trained on orders of magnitude more data (14.2M vs 213k) than our
ViT with Subtask Induction, which achieves comparable robustness on the cue-conflict data. Impor-
tantly, we also find that ResNet-18 trained with Subtask Induction achieves similar level of accuracy
and robustness as pre-trained ViT, despite the small amount of training data and the inherent texture
inductive bias of the ResNet architecture.

6 DISCUSSION

Inductive biases are crucial for understanding and controlling the solutions neural networks learn.
We present a new technique, Subtask Induction, that leverages recent advances in our mechanistic
understanding of trained models to instill such biases in neural networks. Across a range of ex-
perimental settings and model architectures, we demonstrated that Subtask Induction consistently
confers the inductive bias that we expect, yielding increased sample efficiency and robustness to out
of distribution stimuli. Furthermore, we demonstrated that our method has higher sample efficiency
and outperforms data augmentation approaches to instilling inductive biases.

Future Work Subtask Induction can be applied in wider contexts to instill specific inductive bi-
ases, either to encourage a model to learn particular solutions under limited data settings or to combat
existing model heuristics. Though Subtask Induction is promising, we also note several limitations
and avenues for future work. First, subtask induction requires supervised training of a binary mask
to perform subnetwork discovery, which requires constructing custom-designed datasets. Future
work might relax this constraint by decomposing a trained model in an unsupervised fashion, and
transferring subnetworks that are discovered by this decomposition. Furthermore, Subtask Induc-
tion directly transfers subnetworks, which is only possible between models of identical architecture.
Future work might seek to address this, perhaps by combining Subtask Induction with methods for
re-scaling models, such as the Linear Growth Operator (Wang et al., 2023).
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7 ETHICS STATEMENT

We believe that the present work is in compliance with the ICLR code of ethics. Subtask induction
can be used to influence the solutions that neural networks learn. This may have future implications
for bias, fairness, and safety of neural network models. However, we emphasize that the current
iteration of subtask induction is a proof of concept, and cannot and should not be used to render
models free from social biases in real-world systems.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed description of the models and training details in
both the main text and the appendix. Specifically, the experimental setup section in both the arith-
metic experiments (Section 4.2) and the vision experiments (Section 5.2) describes the configura-
tions of our model and the baselines. We use the official released weights from original authors for
ViT-base and ResNet18 for subnetwork discovery in Section 5. In addition, detailed explanation for
our hyperparameters and hyperparameter search strategies if applicable are provided in Appendix
B.1 and C.1. We release original code and configuration files.
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A CONTINUOUS SPARSIFICATION FOR SUBNETWORK DISCOVERY

For a trained neural network Mθ with parameters θ and a weight-level binary mask γ ∈ R|θ|,
continuous sparsification re-parameterizes the binary mask with mask weights s ∈ R|θ| as γ =
σ(βs), where σ stands for the sigmoid function 1

1+e−x and β is a scalar value scheduled in training.
Notice that this allows us to compute the gradients of s and use it to update the mask values. In
addition, we recover a hard binary mask as β →∞.

During training, we start with β start = 1 and apply an exponential scheduler such that it increases
by a fixed percentage each epoch until it reaches βfinal. By setting βfinal to a large value, we obtain
a mask that “anneals” from a soft sigmoid mask to an approximate of a binary mask at the end of
training. At test time we use a binary mask 1s>0 instead, which is equivalent to setting β to infinity.

For subnetworks with similar performance, we wish to find ones that are more sparse in order to
minimize the inclusion of noise and unrelated parameters. We achieve this by adding an l0 penalty
term based on the number of non-zero elements in the mask λ · ∥γ∥0 . Notice that under continuous
sparsification, this is equivalent to a ReLU-like penalty on the mask weights.

