
Fast and Accurate Randomized Algorithms for
Low-rank Tensor Decompositions

Linjian Ma
Department of Computer Science

University of Illinois at Urbana Champaign
lma16@illinois.edu

Edgar Solomonik
Department of Computer Science

University of Illinois at Urbana Champaign
solomon2@illinois.edu

Abstract

Low-rank Tucker and CP tensor decompositions are powerful tools in data analytics.
The widely used alternating least squares (ALS) method, which solves a sequence
of over-determined least squares subproblems, is costly for large and sparse tensors.
We propose a fast and accurate sketched ALS algorithm for Tucker decomposi-
tion, which solves a sequence of sketched rank-constrained linear least squares
subproblems. Theoretical sketch size upper bounds are provided to achieve O(ε)
relative error for each subproblem with two sketching techniques, TensorSketch and
leverage score sampling. Experimental results show that this new ALS algorithm,
combined with a new initialization scheme based on the randomized range finder,
yields decomposition accuracy comparable to the standard higher-order orthogonal
iteration (HOOI) algorithm. The new algorithm achieves up to 22.0% relative
decomposition residual improvement compared to the state-of-the-art sketched
randomized algorithm for Tucker decomposition of various synthetic and real
datasets. This Tucker-ALS algorithm is further used to accelerate CP decompo-
sition, by using randomized Tucker compression followed by CP decomposition
of the Tucker core tensor. Experimental results show that this algorithm not only
converges faster, but also yields more accurate CP decompositions.

1 Introduction

Tensor decompositions [31] are general tools for compressing, approximating, as well as extracting
important features from high dimensional data, and are widely used in both scientific computing [54,
25, 26] and machine learning [4, 59, 55]. In this paper, we focus on Tucker decomposition [67] and
CANDECOMP/PARAFAC (CP) decomposition [24, 23]. The alternating least squares (ALS) method
is widely used to compute both decompositions. The ALS algorithm consists of sweeps, and each
sweep updates every factor matrix once in a fixed order. The ALS method for Tucker decomposition,
called the higher-order orthogonal iteration (HOOI) [5, 16, 31], updates one of the factor matrices
along with the core tensor at a time. Similarly, each update procedure in the ALS algorithm for CP
decomposition (CP-ALS) updates one of the factor matrices. For both decompositions, solutions to
each optimization subproblem guarantee decrease of the decomposition residual.

In this work, we consider decomposition of order N tensors (TTT) that are large in dimension size
(s) and can be potentially sparse. We focus on the problem of computing low-rank (with target
rank R � s and R � nnz(TTT)) decompositions for such tensors via ALS, which is often used for
extracting principal component information from large-scale datasets. For Tucker decomposition,
ALS is bottlenecked by the operation called the tensor times matrix-chain (TTMc). For CP decompo-
sition, ALS is bottlenecked by the operation called the matricized tensor-times Khatri-Rao product
(MTTKRP). Both TTMc and MTTKRP have a per-sweep cost of Ω(nnz(TTT)R) [62]. Consequently,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

the per-sweep costs of both HOOI and CP-ALS are proportional to the number of nonzeros in the
tensor, which are expensive for large tensors with billions of nonzeros.

Recent works have applied different randomized techniques to accelerate both CP [32, 2, 14, 70]
and Tucker decompositions [13, 3, 12, 40, 70, 65]. For Tucker decomposition, these randomized
algorithms apply sketching techniques to the higher-order singular value decomposition (HOSVD).
To do so, they calculate each factor matrix by applying randomized SVD on each matricization of
the input tensor. These methods calculate the core tensor via TTMc among the input tensor and all
the factor matrices, which incurs a cost of O(nnz(T)R + sN−1R2) for sparse tensors and is still
expensive. In addition, HOSVD generates decompositions that are generally less accurate compared
to HOOI.

Becker and Malik [39] introduce a sketched ALS algorithm for Tucker decomposition, which avoids
the expensive cost of TTMc. Unlike the traditional HOOI, each sweep of this ALS scheme contains
N + 1 subproblems, where only one of the factor matrices or the core tensor is updated in each
subproblem. This scheme is easier to analyze theoretically, since each subproblem is an unconstrained
linear least squares problem, which can be efficiently solved via sketching. However, the scheme
produces decompositions that are generally less accurate than HOOI.

1.1 Our Contributions

In this work, we propose a new sketched ALS algorithm for Tucker decomposition. Different from
Becker and Malik [39], our ALS scheme is the same as HOOI, where one of the factor matrices along
with the core tensor are updated in each subproblem. This guarantees the algorithm can reach the
same accuracy as HOOI with sufficiently large sketch size. Experimental results show that it provides
more accurate results compared to those in [39].

In this scheme, each subproblem is a sketched rank-constrained linear least squares problem, with
the left-hand-side matrix with size sN−1 ×RN−1 composed of orthonormal columns. To the best of
our knowledge, the relative error analysis of sketching techniques for this problem have not been
discussed in the literature. Existing works either only provide sketch size upper bounds for the
relaxed problem [57], where rank constraint is relaxed with a nuclear norm constraint, or provide
upper bounds for general constrained problems [69]. We provide tighter sketch size upper bounds
to achieve O(ε) relative error with two state-of-the-art sketching techniques, TensorSketch [52] and
leverage score sampling [18].

With leverage score sampling, our analysis shows that with probability at least 1 − δ, the sketch
size of O

(
RN−1/(ε2δ)

)
is sufficient for results with O(ε)-relative error. With TensorSketch, the

sketch size upper bound is O
(
(RN−1 · 3N−1) · (RN−1 + 1/ε2)/δ

)
, at least O

(
3N−1

)
times that for

leverage score sampling. For both techniques, our bounds are at most O(1/ε) times the sketch size
upper bounds for the unconstrained linear least squares problem.

The upper bounds suggest that under the same accuracy criteria, leverage score sampling potentially
needs smaller sketch size for each linear least squares problem and thus can be more efficient than
TensorSketch. Therefore, with the same sketch size, the accuracy with leverage score sampling can be
better. However, with the standard random initializations for factor matrices, leverage score sampling
can perform poorly on tensors with high coherence [10] (the orthogonal basis for the row space of
each matricization of the input tensor has large row norm variability), making it less robust than
TensorSketch. To improve the robustness of leverage score sampling, we introduce an algorithm
that uses the randomized range finder (RRF) [22] to initialize the factor matrices. The initialization
scheme uses the composition of CountSketch and Gaussian random matrix as the RRF embedding
matrix, which only requires one pass over the non-zero elements of the input tensor. Our experimental
results show that the leverage score sampling based randomized algorithm combined with this RRF
scheme performs well on tensors with high coherence.

