
Genetic-guided GFlowNets
for Sample Efficient Molecular Optimization

Hyeonah Kim1∗ Minsu Kim1 Sanghyeok Choi1 Jinkyoo Park1,2

1Korea Advanced Institute of Science and Technology (KAIST), 2OMELET

Abstract

The challenge of discovering new molecules with desired properties is crucial
in domains like drug discovery and material design. Recent advances in deep
learning-based generative methods have shown promise but face the issue of sample
efficiency due to the computational expense of evaluating the reward function. This
paper proposes a novel algorithm for sample-efficient molecular optimization by
distilling a powerful genetic algorithm into deep generative policy using GFlowNets
training, the off-policy method for amortized inference. This approach enables
the deep generative policy to learn from domain knowledge, which has been
explicitly integrated into the genetic algorithm. Our method achieves state-of-the-
art performance in the official molecular optimization benchmark, significantly
outperforming previous methods. It also demonstrates effectiveness in designing
inhibitors against SARS-CoV-2 with substantially fewer reward calls.

1 Introduction

Discovering new molecules is one of the fundamental tasks in the chemical domain, with applications
in drug discovery [1] and material design [2]. Particularly, de novo molecular design focuses on
generating novel molecules with desired properties from scratch. In this context, deep learning-based
generative methods have emerged, showing promising results (e.g., [3–7]). However, these methods
still face a key challenge: the reward function is computationally expensive (e.g., assessing binding
affinity through docking simulations), while the molecule space is combinatorially large.

Sample-efficient molecular optimization is thus crucial for discovering high-reward molecular struc-
tures with limited reward calls, especially for real-world applicability. The recently proposed bench-
mark, Practical Molecular Optimization (PMO) [8], has extensively assessed the sample efficiency
of various algorithms, including reinforcement learning [3, 9], active learning [10], variational au-
toencoders [4, 5], generative flow networks (GFlowNets) [6, 11], and classical optimization methods
like Bayesian optimization [12] and genetic algorithms [13, 14]. Interestingly, the PMO benchmark
has revealed a shift in algorithm rankings, with classical algorithms often outperforming recently
proposed methods such as GFlowNets when the sample efficiency is considered.

Recent investigations [15, 16], including those highlighted by the PMO benchmark [8], indicate that
the classical frameworks, especially genetic algorithms (GA), still exhibit competitive performances
compared to recently proposed deep learning methods. These studies underscore that GAs effectively
navigate the chemical space using domain-specific genetic operators. In contrast, deep learning
methods usually do not leverage domain-specific knowledge, relying instead on deep networks to
autonomously learn these insights. It can lead to inefficient training processes due to the lack of expert
guidance [17]. To address this limitation, Genetic Expert Guided Learning (GEGL) [17] has been
introduced, which enhances deep learning by distilling GA-generated samples into a deep generative
policy using maximum likelihood estimation. This approach enables the deep generative policy to

∗hyeonah_kim@kaist.ac.kr

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Industrial & Systems Engineering 13

b. Oracle-directed Fine-tuning

Policy 𝜋𝜃

⋯

⋯

⋯

G
RU

G
RU

G
RU

SMILES

CC=Cc1ccc(C[NH2+] ⋯
NC(=O)NC1=CC=C ⋯

O=C1O[C@@H] ⋯

Buffer 𝒟 with reward evaluation

Original Weighted

Rank-based sampling

b. Graph-based genetic searcha. SMILES generation with policy

Population Crossover & Mutation Offspring

(GFlowNet Training)

Figure 1: Overview of Genetic GFN. Our generative policy is trained to sample molecules proportional
to rewards, and the genetic search refines them to higher-reward samples.

implicitly utilize domain-specific knowledge from the GA as a form of guidance. However, despite
its successes, GEGL may face challenges in generalizing to unexplored regions and in learning a
peaky distribution from samples, as it maximizes likelihood equally across all high-reward samples
without adequately configuring the reward landscape.

To address this, we propose a novel molecular optimization algorithm that integrates domain-
specialized genetic algorithms into GFlowNets, an off-policy training method that trains policy
to sample proportional to their rewards. As illustrated in Fig. 1, we first generate diverse candidates
using the current policy and refine the candidates into higher-reward samples using GAs. Subse-
quently, we fine-tune the policy with a GFlowNet using the collected samples. Unlike the MLE
training, which can be stuck in local modes when the reward landscape is peaky, GFlowNet trains the
policy to sample molecules proportional to rewards. To enhance sample efficiency, we perform unsu-
pervised pretraining on chemical datasets and regularize the GFlowNets policy with KL-divergence
to align generative probability with the dataset distribution, focusing on the compact valid space.

Our contributions can be interpreted from both perspectives of GFlowNets and GAs:

GA increases the exploitation power of GFlowNets. The proposed algorithm incorporates an
effective off-policy exploration into GFlowNets based on domain-specialized GA. This approach
aligns with recent studies that utilize off-policy explorations to guide toward the high-reward
regions [18]. Our key contribution lies in explicitly leveraging domain knowledge about chemical
structures and effectively distilling it into GFlowNets, which enable exceptional performance in
real-world tasks beyond small-scale molecular generations. This contribution is crucial for the
field of GFlowNets, which have struggled with sample-efficient molecular optimization tasks,
even when using proxy reward models for active learning [10, 8]; see Section 4.2.
GFlowNets increases population diversity of GA. The proposed algorithm generates diversified
samples using GFlowNets, enabling GA to effectively improve samples; our method can be
regarded as a new genetic algorithm with deep generative policy-based population resetting. Our
GFlowNet policy, parameterized over the whole space, periodically resets the population by
diversely sampling individuals proportional to rewards, mitigating premature convergence of
GA [19, 20]. Experiments show that ours outperforms recent GAs in the PMO benchmark; see
Section 5.1.

Our extensive experiments demonstrate the effectiveness and practical applicability of the proposed
method. First, our method achieves the highest total score of 16.213 across 23 oracles in the Practical
Molecular Optimization benchmark [8], outperforming all other baselines. Second, we conduct
in in silico experiments for designing SARS-CoV-2 inhibitors. The proposed method successfully
generates inhibitors with ten times fewer reward calls. Moreover, our method effectively balances
optimization and diversity, achieving higher scores with increased diversity compared to previously
top-ranked methods.

2 Background

2.1 Sample efficient de novo molecular optimization

Molecular design is the process of proposing new molecules likely to exhibit desirable outcomes.
Compared to traditional virtual screening approaches, which identify suitable molecules from virtual

2

libraries with a large number of molecules known a priori, de novo approaches seek to generate
molecule structures anew. The desired properties can be measured using score functions O, called
oracle. Formally, molecular design can be formulated as argmaxx∈X O(x), where x is a molecule,
and X denotes the chemical space which comprises all possible molecules.

The publication of standard benchmarks and datasets has facilitated the assessment of de novo design
methods (e.g., GuacaMol [21], Therapeutics Data Commons (TDC) [22]). The score functions are
designed to consider various properties, such as the presence and absence of substructures, similarity,
isomers, structural features, physicochemical properties, biological activity, and binding affinity (i.e.,
docking score). Notably, the PMO benchmark [8] offers a unified framework that comprehensively
evaluates the sample efficiency of a range of molecular design methods.

2.2 Generative flow networks

Generative flow networks (GFlowNets) [23] are introduced as a new class of probabilistic models
to sample a discrete compositional object x ∈ X from the target distribution, i.e., P (x) ∝ e−E(x).
In general, direct sampling from the target distribution is challenging since the partition function
Z =

∑
x∈X e−E(x) is intractable when the sample space is combinatorially large. Hence, GFlowNets

sample an object from an unnormalized distribution as a constructive generative process, where
discrete actions iteratively modify a state — a partially constructed object. We define a trajectory as
τ = (s0, . . . , sT), where sT is a terminal state corresponding to a fully constructed object x.

A GFlowNet models flow F of particles along a directed acyclic graph (DAG). The source and sink
nodes of the DAG correspond to the initial state s0 and terminal states sT , respectively. The trajectory
flow F (τ) is defined as a flow through the trajectory τ , and the state flow F (s) is defined as the sum
of trajectory flows that include the state s, i.e., F (s) =

∑
s∈τ F (τ). The edge flow F (s→ s′) the

sum of trajectory flows through the edge from state s to s′, i.e., F (s→ s′) =
∑

(s,s′)∈τ F (τ).

From the flow function F , we derive two policy distributions. The forward policy PF (s
′|s) is the

probability of transitioning from state s to its child state s′, defined as the edge flow F (s → s′)
normalized by the state flow F (s), i.e., PF (s

′|s) = F (s→ s′)/F (s). Similarly, the backward policy
PB(s|s′) is the probability of moving from state s′ to its parent state s, defined as PB(s|s′) = F (s→
s′)/F (s′). Utilizing these forward and backward policies, GFlowNets can derive an optimal sampler
P (sT) =

∏
PF (st|st−1) = R(sT)/Z if balance conditions (e.g., [6, 24–27]) are satisfied.

Trajectory balance loss [24]. One of the most popular conditions is trajectory balance (TB), which
directly parameterizes PF , PB , and flow of initial state (i.e., partition function) Z to satisfy the
following trajectory balance condition:

Z

n∏
t=1

PF (st|st−1) = R(sT)

n∏
t=1

PB(st−1|st).

Then, this equation is converted into a loss function to be minimized along sampled trajectories, i.e.,

LTB(τ ; θ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st−1|st; θ)

)2

. (1)

In GFlowNet training, employing exploratory behavior policies or replay training is allowed since
GFlowNet can be trained in an off-policy manner, which is a key advantage [23, 24, 28, 18].

3 Genetic-guided GFlowNets

This section describes how the desired molecules are discovered with Genetic GFN. We model the
generation process of molecules as a string-based constructive process. First, we pretrain the policy
to learn the distribution of valid molecules. During the optimization phase, we iteratively generate
molecules and update the policy with GFlowNet training using high-reward molecules. Particularly,
we introduce graph-based genetic search to refine generated samples.

3

Algorithm 1 Genetic GFN training with limited reward calls

1: Set πθ ← πpre, D ← ∅
2: while |D| ≤ numOracle do
3: D ← D ∪ {x,O(x)}, where x ∼ πθ(·) ▷ SMILES generation with policy
4: Initialize population Dpop from D ▷ Graph-based genetic search
5: for n = 1 to numGen do
6: x← Crossover(x1,x2), where (x1,x2) ∈ Dpop
7: x′ ← Mutate(x)
8: D ← D ∪ {x′,O(x′)}, Doff ← Doff ∪ {x′,O(x′)}
9: Dpop ← Select(Dpop ∪ Doff)

10: end for
11: for k = 1 to numReplay do ▷ Updating the policy with GFlowNet training
12: Get B from D with rank-based sampling (Eq. (4))
13: Update θ to minimize 1

|B|
∑

x∈B LTB + αKL(πθ(x)||πpre(x))

14: end for
15: end while

3.1 Factorized string-based generative policy and unsupervised pretraining

Building on insights from previous works [3, 17], we employ a string-based representation strategy,
simplifying the molecular generation process by reducing it to a one-directional sequence generation.
We adopt a sequence generative policy using a string-based assembly strategy, especially the simplified
molecular-input line-entry system (SMILES) [29]. Motivated by REINVENT [3], we parameterize the
policy using a recurrent neural network architecture [30]. Then, the probability πθ(x) of generating
a molecule, can be factorized to

∏n
t=1 πθ(xt|x1, . . . , xt−1), where x1, . . . , xn are characters of

SMILES representation of x.

