
CCM: Real-Time Controllable Visual Content
Creation Using Text-to-Image Consistency Models

Jie Xiao 1 Kai Zhu 2 Han Zhang 3 Zhiheng Liu 1 Yujun Shen 4 Zhantao Yang 2 Ruili Feng 2 Yu Liu 2

Xueyang Fu 1 Zheng-Jun Zha 1

Abstract
Consistency Models (CMs) have showed a
promise in creating high-quality images with few
steps. However, the way to add new conditional
controls to the pre-trained CMs has not been ex-
plored. In this paper, we explore the pivotal sub-
ject of leveraging the generative capacity and ef-
ficiency of consistency models to facilitate con-
trollable visual content creation via ControlNet.
First, it is observed that ControlNet trained for
diffusion models (DMs) can be directly applied to
CMs for high-level semantic controls but sacrifice
image low-level details and realism. To tackle
with this issue, we develop a CMs-tailored train-
ing strategy for ControlNet using the consistency
training (Song et al., 2023). It is substantiated
that ControlNet can be successfully established
through the consistency training technique. Be-
sides, a unified adapter can be trained utilizing the
consistency training, which enhances the adapta-
tion of DM’s ControlNet. We quantitatively and
qualitatively evaluate all strategies across vari-
ous conditional controls, including sketch, hed,
canny, depth, human pose, low-resolution image
and masked image, with the pre-trained text-to-
image latent consistency models.

1. Introduction
Consistency Models (CMs) (Song et al., 2023; Song &
Dhariwal, 2023; Luo et al., 2023a;b) have emerged as a
competitive family of generative models that can gener-
ate high-quality images in one or few steps. CMs can be
distilled from a pre-tranined diffusion model or trained in
isolation from data (Song et al., 2023; Song & Dhariwal,
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2023). Recently, latent consistency models (LCMs) (Luo
et al., 2023a;b) have been successfully distilled from Stable
Diffusion (SD) (Rombach et al., 2022), achieving significant
acceleration in the speed of text conditioned image gener-
ation. Compared with the glorious territory of diffusion
models (DMs), an essential concern is whether there ex-
ists effective solutions for CMs to accommodate additional
conditional controls. Inspired by the success of Control-
Net (Zhang et al., 2023) to text-to-image DMs, we consider
to address this issue by training ControlNet for CMs.

In this work, we inverstigate the training strategies of Con-
trolNet for CMs. Given the connection that CMs directly
project any point of a probability flow ordinary differential
equation (PF ODE) trajectory to data and DMs produce data
by iterating an ODE solver along the PF ODE (Song et al.,
2020), we assume that the learned knowledge of ControlNet
is (partially) transferable to CMs. Therefore, the first at-
tempt is to train ControlNet based on DMs and then directly
apply the trained ControlNet to CMs. The advantage is that
one can readily re-use the off-the-shelf ControlNet of DMs,
but meanwhile at the cost of: i) sub-optimal performance.
Due to the gap between CMs and DMs, the transfer may be
imperfect; ii) indirect training when adding new controls.
That is, one has to utilize DMs as an agent to train a new
ControlNet and then rely on the strong generalization ability
of ControlNet to apply to CMs.

Recent researches (Song et al., 2023; Song & Dhariwal,
2023) point out that CMs, as a new family of generative
models, can be trained in isolation from data by the con-
sistency training technique. Inspired by this, we treat the
integration of the pre-trained text-to-image CM and Control-
Net as a new conditional CM with only ControlNet trainable.
Our solution is simple: directly training ControlNet using
the consistency training. We find that ControlNet can be
successfully established from scratch without reliance on
DMs1. Figure 1 shows the performance and efficiency com-
parison among different strategies. The results reveal that
the consistency model can create controllable visual content
with comparable performance and much faster generation

1Even if CMs may be trained by the consistency distillation
from DMs.
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Figure 1. Visual comparison of different strategies of adding controls. Image resolution: 1024x1024. To measure performance, we use
FID to assess image quality and Fidelity to evaluate consistency with the control signals (Equation (16)). We employ the number of
function evaluations (NFEs) and running time to measure efficiency. All scores are normalized to [0, 1]. It can be observed that compared
with the diffusion model, the consistency model can achieve comparable performance with much lower cost.

speed compared to the diffusion model. Based on these
results, we also train a multi-condition shared adapter using
the consistency training for better adaptation of DM’s Con-
trolNet. Experiments across various conditions including
sketch, hed, canny, depth, human pose, low-resolution im-
age (i.e., 16× image super-resolution) and masked image
(i.e., image inpainting) suggest that:

• ControlNet of DM can transfer high-level semantic
controls to CM; however, it often fails to accomplish
low-level fine controls;

• CM’s ControlNet can be trained from scratch using
the consistency training technique. Empirically, we
can find that consistency training can accomplish more
satisfactory conditional generation;

• A unified adapter trained with the consistency training
technique is capable of mitigating the discrepancy be-
tween DMs and CMs, thereby facilitating to transfer

DM’s ControlNet.