For R � s, our new sketching based algorithm for Tucker decomposition can also be used to
accelerate CP decomposition. Tucker compression is performed first, and then CP decomposition is
applied to the core tensor [70, 9, 20]. Since the per-sweep costs for both sketched Tucker-ALS and
sketched CP-ALS are comparable, and Tucker-ALS often needs much fewer sweeps than CP-ALS
(Tucker-ALS typically converges in less than 5 sweeps based on our experiments), this Tucker + CP
method can be more efficient than directly applying randomized CP decomposition [32, 14] on the
input tensor.

2

In summary, this paper makes the following contributions.

• We introduce a new sketched ALS algorithm for Tucker decomposition, which contains a sequence
of sketched rank-constrained linear least squares subproblems. Experimental results show that the
algorithm yields decomposition accuracy comparable to HOOI, and provides up to 22.0% relative
decomposition residual improvement compared to the previous randomized Tucker algorithm.

• We provide theoretical upper bounds for the sketch size of both leverage score sampling and
TensorSketch, which ensure that each sketched rank-constrained linear least squares incurs O(ε)
relative error with high probability.

• We provide detailed comparison of TensorSketch and leverage score sampling in terms of efficiency
and accuracy. Our theoretical analysis shows that leverage score sampling is better in terms of both
metrics.

• We propose an initialization scheme based on RRF that improves the accuracy of leverage score
sampling based sketching algorithm on tensors with high coherence.

• We show that CP decomposition can be more efficiently and accurately calculated based on the
sketched Tucker + CP method, compared to directly performing sketched CP-ALS on the input
tensor.

2 Background

We introduce the notation used throughout the paper, and briefly review ALS algorithms for Tucker
and CP decompositions, and TensorSketch as well as leverage score sampling in this section. We
present additional backgrounds, including the pseudo-codes of ALS algorithms for both Tucker and
CP decompositions, and the previous work in Appendix A.

2.1 Notation

Our analysis makes use of tensor algebra in both element-wise equations and specialized notation for
tensor operations [31]. Vectors are denoted with bold lowercase Roman letters (e.g., v), matrices are
denoted with bold uppercase Roman letters (e.g., M), and tensors are denoted with bold calligraphic
font (e.g., TTT). An order N tensor corresponds to an N -dimensional array. Elements of vectors,
matrices, and tensors are denoted in parentheses, e.g., v(i) for a vector v, M(i, j) for a matrix M,
and TTT (i, j, k, l) for an order 4 tensor TTT . The ith column of M is denoted by M(:, i), and the ith row
is denoted by M(i, :). Parenthesized superscripts are used to label different vectors, matrices and
tensors (e.g. TTT (1) and TTT (2) are unrelated tensors). Number of nonzeros of the tensor TTT is denoted by
nnz(TTT). The pseudo-inverse of matrix A is denoted with A†. The Hadamard product of two matrices
is denoted with ∗. The outer product of two or more vectors is denoted with ◦. The Kronecker product
of two vectors/matrices is denoted with⊗. For matrices A ∈ Rm×k and B ∈ Rn×k, their Khatri-Rao
product results in a matrix of size (mn) × k defined by A � B = [A(:, 1) ⊗ B(:, 1), . . . ,A(:
, k)⊗B(:, k)]. The mode-n tensor times matrix of an order N tensor TTT ∈ Rs1×···×sN with a matrix
A ∈ RJ×sn is denoted by TTT ×n A, whose output size is s1 × · · · × sn−1 × J × sn+1 × · · · × sN .
Matricization is the process of unfolding a tensor into a matrix. The mode-n matricized version of
TTT is denoted by T(n) ∈ Rsn×K where K =

∏N
m=1,m6=n sm. We use [N] to denote {1, . . . , N}. Õ

denotes the asymptotic cost with logarithmic factors ignored.

Tucker decomposition with ALS. Throughout the analysis we assume the input tensor has order N
and size s× · · · × s, and the Tucker ranks are R× · · · ×R. Tucker decomposition approximates a
tensor by a core tensor contracted along each mode with matrices that have orthonormal columns.
The goal of Tucker decomposition is to minimize the objective function, f(CCC,A(1), . . . ,A(N)) :=
1
2

∥∥TTT −CCC ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥2
F
. The core tensor CCC is of order N with dimensions R×

· · · × R. Each matrix A(n) ∈ Rs×R for n ∈ [N] has orthonormal columns. The ALS method for
Tucker decomposition [5, 16, 31], called the higher-order orthogonal iteration (HOOI), proceeds by
updating one of the factor matrices along with the core tensor at a time. The nth subproblem can be
written as

min
CCC,A(n)

1

2

∥∥∥P(n)CT
(n)A

(n)T −TT
(n)

∥∥∥2
F
, (2.1)

3

where P(n) = A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N). This problem can be formulated as a
rank-constrained linear least squares problem,

min
B(n)

1

2

∥∥∥P(n)B(n) −TT
(n)

∥∥∥2
F
, such that rank(B(n)) ≤ R. (2.2)

A(n) corresponds to the right singular vectors of the optimal B(n), while CT
(n) = B(n)A(n). Since

P(n) contains orthonormal columns, the optimal B(n) can be obtained by calculating the Tensor
Times Matrix-chain (TTMc),

YYY(n) = TTT ×1 A(1)T · · · ×n−1 A(n−1)T ×n+1 A(n+1)T · · · ×N A(N)T , (2.3)

and taking B(n) to be the transpose of the mode-n matricized YYY(n), Y
(n)T
(n) . Calculating YYY(n) costs

O
(
sNR

)
for dense tensors andO

(
nnz(TTT)RN−1) for sparse tensors. Before the HOOI procedure, the

factor matrices are often initialized with the higher-order singular value decomposition (HOSVD) [15,
67]. HOSVD computes the truncated SVD of each T(n) ≈ U(n)Σ(n)V(n)T , and sets A(n) = U(n)

for n ∈ [N]. If performing SVD via randomized SVD [22], updating A(n) for each mode costs
O
(
sNR

)
for dense tensors, and costs O

(
sN−1R2 + nnz(TTT)R

)
for sparse tensors.