As demonstrated in previous studies, including [3, 17, 8], pretraining is inevitable since training the
generative policy from scratch is excessively sample-inefficient. Therefore, our policy is pre-trained
to maximize the likelihood of valid molecules on existing chemical datasetsDpre; note that pretraining
does not require oracle information. Precisely, the policy is pretrained to minimize the following:

Lpre(x) = −
n∑

t=1

log πθ(xt|x1, . . . , xt−1). (2)

3.2 GFlowNet training of the generative policy with graph-based genetic search

To generate desirable molecules with limited reward calls, we iteratively generate samples using two
distinct strategies (Section 3.2.1) and fine-tune the policy, initialized with πpre, using a GFlowNet by
replaying collected samples (Section 3.2.2). The overall procedure is described in Algorithm 1.

3.2.1 Molecule generation strategies in Genetic GFN

We employ two distinct molecule generation strategies, SMILES generation with our training policy
and graph-based genetic search. These two strategies are synergized to generate diversified and
high-reward samples, efficiently searching the vast chemical space.

SMILES generation with policy. The training policy πθ generates SMILES sequences. Since
the policy is trained using the trajectory balance loss (see the following subsection), it is the same
as sampling x from

∏T
t=1 PF (st|st−1) ∝ R(sT = x), where st−1 is represented by previously

collected SMILES token, and logR(x) = −βO(x) with an inverse temperature β.

Graph-based genetic search. To effectively search the higher-reward region, we employ a genetic
algorithm that iteratively evolves populations through crossover, mutation, and selection. We adopt
the operations of the graph-based genetic algorithm, Graph GA [13], which has proven to effectively
search the molecule space with finely designed genetic operations; please refer to the original paper
for details. The genetic search is performed as follows:

4

1. Initialize a population Dpop: The initial population is selected from the whole buffer D,
consisting of samples from the policy and previous genetic search.

2. Generate offspring Doff: A child is generated from randomly chosen two parent molecules
by combining the fragments (crossover). Then, the child is randomly modified (mutation).

3. Select a new population D′
pop: Sample from Dpop ∪ Doff, and go back to 2.

One key advantage is that offspring can have a large distance from the parents in the 1D string space,
even if the molecule distances are small, which is beneficial to avoid being stuck in local optima; see
the experimental results in Table 3b.

3.2.2 Updating the generative policy with GFlowNets training

Using the generated samples, the policy is fine-tuned using the trajectory balance loss. The off-policy
property of GFlowNet losses enables the utilization of refined samples from the genetic search. In
particular, for better sample efficiency, we employ replay training with a rank-based reweighed buffer.

TB loss with KL-divergence penalty. The generative policy is trained using the trajectory balance
loss in Eq. (1). Note that we set PB to 1 for simplicity since SMILES generations are conducted in
one direction. To ensure that the policy does not deviate excessively from the pretrained policy during
training, we introduce a Kullback-Leibler (KL) divergence penalty inspired by the works in language
model fine-tuning [31, 32]. Thus, our model is updated to minimize the following loss function:

L = LTB(τ ; θ) + αKL(πθ(x)||πpre(x)), (3)

where πpre denotes the the pre-trained policy. As a result, πθ is trained to generate desired (by LTB)
and valid (by πpre) molecules. Note that trajectories on which the proposed loss is minimized are
sampled from the experience buffer.

Rank-based reweighed experience buffer. The rank-based reweighting biases the samples to-
wards high-reward candidates by assigning greater weight to trajectories with higher ranks, thereby
enhancing the focus on more promising solutions [33, 34]. The weight is computed as follows:

(k|D|+ rankO,D(x))
−1∑

x∈D (k|D|+ rankO,D(x))
−1 . (4)

Here, k is a weight-shifting factor, and rankO,D(x) is a relative rank of value of O(x) in the dataset
D. Note that we also utilize rank-based sampling in the genetic search (steps 1 and 3).

4 Related works

4.1 Genetic algorithms for molecular optimization

Genetic algorithm (GA) is a representative meta-heuristic inspired by the evolutionary process. This
subsection focuses on discussing the application of GA in molecular optimization. As one of the
seminal works, a graph-based GA (Graph GA) was proposed with sophisticatedly designed operations
based on chemical knowledge [13]. Note that our method also adopts Graph GA operations in the
genetic search. Various strategies for molecular assembly, not limited to graphs, have been utilized in
GA [35, 14, 36]. A recent contribution by [16] introduces an enhanced version of Graph GA. They
introduce quantile-uniform sampling to bias the population towards containing higher reward samples
while maintaining diversity. Experimental results from Mol GA demonstrate the effectiveness of GAs
as strong baselines, achieving state-of-the-art (SOTA) performance in the PMO benchmark.

4.2 GFlowNets for molecular optimization

Generative Flow Networks (GFlowNets or GFN) [23, 6] have drawn significant attention in scientific
discovery [37], particularly in molecular optimization and biological sequence design [6, 10, 38, 18,
39, 40, 11, 41]. GFlowNets, which are off-policy variational inference methods [42], are closely
related to value-based reinforcement learning within soft Markov Decision Processes (soft MDPs)
[43, 44], focusing on learning maximum entropy agents [45, 46]. This allows GFlowNets to generate

5

Table 1: Mean and standard deviation of AUC top-10 (↑) from five independent runs. We use oracle
ID (in lexicographical order) instead of a name for better readability, and the best mean scores are
denoted in bold for each task. The results of further baselines are provided in Appendix G.2.

ID Genetic GFN
(Ours) Mol GA [16] SMILES

REINVENT [3] GEGL [17] GP BO [12] Fragment
GFN [6]

Fragment
GFN-AL [10]

#1 0.949 ± 0.010 0.928 ± 0.015 0.881 ± 0.016 0.842 ± 0.019 0.902 ± 0.011 0.382 ± 0.010 0.459 ± 0.028
#2 0.761 ± 0.019 0.740 ± 0.055 0.644 ± 0.019 0.626 ± 0.018 0.579 ± 0.035 0.428 ± 0.002 0.437 ± 0.007
#3 0.802 ± 0.029 0.629 ± 0.062 0.717 ± 0.027 0.699 ± 0.041 0.746 ± 0.025 0.263 ± 0.009 0.326 ± 0.008
#4 0.733 ± 0.109 0.656 ± 0.013 0.662 ± 0.044 0.656 ± 0.039 0.615 ± 0.009 0.582 ± 0.001 0.587 ± 0.002
#5 0.974 ± 0.006 0.950 ± 0.004 0.957 ± 0.007 0.898 ± 0.015 0.941 ± 0.017 0.480 ± 0.075 0.601 ± 0.055
#6 0.856 ± 0.039 0.835 ± 0.012 0.781 ± 0.013 0.769 ± 0.009 0.726 ± 0.004 0.689 ± 0.003 0.700 ± 0.005
#7 0.881 ± 0.042 0.894 ± 0.025 0.885 ± 0.031 0.816 ± 0.027 0.861 ± 0.027 0.589 ± 0.009 0.666 ± 0.006
#8 0.969 ± 0.003 0.926 ± 0.014 0.942 ± 0.012 0.930 ± 0.011 0.883 ± 0.040 0.791 ± 0.024 0.468 ± 0.211
#9 0.897 ± 0.007 0.894 ± 0.005 0.838 ± 0.030 0.808 ± 0.007 0.805 ± 0.007 0.576 ± 0.021 0.199 ± 0.199
#10 0.764 ± 0.069 0.835 ± 0.040 0.782 ± 0.029 0.580 ± 0.086 0.611 ± 0.080 0.359 ± 0.009 0.442 ± 0.017
#11 0.379 ± 0.010 0.329 ± 0.006 0.363 ± 0.011 0.338 ± 0.016 0.298 ± 0.016 0.192 ± 0.003 0.207 ± 0.003
#12 0.294 ± 0.007 0.284 ± 0.035 0.281 ± 0.002 0.274 ± 0.007 0.296 ± 0.011 0.174 ± 0.002 0.181 ± 0.002
#13 0.708 ± 0.057 0.762 ± 0.048 0.634 ± 0.042 0.599 ± 0.035 0.631 ± 0.093 0.291 ± 0.005 0.332 ± 0.012
#14 0.860 ± 0.008 0.853 ± 0.005 0.834 ± 0.010 0.832 ± 0.005 0.788 ± 0.005 0.787 ± 0.002 0.785 ± 0.003
#15 0.595 ± 0.014 0.610 ± 0.038 0.535 ± 0.015 0.537 ± 0.015 0.494 ± 0.006 0.423 ± 0.006 0.434 ± 0.006
#16 0.942 ± 0.000 0.941 ± 0.001 0.941 ± 0.000 0.941 ± 0.001 0.937 ± 0.002 0.904 ± 0.002 0.917 ± 0.002
#17 0.819 ± 0.018 0.830 ± 0.010 0.770 ± 0.005 0.730 ± 0.011 0.741 ± 0.010 0.626 ± 0.005 0.660 ± 0.004
#18 0.615 ± 0.100 0.568 ± 0.017 0.551 ± 0.024 0.531 ± 0.010 0.535 ± 0.007 0.461 ± 0.002 0.464 ± 0.003
#19 0.634 ± 0.039 0.677 ± 0.055 0.470 ± 0.041 0.402 ± 0.024 0.461 ± 0.057 0.180 ± 0.012 0.217 ± 0.022
#20 0.583 ± 0.034 0.544 ± 0.067 0.544 ± 0.026 0.515 ± 0.028 0.544 ± 0.038 0.261 ± 0.004 0.292 ± 0.009
#21 0.511 ± 0.054 0.487 ± 0.024 0.458 ± 0.018 0.420 ± 0.031 0.404 ± 0.025 0.183 ± 0.001 0.190 ± 0.002
#22 0.135 ± 0.271 0.000 ± 0.000 0.182 ± 0.363 0.119 ± 0.238 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
#23 0.552 ± 0.033 0.514 ± 0.033 0.533 ± 0.009 0.492 ± 0.021 0.466 ± 0.025 0.308 ± 0.027 0.353 ± 0.024

Sum 16.213 15.686 15.185 14.354 14.264 9.929 9.917

0 2000 4000 6000 8000 10000
Num. of oracle calls

0.2

0.4

0.6

0.8

1.0

Av
g.

 To
p-

10

isomers_c9h10n2o2pf2cl

Genetic GFN (Ours) Mol GA SMILES-REINVENT GEGL GP BO

0 2000 4000 6000 8000 10000
Num. of oracle calls

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
g.

 To
p-

10

celecoxib_rediscovery

0 2000 4000 6000 8000 10000
Num. of oracle calls

0.5

0.6

0.7

0.8

0.9

Av
g.

 To
p-

10

amlodipine_mpo

0 2000 4000 6000 8000 10000
Num. of oracle calls

0.4

0.5

0.6

0.7

0.8

Av
g.