2. Preliminary
Denoising diffusion probabilistic models (DDPMs) repre-
sent a category of latent variable models designed to approx-
imate the true data distribution, denoted as q(x0), with a
learned model distribution p(x0) (Ho et al., 2020). DDPMs
comprise a forward diffusion process that progressively in-
jects Gaussian noise into the data over a series of T steps,
and a reverse generative process that synthesizes data by
progressively removing noise across the same number of
steps. Formulaly, the forward diffusion process is a Markov
chain which is of the form

q (x1:T |x0) :=

T∏
t=1

q (xt|xt−1) ,

q (xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
,

(1)
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where {βt}Tt=0 is the variance schedule. {xt}Tt=0 are latent
variables. A notable property of diffusion process is that the
conditional distribution of xt given x0 is

q (xt|x0) = N (xt;
√
αtx0, (1− αt)I) ,

where αt =

t∏
i=0

(1− βi) .
(2)

The reverse generative process starts by sampling a Gaussian
noise p(xT ) = N (xT ;0, I) and further proceeding with
the transition probability density pθ (xt−1|xt), where

pθ (xt−1|xt) ≈ q (xt−1|xt,x0)

= N
(
xt−1;µθ(xt,x0), σ

2
t I

)
,

(3)

The mean µθ (xt,x0) and variance σ2
t have the closed form

µθ (xt,x0) =
1

√
αt

(
xt −

βt√
1− αt

ϵθ (xt, t)

)
,

σ2
t =

1− αt−1

1− αt
βt.

(4)

Song et al. (2021b) further figures out that the aforemen-
tioned reverse process is a discretization of a continuous-
time stochastic process, described by the following reverse-
time stochastic differential equation (SDE):

dxt =
[
f (t)xt − g2 (t)∇xt

log pt (xt)
]
dt+ g (t) dw̄t,

(5)
where w̄t is a standard Wiener process in the reverse time,
f(t) = 1

2
d logα(t)

dt , g(t) = (1− α(t)) d
dt

1−α(t)
α(t) , and α(t) is

a continuous version of αt. For the reverse-time SDE, Song
et al. (2021b) further prove that there exists a correspond-
ing probability flow ODE (PF ODE) that shares the same
marginal distribution:

dxt =

[
f(t)xt −

1

2
g2(t)∇xt log pt(xt)

]
dt. (6)

With this probability flow ODE, one can generate an image
from a Gaussian noise and vice versa.

3. Method
Our method consists of four parts. First, we briefly de-
scribe how to train a text-to-image consistency model
fθ (xt, t; ctxt) from a pre-trained text-to-image diffusion
model ϵϕ (xt, t; ctxt) in Section 3.1. We next introduces
the first approach to train a ControlNet for a new condition
cctrl by utilizing the diffusion model as an agent in Sec-
tion 3.2. Then, we propose to use the consistency training
to train a ControlNet from scratch for the pre-trained text-to-
image consistency model in Section 3.3. Last, we introduce
a unified adapter that enables the rapid swift of multiple
DMs-based ControlNets to CMs in Section 3.4. Figure 2
presents overview of the proposed strategies. We summarize
the involved symbols in Table 1 to help with readability.

Table 1. Summary of symbols.

ϕ trainable paramaters of diffusion model
θ trainable paramaters of consistency model
ψ trainable paramaters of ControlNet
∆ψ trainable paramaters of adapter
θ− exponential moving average of θ
ϵ{·} noise-prediction diffusion model
f{·} consistency model
h condition extractor
ctxt text prompt
cctrl new contional control
x / xt image / latent (noisy image)

3.1. Text-to-Image Consistency Model

The first step is to acquire a foundational text-to-image
consistency model. Consistency models (CMs) (Song et al.,
2023), a new family of generative models, can achieve high
sample quality with few sampling steps. Given the PF ODE
trajectory {xt}t∈[ϵ,T ], the core of CMs, symbolized as fθ,
is to estimate the consistency function, which is defined as
f : (xt, t) 7→ xϵ. The consistency function should satisfy
the boundary condition:f (xϵ, ϵ) = xϵ. To implement this
constraint, consistency model is parameterized as

fθ (xt, t) = cskip (t)xt + cout (t)Fθ (xt, t) . (7)

By adopting variance preserving noise schedule: xt =
αtxϵ +

√
1− α2

t ϵ, we re-derive (see Appendix A) that
cskip (t) and cout (t) take the form of

cskip (t) =
αtσ

2
data

1− α2
t + α2

tσ
2
data

,

cout (t) =

√
1− α2

tσdata√
1− α2

t + α2
tσ

2
data

.