CP decomposition with ALS. CP tensor decomposition [24, 23] decomposes the input tensor into
a sum of outer products of vectors. Throughout analysis we assume the input tensor has order
N and size s × · · · × s, and the CP rank is R. The goal of CP decomposition is to minimize

the objective function, f(A(1), . . . ,A(N)) := 1
2

∥∥∥TTT −∑R
r=1 A(1)(:, r) ◦ · · · ◦A(N)(:, r)

∥∥∥2
F
, where

A(i) ∈ Rs×R for i ∈ [N] are called factor matrices. CP-ALS is the mostly widely used algorithm
to get the factor matrices. In each ALS sweep, we solve N subproblems, and the objective for the
update of A(n), with n ∈ [N], is expressed as,

A(n) = arg min
A

1

2

∥∥∥P(n)AT −XT
(n)

∥∥∥2
F
, (2.4)

where P(n) = A(1) � · · · � A(n−1) � A(n+1) � · · · � A(N). Solving the linear least squares
problem above has a cost of O

(
sNR

)
. For instance, when solving via normal equations the term

P(n)TXT
(n), which is called MTTKRP, needs to be calculated, and it costsO

(
sNR

)
for dense tensors

andO(nnz(TTT)R) for sparse tensors. A major disadvantage of CP-ALS is its slow convergence. There
are many cases where CP-ALS takes a large number of sweeps to converge when high resolution
is necessary [42]. When R < s, the procedure can be accelerated by performing Tucker-ALS first,
which typically converges in fewer sweeps, and then computing a CP decomposition of the core
tensor [11, 70, 9], which only has O

(
RN
)

elements.

TensorSketch and leverage score sampling. In this paper, we sketch the linear least squares
problems using both TensorSketch and leverage score sampling. TensorSketch is a special type of
CountSketch, where the hash map is restricted to a specific format to allow fast multiplication of the
sketching matrix with the chain of Kronecker products. Leverage score sampling picks important rows
based on leverage scores to form the sampled/sketched problem. Both algorithms can be efficiently
applied to a chain of Kronecker products, and the detailed analysis is presented in Appendix B.

In the paper, we test two forms of leverage score sampling, random sampling, where we perform
importance random sampling based on leverage scores, and deterministic sampling [28], where we
deterministically sample rows having the largest leverage scores. Both ideas are also used in [32] for
randomized CP decomposition. Papailiopoulos et al. [53] show that if the leverage scores follow a
moderately steep power-law decay, then deterministic sampling can be provably as efficient and even
better than the random sampling. We compare both leverage score sampling techniques in Section 5.

3 Sketched Rank-constrained Linear Least Squares

Each subproblem of Tucker HOOI solves a linear least squares problem with the following properties,
1) the left-hand-side matrix is a chain of Kronecker products of factor matrices, 2) the left-hand-side
matrix has orthonormal columns, since each factor matrix has orthonormal columns, 3) the rank of
the output solution is constrained to be less than R, as is shown in (2.2). To the best of our knowledge,

4

the relative error analysis of sketching techniques for this problem have not been discussed in the
literature. In the following two theorems, we will show the sketch sizes of TensorSketch and leverage
score sampling that are sufficient for the relative residual norm error of the problems to be bounded
by O(ε) with at least 1− δ probability. The detailed proofs are presented in Appendix F.

Theorem 3.1 (TensorSketch for Rank-constrained Linear Least Squares). Consider matrices P =
A(1) ⊗ A(2) ⊗ · · · ⊗ A(N−1), where each A(i) ∈ Rs×R has orthonormal columns, s > R, and
B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be an order N − 1 TensorSketch matrix. Let X̃r be the
best rank-R approximation of the solution of the problem minX ‖SPX− SB‖F , and let Xr =
arg minX,rank(X)=R‖PX−B‖F . With

m = O
(

(R(N−1) · 3N−1) · (R(N−1) + 1/ε2)/δ
)
, (3.1)

the approximation,
∥∥∥AX̃r −B

∥∥∥2
F
≤ (1 +O(ε))

∥∥∥AXr−B
∥∥∥2
F
, holds with probability at least 1− δ.

Theorem 3.2 (Leverage Score Sampling for Rank-constrained Linear Least Squares). Given matrices
P = A(1) ⊗ A(2) ⊗ · · · ⊗ A(N−1), where each A(i) ∈ Rs×R has orthonormal columns, s >
R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be a leverage score sampling matrix for P. Let
X̃r be the best rank-R approximation of the solution of the problem minX ‖SPX− SB‖F , and
let Xr = arg minX,rank(X)=R‖PX−B‖F . With m = O

(
R(N−1)/(ε2δ)

)
, the approximation,∥∥∥AX̃r −B

∥∥∥2
F
≤ (1 +O(ε))

∥∥∥AXr −B
∥∥∥2
F
, holds with probability at least 1− δ.

Therefore, for leverage score sampling, O
(
R(N−1)/(ε2δ)

)
number of samples are sufficient to get

(1 + O(ε))-accurate residual with probability at least 1 − δ. The sketch size upper bound for
TensorSketch is higher than that for leverage score sampling, suggesting that leverage score sampling
is better. As can be seen in (3.1), when RN−1 ≤ 1/ε2, the sketch size bound for TensorSketch is
O
(
3N−1

)
times that for leverage score sampling. When RN−1 > 1/ε2, the ratio is even higher. The

accuracy comparison of the two methods is discussed further in Section 5.

While TensorSketch has a worse upper bound compared to leverage score sampling, it is more flexible
since the sketching matrix is independent of the left-hand-side matrix. One can derive a sketch size
bound that is sufficient to get (1 +O(ε))-accurate residual norm for linear least squares with general
(not necessarily rank-based) constraints based on existing proof techniques (detailed in Appendix G).
Although that bound is applicable for general constraints, it is looser than (3.1). For leverage score
sampling, we do not provide a sample size bound for general constrained linear least squares.