 To
p-

10

scaffold_hop

Figure 2: The optimization curve of the average scores of Top-10 over the score function calls. All
optimization curves for 23 oracles are provided in Appendix G.2.

diverse candidates for chemical and biological structures. Advances in GFlowNets have included
new objective functions [6, 24, 25], improved credit assignments [26, 27], and enhanced off-policy
exploration strategies [18, 47–49]. Our approach, an improved off-policy exploration technique
for GFlowNets, enhances sample efficiency and scalability for moderate-scale chemical discovery.
We present extensive experiments targeting the discovery of larger-scale molecules, with SMILES
strings approximately 100 characters long, surpassing the scope of smaller molecule generation tasks
commonly addressed in GFlowNets literature [6, 38].

5 Experiments

This section provides extensive experimental results, including experiments on the official sample-
efficient molecular optimization benchmark and in silico design for SARS-CoV-2 inhibitors. The
codes are available at https://github.com/hyeonahkimm/genetic_gfn.

5.1 Sample efficient molecular optimization

In this experiment section, we compare Genetic GFN with various molecular optimization methods
from the perspective of sample efficiency. The performance is primarily quantified by the area under
the curve (AUC), with the number of score function calls limited to 10K. Note that we rigorously
follow the Practical Molecular Optimization (PMO) benchmark [8].

6

https://github.com/hyeonahkimm/genetic_gfn

Table 2: Ablation studies. In the GS ablation study (-{GS}), the generative policy solely generates
samples, while ϵ-greedy samples from PF mixed with a uniform distribution. The bold text indicates
the best value.

Genetic GFN Genetic Search KL-divergence
penalty- {GS} - {GS} + {ϵ-greedy}

AUC Top-1 16.530 ± 0.198 16.070 ± 0.290 15.966 ± 0.085 16.251 ± 0.440
AUC Top-10 16.213 ± 0.173 15.738 ± 0.274 15.626 ± 0.082 15.928 ± 0.426
AUC Top-100 15.516 ± 0.127 15.030 ± 0.322 14.939 ± 0.147 15.188 ± 0.297

5.1.1 Main results in the official benchmark of PMO

As baselines, we employ Top-8 methods from the PMO benchmark since they recorded the best
AUC Top-10 in at least one oracle. The baseline methods include various ranges of algorithms and
representation strategies. First, REINVENT [3] is an RL method that tunes the policy with adjusted
likelihood. Graph GA [13], STONED [14], SMILES GA [21], and SynNet [36] are genetic algorithms
that utilize different assembly strategies; they use fragment-based graphs, SELFIES, SMILES, and
synthesis, respectively. Additionally, a hill climbing method (SMILES-LSTM-HC [21]) and Bayesian
optimization (GP BO [12]) are included. SMILES-LSTM-HC iteratively generates samples and
imitates high-reward samples, while GP BO uses a surrogate model with the Gaussian process (GP)
and Graph GA to optimize the GP acquisition functions in the inner loop.

Moreover, we adopt additional methods, Mol GA [16] and GEGL [17]. Mol GA is an advanced
version of Graph GA and outperforms other baselines in the PMO benchmark. On the other hand,
GEGL is an ablated version of our approach that utilizes imitation learning with a reward-priority
queue instead of GFlowNet training with rank-based sampling. For both, we adopt the original
implementations23 with hyperparameters searches following the guidelines; see Appendix C.

The main results in Table 1 report the AUC score of Top-10 candidates with independent five runs with
different seeds. In addition, Fig. 2 visually presents the Top-10 average score across the computational
budget, i.e., the number of oracle calls, providing a concise overview of the results. Due to the lack
of space, the best five results are provided; please check Appendix G.2 for the rest of the results. As
shown in Table 1, Genetic GFN outperforms the other baselines with a total of 16.213 and attains the
highest AUC Top-10 values in 14 out of 23 score functions. The results of diversity and SA score for
each oracle are presented in Appendix G.5.

5.1.2 Controllability of the scores-diversity trade-off and ablation studies

0.45 0.50 0.55 0.60 0.65
Diversity

16.0

16.5

17.0

17.5

Av
g.

 To
p-

10

Genetic GFN (= 50)
Genetic GFN (= 30)
Genetic GFN (= 10)
Genetic GFN (= 5)
Mol GA
SMILES-REINVENT
GEGL
GP BO

β = 1 β = 5 β = 10 β = 30 β = 50

AUC-10 11.083 14.597 14.735 15.815 16.213
Div. 0.812 0.670 0.663 0.528 0.432

Figure 3: Average of Top-10 score and diver-
sity. Note that the fragment-based GFlowNet
achieves 10.957 with a diversity of 0.816.

Controllability of the scores-diversity trade-off.
In the benchmark, we found a pronounced trade-
off between attaining high evaluation scores within
a limited budget and generating diverse molecular
candidates. This section demonstrates the controlla-
bility of the score-diversity trade-off through adjust-
ments in the inverse temperature β. Decreasing the
inverse temperature gives more diverse candidates.
The results in Fig. 3 demonstrate adjustments of β
can control the trade-off between score and diver-
sity, achieving Pareto-frontier to other baselines in
the benchmark. Notably, Genetic GFN with β = 30
achieves a higher AUC Top-10 with a greater diver-
sity compared to the SOTA GA method (Mol GA:
15.686 with a diversity of 0.465) and RL method
(REINVENT: 15.185 with a diversity of 0.468). Similarly, the weight-shifting factor k in rank-based
sampling can control the trade-off; see Appendix G.1.

Ablation studies. The ablation studies investigate the essential components of our framework: the
genetic search (GS) and the KL-divergence penalty. To assess the effectiveness of the genetic search,
we also compare its performance against the exploration strategy used in previous GFlowNet studies

2https://github.com/AustinT/mol_ga
3https://github.com/sungsoo-ahn/genetic-expert-guided-learning

7

https://github.com/AustinT/mol_ga
https://github.com/sungsoo-ahn/genetic-expert-guided-learning

Table 3: Comparison with GFlowNet variants. Notably, samples from the GS have larger SMILES
distances than LS, leading to better sample efficiency. The bold text indicates the best value.

(a) Average and standard deviation of AUC scores (↑)

SMILES Fragment-based

Genetic GFN LS-GFN [18] GFN [6] GFN-AL [10]

AUC Top-1 16.530 ± 0.198 15.514 ± 0.269 10.957 ± 0.033 11.032 ± 0.016
AUC Top-10 16.213 ± 0.173 15.230 ± 0.026 9.918 ± 0.027 9.928 ± 0.027
AUC Top-100 15.516 ± 0.127 14.619 ± 0.027 8.416 ± 0.024 8.064 ± 0.005

(b) Search distances (↑)

(GSK3β) SMILES Molecule

Genetic GFN 0.740 0.528
LS-GFN 0.374 0.494

(JNK3) SMILES Molecule

Genetic GFN 0.706 0.536
LS-GFN 0.403 0.512

[6, 10]. It samples actions from a GFlowNet sampler mixed with a uniform distribution, similar to
ϵ-greedy in RL. The results, shown in Table 2, reveal that the removal of either component results in
a decline in performance, underscoring the importance of employing a suitable exploration strategy.
Detailed results, including statistical analysis, are provided in Appendix G.4.

5.1.3 Comparisons with GFlowNets variants

We compare Genetic GFN with the graph-based GFlowNet [6], GFlowNet-AL [10], and the local
search GFlowNet (LS-GFN) [18] using SMILES representations. LS-GFN utilizes Monte Carlo
Markov Chain (MCMC) techniques, incorporating partial backtracking and reconstructing solution
trajectories with the training policy as the proposal distribution [18]. The experiments are conducted
on the PMO benchmark, and we implement LS-GFN with SMILES by replacing our genetic search
with a local search. Note that while the original LS-GFN employs the prepend-append MDP, which
does not directly apply to SMILES, we use the same one-directional SMILES generation as ours.

As shown in Table 3a, Genetic GFN outperforms other GFlowNet variants. Notably, generating
SMILES is significantly more advantageous than generating graph-based fragments. The performance
gap between Genetic GFN and LS-GFN highlights the importance of a proper exploratory policy. To
further analyze, we measure the distance between samples before and after searches in GSK3β and
JNK3. The normalized Levenshtein distances for SMILES and Tanimoto similarity for molecules are
reported in Table 3b. The results show that the local search may be inefficient in effectively searching
in moderate-scale chemical spaces because its capabilities heavily depend on the current policy,
leading to suboptimal search performance. In contrast, our approach leverages a domain-specialized
genetic search within the molecule graph space, working as an effective off-policy exploration — the
samples with SMILES representation are used to train the string-based generative policy.

5.1.4 Sample efficient multi-objective molecular optimization

Table 4: Average and standard deviation of hy-
pervolumes (↑) for each task. The baseline re-
sults are directly from the HN-GFN paper [11].
The bold text indicates the best value.

GSK3β + JNK3 GSK3β + JNK3
+ QED + SA

HierVAE+qParEGO 0.205 ± 0.015 0.186 ± 0.009
HierVAE+qEHVI 0.341 ± 0.072 0.211 ± 0.006
LaMOO 0.279 ± 0.090 0.190 ± 0.069
Graph GA 0.368 ± 0.020 0.335 ± 0.021
MARS 0.418 ± 0.095 0.273 ± 0.020
HN-GFN 0.669 ± 0.061 0.416 ± 0.023

Genetic GFN 0.718 ± 0.138 0.642 ± 0.053

According to Zhu et al. [11], we apply our
method to multi-objective tasks: GSK3β+JNK3
and GSK3β+JNK3+QED+SA. Notably, GSK3β
and JNK3 are potential targets of Alzheimer’s Dis-
ease treatments [50]. We use a linear combination
of each objective with given coefficients, and the
performance is measured by hypervolumes with
1K evaluations. We obtained the results from five
independent trials using different seeds. Even
though Genetic GFN is not designed for multi-
objective molecular optimization, it demonstrates
notable performance using proper scalar-valued
score functions; please see Appendix E for details.

5.1.5 Further analysis

Active learning with Genetic GFN. Similar to GFlowNet-AL, ours can work as a generative model
in multi-round active learning. We compare Genetic GFN-AL with other model-based and active
learning methods; please refer to Appendix D.

Genetic GFN with SELFIES representation. Genetic GFN with SELFIES generation achieves the
improved sample efficiency to other SELFIES-based methods; see Appendix G.6.

8

Industrial & Systems Engineering 21

Score: 0.903
(docking: -12.7, QED: 0.383, SA: 2.720)

Score: 0.909
(docking: -12.6, QED: 0.412, SA: 2.251)

Score: 0.917
(docking: -12.0, QED: 0.859, SA: 3.376)

Score: 0.892
(docking: -13.0, QED: 0.268, SA: 3.226)

Score: 0.908
(docking: -13.5, QED: 0.370, SA: 3.153)

Score: 0.894
(docking: -13.7, QED: 0.197, SA: 2.951)

Figure 4: The final candidates for the PLPr_7JIR target with 100 steps.

Industrial & Systems Engineering 21

Score: 0.903
(docking: -12.7, QED: 0.383, SA: 2.720)

Score: 0.909
(docking: -12.6, QED: 0.412, SA: 2.251)

Score: 0.917
(docking: -12.0, QED: 0.859, SA: 3.376)

Score: 0.892
(docking: -13.0, QED: 0.268, SA: 3.226)

Score: 0.908
(docking: -13.5, QED: 0.370, SA: 3.153)

Score: 0.894
(docking: -13.7, QED: 0.197, SA: 2.951)

Figure 5: The final candidates for the RdRp_6YYT target with 100 steps.