In order to localize a subnetwork achieving some specific subtask, we define a new training ob-
jective, which potentially includes new training data, different output space, and different training
objectives. Let Lsub be an objective function defined for a subroutine (e.g. cross-entropy loss on
input-output pairs), localizing the subnetwork essentially becomes solving

argmin
s∈R|θ|

(
Lsub

(
Mθ ⊙ σ(βs)

)
+ λ · ∥ σ(βs)∥0

)
. (2)

Algorithm 1 describes our implementation. We fix β final = 100 and initialize mask weights as −0.1
for all our experiments.
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Algorithm 1 Subnetwork Discovery through Continuous Sparsification

Require: model Mθ with trained parameters θ, final scale coefficient β final, mask initialization
value α, l0 penalty λ.
β ← 1
s← α|θ|

epoch← n
while epoch ̸= 0 do

Forward pass on Mθ⊙σ(βs)

loss← loss + λ · ∥σ(βs)∥0
Gradient descent on loss to update s ▷ Note that θ is not updated
β ← β · (β final)

1
n ▷ Exponential scheduler for β increases it at each epoch end

epoch← epoch −1
end while

return γ = 1s>0

B EXTENDED ARITHMETIC TASK RESULTS

B.1 MODEL CONFIGURATION AND HYPERPARAMETERS

For the original task T1, we train decoder-only transformers of the GPT-2 architecture (Radford
et al., 2019) with 4 attention heads, embedding size of 128, and intermediate representation size of
512. To increase the diversity of models, we repeat for a range of layer counts {2, 4, 6, 8, 10, 12} .
When trained with AdamW optimizer with β1 = 0.9, β2 = 0.999, and a learning rate of 5−4, all
model configurations successfully learn the computation, as evidenced by the near-perfect or perfect
(≥ 0.999) accuracy on the independent test set.

We localize the subnetwork by freezing all original parameters and initializing a mask γ sub over
every attention and feed-foward layer of the original model. We train the mask for 50 epochs with
β final = 100. We experiment with sparsity penalty λ ∈ {1.0−7, 5.0−7, 1.0−8} and learning rate
1.0−3, and obtain subnetworks of different sparsity levels for the subroutine S1. All subnetworks
achieve perfect or near-perfect accuracy on the test set.

During subnetwork transfer, we search for learning rate on a sparser subset of different sample
sizes for each architecture within the range {2−3, 1−3, 5−4, 2−4, 1−4}, and find 2−4 to be the best
performing on validation set across the board. We thus use a learning rate of 2−4 for our final runs.

B.2 COMPLETE RESULTS BY MODEL CONFIGURATION

We report the individual results for different model configurations presented in the averaged plot in
Figure 3. We also report the percentage of parameters transferred for each model configuration in
Table 2. In addition to sampling a random subnetwork of the same size and transferring it as control,
we also run trials where we sample a random subnetwork from the complement. Both random
controls achieve similar performance and are significantly worse than Subtask Induction.

Model configuration (# of layers) 2 4 6 8 10 12

Percentage of parameters (%) 7.68% 7.00% 4.70% 3.55% 3.56% 3.20%

Table 2: Percentage of parameters in transferred constituent subnetworks in Figure 3. Value in-
dicates overall percentage within masked layers, which includes attention and feed-forward layers,
but not the embedding layer. We find that larger models generally have smaller subnetworks when
trained on the same setup.
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Figure 6: Test accuracy vs number of disambiguation training samples, breakdown of results of each
model shown in Figure 3. The effect of Subtask Induction is constant across different number of
layers, suggesting that the inductive bias the model gains does not seem to depend on depth of the
model, at least in this arithmetic task.
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B.3 EFFECT OF GRADIENT UPDATES WITHIN THE SUBNETWORK

Figure 7 demonstrates a comparison between allowing and not allowing gradient updates for the
subnetwork transferred to the re-initialized model. Surprisingly, allowing for gradient updates within
a sampled subnetwork brings its performance up to a level comparable with transferring the entire
model, but still not as good as transferring a discovered subnetwork. In contrast, freezing and not
freezing the discovered subnetwork does not have significant differences.

We draw two insights from this control: First, subnetworks discovered through our method are
likely directly reusable, considering freezing it does not hurt performance like the random control
does. Secondly, transferring a randomly sampled subset of weights is likely equivalent to a “better
initialization”, echoing Frankle & Carbin (2019)’s findings.