Sketching method Rank-constrained least squares Unconstrained least squares

Leverage score sampling O
(
R(N−1)/(ε2δ)

)
(Theorem 3.2) O

(
R(N−1)/(εδ)

)
(Theorem F.11) or

O
(
R(N−1) log(1/δ)/ε2

)
[32]

TensorSketch O
(

(3R)(N−1) · (R(N−1) + 1/ε2)/δ
)

(Theorem 3.1)
O
(

(3R)(N−1) · (R(N−1) + 1/ε)/δ
)

(Theorem F.7)

Table 1: Comparison of sketch size upper bounds for rank-constrained linear least squares and
unconstrained linear least squares. The upper bounds are sufficient for the relative residual norm
error to be bounded by O(ε) with at least 1− δ probability.

We also compare the sketch size upper bounds for rank-constrained linear least squares and uncon-
strained linear least squares in Table 1. For both leverage score sampling and TensorSketch, the upper
bounds for rank-constrained problems are at most O(1/ε) times the upper bounds for unconstrained
linear least squares problem. The error of sketched rank-constrained solution consists of two parts,
the error of the sketched unconstrained linear least squares solution, and the error from low-rank
approximation of the unconstrained solution. To make sure the second error term has a relative error
bound of O(ε), we restrict the first error term to be relatively bounded by O

(
ε2
)
, incurring a larger

sketch size upper bound.

5

4 Main Algorithm

Our main algorithm is presented in Algorithm 1. To improve the robustness of leverage score sampling,
we use an initialization scheme that uses the randomized range finder (RRF) [22] to initialize the factor
matrices (lines 3-5). In this scheme, the composition of CountSketch and Gaussian random matrix is
used as the RRF embedding matrix, which only requires one pass over the non-zero elements of the
input tensor. The detailed initialization algorithm and its cost analysis is detailed in Appendix C.

Algorithm 1 Sketch-Tucker-ALS: Sketched ALS procedure for Tucker decomposition
1: Input: Input tensor TTT ∈ Rs1×···×sN , Tucker ranks {R1, . . . , RN}, maximum number of sweeps
Imax, sketching tolerance ε

2: CCC ← OOO
3: for n ∈ {2, . . . , N} do
4: A(n) ← Init-RRF(T(n), Rn, ε)
5: end for
6: for i ∈ {1, . . . , Imax} do
7: for n ∈ {1, . . . , N} do
8: Build the sketching matrix S(n)

9: Y ← S(n)T(n)

10: Z← S(n)(A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N))
11: CT

(n),A
(n) ← RSVD-LRLS(Z,Y, R)

12: end for
13: end for
14: return

{
CCC,A(1), . . . ,A(N)

}

Algorithm for Tucker LS subproblem cost Sketch size (m) Prep cost
ALS Ω(nnz(TTT)R) / /
ALS+TensorSketch [39] Õ

(
msR+mRN

)
O
(
(3R)N−1/δ · (RN−1 + 1/ε)

)
O(N nnz(TTT))

ALS+TTMTS [39] Õ
(
msRN−1

)
Not shown O(N nnz(TTT))

ALS + TensorSketch O
(
msR+mR2(N−1)

)
O
(
(3R)N−1/δ · (RN−1 + 1/ε2)

)
(Theorem 3.1)

O(N nnz(TTT))

ALS+leverage scores O
(
msR+mR2(N−1)

)
O
(
RN−1/(ε2δ)

)
(Theorem 3.2) /

Table 2: Comparison of algorithm complexity between Tucker-ALS (HOOI), ALS with the TensorS-
ketch/leverage score sampling, and the sketched Tucker-ALS algorithms introduced in [39]. The
third column shows the sketch size sufficient for the sketched linear least squares to be (1 +O(ε))
accurate with probability at least 1− δ. Underlined algorithms are our new contributions.

Algorithm 2 RSVD-LRLS: Low-rank approximation of least squares solution via randomized SVD
1: Input: Left-hand-side matrix Z ∈ Rm×r, right-hand-side matrix Y ∈ Rm×s, rank R
2: Initialize S ∈ Rs×O(R) as a random Gaussian sketching matrix
3: B← (ZTZ)−1

4: C← BZTYS
5: Q,R← qr(C)
6: D← QTBZTY
7: U,Σ,V← svd(D)
8: return QU(:, : R)Σ(: R, : R),V(:, : R)

We provide detailed cost analysis for Algorithm 1. Note that for leverage score sampling, lines 8 and
9 need to be recalculated for every sweep, since S(n) is dependent on the factor matrices. On the
other hand, the TensorSketch embedding is oblivious to the state of the factor matrices, so we can
choose to use the same S(n) for all the sweeps for each mode n to save cost. This strategy is also

6

used in [39]. Detailed cost analysis for each part of Algorithm 1 is listed below, where we assume
s1 = · · · = sN = s and R1 = · · · = RN = R.

For line 3-5, the cost is O
(
N nnz(TTT) +NsR3/ε

)
by the analysis in Appendix C. For line 8, if using

leverage score sampling, the cost is O(sR) per subproblem (for computing the leverage scores of the
previously updated A(i)). If using TensorSketch, the cost is O(Ns), which is only incurred for the
first sweep. For line 9, if using leverage score sampling, the cost is O(ms) per subproblem; if using
TensorSketch, the cost is O(N nnz(TTT)), and is only incurred for the first sweep. For line 10, if using
leverage score sampling, the cost is O

(
mRN−1) per subproblem; if using TensorSketch, the cost is

O
(
NsR+m log(m)RN−1) per subproblem, by the analysis in Appendix B. For line 11, the cost is

O
(
msR+mR2(N−1)) per subproblem, under the condition that m ≥ RN−1 and using randomized

SVD as detailed in Algorithm 2.

Therefore, the cost for each subproblem (lines 8-11) is O
(
msR+mR2(N−1)), for both leverage

score sampling and TensorSketch. For TensorSketch, another cost of O(N nnz(TTT)) is incurred at
the first sweep to sketch the right-hand-side matrix, which we refer to as preparation cost. Using the
initialization scheme based on RRF to initialize the factor matrices would increase the cost of both
sketching techniques by O

(
N nnz(TTT) +NsR3/ε

)
.