Sensitivity analysis. We provide the experimental results by varying the hyperparameters, such as
the offspring size and the number of training loops; please refer to Appendix G.8.

5.2 Designing inhibitors against SARS-CoV-2 targets

In this subsection, we conduct drug discovery experiments for Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-Cov-2), known as the novel coronavirus. One desired property is maximizing
the binding affinity to the target protein. The binding affinity is measured with a docking score, which
is calculated based on the energies of the interaction between the ligand and the receptor. Typically,
the computation of docking scores is expensive since it involves predicting the spatial orientation and
binding affinity of the molecule in the active site of the target protein. We employ Quick Vina 2 [51]
docking software to assess generated molecules.

Additionally, QED (Quantitative Estimate of Drug-likeness) and SA (Synthetic Accessibility) are
considered to quantify the drug-likeness and difficulties of synthesizing. The higher QED, which
ranges [0, 1], and the lower SA, which ranges [0, 10], are desired. Therefore, we define the score
function s(x) for designing SARS-Cov-2 inhibitors as a linear combination of normalized scores
according to the previous work [52]. Following [53] and [52], the target proteins are selected:
PLPro_7JIR, a critical enzyme in the life cycle of SARS-CoV-2, and RdRp_6YYT, which is essential
for the replication and the transcription of genes.

Table 5: Average Top-100 scores (↑). Ours
outperforms baselines with 10 times fewer
steps. The bold denotes the best scores.

PLPro RdRp

JT-VAE 0.272 0.216
GFlowNet 0.326 0.280
Graph GA 0.723 0.786
REINVENT 0.717 0.799
MolRL-MGPT 0.772 0.854

Genetic GFN (100) 0.891 0.873
Genetic GFN (1000) 0.925 0.902

The experiments are conducted with up to 1000 update
steps with 128 batch size [52]. As shown in Table 5, ours
achieves the highest Top-100 average scores only with
100 steps, which is 10 times fewer than others. Note
that the score is recalculated based on the normalized
score function in Eq. (5) using average values in the
MolRL-MGPT paper [52]; the full results and a more
detailed experimental setup are provided in Appendix F.
We also report the best candidates of 100 steps in Fig. 4
and in Fig. 5. The final molecules correspond to the
Top-1 score molecules from 3 independent runs.

6 Discussion

This paper introduces a Genetic-guided GFlowNet (Genetic GFN), which integrates a domain-specific
genetic algorithm to guide the GFlowNet policy toward higher-reward samples. The method employs
off-policy training with a rank-based reweighted buffer, enhancing the policy as a powerful amortized
inference sampler for chemical discovery. Extensive experiments demonstrate that Genetic GFN
effectively generates desirable molecules within the high-dimensional chemical space, including long
chemical structure sequences (e.g., ≥ 100). On the other hand, our approach can be considered as

9

a novel population reinitialization strategy for genetic algorithms using GFlowNets, which sample
diverse objects proportional to rewards.

Limitations and future works. Our method assumes the existence of effective genetic algorithms,
which is valid for the molecular design domain. However, designing domain-specific operators for
genetic algorithms can be challenging in other fields. One possible future work is to enhance genetic
algorithms using the neural policy similar to recent studies [54, 55]. Another direction is to extend
our approach to other domains, such as combinatorial optimization. For instance, we could utilize a
powerful GA, hybrid genetic search [56], to design a GFlowNet-based solver for routing problems.

Broader Impact. This paper introduces a new generative model, significantly enhancing sample
efficiency in molecular optimization. This advance is likely to hold substantial promise for this field,
potentially accelerating the development of new therapies and advanced materials. Our research is
currently focused on in-silico experiments. The potential safety concerns of discovered molecules are
further examined in the subsequent processes, such as in-vitro experiments and pre-clinical tests.

Acknowledgments and Disclosure of Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. RS-2024-00410082). The authors are grateful to Austin Tripp and
Xiuyuan Hu for their help with baselines.

References
[1] James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early

drug discovery. British Journal of Pharmacology, 162(6):1239–1249, 2011.

[2] Alexander W Hains, Ziqi Liang, Michael A Woodhouse, and Brian A Gregg. Molecular
semiconductors in organic photovoltaic cells. Chemical Reviews, 110(11):6689–6735, 2010.

[3] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):1–14, 2017.

[4] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

[5] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In International Conference on Machine Learning, pages
2323–2332. PMLR, 2018.

[6] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems, volume 34, pages 27381–27394, 2021.

[7] Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pages 18872–18892.
PMLR, 2023.

[8] Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a
benchmark for practical molecular optimization. Advances in Neural Information Processing
Systems, 35:21342–21357, 2022.

[9] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific Reports, 9(1):1–10, 2019.

[10] Moksh Jain, Emmanuel Bengio, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with GFlowNets. In International Conference on Machine Learning,
pages 9786–9801. PMLR, 2022.

10

[11] Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with GFlowNets. Advances in Neural Information
Processing Systems, 36, 2024.

[12] Austin Tripp, Gregor N. C. Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

[13] Jan H Jensen. A graph-based genetic algorithm and generative model/Monte Carlo tree search
for the exploration of chemical space. Chemical Science, 10(12):3567–3572, 2019.

[14] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan
Aspuru-Guzik. Beyond generative models: superfast traversal, optimization, novelty, explo-
ration and discovery (STONED) algorithm for molecules using SELFIES. Chemical Science,
12(20):7079–7090, 2021.

[15] AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik. Augmenting
genetic algorithms with deep neural networks for exploring the chemical space. In International
Conference on Learning Representations, 2020.

[16] Austin Tripp and José Miguel Hernández-Lobato. Genetic algorithms are strong baselines for
molecule generation. arXiv preprint arXiv:2310.09267, 2023.

[17] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. In Advances in Neural Information Processing Systems, volume 33,
pages 12008–12021, 2020.

[18] Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo
Ahn, and Jinkyoo Park. Local search GFlowNets. In International Conference on Learning
Representations, 2024.

[19] David B Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions on
Neural Networks, 5(1):3–14, 1994.

[20] Hari Mohan Pandey, Ankit Chaudhary, and Deepti Mehrotra. A comparative review of ap-
proaches to prevent premature convergence in GA. Applied Soft Computing, 24:1047–1077,
2014.

[21] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. GuacaMol: bench-
marking models for de novo molecular design. Journal of Chemical Information and Modeling,
59(3):1096–1108, 2019.

[22] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf H Roohani, Jure Leskovec, Connor W.
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine
learning datasets and tasks for drug discovery and development. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[23] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

[24] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in GFlowNets. In Advances in Neural Information
Processing Systems, volume 35, pages 5955–5967, 2022.

[25] Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,
Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets
from partial episodes for improved convergence and stability. In International Conference on
Machine Learning, pages 23467–23483. PMLR, 2023.

[26] Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets
with local credit and incomplete trajectories. In International Conference on Machine Learning,
pages 26878–26890. PMLR, 2023.

[27] Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial
inference of GFlowNets. In International Conference on Learning Representations, 2024.

11

[28] Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth.
A variational perspective on generative flow networks. Transactions on Machine Learning
Research, 2023.

[29] David Weininger. SMILES, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences,
28(1):31–36, 1988.

[30] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[31] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

[32] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems, volume 36, pages 53728–53741, 2023.

[33] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimiza-
tion in the latent space of deep generative models via weighted retraining. In Advances in
Neural Information Processing Systems, volume 33, pages 11259–11272, 2020.

[34] Minsu Kim, Federico Berto, Sungsoo Ahn, and Jinkyoo Park. Bootstrapped training of score-
conditioned generator for offline design of biological sequences. In Advances in Neural
Information Processing Systems, volume 36, pages 67643–67661, 2023.

[35] Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 2018.

[36] Wenhao Gao, Rocío Mercado, and Connor W. Coley. Amortized tree generation for bottom-
up synthesis planning and synthesizable molecular design. In International Conference on
Learning Representations, 2022.

[37] Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and
Yoshua Bengio. GFlowNets for AI-driven scientific discovery. Digital Discovery, 2(3):557–577,
2023.

[38] Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho,
and Tommaso Biancalani. Towards understanding and improving GFlowNet training. In
International Conference on Machine Learning, pages 30956–30975. PMLR, 2023.

[39] Pouya M Ghari, Alex Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele
Scalia, and Ehsan Hajiramezanali. Generative flow networks assisted biological sequence
editing. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

[40] Miruna Cretu, Charles Harris, Julien Roy, Emmanuel Bengio, and Pietro Liò. SynFlowNet:
Towards molecule design with guaranteed synthesis pathways. In ICLR 2024 Workshop on
Generative and Experimental Perspectives for Biomolecular Design, 2024.

[41] Hyeonah Kim, Minsu Kim, Sungsoo Ahn, and Jinkyoo Park. Symmetric replay training:
Enhancing sample efficiency in deep reinforcement learning for combinatorial optimization. In
Proceedings of the 41st International Conference on Machine Learning, pages 24110–24136.
PMLR, 2024.

[42] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai
Zhang, and Yoshua Bengio. GFlowNets and variational inference. In International Conference
on Learning Representations, 2023.

[43] Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy GFlowNets with soft Q-learning. In International Conference on Artificial Intelligence
and Statistics, pages 2593–2601. PMLR, 2024.

12

[44] Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete
probabilistic inference as control in multi-path environments. In The 40th Conference on
Uncertainty in Artificial Intelligence, 2024.

[45] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap
between value and policy based reinforcement learning. In Advances in Neural Information
Processing Systems, volume 30, 2017.

[46] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[47] Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
GFlowNets. In ICML 2023 Structured Probabilistic Inference & Generative Modeling (SPIGM)
Workshop, 2023.

[48] Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo
Park, Emmanuel Bengio, and Yoshua Bengio. Learning to scale logits for temperature-
conditional GFlowNets. In International Conference on Machine Learning, 2024.

[49] Shuai Guo, Jielei Chu, Lei Zhu, and Tianrui Li. Dynamic backtracking in GFlowNet:
Enhancing decision steps with reward-dependent adjustment mechanisms. arXiv preprint
arXiv:2404.05576, 2024.

[50] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with
conditional graph generative model. Journal of Cheminformatics, 10:1–24, 2018.

[51] Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast,
accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13):2214–2216,
2015.

[52] Xiuyuan Hu, Guoqing Liu, Yang Zhao, and Hao Zhang. De novo drug design using rein-
forcement learning with multiple GPT agents. In Advances in Neural Information Processing
Systems, volume 36, pages 7405–7418, 2023.

[53] David M Rogers, Rupesh Agarwal, Josh V Vermaas, Micholas Dean Smith, Rajitha T Rajeshwar,
Connor Cooper, Ada Sedova, Swen Boehm, Matthew Baker, Jens Glaser, et al. SARS-CoV2
billion-compound docking. Scientific Data, 10(1):173, 2023.

[54] Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for
structure-based drug design. In Advances in Neural Information Processing Systems, volume 35,
pages 12325–12338, 2022.

[55] AkshatKumar Nigam, Robert Pollice, and Alán Aspuru-Guzik. Parallel tempered genetic
algorithm guided by deep neural networks for inverse molecular design. Digital Discovery,
1(4):390–404, 2022.