Figure 7: Comparison between Subtask Induction allowing for gradient updates within the subnet-
work and frozen subnetwork. Allowing for gradient updates does not improve the performance of
Subtask Induction, but makes a significant difference for a randonly sampled subnetwork.

B.4 ADDITIONAL ARITHMETIC COMPUTATIONS

In addition to the single arithmetic task in the main paper, we experiment with a range of different
original and downstream computations and transfer potentially useful subnetworks between these
computations. Following Power et al. (2022), we define the following arithmetic computations,
where p = 7 and range of input tokens is [0, 1000):

a+ ab (mod p) (1)

a2 + b2 (mod p) (2)

a2 + ab (mod p) (3)

a2 + ab+ b2 (mod p) (4)

a3 + ab (mod p) (5)

a2 − b2 (mod p). (6)

The computation in Equation 1 is used for finding the subnetwork implementing ab (mod p) in the
main paper. In addition, we use the same setup as those described in Section 4.2 to train for a 12-layer
GPT2 model on Equation 2. We then localize a subnetwork performing a2 (mod p) from the original
model, which achieves perfect accuracy with 6.79% parameters. Similarly, we train a base model on
Equation 3, and find a subnetwork containing 6.37% of masked parameters computing a+b(mod p)
with perfect accuracy, which is one possible way of solving the task (as the composition of a, the ×
operator, and a + b). This combined with the ab (mod p) subnetwork introduced in the main paper
gives a total of 3 different subnetworks.

We then experiment with transferring the 3 subnetworks to different downstream computations
where the subnetwork is likely beneficial. These experiments are structured as follows:
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Figure 8: Test accuracy vs. number of training samples for transferring a subnetwork capturing
ab (mod p) to different downstream computations. We observe the same effects as transferring
the subnetwork to a2 + ab (mod p): Subtask Induction yields comparable accuracy compared to
transferring the entire model, and performs much better than training from random initialization or
a randomly sampled subnetwork.
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Figure 9: Test accuracy vs. number of training samples for transferring a subnetwork capturing
a2 (mod p), found from a base model trained on a2 + b2 (mod p), to a2 + ab + b2 (mod p) and
a2 + ab (mod p). We note that compared to controls, Subtask Induction performs better, albeit with
much less stability and performance gap, at low data regimes. However, this performance and the
performance of transferring the entire model are matched by training from scratch when the number
of training samples becomes high, which does not occur for the previous set of experiments.
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Figure 10: Test accuracy vs. number of training samples for transferring different subnetworks to the
same task. Left: we transfer both an a+ b (mod p) subnetwork and a a2 (mod p) subnetwork to the
task a2 − b2 (mod p), which potentially encourages the model to adopt different solutions. We find
that though both subnetworks provide significant benefits, transferring the a+b(mod p) subnetwork
yields better performance, perhaps suggesting that the model is more biased towards adopting that
solution. Right: we transfer both an ab (mod p) subnetwork (helpful) and an a2 (mod p) subnetwork
(unhelpful) to the computation a3 + ab (mod p), and find that the former brings better transfer
performance as expected.
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1. We present results transferring the same subnetwork as Section 4, but to different down-
stream computations, in Figure 8. In Section 4 we transfer a subnetwork computing
ab (mod p) to the task a2 + ab (mod p), which has the subtask captured by the subnet-
work as constituent. Since Subtask Induction should be beneficial as long as the transferred
subtask is a constituent of the new computation, we additionally define two more complex
computations—a2+ab+b2(mod p) and a3+ab(mod p)—and transfer the same ab(mod p)
subnetwork to these computations. We find similar effects as those observed in Section 4.

2. In 9, we additionally validate Subtask Induction by transferring a different subnetwork, one
that computes a2 (mod p) localized from a base model trained on a2 + b2 (mod p), to two
computations both having the subtask as their constituent. Even though the general trend
is similar, transferring this subnetwork achieves overall worse results with higher variance
in performance. One plausible explanation could be the difference in the structure of the
base model and downstream models: a2 + b2 (mod p) does not have interaction terms
between the two inputs, and models may learn a different structure than those needed for
the computations the subtask is transferred to. We leave the exploration of when and how
such structures emerge as future work.