We compare the cost of each linear least squares subproblem between our sketched ALS algorithms
with both HOOI and the sketched ALS algorithms introduced in [39] in Table 2. For the ALS +
TensorSketch algorithm in [39],N+1 subproblems are solved in each sweep, and in each subproblem
either one factor matrix or the core tensor is updated based on the sketched unconstrained linear
least squares solutions. For the ALS + TTMTS algorithm, TensorSketch is simply used to accelerate
the TTMc operations, and it has been shown to be less accurate compared to the reference ALS +
TensorSketch algorithm in [39].

For the solutions of sketched linear least squares problems to be unique, we need m ≥ RN−1

and hence m = Ω(RN−1). With this condition, the cost of each linear least squares subproblem
of our sketched ALS algorithms is less than that for ALS + TTMTS, but is more expensive with
related to R compared to the ALS + TensorSketch algorithm in [39], since our cost involves a term
mR2(N−1). However, as will be discussed in Appendix E.1, this term does not dominate in the
low-rank decomposition regime. In addition, as shown in Section 5, our algorithms provide better
accuracy as a result of updating more variables at a time. We also show the sketch size upper bound
sufficient to get a (1 +O(ε))-accurate approximation in residual norm. As can be seen in the table,
our sketching algorithm with leverage score sampling has the smallest sketch size, making it the best
algorithm considering both the cost of each subproblem and the sketch size. In [39], the authors give
an error bound for the approximate matrix multiplication in ALS + TTMTS, but the relative error of
the overall linear least squares problem is not given. For the ALS + TensorSketch algorithm in [39],
the sketch size upper bound in Table 2 comes from the upper bound for the unconstrained linear least
squares problem.

Note that the analysis generalizes to the case with non-uniform input tensor dimensions and Tucker
ranks. For the decomposition of an orderN tensor with dimensions s1×· · ·×sN and the Tucker ranks
R1 × · · · ×RN , the least squares subproblem cost for the ith mode for both ALS with TensorSketch
and ALS with leverage score sampling generalize from O(msR+mR2(N−1)) (shown in Table 2)
to O(msiRi + m

∏N
j=1,j 6=iR

2
j). For ALS with leverage score sampling, the sketch size bound

changes to O(
∏N

j=1,j 6=iRj/(ε
2δ)). For ALS with TensorSketch, the sketch size bound changes to

O
(

3N−1
∏N

j=1,j 6=iRj · (
∏N

j=1,j 6=iRj + 1/ε2)/δ
)
.

Algorithm 1 can also be used to accelerate CP decomposition when R� s. Tucker compression is
performed first, and then CP decomposition is applied to the core tensor. The detailed algorithm and
the cost analysis is presented in Appendix D.

5 Experiments

In this section, we compare our randomized algorithms with reference algorithms for both Tucker
and CP decompositions on several synthetic and real tensors. We evaluate accuracy based on the final

7

fitness f for each algorithm, defined as f = 1− ‖TTT −T̃TT ‖F‖TTT ‖F , where TTT is the input tensor and T̃TT is the
reconstructed low-rank tensor. For Tucker decomposition, we focus on the comparison of accuracy
and robustness of attained fitness across various synthetic datasets for different algorithms. For CP
decomposition, we focus on the comparison of accuracy and sweep count. Our experiments are
carried out on an Intel Core i7 2.9 GHz Quad-Core machine using NumPy [50] routines in Python.

5.1 Experiments for Tucker Decomposition

We compare five different algorithms for Tucker decomposition. Two baselines from previous
work are considered, standard HOOI and the original TensorSketch-based randomized Tucker-ALS
algorithm, which optimizes only one factor in Tucker decomposition at a time [39]. We compare
these to our new randomized algorithm (Algorithm 1) based on TensorSketch, random leverage score
sampling, and deterministic leverage score sampling. For each randomized algorithm, we test both
random initialization for factor matrices as well as the initialization scheme based on RRF. For the
baseline HOOI algorithm, we report the performance with both random and HOSVD initializations.
We use the following four synthetic tensors and real datasets to evaluate these algorithms.

1. Dense tensors with specific Tucker rank. We create order 3 tensors based on randomly-
generated factor matrices B(n) ∈ Rs×Rtrue and a core tensor CCC,

TTT = CCC ×1 B(1) ×2 B(2) ×3 B(3). (5.1)

Each element in the core tensor and the factor matrices are i.i.d. normally distributed random
variables N (0, 1). The ratio Rtrue/R, where R is the decomposition rank, is denoted as α.

2. Dense tensors with strong low-rank signal. We also test on dense tensors with strong low-rank
signal, TTT (b) = TTT +

∑n
i=1 λia

(1)
i ◦ a

(2)
i ◦ a

(3)
i . TTT is generated based on (5.1), and each vector

a
(j)
i has unit 2-norm. The magnitudes λi for i ∈ [n] are constructed based on the power-law

distribution, λi = C ‖T
TT ‖F
i1+η . In our experiments, we set n = 5, C = 3 and η = 0.5. This tensor is

used to model data whose leading low-rank components obey the power-law distribution, which is
common in real datasets.

3. Tensors with large coherence. We also test on tensors with large coherence, TTT (b) = TTT +NNN . TTT is
generated based on (5.1), andNNN contains n� s elements with random positions and same large
magnitude. In our experiments, we set n = 10, and each nonzero element inNNN has the i.i.d. normal
distribution N (‖TTT ‖F /

√
n, 1), which means the expected norm ratio E[‖NNN‖F /‖TTT ‖F] = 1. This

tensor has large coherence and is used to test the robustness of sketching techniques.
4. Real image datasets. We test on two image datasets, COIL-100 [46] and a Time-Lapse hyper-

spectral radiance images dataset called “Souto wood pile” [44], both have been used previously as
a tensor decomposition benchmark [7, 70, 36]. Transferring the data into tensor format results in a
tensor of size 128× 128× 7200 for COIL-100, and 1024× 1344× 33 for the Time-Lapse dataset.