[56] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A
hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3):611–624, 2012.

[57] Joshua Meyers, Benedek Fabian, and Nathan Brown. De novo molecular design and generative
models. Drug discovery today, 26(11):2707–2715, 2021.

13

Figure 6: Pretraining and Genetic GFN fine-tuning framework

A Implementation details of Genetic GFN

Genetic GFN is implemented on top of the PMO benchmark source code (MIT license).4 Mostly, we
adopt the REINVENT implementation including the RNN models and experience buffer; the code
is included in the benchmark, and the original implementation is also accessible with Apache-2.0
license.5 See the following subsections for details.

A.1 Network architecture and pretraining

Network architecture. Our policy network is parameterized using a recurrent neural network
containing multiple GRU cells [30]. In molecular optimization, RNN-based models with string
molecular representations have proven to be successful [3, 17, 52]. In experiments, we employ the
same hyperparameters to directly compare with REINVENT, whose input embedding dimension is
128 and hidden dimension is 512 with three layers.

Pretraining. According to the PMO benchmark guidelines [8], the pre-training is conducted on
ZINC 250K. The overall framework is illustrated in Fig. 6. Since the network architecture is the same
as REINVENT, we adopt the provided pretrained model for REINVENT in the PMO benchmark.
This allows the direct comparison of fine-tuning approaches.

A.2 Hyperparameters

We mostly follow the hyperparmeter setup of REINVENT and GEGL. For instance, the batch size
and learning rate are set as 64 and 0.0005 according to REINVENT in the PMO benchmark. On the
other hand, the mutation rate and the number of training loops are set to 0.01 and 8 following GEGL.
We use 64 samples for the replay training and population size, the same as the batch size without
tuning. Lastly, the learning rate of Z, the partition function, is set to 0.1, also without tuning.

In contrast, we have searched several hyperparameters, offspring size, the number of GA generations,
and KL-divergence coefficient α. We provide the sensitivity analysis for the offspring size and the
number of GA generations in Appendix G.8. Furthermore, we use the inverse temperature β = 10
and the weight-shifting factor k = 0.01, but they can be differently used to control score-diversity
trade-off, as explained in Section 5.1.2.

A.3 Computing resource

Throughout the experiments, we utilize a 48-core CPU, Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz,
and a single GPU. In the PMO benchmark, runtime varies from less than 10 minutes to several hours
for 10K evaluations, depending on tasks and algorithms. However, most of the runtime is consumed
in evaluating score functions—the motivation for why the sample efficiency matters. On the other
hand, in the SARS-CoV-2 inhibitor design tasks, 1000 training steps with a batch size of 128 require
more than 1 day for PlPro_7JIR and 2 days for RdRp_6YYT; more than 95% of the time is used to
evaluation [52].

4https://github.com/wenhao-gao/mol_opt
5https://github.com/MolecularAI/Reinvent

14

https://github.com/wenhao-gao/mol_opt
https://github.com/MolecularAI/Reinvent

✓ ✓ ✓

✓

Ring crossover Non-ring crossover

(a) Crossover

Delete atom

Append atom

Insert atom

Change bond order

Delete cyclic bond

Add ring

Change atom

(b) Mutations

Figure 7: Examples of Graph GA operations. These operations are conducted according to predefined
SMARTS patterns to ensure molecule validity, such as adherence to valence rules.

B Genetic operations

This section details each operation in our genetic search; see Fig. 7 for illustration. Note that we
adopt Graph GA of [13], which has demonstrated its powerful performances and has been adopted by
GA-related works like Mol GA [16] and GEGL [17].

B.1 Crossover

A crossover operation is conducted to generate a new candidate (called offspring) by exchanging the
genetic information of a pair of selected individuals (parents). This process mimics the crossover of
genetic material in biological reproduction. In the context of molecular optimization with graphs, the
crossover operation is conducted in two types: ‘ring crossover’ and ‘non-ring crossover with a 50%
probability.

These two main crossover operations perform crossover between two parent molecules by cutting and
recombining ring substructures. Ring crossover performs a ring cut specifically designed to target
ring structures within the molecule. The ring-cut operation cuts the molecule along two different
ring patterns, selected randomly. One of the ring patterns checks for a specific arrangement of four
consecutive ring atoms, and the other pattern checks for a ring atom connected to two other ring
atoms with a single bond. If a suitable ring pattern is found, it cuts the molecule along that pattern,
resulting in two fragments. On the other hand, non-ring crossover cuts a single bond, meaning it is
not part of a cyclic (ring) structure within the molecule. The obtained fragments from both parents
are recombined to create new molecules by applying predefined reaction SMARTS patterns. These
operations are repeated for validity to ensure that the resulting molecules meet structural and size
constraints.

B.2 Mutation

The mutation is a random change that is introduced to the genetic information of some individuals.
This step adds diversity to the population and helps explore new regions of the solution space. In
this work, we employ seven different mutation processes and randomly select one of these mutations
to modify the offspring molecules slightly. The operations consist of atom and bond deletions,
appending new atoms, inserting atoms between existing ones, changing bond orders, deleting cyclic
bonds, adding cyclic rings, and altering atom types.

1. Deletion of atom: it selects one of five deletion SMARTS patterns, each representing the
removal of a specific number of atoms or bonds. These patterns include the removal of
a single atom, a single bond, a bond with two attached atoms, and bonds with multiple
attached atoms. The selected pattern is applied to the molecule, deleting the specified
atom(s) or bond(s).

2. Appending atom: it introduces a new atom to the molecule. The type of atom (e.g., C, N, O)
and the type of bond (single, double, or triple) are chosen based on predefined probabilities.
The function then generates a reaction SMARTS pattern to append the selected atom to the
molecule, forming a new bond.

15

3. Inserting atom: it inserts a new atom between two existing atoms in the molecule. Similar to
the appending atom, it selects the type of atom and bond based on predefined probabilities
and generates a reaction SMARTS pattern to insert the atom.

4. Changing bond order: it randomly selects one of four SMARTS patterns, each representing
a change in the bond order between two atoms. These patterns include changing a single
bond to a double bond, a double bond to a triple bond, and vice versa.

5. Deletion of cyclic bond: it deletes a bond that is a part of a cyclic structure within the
molecule. The SMARTS pattern represents the breaking of a cyclic bond while retaining the
atoms connected by the bond.

6. Adding ring: it introduces a new cyclic ring into the molecule by selecting one of four
SMARTS patterns, each representing the formation of a specific ring type. These patterns
create different types of cyclic structures within the molecule.

7. Changing atom: it randomly selects two types of atoms from a predefined list and generates
a SMARTS pattern to change one atom into another. This operation modifies the atom type
within the molecule.

16

C Hyperparameter setup for baseline methods

In this subsection, we present detailed descriptions for hyperparameter tuning of baselines. Except
for Mol GA and GEGL, we adopt all the hyperparameters, initial datasets, and pre-trained models
provided in the PMO benchmark. For hyperparameters that affect the sample efficiency, such as
population size, we have searched for the proper hyperparameters following the guidelines suggested
by [8]. In detail, we tune Mol GA and GEGL on the average AUC Top-10, the main performance
metric, from 3 independent runs of two oracles, zaleplon_mpo and perindopril_mpo. The best
configurations are used in the main experiments.

Mol GA. As mentioned in Section 5.1, we set the offspring size as 5, the most crucial hyperparam-
eter, according to the original paper [16]. Then, we searched the starting population size in [100,
200, 500, 1000] and the population size [100, 200, 500]. As shown in Fig. 8, we found the best
configuration to be 500 and 100 for the starting population size and the population size, respectively.

Figure 8: Hyperparameter tuning results for Mol GA

GEGL. In GEGL, the policy sampling size is set as the expert sampling size, and both priority
queue sizes (denoted as num_keep) are the same as the original implementation. Thus, we searched
the expert sampling size in [64, 128, 512] and the priority queue size in [128, 512, 1024]. Originally,
they were set as 8192 and 1024, which are improper to the sample efficient setting. For the training
batch size, we use 64, which is the same as ours. We use the pretrained policy provided in the original
code and adapt the setup of the rest of the hyperparameters, including mutation rate, learning rate,
and the number of training loops. Based on the results in Fig. 9, we set the expert sampling size and
priority queue size as 128.

Figure 9: Hyperparameter tuning results for GEGL

17

D Comparison Genetic GFN-AL with active learning and model-based
algorithms

D.1 Implementation of Genetic GFN-AL

We mostly adopt the implementation of GFlowNet-AL, including the training method and the
utilization of an acquisition function [10]. The source code is accessible online with an MIT
license.6 Additionally, the number of training proxy and generative models are aligned with the PMO
benchmark standards, while the replay training and genetic search hyperparameters are set to those
used in our method in Genetic GFN. The pseudo-code is as follows.

Algorithm 2 Multi-round active learning with Genetic GFN

Input: Pretrained policy πpre
Output: Top-K elements of discovered molecule dataset D

1: Set πθ ← πpre, D ← ∅
2: Initialize the proxy model fϕ
3: while |D| ≤ numOracle do
4: ▷ PROXY TRAINING
5: for k = 1 to numTrainProxy do
6: Sample x from πθ with GeneticSearch
7: y(i) ← O(x(i))
8: D ← D ∪ {(x(i), y(i))}ni=0
9: Update ϕ to minimize

∑
(x,y)∈D(fϕ(x)− y)2

10: end for
11: ▷ GENERATIVE POLICY TRAINING
12: Dinner ← ∅
13: for l = 1 to numTrainPolicy do
14: Get m′ = ⌈m(1− γ)⌉ samples from πθ with GeneticSearch
15: Get m−m′ samples from D
16: Dinner ← Dinner ∪ {(x(i),F(µ(x(i)), σ(x(i)))}mi=0 ▷ Acquisition function from [10]
17: for r = 1 to numReplay do
18: Get B from Dinner with rank-based sampling
19: Update θ to minimize 1

|B|
∑

(x,fϕ(x))∈B LTB + αKL(πθ(x)||πpre(x))

20: end for
21: end for
22: end while

Hyperparmeters. We use the same hyperparameters for the generative model (i.e., Genetic GFN).
Since active learning approaches introduce various hyperparameters, such as the training iterations of
the proxy and generative models, not only introduce the proxy model, we tried to keep the setup of
GFlowNet-AL in the PMO benchmark (e.g., proxy learning rate). We provide hyperparameters in
Table 6; note that our proxy model predicts the score using SMILES rather than fragments, unlike
the original GFlowNet-AL. Additionally, we adopt γ, the ratio of offline (oracle-touched) data in
the inner loop training, and the acquisition function (related with κ); see the original GFlowNet-AL
paper [10].