3. In 10, we evaluate the efficacy of Subtask Induction by transferring different subnetworks
that could potentially help solve the new computation, and by transferring subnetworks
that are irrelevant to the new computation. The setups are as follows: for the computation
a2 − b2 (mod p), two equivalent subroutine compositions are possible: breaking down to
a + b and a − b, and breaking down to a2 and b2. We thus transfer both a a + b (mod p)
subnetwork and a a2 (mod p) subnetwork to this task and compare their performance. For
the computation a3 + ab (mod p), we expect a subnetwork computing ab to be helpful to
it, and a subnetwork computing a2 to be irrelevant. We transfer both subnetworks to this
task and evaluate their performance, and find that even though transferring an irrelevant
subnetwork still provides performance gains compared to random initialization, it is much
less effective than transferring computations that are genuinely useful.

C EXTENDED VISION RESULTS

C.1 MODEL CONFIGURATION AND HYPERPARAMETERS

For subnetwork discovery, we initialize masks on every layer excepts the classifier layer and
train the mask for 100 epochs with batch size =32, β final = 100, and sparsity penalty λ ∈
{1.0−6, 1.0−7, 1.0−8}. We always transfer the subnetwork with highest accuracy.

Similar to He et al. (2015a), we use SGD optimizer with momentum = 0.9, weight decay = 0.0001,
and learning rate 1.0−3 to train our from-scratch and re-initialized ResNet models. We use a batch
size of 128, which we find to be sufficient for both models to converge, and train for a total of 33,160
steps. For ViT-base, we find a batch size of 512 to be optimal. We experiment with both the SGD
used for ResNet training runs and Adam with the same setup as original authors (Dosovitskiy et al.
(2020), β1 = 0.9, β2 = 0.999, weight decay = 0.03) and a similar linear learning rate scheduler. We
find SGD to produce better results in our experiments and report these results for Figure 5.

C.2 RANDOM CONTROL FOR SUBNETWORK DISCOVERY

We run controls for subnetwork discovery on vision models in order to investigate if the probed
subnetworks represent emergent structure from pertaining, or if they are simply suitably initialized
parameters that also exist in models as initialization. To do this, we apply subnetwork discovery on
both pretrained ResNet18 and ViT and their randomly initialized counterparts. As shown in Figure
11, we find that subnetworks trained from randomly initialized models are worse in performance and
different in training dynamics compared to those localized from pretrained models. In pretrained
models, as an artifact of the annealing process and temperature scheduling, we often see no increase
in subnetwork performance for a significant part of the early training process. This does not seem
to be the case for subnetworks found from randomly initialized models. Furthermore, the found
subnetworks from randomly initialized models only achieve around 35% accuracy on Mean-pooled
ImageNet in both ResNet18 and ViT. Since these accuracies are uniformly worse than those of the
entire pretrained model, it is unlikely that they can help instill effective biases.
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Figure 11: Training dynamics of subnetwork discovery for vision models, comparison between pre-
trained models and randomly initialized ones. Left: evaluation accuracy vs. epochs for ResNet18;
right: evaluation accuracy vs. epochs for ViT. We see that subnetworks localized from pretrained
models significantly outperform the entire pretrained model on Mean-pooled ImageNet, while sub-
networks localized from randomly initialized models are much worse in performance.

C.3 RESULT BREAKDOWN BY CLASS

In addition to averaged results, we additionally report result breakdown by class for both pretrained
ResNet18 and ViT-base and our Subtask Induction models. We note that all pretrained models
perform less optimally on classes where textures are more dominant (e.g. bears, cats, dogs, and
elephants), and models trained with Subtask Induction generally perform better at these classes.
However, all 4 models also seem to struggle with mean-pooled images of bicycles. This could
potentially due to the shape of bicycle frames not being apparent in mean-pooled images. We also
find that our models generally struggle with the class “knife”. We leave further exploration of these
findings to future work.
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