For all the experiments, we run 5 ALS sweeps unless otherwise specified, and calculate the fitness
based on the output factor matrices as well as the core tensor. We observe that 5 sweeps are sufficient
for both HOOI and randomized algorithms to converge. For each randomized algorithm, we set
the sketch size to be KR2. The constant factor K reveals the accuracy of each subproblem. For
the randomized SVD routine in Algorithm 2, we set the dimension sizes of the random matrix S
as s × (R + 5), where the oversampling size is 5. We find that this yields accurate randomized
SVD solutions. Let CT

(n),A
(n) be the output of Line 11, Algorithm 1 via calling accurate SVD, and

let ĈT
(n), Â

(n) be the output via calling randomized SVD. We observe that the error ||CT
(n)A

(n) −
ĈT

(n)Â
(n)||F is always smaller than 10−10 for all experiments.

We show the experimental results in Fig. 1. As can be seen in the figure, our new randomized ALS
scheme, with either leverage score sampling or TensorSketch, outperforms the reference randomized
algorithm for all the synthetic and real tensors. The relative fitness improvement ranges from 4.5%
(Fig. 1b,3b) to 22.0% (Fig. 1a,3a) when K = 16 for synthetic tensors. With our new randomized
scheme, the relative final fitness difference between HOOI and the randomized algorithms is less
than 8.5% when K = 16, indicating the efficacy of our new scheme.

Fig. 1a,1b,1c include a comparison between random initialization and the initialization scheme based
on RRF detailed in Algorithm 5. For Tensor 1, both initialization schemes have similar performance.

8

HOOI Lev Lev-fix TS TS-ref
Method

0.20

0.25

0.30

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(a) Tensor 1 with s = 200

HOOI Lev Lev-fix TS TS-ref
Method

0.66

0.67

0.68

0.69

0.70

0.71

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(b) Tensor 2 with s = 200

HOOI Lev Lev-fix TS TS-ref
Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(c) Tensor 3 with s = 1000

0 2 4 6 8 10
Sweeps

0.50

0.55

0.60

0.65

Fi
tn
es
s

HOOI
Lev
TS
TS-ref

(d) COIL100 dataset

0 2 4 6 8 10
Sweeps

0.70

0.75

0.80

Fi
tn
es
s

HOOI
Lev
TS
TS-ref

(e) Time-Lapse dataset

Figure 1: Experimental results for Tucker decomposition. For all experiments, the Tucker rank is
5×5×5 and the sketch size parameterK = 16. For synthetic tensors, we set α = 1.6. HOSVD/RRF
means HOOI is initialized with HOSVD, and all other methods are initialized with RRF. Lev, Lev-fix,
TS denote our new sketched Tucker-ALS scheme with leverage score random sampling, leverage
score deterministic sampling, and TensorSketch, respectively. TS-ref denotes the reference ALS-
TensorSketch algorithm [39]. (a)(b)(c) Box plots of the final fitness for each algorithm with different
synthetic tensors. Each box is based on 10 experiments with different random seeds. Each box shows
the 25th-75th quartiles, the median is indicated by a horizontal line inside the box, and outliers are
displayed as dots. (d)(e) Detailed fitness-sweeps relation for real image datasets. HOOI is initialized
with HOSVD, and all other methods are initialized with RRF.

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(a) p = 0.5

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(b) p = 0.1

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(c) p = 0.02

Figure 2: Detailed fitness-sweeps relation for CP decomposition of three tensors with different
parameters. For all the experiments, we set s = 2000, R = 10, α = 1.2 and K = 16. Markers
represent the results per sweep. For Tucker + CP algorithms, the fitness shown for ith sweep is
the output fitness after running i Tucker sweeps along with 25 CP-ALS sweeps on core tensors
afterwards.

For the deterministic leverage score sampling on Tensor 2 (Fig. 1b), using RRF-based initialization
substantially decreases variability of attained accuracy. For leverage score sampling on Tensor 3
(Fig. 1c), we observe that the random initialization is not effective, resulting in approximately zero
final fitness. This is because the random initializations are far from the accurate solutions, and
some elements with large amplitudes are not sampled in all the ALS sweeps. With the RRF-based
initialization, the output fitness of the algorithms based on leverage score sampling is close to HOOI.

9

Therefore, our proposed initialization scheme is important for improving the robustness of leverage
score sampling.

We present additional experiments on dense synthetic tensors in Appendix E.1, where we show the
computational cost comparison of different algorithms, the relation between the sketch size and the
least squares subproblem accuracy, as well as the perturbation of factor matrices for each randomized
algorithm relative to the baseline HOOI.

Although the analysis in Section 3 shows leverage score sampling has a better sketch size upper
bound, the random leverage score sampling scheme performs similar to TensorSketch for the tested
dense tensors. In Appendix E.1 and Appendix E.2, we provide additional experimental results on
sparse tensors, and results with other sketch sizes. Results show that for multiple sparse tensors
and several experiments with smaller sketch sizes, leverage score sampling performs better than
TensorSketch.

5.2 Experiments for CP Decomposition

We show the efficacy of accelerating CP decomposition via performing Tucker compression first. We
compare four different algorithms, the standard CP-ALS algorithm, the Tucker HOOI + CP-ALS
algorithm, sketched CP-ALS, where the sketching matrix is applied to each linear least squares sub-
problem (2.4), as well as the sketched Tucker-ALS + CP-ALS algorithm, where Tucker compression
is performed first, and then CP decomposition is applied to the core tensor. Random leverage score
sampling is used for sketching, since it has been shown to be efficient for both Tucker (Section 5.1)
and CP (reference [32]) decompositions. We use the synthetic tensor to evaluate these four algorithms,
TTT =

∑Rtrue
i=1 a

(1)
i ◦ a

(2)
i ◦ a

(3)
i , where each element in a

(j)
i is an i.i.d normally distributed random

variable N (0, 1) with probability p and is zero otherwise. This guarantees that the expected sparsity
of TTT is lower-bounded by 1 − Rtruep

3. The ratio Rtrue/R, where R is the decomposition rank, is
denoted as α.

We show the detailed fitness-sweeps relation in Fig. 2. The detailed experimental set-up and additional
results with different parameter α are presented in Appendix E.3. We observe that for (sketched)
CP-ALS, more than 10 sweeps are necessary for the algorithms to converge. On the contrary, less
than 5 Tucker-ALS sweeps are needed for the sketched Tucker + CP scheme, making it more efficient.
In summary, we observe CP decomposition can be accurately calculated with fewer passes over the
tensor data based on the sketched Tucker + CP method.