D.2 Experimental results

We compare Genetic GFN-AL with various model-based and active learning methods. Here, GP BO is
regarded as a model-based method of Graph GA because GP BO uses Graph when optimizing the GP
acquisition function. As shown in Table 7, SMILES Genetic GFN-AL achieves significantly improved
performance compared to fragment GFlowNet-AL in the PMO benchmark. It is noteworthy that we
further utilize the acquisition function, not directly use the proxy prediction as a reward, and mix the
oracle-touched data, as described in the previous section. Therefore, to verify the effectiveness of
genetic search in the active learning setup, we implement another baseline, SMILES GFN-AL using

6https://github.com/MJ10/BioSeq-GFN-AL

18

https://github.com/MJ10/BioSeq-GFN-AL

Table 6: Hyperparameters of Genetic GFN-AL

SMILES
Genetic GFN-AL

Fragment
GFlowNet-AL

(PMO benchmark)

proxy init sample size 480 500
proxy sample size 480 500
proxy training iterations 25 25
proxy training batch size 64 64
proxy hidden dimension 512 64
proxy layers 3 3
generative model training iterations 8× 10 100
proxy learning rate 0.00025 0.00025
proxy weight decay 0.000001 0.000001
proxy dropout 0.0 0.0
kappa 0.1 0.0
gamma 0.5 0.0
random action prob 0.0 0.05

ϵ-greedy exploration, similar to our self-ablation studies in Section 5.1.2. The results demonstrate that
Genetic GFN is beneficial to enhancing sample efficiency in the active learning setting. As pointed
out in the PMO benchmark, though the model-based methods (or active learning methods) are known
as more sample efficient, they require careful design to achieve superior performances.

Table 7: Comparing AL and model-based algorithms. The bold text indicates the best value.

Genetic GFN-AL SMILES GFN-AL
with ϵ-greedy GP BO [12] Fragments

GFlowNet-AL [10]

AUC Top-1 13.997 ± 0.337 11.954 ± 0.190 13.718 ± 0.080 11.032 ± 0.016
AUC Top-10 13.462 ± 0.303 11.257 ± 0.171 13.115 ± 0.074 9.928 ± 0.027
AUC Top-100 12.263 ± 0.218 9.901 ± 0.237 12.050 ± 0.082 8.064 ± 0.005

19

E Multi-objective sample efficient molecular optimization tasks

This section provides details on multi-objective sample efficient molecular optimization experiments.
Even though Genetic GFN targets single (i.e., scalar-valued) objective optimization tasks, ours
directly applies to multi-objective tasks using well-defined coefficients. Inspired by the work of Zhu
et al. [11], we conduct experiments on two multi-objective tasks: GSK3β + JNK3 and GSK3β +
JNK3 + QED + SA. Genetic GFN is implemented on top of the original code (MIT license).7

Interestingly, GSK3β and JNK3 are machine-learning-based oracles that estimate inhibiting scores
against the Glycogen synthase kinase 3 beta target and the c-Jun N-terminal kinase 3 target. Designing
dual inhibitors for both targets can be beneficial to designing treatments for Alzheimer’s Disease [50].
We define scalar-valued score functions using the linear combination of oracle functions with given
coefficients. The cost coefficients α are set following the HN-GFN paper, i.e., α = (1, 1) for GSK3β
+ JNK3 and α = (3, 4, 2, 1) for GSK3β + JNK3 + QED + SA. Since the reward scales become larger,
we reduce the inverse temperature from 50 to 25.

According to the experiment setup of hypernetwork-based GFlowNets (HN-GFN) [11], we limit the
reward calls to 1000. Consequently, the batch size, replay training loops, population, and offspring
size are adjusted to half. The performance is measured using hypervolumes with five independent
runs. Note that we use the same pretrained model in the main experiment for PMO.

7https://github.com/violet-sto/HN-GFN

20

https://github.com/violet-sto/HN-GFN

F Designing of SAS-Cov-2 inhibitors

According to the previous work [52], we define the score function s(x) for designing SARS-Cov-2
inhibitors as a linear combination of normalized scores, i.e.,

s(x) = 0.8 · 1

1 + 100.625(sdocking(x)+10)
+ 0.1 · sQED(x) + 0.1 · 10− sSA(x)

9
. (5)

The target proteins are as follows:

• PLPro_7JIR: PLPro (papain-like protease) is a critical enzyme in the life cycle of SARS-
CoV-2, which can help in studying the enzyme’s function and in designing inhibitors that
could potentially disrupt the virus’s ability to replicate and evade the immune system. The
7JIR represents a C111S mutant version of PLPro.8

• RdRp_6YYT: RdRp (RNA-dependent RNA polymerase) is essential for the replication of
the genome and the transcription of genes in SARS-CoV-2. The protein structure of RdRp
is cataloged in the Protein Data Bank (PDB) under the identification code 6YYT.9

Genetic GFN is implemented on top of the implementation of MolRL-MGPT (Molecular design
using Reinforcement Learning with Multiple GPT agents).10 We employ the same hyperparameters
with the experiments on the PMO benchmark, except for the weight-shifting factor (we use k = 0.05).

In Table 5, the scores of baselines are computed according to the Eq. (5) using the average values in
the MolRL-MGPT [52]. We also provide average scores and standard deviation of docking, QED,
SA, and diversity in Table 8 and Table 9.

Table 8: The results of Top-100 molecules for PLPr_7JIR target. The docking, QED, and SA of
baselines are directly from MolRL-MGPT, and the total score is recalculated according to Eq. (5)
using average values.

Score (↑) Docking (↓) QED (↑) SA (↓) Diversity (↑)
JT-VAE 0.272 -8.76 ± 0.35 0.795 ± 0.038 2.994 ± 0.140 0.836 ± 0.032
GFlowNet 0.326 -9.11 ± 0.21 0.726 ± 0.015 2.823 ± 0.076 0.825 ± 0.010
Graph GA 0.723 -10.83 ± 0.08 0.380 ± 0.013 3.638 ± 0.162 0.740 ± 0.017
Reinvent 0.717 -10.75 ± 0.05 0.392 ± 0.008 2.649 ± 0.035 0.619 ± 0.023
MolRL-MGPT 0.772 -11.02 ± 0.06 0.386 ± 0.006 2.550 ± 0.047 0.745 ± 0.008

Genetic GFN (Ours) 0.908 -12.86 ± 0.17 0.425 ± 0.092 2.819 ± 0.105 0.592 ± 0.010

Table 9: The results of Top-100 molecules for RdRp_6YYT target. The docking, QED, and SA of
baselines are directly from MolRL-MGPT, and the total score is recalculated according to Eq. (5)
using average values.

Score (↑) Docking (↓) QED (↑) SA (↓) Diversity (↑)
JT-VAE 0.216 -8.33 ± 0.25 0.719 ± 0.019 2.959 ± 0.094 0.828 ± 0.018
GFlowNet 0.280 -8.89 ± 0.16 0.656 ± 0.033 2.854 ± 0.061 0.770 ± 0.015
GraphGA 0.786 -11.26 ± 0.12 0.262 ± 0.010 3.520 ± 0.049 0.658 ± 0.009
Reinvent 0.799 -11.30 ± 0.04 0.275 ± 0.006 2.917 ± 0.035 0.616 ± 0.021
MolRL-MGPT 0.854 -11.84 ± 0.07 0.278 ± 0.005 2.894 ± 0.072 0.670 ± 0.013

Genetic GFN (Ours) 0.890 -13.26 ± 0.13 0.277 ± 0.076 3.624 ± 0.060 0.708 ± 0.010

We provide additional visual results in Fig. 10. There seems to be a trend of increasing molecular
complexity and functional diversity over iterations.

8https://www.rcsb.org/structure/7JIR
9https://www.rcsb.org/structure/6YYT

10Available at https://github.com/HXYfighter/MolRL-MGPT

21

https://www.rcsb.org/structure/7JIR
https://www.rcsb.org/structure/6YYT
https://github.com/HXYfighter/MolRL-MGPT

RdRp

50 steps

100 steps

500 steps

1000 steps

(a) PLPro_7JIR

RdRp

50 steps

100 steps

500 steps

1000 steps

(b) RdRp_6YYT

Figure 10: Examples of Top3 inhibitors for SARS-CoV-2 over steps (seed 1)

22

G Additional results

G.1 Controllability of the score-diversity using the weight-shifting factor k

As mentioned in Section 5.1.2, the weight-shifting factor k in Eq. (4) also can control the score-
diversity trade-off. Increasing k gives more diverse candidates by increasing the probability of
high-ranked samples. Similar to adjusting the inverse temperature, the results in Table 10 and Fig. 11
demonstrate that adjusting k with fixed β also can effectively control the score-diversity trade-off.

0.45 0.50 0.55 0.60 0.65 0.70
Diversity

16.0

16.5

17.0

17.5
Av

g.
 To

p-
10

Genetic GFN (k = 0.01)
Genetic GFN (k = 0.05)
Genetic GFN (k = 0.1)
Genetic GFN (k = 0.5)
Mol GA
SMILES-REINVENT
GEGL
GP BO

Figure 11: The average score and diversity with adjustments of k.

Table 10: The score-diversity trade-off by varying k with fixed β.
Oracle k = 0.1 k = 0.05 k = 0.01 k = 0.005

AUC Top-1 15.246 15.801 16.527 16.323
AUC Top-10 14.652 15.330 16.213 16.040
AUC Top-100 13.597 14.453 15.516 15.418
Diversity 0.581 0.515 0.432 0.444

G.2 Additional results for the PMO benchmark

G.2.1 Statistical analysis

We provided the results of the t-tests of AUC Top-10 with Mol GA (2nd place) and SMIELS
REINVENT (3rd place). As shown in Table 11, both p-values are less than 0.05, so Genetic GFN
outperforms baselines with statistical significance.

Table 11: The results of t-tests with Mol GA and REINVENT.
2nd place 3rd place

Genetic GFN Mol GA Genetic GFN SMILES
REINVENT

Mean 16.213 15.685 16.213 15.185
Variance 0.038 0.033 0.038 0.194
Observations 5 5 5 5
Hypothesized Mean Diff. 0 0
t Stat 4.426 4.780
P(T ≤ t) one-tail 0.001 0.002
t Critical one-tail 1.860 2.015
P(T ≤ t) two-tail 0.002 0.005
t Critical two-tail 2.306 2.571