(8)

Song et al. (2023) introduced two methods to train consis-
tency models: consistency distillation from pre-trained text-
to-image diffusion models or consistency training from data.
Consistency distillation uses the pre-trained diffusion mod-
els to estimate score function (parameterized by ϕ). Given
an arbitrary noisy latent

(
xtn+1

, tn+1

)
, an ODE solver is

employed to estimate the adjacent latent with less noise, de-
noted as

(
x̂ϕtn , tn

)
.
{(
xtn+1 , tn+1

)
,
(
x̂ϕtn , tn

)}
belongs

to the same PF ODE trajectory. Then, consistency models
can be trained by enforcing self-consistency property: the
outputs are consistent for arbitrary pairs of (xt, t) of the
same PF ODE trajectory. The final consistency distillation
loss for the consistency model fθ is defined as

LN
CD

(
θ,θ−;ϕ

)
= Ex,xtn+1

,ctxt,n

[
λ (tn) ·

d
(
fθ

(
xtn+1

, tn+1; ctxt
)
,fθ−

(
x̂ϕtn , tn; ctxt

)) ]
,

(9)
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Figure 2. Overview of training strategies for ControlNet. (a) Training a ControlNet based on the text-to-image diffusion model (DM) and
directly applying it to the text-to-image consistency model (CM); (b) consistency training for ControlNet based on the text-to-image
consistency model; (c) consistency training for a unified adapter to utilize better transfer of DM’s ControlNet.

where x ∼ pdata, xt ∼ N
(√

αtx, (1− αt)I
)

and n ∼
U ([1, N − 1]). U ([1, N − 1]) denotes the uniform distri-
bution over {1, 2, . . . , N − 1}. According to the convention
in Song et al. (2023), fθ− is the “teacher network” which
evolves according to θ− = stopgrad (µθ− + (1− µ)θ)
and fθ is the “student network”.

3.2. Applying ControlNet of Text-to-Image Diffusion
Models

Given a pre-trained text-to-image diffusion model
ϵϕ (xt, t; ctxt), to add a new control cctrl, a ControlNet (pa-
rameterized by ψ) can be trained by minimizing the mean
square error function of diffusion models LDMs (ψ) (Ho
et al., 2020), where LDMs (ψ) takes the form of

LDMs (ψ) = E
[
∥ϵ− ϵ{ϕ,ψ} (xt, t; ctxt, cctrl) ∥22

]
. (10)

In Equation (10), t ∼ Uniform ({1, . . . , T}), x ∼
pdata and ϵ ∼ N (0, I). Suppose that ψ∗ =
argminψ LDMs (ψ), the trained ControlNet {ψ∗} is di-
rectly applied to the pre-trained text-to-image consistency
model fθ to construct a new cctrl conditioned consistency
model f{θ,ψ∗}. We assume that the learned knowledge to
control image generation can be transfered to the text-to-
image consistency model if the ControlNet can generalizes
well enough. Empirically, we find this approach can success-
fully transfer high-level semantic control but often generate

unrealistic images. We suspect the sub-optimal performance
can be attributed to the intrinsic gap between CMs and DMs.
The more in-depth analysis on the gap is provided in Sec-
tion 4.3.

3.3. Consistency Training for ControlNet

Recent works (Song et al., 2023; Song & Dhariwal, 2023)
figure out that except relying on the score function provided
by pre-trained diffusion models, consistency models, as an
independent class of generative models, can be trained from
scratch using the consistency training technique. The core
of the consistency training is to use an estimator of the score
function, which has the form of

∇ log pt (xt) = E [∇xt
log p(xt|x)|xt] (11)

= −E
[
xt −

√
αtxt

1− αt
|xt

]
, (12)

where x ∼ pdata and xt ∼ N
(√

αtx, (1− αt)I
)
. By

the Monte Carlo estimation of Equation (11), the resulting
consistency training loss takes the mathematical form of

LN
CT (θ) = E

[
λ (tn) d

(
fθ

(
xtn+1 , tn+1

)
,fθ− (xt, t)

)]
,

(13)

where the expectation is taken with respect to x ∼ pdata,
xt ∼ N

(√
αtx, (1− αt)I

)
and n ∼ U ([1, N − 1]).