6 Conclusions

In this work, we propose a fast and accurate sketching based ALS algorithm for Tucker decompo-
sition, which consists of a sequence of sketched rank-constrained linear least squares subproblems.
Theoretical sketch size upper bounds are provided to achieve O(ε)-relative residual norm error for
each subproblem with two sketching techniques, TensorSketch and leverage score sampling. For both
techniques, our bounds are at most O(1/ε) times the sketch size upper bounds for the unconstrained
linear least squares problem. We also propose an initialization scheme based on randomized range
finder to improve the accuracy of leverage score sampling based randomized Tucker decomposition of
tensors with high coherence. Experimental results show that this new ALS algorithm is more accurate
than the existing sketching based randomized algorithm for Tucker decomposition. This Tucker
decomposition algorithm also yields an efficient CP decomposition method, where randomized
Tucker compression is performed first, and CP decomposition is applied to the Tucker core tensor
afterwards. Experimental results show this algorithm not only converges faster, but also yields more
accurate CP decompositions.

We leave high-performance implementation of our sketched ALS algorithm as well as testing its
performance on large-scale real sparse datasets for future work. Additionally, although our theoretical
analysis shows a much tighter sketch size upper bound for leverage score sampling compared to
TensorSketch, their experimental performance under the same sketch size for multiple tensors are
similar. Therefore, it will be of interest to investigate potential improvements to sketch size bounds
for TensorSketch.

10

Acknowledgments

This work is supported by the US NSF OAC via award No. 1942995.

References
[1] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. A scalable optimization approach for

fitting canonical tensor decompositions. Journal of Chemometrics, 25(2):67–86, 2011.

[2] Kareem S Aggour, Alex Gittens, and Bülent Yener. Adaptive sketching for fast and convergent
canonical polyadic decomposition. In International Conference on Machine Learning. PMLR,
2020.

[3] Salman Ahmadi-Asl, Stanislav Abukhovich, Maame G Asante-Mensah, Andrzej Cichocki,
Anh Huy Phan, Tohishisa Tanaka, and Ivan Oseledets. Randomized algorithms for computation
of Tucker decomposition and higher order SVD (HOSVD). IEEE Access, 9:28684–28706,
2021.

[4] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

[5] Claus A Andersson and Rasmus Bro. Improving the speed of multi-way algorithms: Part I.
Tucker3. Chemometrics and intelligent laboratory systems, 42(1-2):93–103, 1998.

[6] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
fitting. arXiv preprint arXiv:1611.03225, 2016.

[7] Casey Battaglino, Grey Ballard, and Tamara G Kolda. A practical randomized CP tensor
decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018.

[8] Christos Boutsidis and D. Woodruff. Communication-optimal distributed principal component
analysis in the column-partition model. arXiv preprint arXiv:1504.06729, 2015.

[9] Rasmus Bro and Claus A Andersson. Improving the speed of multiway algorithms: Part II:
Compression. Chemometrics and intelligent laboratory systems, 42(1-2):105–113, 1998.

[10] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717, 2009.

[11] J Douglas Carroll, Sandra Pruzansky, and Joseph B Kruskal. CANDELINC: A general ap-
proach to multidimensional analysis of many-way arrays with linear constraints on parameters.
Psychometrika, 45(1):3–24, 1980.

[12] Maolin Che and Yimin Wei. Randomized algorithms for the approximations of Tucker and the
tensor train decompositions. Advances in Computational Mathematics, 45(1):395–428, 2019.

[13] Maolin Che, Yimin Wei, and Hong Yan. Randomized algorithms for the low multilinear rank
approximations of tensors. Journal of Computational and Applied Mathematics, page 113380,
2021.

[14] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. SPALS: Fast alternating least
squares via implicit leverage scores sampling. Advances in neural information processing
systems, 29:721–729, 2016.

[15] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[16] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-
(r1, r2, . . . , rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis and
Applications, 21(4):1324–1342, 2000.

11

[17] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for Kronecker product
regression and p-splines. In International Conference on Artificial Intelligence and Statistics,
pages 1299–1308. PMLR, 2018.

[18] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast
approximation of matrix coherence and statistical leverage. The Journal of Machine Learning
Research, 13(1):3475–3506, 2012.

[19] Petros Drineas, Michael W Mahoney, Shan Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. Numerische mathematik, 117(2):219–249, 2011.

[20] N Benjamin Erichson, Krithika Manohar, Steven L Brunton, and J Nathan Kutz. Randomized
CP tensor decomposition. Machine Learning: Science and Technology, 1(2):025012, 2020.

[21] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

[22] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[23] Richard A Harshman. Foundations of the PARAFAC procedure: models and conditions for an
explanatory multimodal factor analysis. 1970.

[24] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Studies in
Applied Mathematics, 6(1-4):164–189, 1927.

[25] Edward G Hohenstein, Robert M Parrish, and Todd J Martínez. Tensor hypercontraction density
fitting. I. Quartic scaling second-and third-order Møller-Plesset perturbation theory. The Journal
of chemical physics, 137(4):044103, 2012.

[26] Felix Hummel, Theodoros Tsatsoulis, and Andreas Grüneis. Low rank factorization of the
Coulomb integrals for periodic coupled cluster theory. The Journal of chemical physics,
146(12):124105, 2017.

[27] Ruhui Jin, Tamara G Kolda, and Rachel Ward. Faster Johnson-Lindenstrauss transforms via
Kronecker products. arXiv preprint arXiv:1909.04801, 2019.

[28] Ian T Jolliffe. Discarding variables in a principal component analysis. I: Artificial data. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 21(2):160–173, 1972.

[29] Oguz Kaya and Bora Uçar. High performance parallel algorithms for the Tucker decomposition
of sparse tensors. In 2016 45th International Conference on Parallel Processing (ICPP), pages
103–112. IEEE, 2016.

[30] Oguz Kaya and Bora Uçar. Parallel CANDECOMP/PARAFAC decomposition of sparse tensors
using dimension trees. SIAM Journal on Scientific Computing, 40(1):C99–C130, 2018.

[31] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[32] Brett W Larsen and Tamara G Kolda. Practical leverage-based sampling for low-rank tensor
decomposition. arXiv preprint arXiv:2006.16438, 2020.