23

G.2.2 Full results of the PMO benchmark

Table 12: Full results of Table 1.
Genetic GFN

(Ours) Mol GA SMILES
REINVENT GEGL GP BO SELFIES

REINVENT Graph GA

#1 0.949 ± 0.010 0.928 ± 0.015 0.881 ± 0.016 0.842 ± 0.019 0.902 ± 0.011 0.867 ± 0.025 0.859 ± 0.013
#2 0.761 ± 0.019 0.740 ± 0.055 0.644 ± 0.019 0.626 ± 0.018 0.579 ± 0.035 0.621 ± 0.015 0.657 ± 0.022
#3 0.802 ± 0.029 0.629 ± 0.062 0.717 ± 0.027 0.699 ± 0.041 0.746 ± 0.025 0.588 ± 0.062 0.593 ± 0.092
#4 0.733 ± 0.109 0.656 ± 0.013 0.662 ± 0.044 0.656 ± 0.039 0.615 ± 0.009 0.638 ± 0.016 0.602 ± 0.012
#5 0.974 ± 0.006 0.950 ± 0.004 0.957 ± 0.007 0.898 ± 0.015 0.941 ± 0.017 0.953 ± 0.009 0.973 ± 0.001
#6 0.856 ± 0.039 0.835 ± 0.012 0.781 ± 0.013 0.769 ± 0.009 0.726 ± 0.004 0.740 ± 0.012 0.762 ± 0.014
#7 0.881 ± 0.042 0.894 ± 0.025 0.885 ± 0.031 0.816 ± 0.027 0.861 ± 0.027 0.821 ± 0.041 0.817 ± 0.057
#8 0.969 ± 0.003 0.926 ± 0.014 0.942 ± 0.012 0.930 ± 0.011 0.883 ± 0.040 0.873 ± 0.041 0.949 ± 0.020
#9 0.897 ± 0.007 0.894 ± 0.005 0.838 ± 0.030 0.808 ± 0.007 0.805 ± 0.007 0.844 ± 0.016 0.839 ± 0.042
#10 0.764 ± 0.069 0.835 ± 0.040 0.782 ± 0.029 0.580 ± 0.086 0.611 ± 0.080 0.624 ± 0.048 0.652 ± 0.106
#11 0.379 ± 0.010 0.329 ± 0.006 0.363 ± 0.011 0.338 ± 0.016 0.298 ± 0.016 0.353 ± 0.006 0.285 ± 0.012
#12 0.294 ± 0.007 0.284 ± 0.035 0.281 ± 0.002 0.274 ± 0.007 0.296 ± 0.011 0.252 ± 0.010 0.255 ± 0.019
#13 0.708 ± 0.057 0.762 ± 0.048 0.634 ± 0.042 0.599 ± 0.035 0.631 ± 0.093 0.589 ± 0.040 0.571 ± 0.036
#14 0.860 ± 0.008 0.853 ± 0.005 0.834 ± 0.010 0.832 ± 0.005 0.788 ± 0.005 0.819 ± 0.005 0.813 ± 0.006
#15 0.595 ± 0.014 0.610 ± 0.038 0.535 ± 0.015 0.537 ± 0.015 0.494 ± 0.006 0.533 ± 0.024 0.514 ± 0.025
#16 0.942 ± 0.000 0.941 ± 0.001 0.941 ± 0.000 0.941 ± 0.001 0.937 ± 0.002 0.940 ± 0.000 0.937 ± 0.001
#17 0.819 ± 0.018 0.830 ± 0.010 0.770 ± 0.005 0.730 ± 0.011 0.741 ± 0.010 0.736 ± 0.008 0.718 ± 0.017
#18 0.615 ± 0.100 0.568 ± 0.017 0.551 ± 0.024 0.531 ± 0.010 0.535 ± 0.007 0.521 ± 0.014 0.513 ± 0.026
#19 0.634 ± 0.039 0.677 ± 0.055 0.470 ± 0.041 0.402 ± 0.024 0.461 ± 0.057 0.492 ± 0.055 0.498 ± 0.048
#20 0.583 ± 0.034 0.544 ± 0.067 0.544 ± 0.026 0.515 ± 0.028 0.544 ± 0.038 0.497 ± 0.043 0.483 ± 0.034
#21 0.511 ± 0.054 0.487 ± 0.024 0.458 ± 0.018 0.420 ± 0.031 0.404 ± 0.025 0.342 ± 0.022 0.373 ± 0.013
#22 0.135 ± 0.271 0.000 ± 0.000 0.182 ± 0.363 0.119 ± 0.238 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
#23 0.552 ± 0.033 0.514 ± 0.033 0.533 ± 0.009 0.492 ± 0.021 0.466 ± 0.025 0.509 ± 0.009 0.468 ± 0.025

Sum 16.213 15.686 15.185 14.354 14.264 14.152 14.131

Div. 0.432 0.465 0.468 0.540 0.617 0.555 0.661

Table 13: Full results of Table 1 (continued).
SMILES

LSTM-HC STONED SynNet SMEILS GA Fragment
GFN

Fragment
GFN-AL

#1 0.731 ± 0.008 0.765 ± 0.048 0.568 ± 0.033 0.649 ± 0.079 0.382 ± 0.010 0.459 ± 0.028
#2 0.598 ± 0.021 0.608 ± 0.020 0.566 ± 0.006 0.520 ± 0.017 0.428 ± 0.002 0.437 ± 0.007
#3 0.552 ± 0.014 0.378 ± 0.043 0.439 ± 0.035 0.361 ± 0.038 0.263 ± 0.009 0.326 ± 0.008
#4 0.837 ± 0.018 0.612 ± 0.007 0.635 ± 0.043 0.612 ± 0.005 0.582 ± 0.001 0.587 ± 0.002
#5 0.941 ± 0.005 0.935 ± 0.014 0.970 ± 0.006 0.958 ± 0.015 0.480 ± 0.075 0.601 ± 0.055
#6 0.733 ± 0.002 0.791 ± 0.014 0.750 ± 0.016 0.705 ± 0.025 0.689 ± 0.003 0.700 ± 0.005
#7 0.846 ± 0.019 0.666 ± 0.022 0.713 ± 0.057 0.714 ± 0.038 0.589 ± 0.009 0.666 ± 0.006
#8 0.830 ± 0.019 0.930 ± 0.012 0.862 ± 0.004 0.821 ± 0.070 0.791 ± 0.024 0.468 ± 0.211
#9 0.693 ± 0.018 0.897 ± 0.032 0.657 ± 0.030 0.853 ± 0.049 0.576 ± 0.021 0.199 ± 0.199
#10 0.670 ± 0.014 0.509 ± 0.065 0.574 ± 0.103 0.353 ± 0.061 0.359 ± 0.009 0.442 ± 0.017
#11 0.263 ± 0.007 0.264 ± 0.032 0.236 ± 0.015 0.187 ± 0.029 0.192 ± 0.003 0.207 ± 0.003
#12 0.249 ± 0.003 0.254 ± 0.024 0.241 ± 0.007 0.178 ± 0.009 0.174 ± 0.002 0.181 ± 0.002
#13 0.553 ± 0.040 0.620 ± 0.098 0.402 ± 0.017 0.419 ± 0.028 0.291 ± 0.005 0.332 ± 0.012
#14 0.801 ± 0.002 0.829 ± 0.012 0.793 ± 0.008 0.820 ± 0.021 0.787 ± 0.002 0.785 ± 0.003
#15 0.491 ± 0.006 0.484 ± 0.016 0.541 ± 0.021 0.442 ± 0.016 0.423 ± 0.006 0.434 ± 0.006
#16 0.939 ± 0.001 0.942 ± 0.000 0.941 ± 0.001 0.941 ± 0.002 0.904 ± 0.002 0.917 ± 0.002
#17 0.728 ± 0.005 0.764 ± 0.023 0.749 ± 0.009 0.723 ± 0.023 0.626 ± 0.005 0.660 ± 0.004
#18 0.529 ± 0.004 0.515 ± 0.025 0.506 ± 0.012 0.507 ± 0.008 0.461 ± 0.002 0.464 ± 0.003
#19 0.309 ± 0.015 0.600 ± 0.103 0.297 ± 0.033 0.449 ± 0.068 0.180 ± 0.012 0.217 ± 0.022
#20 0.440 ± 0.014 0.375 ± 0.029 0.397 ± 0.012 0.310 ± 0.019 0.261 ± 0.004 0.292 ± 0.009
#21 0.369 ± 0.015 0.309 ± 0.030 0.280 ± 0.006 0.262 ± 0.019 0.183 ± 0.001 0.190 ± 0.002
#22 0.011 ± 0.021 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
#23 0.470 ± 0.004 0.484 ± 0.015 0.493 ± 0.014 0.470 ± 0.029 0.308 ± 0.027 0.353 ± 0.024

Sum 13.583 13.531 12.610 12.254 9.929 9.917

Div. 0.686 0.498 0.728 0.596 0.816 0.846

24

0 2000 4000 6000 8000 10000

0.4

0.6

0.8

1.0
albuterol_similarity

Genetic GFN (Ours)
Mol GA

SMILES-REINVENT
GEGL

GP BO
SELFIES-REINVENT

Graph GA
SMILES-HC

STONED
SynNet

SMILES GA
GFlowNet

GFlowNet-AL

0 2000 4000 6000 8000 10000
0.3

0.4

0.5

0.6

0.7

0.8

0.9
amlodipine_mpo

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

celecoxib_rediscovery

0 2000 4000 6000 8000 10000

0.6

0.7

0.8

0.9

deco_hop

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

drd2

0 2000 4000 6000 8000 10000

0.6

0.7

0.8

0.9

fexofenadine_mpo

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1.0
gsk3b

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0
isomers_c7h8n2o2

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0
isomers_c9h10n2o2pf2cl

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0
jnk3

0 2000 4000 6000 8000 10000
0.1

0.2

0.3

0.4

median1

0 2000 4000 6000 8000 10000

0.15

0.20

0.25

0.30

0.35
median2

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1.0
mestranol_similarity

0 2000 4000 6000 8000 10000

0.6

0.7

0.8

0.9
osimertinib_mpo

0 2000 4000 6000 8000 10000
0.3

0.4

0.5

0.6

0.7

perindopril_mpo

0 2000 4000 6000 8000 10000

0.65

0.70

0.75

0.80

0.85

0.90

0.95
qed

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

ranolazine_mpo

0 2000 4000 6000 8000 10000
0.4

0.5

0.6

0.7

0.8

scaffold_hop

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

sitagliptin_mpo

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

thiothixene_rediscovery

0 2000 4000 6000 8000 10000

0.2

0.3

0.4

0.5

0.6

0.7
troglitazone_rediscovery

0 2000 4000 6000 8000 10000
0.2

0.0

0.2

0.4

0.6
valsartan_smarts

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

zaleplon_mpo

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: The optimization curves for 23 oracle score functions.

25

G.2.3 Ranks with various metrics

According to the PMO benchmark, we also provide the rank of each method with various metrics.
The results in Table 14 show that Genetic GFN achieves the first place in total, not only in the AUC
Top-10.

Table 14: The ranks of 10 methods based on various performance metrics
AUC Average score Mean

Method Category Top-1 Top-10 Top-100 Top-1 Top-10 Top-100

Genetic GFN (Ours) Off-policy 1 1 1 1 1 1 1.00
Mol GA [16] GA 2 2 2 5 3 2 2.67
SMILES-REINVENT [3] On-policy 3 3 3 4 2 3 3.00
GEGL [17] Off-policy 4 4 6 3 4 4 4.17
SELFIES-REINVENT [3] On-policy 7 6 4 6 6 5 5.67
GP BO [12] Active Learning 6 5 5 7 7 6 6.00
SMILES-LSTM-HC [21] Off-policy 5 8 10 2 5 7 6.17
Graph GA [13] GA 8 7 7 8 8 8 7.67
STONED [14] GA 9 9 8 9 9 9 8.83
SynNet [36] GA 10 10 11 10 10 11 10.33
SMILES GA [21] GA 11 11 9 11 11 10 10.50
GFlowNet [6] Off-policy 13 13 12 12 12 12 12.33
GFlowNet-AL [10] Active Learning 12 12 13 13 13 13 12.67

G.3 Further studies on valsartan_smarts (#22)

Notably, we have observed that only a few methods achieve non-zero scores on valsartan_smarts
(#22) in Table 1. The valsartan SMARTS targets molecules containing a SMARTS pattern related to
valsartan while being characterized by physicochemical properties corresponding to the sitagliptin
molecule [57]. It measures the arithmetic means of several scores, including (1) binary score about
whether it contains a certain SMARTS structure, (2) LogP, (3) TPSA, and (4) Bertz score. Since we
utilize a TDC oracle function for evaluations, we provide our empirical observations here.