4



CCM: Real-Time Controllable Visual Content Creation Using Text-to-Image Consistency Models

U ([1, N − 1]) denotes the uniform distribution over
{1, 2, . . . , N − 1} and N is a hyper-parameter.

To train a ControlNet for the pre-trained text-to-image
consistency model (denoted as fθ (xt, t; ctxt) with the
text prompt ctxt), we consider to add a conditional con-
trol cctrl and define a new conditional consistency model
f{θ,ψ} (xt, t; ctxt, cctrl) by integrating the trainable Con-
trolNet (parameterized by ψ) and the original frozen CM
(parameterized by θ). The resulting training loss for Con-
trolNet is

LN
CT (ψ) = Ex,xt,ctxt,cctrl,n

[
λ (tn) ·

d
(
f{θ,ψ}

(
xtn+1

, tn+1; ctxt, cctrl
)
,

f{θ,ψ}− (xtn , tn; ctxt, cctrl)
)]
.

(14)

Note that in Equation (14), only the ControlNet is train-
able. We simply set {θ,ψ}− = stopgrad ({θ,ψ}) for
the teacher model since recent research (Song & Dhariwal,
2023) reveals that omitting Exponential Moving Average
(EMA) is both theoretically and practically beneficial for
training consistency models.

3.4. Consistency Training for A Unified Adapter.

We find that DM’s ControlNet can provide high-level se-
mantic controls to CM. However, due to the intrinsic gap be-
tween CM and DM, the control is sub-optimal, i.e., it often
causes unexpected deviation of image details and generate
unrealistic images (as shown in Figure 1). To overcome
this issue, we train a unified adapter to implement better
adaption of DM’s ControlNet {ψ1, . . . ψK} to CM using
the consistency training technique. Formally, suppose the
trainable parameter of the adapter is ∆ψ, the training loss
for the adapter is:

LN
CT (∆ψ) = Ex,xt,ctxt,cctrl,n,k

[
λ (tn) ·

d
(
f{θ,ψk,∆ψ}

(
xtn+1 , tn+1; ctxt, cctrl

)
,

f{θ,ψk,∆ψ}− (xtn , tn; ctxt, cctrl)
)]
,

(15)

where k ∼ U ([1,K]) and K denotes the number of in-
volved conditions. ∆ψ +ψk constructs a new ControlNet,
which facilitates the adaption of DM’s ControlNet.

4. Experiments
4.1. Implementation Details

Text-to-Image Consistency Model. To train the founda-
tional consistency model, we set θ− = stopgrad (θ), N =
200, CFG = 5.0, and λ (tn) = 1.0 for all n ∈ U([1, N−1]).
We enforce zero-terminal SNR (Lin et al., 2023) during train-
ing to align training with inference. The distance function

is chosen as the ℓ1 distance: d(x,y) = ∥x − y∥1. The
batch size is 128 and the learning rate is 8e−6. The image
resolution is 1024× 1024. This training process costs about
160 A100 GPU days.

Consistency Training. To train ControlNets by consis-
tency training, we set θ− = stopgrad (θ), N = 50 and
λ (tn) = 1.0 for all n ∈ U([1, N − 1]). The distance
function is chosen as the ℓ1 distance d(x,y) = ∥x− y∥1.
We train on a combination of public datasets, including
ImageNet21K (Russakovsky et al., 2015), WebVision (Li
et al., 2017), and a filter version of LAION dataset (Schuh-
mann et al., 2022). We elinimate duplicates, low resolution
images, and images potentially contain harmful content
from LAION dataset. For each ControlNet, the total train-
ing process involves 100K training steps and the batch size
is 32. We utilize seven conditions in this work:

• Sketch: we use a pre-trained edge detection model (Su
et al., 2021) in combination with a simplification algo-
rithm to extract sketches;

• Canny: a canny edge detector (Canny, 1986) is em-
ployed to extract canny edges;

• Hed: a holistically-nested edge detection model (Xie
& Tu, 2015) is utilized for the purpose;

• Depthmap: we employ the Midas model (Ranftl et al.,
2020) for depth estimation;

• Mask: images are randomly masked. We use a 4-
channel representation, where the first 3 channels cor-
respond to the masked RGB image, while the last chan-
nel corresponds to the binary mask;

• Human Pose: a pre-trained human-pose detection
model (Cao et al., 2017) is employed to generate hu-
man skeleton labels;

• Super-resolution: we use a bicubic kernel to downscale
the images by a factor of 16 as the condition and hence
the condition is of resolution 64× 64.

4.2. Experimental Results

4.2.1. QUANTITATIVE RESULTS

We quantitatively evaluate the proposed three methods:
DM’s ControNet+CM, DM’s ControlNet+Adapter, CM’s
ControlNet+CM. For reference, we also test the perfor-
mance of the classic diffusion’s ControlNet (DM’s Con-
trolNet+DM). We use DDIM algorithm (Song et al., 2021a)
with 50 steps and classifier-free guidance strength 5.0 to
sample the diffusion model. We employ two metrics: FID
is used to assess image quality and Fidelity is responsible
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Table 2. Quantitative comparison of different methods. NFEs means the number of function evaluations. ×2 for the diffusion model
because classifier-free guidance is used. Time is recorded based on the generation of a 1024× 1024 image.

Task Sketch2Image Depth2Image Mask2Image 16×SR Average
Method NFEs↓ Time(s)↓ FID↓/Fidelity↓ FID↓/Fidelity↓ FID↓/Fidelity↓ FID↓/Fidelity↓ FID↓/Fidelity↓
DM’s ControlNet+DM 50× 2 23.6 8.40/0.106 11.48/0.177 4.37/0.085 5.01/0.121 7.31/0.122

DM’s ControlNet+CM 1 0.2 30.71/0.083 26.08/0.193 14.67/0.431 21.32/0.237 23.19/0.231
DM’s ControlNet+CM+Adapter 1 0.2 20.43/0.111 19.75/0.176 13.95/0.413 13.73/0.168 16.96/0.221
CM’s ControlNet+CM 1 0.2 10.39/0.095 12.94/0.169 5.44/0.082 7.60/0.118 9.09/0.116

DM’s ControlNet+CM 4 0.9 21.88/0.091 21.12/0.190 10.27/0.457 11.41/0.146 16.16/0.221
DM’s ControlNet+CM+Adapter 4 1.0 11.91/0.113 12.83/0.175 9.16/0.452 7.21/0.146 10.27/0.221
CM’s ControlNet+CM 4 0.9 9.30/0.103 9.87/0.175 4.98/0.110 6.31/0.134 7.61/0.130

for evaluating consistency degree with the control condi-
tions. FID score is computed with 10000 samples. Suppose
the model for extracting condition is denoted as h(·) and
generated image y, the fidelity is computed according to

Fidelity = ∥h(y)− cctrl∥1. (16)

The final Fidelity score is averaged over 10000 images. To
compare efficiency, we report the the number of function
evaluations (NFEs) and measure the time consumption on a
single A100 GPU. A unified adapter is trained jointly with
five conditions, i.e., sketch, canny, mask, pose and SR, to
learn to mitigate the gap betweens CM and DM.

Table 2 shows the FID/Fidelity results and efficiency com-
parison on four typical conditions. It can be found that i)
DM’s ControlNet+DM vs. CM’s ControlNet+CM: CM’s
ControlNet trained with consistency training can signif-
icantly save overall NFEs (×100/50) and running time
(×100/26) while maintaining comparable performance with
diffusion models. ii) CM’s ControlNet+CM vs. DM’s Con-
trolNet+CM: compared with directly utilizing diffusion’s
ControlNet, ControlNet obtained by consistency training
can achieve better performance. iii) DM’s ControlNet+CM
vs. DM’s ControlNet+CM+Adapter: a unified adapter can
facilitate the transfer from DM to CM. It is notable that
the adapter can still be effective when applied to untrained
conditions (i.e., Depth2image).

4.2.2. QUALITATIVE RESULTS

Figure 3 presents visual results of different strategies. We
can find that DM’s ControlNet can deliver high-level con-
trols to CM. Nevertheless, this approach often generates
unrealistic images. Consistency training directly based on
CM can generate more visually-pleasing images. Therefore,
it is verified that the consistency training offers a way to
train the customized ControlNet for CMs. When compared
to the direct transfer method, a unified adapter trained under
five conditions (i.e., sketch, canny, mask, pose and super-
resolution) enhances the visual quality of both in-context

Table 3. Quantitative results with different prompts.
Prompts Paired caption “A high-quality and professional image”
NFEs FID↓/Fidelity↓ FID↓/Fidelity↓
1 10.39/0.095 11.25/0.094
4 9.30/0.103 10.64/0.103

images (i.e., sketch and mask) and training-free conditions
(i.e., depth and hed), showing promising prospects.