Due to the binary score (1 if the certain SMARTS pattern is included), many tries terminate with
0. Especially with a limited number of oracle calls, generating molecules containing a certain sub-
structure is notoriously hard. Other literature shows that other methods achieve high scores with more
oracle calls [52]. With 10K calls, even REINVENT and Genetic only succeed in finding non-zero
score molecules once out of five independent runs. Another observation is that methods (REINVENT,
Genetic GFN, and GEGL) achieving non-zero scores all generate SMILES with RNN-based models.
Thus, we have a conjecture that SMILES generation is effective in generating a certain SMARTS
pattern. We provide examples of generated molecules with non-zero valsartan_smarts scores.
Note that the other four seeds failed. Each run generates similar molecules (see Top1,10,100 samples
in Fig. 13 in the additional material), but the samples between the two runs (REINVENT and Genetic
GFN) have different structures (the molecule distance between Top1 samples is 0.854).

(a) REINVENT (seed 0) (b) Genetic GFN (seed 4)

Figure 13: Examples of molecules with non-zero scores on valsartan_smarts (#22)

26

G.4 Additional results for ablation studies

G.4.1 Statistical analysis

We provided the results of the t-tests of ablation studies. As shown in Table 15, the p-values for
ablating genetic search are less than 0.05, so our genetic search is a statistically significant component.

Table 15: The results of t-tests of ablation studies.
Genetic Search KL-divergence penalty

Genetic GFN - {GS} Genetic GFN - {GS} + {ϵ-greedy} Genetic GFN - {KL}
Mean 16.213 15.738 16.213 15.627 16.213 15.928
Variance 0.038 0.094 0.038 0.008 0.038 0.227
Observations 5 5 5 5 5 5
Hypothesized Mean Diff. 0 0 0
t Stat 2.931 6.109 1.236
P(T ≤ t) one-tail 0.011 0.000 0.136
t Critical one-tail 1.895 1.943 2.015
P(T ≤ t) two-tail 0.021 0.001 0.271
t Critical two-tail 2.365 2.447 2.571

G.5 Results for diversity and synthesizability

We report the diversity and synthetic accessibility (SA) score of Top-100 molecules on each oracle.

alb
ute

rol
_si

milar
ity

am
lod

ipin
e_m

po

cel
eco

xib
_re

dis
cov

ery

de
co_

ho
p

drd
2

fex
ofe

na
din

e_m
po

gsk
3b

iso
mers

_c7
h8

n2
o2

iso
mers

_c9
h1

0n
2o

2p
f2c

l
jnk

3

med
ian

1

med
ian

2

mest
ran

ol_
sim

ilar
ity

osi
mert

inib
_m

po

pe
rin

do
pri

l_m
po qe

d

ran
ola

zin
e_m

po

sca
ffo

ld_
ho

p

sita
glip

tin
_m

po

thi
oth

ixe
ne

_re
dis

cov
ery

tro
glit

azo
ne

_re
dis

cov
ery

va
lsa

rta
n_s

mart
s

zal
ep

lon
_m

po

Genetic GFN (Ours)
Mol GA

SMILES-REINVENT
GPBO

SELFIES-REINVENT
Graph GA

SMILES-HC
STONED
SynNet

SMILES GA
GFlowNet

GFlowNet-AL
Avg. Diversity of Top-100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 14: The average diversity of Top-100 molecules (↑)

alb
ute

rol
_si

milar
ity

am
lod

ipin
e_m

po

cel
eco

xib
_re

dis
cov

ery

de
co_

ho
p

drd
2

fex
ofe

na
din

e_m
po

gsk
3b

iso
mers

_c7
h8

n2
o2

iso
mers

_c9
h1

0n
2o

2p
f2c

l
jnk

3

med
ian

1

med
ian

2

mest
ran

ol_
sim

ilar
ity

osi
mert

inib
_m

po

pe
rin

do
pri

l_m
po qe

d

ran
ola

zin
e_m

po

sca
ffo

ld_
ho

p

sita
glip

tin
_m

po

thi
oth

ixe
ne

_re
dis

cov
ery

tro
glit

azo
ne

_re
dis

cov
ery

va
lsa

rta
n_s

mart
s

zal
ep

lon
_m

po

Genetic GFN (Ours)
Mol GA

SMILES-REINVENT
GPBO

SELFIES-REINVENT
Graph GA

SMILES-HC
STONED
SynNet

SMILES GA
GFlowNet

GFlowNet-AL
Avg. SA Score

3

4

5

6

7

8

9

10

Figure 15: The average SA score of Top-100 molecules (↓)

27

G.6 Genetic GFN with SELFIES generation

As our method employs a string-based sequence generation model, it is applicable to SELFIES
representation. Following the same procedure and setup described in Section 3 and Section 5.1. The
results in Table 16 demonstrate that Genetic GFN significantly outperforms SELFIES-REINVENT
by achieving 14.986 compared to 14.152, not only the other high-ranked method, GP BO (14.264).
Notably, our AUC Top-10 is higher than that of SELFIES-REINVENT in 19 oracles.

Table 16: Performance of Genetic GFN with SELFIES generations.

Oracle SELFIES
REINVENT

SELFIES
Genetic GFN

albuterol_similarity 0.867 ± 0.025 0.918 ± 0.031
amlodipine_mpo 0.621 ± 0.015 0.711 ± 0.029
celecoxib_rediscovery 0.588 ± 0.062 0.578 ± 0.049
deco_hop 0.638 ± 0.016 0.631 ± 0.020
drd2 0.953 ± 0.009 0.971 ± 0.005
fexofenadine_mpo 0.740 ± 0.012 0.797 ± 0.012
gsk3b 0.821 ± 0.041 0.900 ± 0.042
isomers_c7h8n2o2 0.873 ± 0.041 0.952 ± 0.017
isomers_c9h10n2o2pf2cl 0.844 ± 0.016 0.879 ± 0.031
jnk3 0.624 ± 0.048 0.675 ± 0.140
median1 0.353 ± 0.006 0.351 ± 0.034
median2 0.252 ± 0.010 0.263 ± 0.014
mestranol_similarity 0.589 ± 0.040 0.680 ± 0.076
osimertinib_mpo 0.819 ± 0.005 0.849 ± 0.008
perindopril_mpo 0.533 ± 0.024 0.551 ± 0.015
qed 0.940 ± 0.000 0.942 ± 0.000
ranolazine_mpo 0.736 ± 0.008 0.785 ± 0.013
scaffold_hop 0.521 ± 0.014 0.531 ± 0.020
sitagliptin_mpo 0.492 ± 0.055 0.590 ± 0.018
thiothixene_rediscovery 0.497 ± 0.043 0.527 ± 0.036
troglitazone_rediscovery 0.342 ± 0.022 0.387 ± 0.087
valsartan_smarts 0.000 ± 0.000 0.000 ± 0.000
zaleplon_mpo 0.509 ± 0.009 0.518 ± 0.016

Sum 14.152 14.986
Diversity 0.555 0.528

G.7 Genetic GFN with string-based genetic search

We also additionally provide experiments that incorporate STONED (GA with SELFIES)[14] as an
exploration strategy to guide GFN training instead of Graph GA. Note that STONED only utilizes
mutations since designing valid crossover with string representation is challenging.

Table 17: Results with different genetic search algorithms

Genetic GFN Genetic GFN
with STONED

AUC Top-1 16.527 ± 0.043 15.806 ± 0.037
AUC Top-10 16.213 ± 0.042 15.439 ± 0.037
AUC Top-100 15.516 ± 0.041 14.870 ± 0.036

28

G.8 Experiments with varying hyperparameters

In this subsection, we verify the robustness of Genetic GFN for differing hyperparameter setups. We
conduct experiments by varying the number of GA generation (refining loops), offspring size, and the
number of training inner loops. The results show that our results are robust to each hyperparameter
setup by achieving similar or better performance compared to Mol GA in all tested configurations.

Table 18: Ablation studies for the number of GA generation. ‘×0’ stands for the results of TB loss
training without GA explorations.

Oracle ×0 ×1 ×2 ×3
AUC Top-1 16.070 15.968 16.527 16.040
AUC Top-10 15.738 15.615 16.213 15.735
AUC Top-100 15.030 14.909 15.516 15.074
Diversity 0.479 0.470 0.432 0.440

Table 19: Results by varying the offspring size.
Oracle 4 8 16 32

AUC Top-1 16.174 16.527 15.984 15.963
AUC Top-10 15.846 16.213 15.669 15.621
AUC Top-100 15.175 15.516 14.977 14.858
Diversity 0.458 0.432 0.452 0.437

Table 20: Results by varying the number of training inner loops.
Oracle ×4 ×8 ×16
AUC Top-1 16.125 16.527 16.049
AUC Top-10 15.768 16.213 15.717
AUC Top-100 15.175 15.516 14.977
Diversity 0.423 0.432 0.511

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main research claim, which is
consistent with the experimental results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include our limitations and future works in the discussion section.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details, including pseudo-codes.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the anonymized link of our implementation. Also, the paper uses
the public dataset and benchmark; we provide accessible links in the supplemental material.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details regarding experiments in the appendix and the
anonymized codes.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results include standard deviation with independent multiple
runs. In addition, statistical tests are conducted for the main results and self-ablation studies.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

30

Justification: We provide the computer resources in the appendix (due to lack of spaces).
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked the paper according to the NeurIPS Code of Ethics; our study
does not include human participation and privacy-related data.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact of this study at the end of the paper.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our study is conducted using the public dataset, and all experimental tasks are
from previous publications.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper clearly states the source and license of the original code, data, and
models in the appedix.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our experiments are conducted using the already published datasets and
benchmarks.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study does not involve crowdsourcing nor human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve crowdsourcing nor human subjects.

31

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Background
	Sample efficient de novo molecular optimization
	Generative flow networks

	Genetic-guided GFlowNets
	Factorized string-based generative policy and unsupervised pretraining
	GFlowNet training of the generative policy with graph-based genetic search
	Molecule generation strategies in Genetic GFN
	Updating the generative policy with GFlowNets training

	Related works
	Genetic algorithms for molecular optimization
	GFlowNets for molecular optimization

	Experiments
	Sample efficient molecular optimization
	Main results in the official benchmark of PMO
	Controllability of the scores-diversity trade-off and ablation studies
	Comparisons with GFlowNets variants
	Sample efficient multi-objective molecular optimization
	Further analysis

	Designing inhibitors against SARS-CoV-2 targets

	Discussion
	Implementation details of Genetic GFN
	Network architecture and pretraining
	Hyperparameters
	Computing resource

	Genetic operations
	Crossover
	Mutation

	Hyperparameter setup for baseline methods
	Comparison Genetic GFN-AL with active learning and model-based algorithms
	Implementation of Genetic GFN-AL
	Experimental results

	Multi-objective sample efficient molecular optimization tasks
	Designing of SAS-Cov-2 inhibitors
	Additional results
	Controllability of the score-diversity using the weight-shifting factor k
	Additional results for the PMO benchmark
	Statistical analysis
	Full results of the PMO benchmark
	Ranks with various metrics

	Further studies on valsartan_smarts (#22)
	Additional results for ablation studies
	Statistical analysis

	Results for diversity and synthesizability
	Genetic GFN with SELFIES generation
	Genetic GFN with string-based genetic search
	Experiments with varying hyperparameters