4.3. Analytic Experiments

Delving into the transferable property of DM’s Con-
trolNet. We provide more evidence to support that DM’s
ControlNet often suffers from low-level and realism control
in comparison with the consistency training method. Given
customized training and better performance, it is assumed
the CM’s ControlNet can provide both high- and low-level
controls. We employ cosine similarity <cdm,ccm>

∥cdm∥2·∥ccm∥2
as as

the correlation measure between two signals (cdm, ccm).
Specifically, we compute the cosine similarity between the
yielded control signals from DM’s and CM’s ControlNet
across the network depth (see Figure 8 for the origin and
the defined direction). Section 4.3a shows the correlation
tendency over the depth. We can find that i) the correlation
value is always positive, which means both ControlNets
generally agree with each other. This partially explains that
DM’s ControlNet can be directly applied to CM. ii) the cor-
relation at shallow layer is significantly larger than at deep
layer (e.g., 0.55 at depth = 0.0 vs. 0.16 at depth = 1.0).
The shallow layer locates at the bottleneck layer of the
U-Net, thereby corresponding to the high-level semantic
controls and the deep layer receives the low-level control.
The discrepancy of both ControlNets increases when of-
fering low-level controls, which is consistent with our ex-
perimental observations. Section 4.3b shows amplitude of
Fourier-transformed signals from CM’s and DM’s Control-
Net. We can find that at the deep layer, the amplitude of two
signals fluctuates similarly but with different scale while
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Figure 3. Visual comparison of different methods of adding controls. Image resolution: 1024× 1024. NFEs: 4.

sketch “a high-quality and 
professional image”

“A yellow dog lies on the 
grassland and enjoys the sun”

“watercolor style, a dog 
lies on the beach”

Figure 4. Visual results of CM’s ControlNet with different prompts. Image resolution: 1024× 1024. NFEs: 4.

their amplitude is much closer at the shallow layer.

Robustness to language prompts. The input conditions
consist of a text prompt and extra spatial condition. Control-
Net offers a solution to absorbs spatial condition and here
we further validate whether the efficacy heavily relies on the
specific prompt. Following Zhang et al. (2023), we adopt
the general prompt “A high-quality and professional image”
and evaluate FID/Fidelity score. Table 3 reveals that the
general prompt impairs slightly the FID score compared
with the paired image caption. Figure 4 shows controllable
generation results with different prompts.

Ablation on distance function. We study the effect of
the distance function. Three options are considered: mean
square error function, L1 function and Charbonnier func-
tion (Charbonnier et al., 1994)

L (x,y) =
√
∥x′ − y∥22 + ϵ2, (17)

where the constant is empirically set to ϵ = 10−3. We
further consider the randomness of distance function and de-
velop the “random pick” variant, which means the distance
function is randomly picked from aforementioned options
at each optimization step. The four-steps performance in Ta-
ble 4 suggests that L1 surpasses other functions.
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Normalized Depth=0.0 Normalized Depth=1.0

(a) Cosine similarity across network depth between 
CM’s ControlNet and DM's ControlNet

(b) Log amplitude of Fourier-transformed control features
from CM's and DM's ControlNet

Figure 5. Correlation analysis between CM’s and DM’s ControlNet. (a) shows the decreased correlation along the depth. (b) shows
amplitude of Fourier-transformed features. These results validate that both ControlNets generally agree on high-level controls but differs
on low-level controls. Please refer to Section 4.3 for details.

Table 4. Ablation study of different distance functions.

d (x,y) MSE Charbonnier L1 Random pick

Fidelity↓ 0.147 0.117 0.103 0.116
FID↓ 20.16 11.91 9.30 11.37

Ablation on N . We study the effect of the hyperpa-
rameter N . We consider a range of values: N =
[50, 100, 200, 500, 1000] and a progressive strategy that in-
creasing N at training stage progressively. The total training
steps is 100000 for fair comparison. The four-steps perfor-
mance in Table 5 suggests that N = 50 is the best choice.

CM’ControlNet + DM. Here, we are interested in trans-
ferring ControlNet trained on consistency model with con-
sistency training to diffusion model. The result is shown
in Figure 6, which reveals that the performance is still sub-
optimal: CM’s ControlNet can transfer semantic-level con-
trol to DM but still fails to modulate image details.

Customizing Image with CT. We validate that the consis-
tency training loss can also be compatible with image cus-
tomization process. Specifically, we the employ consistency
training loss to enable CM-based customized generation
using Dreambooth (Ruiz et al., 2022) and Figure 7 shows
the visual result.

Table 5. Ablation study of the hyper-parameter N .
N 50 100 200 500 1000 Progress.

Fidelity↓ 0.103 0.112 0.116 0.123 0.124 0.115
FID↓ 9.30 9.68 10.31 10.25 10.37 10.21

5. Related Work
Real-time Generation Despite the impressive capabil-
ities of diffusion models in generating (Ho et al., 2020;
Rombach et al., 2022; Podell et al., 2023; Ramesh et al.,
2021; 2022; Saharia et al., 2022) and manipulating high-
resolution images (Mokady et al., 2023; Hertz et al., 2022;
Roich et al., 2022), the intrinsic iterative process hinders
their deployment in real-time application. We briefly review
recent advancements in accelerating DMs for real-time gen-
eration. Progressive distillation (Salimans & Ho, 2022) and
guidance distillation (Meng et al., 2023) introduce a method
to distill knowledge from a trained deterministic diffusion
sampler, which involves multiple sampling steps, into a
more efficient diffusion model that requires only half the
number of sampling steps. InstaFlow (Liu et al., 2023a; Liu,
2022; Liu et al., 2022) turns SD into an ultra-fast one-step
model by optimizing transport cost and distillation. Consis-
tency Models (CMs) (Song et al., 2023; Song & Dhariwal,
2023) propose a new class of generative models by enforc-
ing self-consistency along a PF ODE trajectory. Latent
Consistency Models (LCMs) (Luo et al., 2023a) and LCM
LoRA (Luo et al., 2023b) extend CMs to enable large-scale
text-to-image generation. There are also several approaches
that utilize adversarial training to enhance the distillation
process, such as UFOGen (Xu et al., 2023), CTM (Kim

8
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Figure 6. Visual results of CM’s ControlNet + DM. Image resolution: 1024× 1024. NFEs: 4.

Figure 7. Visual results of customizing images using consistency training. Image resolution: 1024× 1024. NFEs: 4.

et al., 2023), and ADD (Sauer et al., 2023).

Controllable Generation Recent years have witnessed
significant advancements (Bhat et al., 2023; Sun et al., 2023;
Hu et al., 2024) in diffusion models based controllable gen-
eration. ControlNet (Zhang et al., 2023) leverages both
visual and text conditions, resulting in impressive control-
lable image generation. Composer (Huang et al., 2023)
explores the integration of multiple distinct control signals
along with textual descriptions, training the model from
scratch on datasets of billions of samples. UniControl (Qin
et al., 2023) and Uni-ControlNet (Zhao et al., 2023) not
only enable composable control but also handle various
conditions within a single model. They are also capable
of achieving zero-shot learning on previously unseen tasks.
There are also several customized methods, such as Dream-
Booth (Ruiz et al., 2022), Custom Diffusion (Kumari et al.,
2022), Cones (Liu et al., 2023b;c), and Anydoor (Chen et al.,
2023), that cater to user-specific controls and requirements.
However, these methods require iterative steps to sample sat-
isfactory results, which hinders their real-time application.
To overcome this issue, we explore real-time controllable
generation with consistency model.

6. Conclusion
In this work, we unlock the great potential of consistency
models in the field of real-time controllable generation. Dif-
fusion model’s ControlNet can be directly applied to consis-
tency model while with sub-optimal performance. We figure
out that consistency training can establish the customized
ControlNet from scratch for consistency models. This re-
veals that consistency models, as an independent family of
generative models, can also be compatible with ControlNet,
which extends the generative scope. Lastly, we introduce a
unified adapter to facilitate adapation of diffusion model’s
ControlNet, resulting in promising performance.

Impact Statement
The research on real-time controllable image generation has
profound implications for many fields, offering advance-
ments that could democratize creativity, enhance interactive
experiences, and streamline content creation. Neverthe-
less, the capability to generate images instantaneously also
raises concerns regarding the propagation of misinformation
through hyper-realistic fabrications and ethical considera-
tions in the replication of human likenesses. To this issue,
it is essential to establish ethical guidelines and promote
transparency in its applications.
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A. Proof to Equation (8)
Proof. Given the PF ODE trajectory {xt}t∈[ϵ,T ], the consistency model fθ (xt, t) aims to learn to project any point (xt, t)

to xϵ. That is, fθ (xt, t) should be as close as possible to xϵ:

fθ (xt, t) → xϵ (18)
⇒ cskip (t)xt + cout (t)Fθ (xt, t) → xϵ (19)

⇒ Fθ (xt, t) →
xϵ − cskip (t)xt

cout (t)
. (20)

Suppose the variance preserving noise schedule xt = αtxϵ +
√
1− α2

t ϵ, we require that the learning target has unit
variance:

Var

[
xϵ − cskip (t)xt

cout (t)

]
= 1 (21)

⇒ 1

c2out (t)
Var

[
xϵ − cskip (t)

(
αtxϵ +

√
1− α2

t ϵ

)]
= 1 (22)

⇒ 1

c2out (t)
Var

[
(1− αtcskip (t))xϵ − cskip (t)

√
1− α2

t ϵ

]
= 1. (23)

Suppose that ϵ is small enough, therefore Var [xϵ] ≈ σ2
data where σ2

data is the variance of data distribution pdata. Since data
distribution pdata and the injected Gaussian noise are independent, we have

1

c2out (t)

[
(1− αtcskip (t))

2
σ2

data + c2skip (t)
(
1− α2

t

)]
= 1 (24)

⇒ c2out (t) = (1− αtcskip (t))
2
σ2

data + c2skip (t)
(
1− α2

t

)
(25)

cout determines the amplifying factor of Fθ. Following (Karras et al., 2022) we require that cskip (t) and cout (t) should
amplify errors in Fθ as little as possible. Hence

dc2out (t)

dcskip (t)
= 0 (26)

⇒ cskip (t)
(
1− α2

t

)
− αt (1− αtcskip (t))σ

2
data = 0 (27)

⇒ cskip (t) =
αtσ

2
data

1− α2
t + α2

tσ
2
data

. (28)

Substituting cskip (t) in Equation (28) back to Equation (25), we have

cout (t) =

√
1− α2

tσdata√
1− α2

t + α2
tσ

2
data

. (29)

B. Architecture of ControlNet
Figure 8 presents the architecture of ControlNet proposed in (Zhang et al., 2023). The trainable blue blocks and the white
zero convolution layers are added to build a ControlNet. We mark the origin and positive direction of depth in Figure 8.

C. Architecture of Adapter
Figure 9 presents the architecture of the unified adapter. The number of trainable residual blocks is consistent with the output
length of the corresponding ControlNet, and each block consists of two convolution modules and one skip connection.

D. Performance of the Re-trained Consistency Model
Real-time CM Generation. To comprehensively evaluate the quality of images generated under the aforementioned
conditions, Figure 15 presents the effects of our re-trained text-to-image CM model during four-step inference.
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E. More Visual Results
Applying DM’s ControlNet without Modification. Figure 10 presents visual results of applying DM’s ControlNet to
CM. We can find that DM’s ControlNet can deliver high-level controls to CM. Nevertheless, this approach often generates
unrealistic images, e.g., Sketch in Figure 10. Moreover, DM’s ControlNet of masked images causes obvious changes
outsides the masked region (Mask inpainting in Figure 10). This sub-optimal control may explained that there exists the gap
between CM and DM, which further causes imperfect adaptation of DM’s ControlNet to CM.

Consistency Training for CM’s ControlNet. For fair comparison, Figure 11 shows corresponding visual results of
consistency training for ControlNet. We can find that consistency training directly based on CM can generate more realistic
images. Therefore, we can conclude that consistency training offers a way to train the customized ControlNet for CMs.
More generative results can be found in Figure 12.

Transferring DM’s ControlNet with a Unified Adapter. When compared to direct transfer method, a unified adapter
trained under five conditions (i.e., sketch, canny, mask, pose and super-resolution) enhances the visual quality of both
in-context images (i.e., sketch and mask conditions in Figure 13) and training-free conditions (i.e., depthmap and hed
conditions in Figure 14), showing promising prospects.
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Figure 10. Images sampled by applying DM’s ControlNet to CM at 1024x1024 resolution. NFEs=4.
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Figure 11. Visual results of consistency training at 1024x1024 resolution. The conditions are the same with those in Figure 10. It can be
observed that CM’s ControlNet using consistency training can generate more visually pleasing images compared to DM’s ControlNet.
NFEs=4.
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Figure 12. More visual results of CM’s ControlNet using consistency training strategy at 1024x1024 resolution. NFEs=4.
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Figure 13. Visual results of DM’s ControlNet without/with a unified adapter at 1024x1024 resolution. NFEs=4. “transfer” means directly
transferring DM’s ControlNet to CM (DM’s ControlNet + CM). “transfer+adapter” means directly transferring DM’s ControlNet to CM
with a unified adapter (DM’s ControlNet + CM+adapter).
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Figure 14. Visual results of DM’s ControlNet without/with a unified adapter on training-free conditions at 1024x1024 resolution. NFEs=4.
“transfer” means directly transferring DM’s ControlNet to CM (DM’s ControlNet + CM). “transfer+adapter” means directly transferring
DM’s ControlNet to CM with a unified adapter (DM’s ControlNet + CM+adapter).
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Figure 15. Images generated using our re-trained Text-to-Image CM with 4-step inference at 1024x1024 resolution.
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