[33] Hao Li, Zixuan Li, Kenli Li, Jan S Rellermeyer, Lydia Chen, and Keqin Li. SGD_Tucker: A
novel stochastic optimization strategy for parallel sparse Tucker decomposition. arXiv preprint
arXiv:2012.03550, 2020.

[34] Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. Model-driven sparse CP
decomposition for higher-order tensors. In 2017 IEEE international parallel and distributed
processing symposium (IPDPS), pages 1048–1057. IEEE, 2017.

[35] Na Li, Stefan Kindermann, and Carmeliza Navasca. Some convergence results on the regularized
alternating least-squares method for tensor decomposition. Linear Algebra and its Applications,
438(2):796–812, 2013.

12

[36] Linjian Ma and Edgar Solomonik. Accelerating alternating least squares for tensor decomposi-
tion by pairwise perturbation. arXiv preprint arXiv:1811.10573, 2018.

[37] Linjian Ma and Edgar Solomonik. Efficient parallel CP decomposition with pairwise pertur-
bation and multi-sweep dimension tree. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 412–421. IEEE, 2021.

[38] Michael W Mahoney. Randomized algorithms for matrices and data. arXiv preprint
arXiv:1104.5557, 2011.

[39] Osman Asif Malik and Stephen Becker. Low-rank Tucker decomposition of large tensors using
Tensorsketch. Advances in neural information processing systems, 31:10096–10106, 2018.

[40] Rachel Minster, Arvind K Saibaba, and Misha E Kilmer. Randomized algorithms for low-rank
tensor decompositions in the Tucker format. SIAM Journal on Mathematics of Data Science,
2(1):189–215, 2020.

[41] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly journal
of mathematics, 11(1):50–59, 1960.

[42] Ben C Mitchell and Donald S Burdick. Slowly converging PARAFAC sequences: swamps and
two-factor degeneracies. Journal of Chemometrics, 8(2):155–168, 1994.

[43] Drew Mitchell, Nan Ye, and Hans De Sterck. Nesterov acceleration of alternating least squares
for canonical tensor decomposition. arXiv preprint arXiv:1810.05846, 2018.

[44] Sérgio MC Nascimento, Kinjiro Amano, and David H Foster. Spatial distributions of local
illumination color in natural scenes. Vision Research, 120:39–44, 2016.

[45] Carmeliza Navasca, Lieven De Lathauwer, and Stefan Kindermann. Swamp reducing technique
for tensor decomposition. In 2008 16th European Signal Processing Conference, pages 1–5.
IEEE, 2008.

[46] Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image library (COIL-
100).

[47] Dimitri Nion and Lieven De Lathauwer. An enhanced line search scheme for complex-valued
tensor decompositions. Application in DS-CDMA. Signal Processing, 88(3):749–755, 2008.

[48] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P Sadayappan. Load-
balanced sparse MTTKRP on GPUs. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 123–133. IEEE, 2019.

[49] Sejoon Oh, Namyong Park, Sael Lee, and Uksong Kang. Scalable Tucker factorization for
sparse tensors-algorithms and discoveries. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pages 1120–1131. IEEE, 2018.

[50] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[51] Pentti Paatero. A weighted non-negative least squares algorithm for three-way PARAFAC factor
analysis. Chemometrics and Intelligent Laboratory Systems, 38(2):223–242, 1997.

[52] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):1–17, 2013.

[53] Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Provable deterministic
leverage score sampling. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 997–1006, 2014.

[54] Will Pazner and Per-Olof Persson. Approximate tensor-product preconditioners for very high
order discontinuous Galerkin methods. Journal of Computational Physics, 354:344–369, 2018.

[55] Anh Huy Phan and Andrzej Cichocki. Tensor decompositions for feature extraction and
classification of high dimensional datasets. Nonlinear theory and its applications, IEICE,
1(1):37–68, 2010.

13

[56] Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped Gauss-Newton
algorithms for CANDECOMP/PARAFAC. SIAM Journal on Matrix Analysis and Applications,
34(1):126–147, 2013.

[57] Mert Pilanci and Martin J Wainwright. Iterative Hessian sketch: fast and accurate solution
approximation for constrained least-squares. The Journal of Machine Learning Research,
17(1):1842–1879, 2016.

[58] Myriam Rajih, Pierre Comon, and Richard A Harshman. Enhanced line search: A novel method
to accelerate PARAFAC. SIAM journal on matrix analysis and applications, 30(3):1128–1147,
2008.

[59] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalex-
akis, and Christos Faloutsos. Tensor decomposition for signal processing and machine learning.
IEEE Transactions on Signal Processing, 65(13):3551–3582.

[60] Navjot Singh, Linjian Ma, Hongru Yang, and Edgar Solomonik. Comparison of accuracy
and scalability of gauss–newton and alternating least squares for CANDECOMC/PARAFAC
decomposition. SIAM Journal on Scientific Computing, 43(4):C290–C311, 2021.

[61] Shaden Smith and George Karypis. A medium-grained algorithm for sparse tensor factorization.
In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
902–911. IEEE, 2016.

[62] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis. SPLATT:
Efficient and parallel sparse tensor-matrix multiplication. In 2015 IEEE International Parallel
and Distributed Processing Symposium, pages 61–70. IEEE, 2015.

[63] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2772–2789. SIAM, 2019.

[64] Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell. Low-rank Tucker
approximation of a tensor from streaming data. SIAM Journal on Mathematics of Data Science,
2(4):1123–1150, 2020.

[65] Yiming Sun, Yang Guo, Joel A Tropp, and Madeleine Udell. Tensor random projection for low
memory dimension reduction. In NeurIPS Workshop on Relational Representation Learning,
2018.

[66] Petr Tichavskỳ, Anh Huy Phan, and Andrzej Cichocki. A further improvement of a fast damped
Gauss-Newton algorithm for CANDECOMP-PARAFAC tensor decomposition. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 5964–5968. IEEE,
2013.

[67] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[68] Shusen Wang. A practical guide to randomized matrix computations with MATLAB implemen-
tations. arXiv preprint arXiv:1505.07570, 2015.

[69] David P Woodruff. Sketching as a tool for numerical linear algebra. arXiv preprint
arXiv:1411.4357, 2014.

[70] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Decomposition of big tensors with low
multilinear rank. arXiv preprint arXiv:1412.1885, 2014.

14

	Introduction
	Our Contributions

	Background
	Notation

	Sketched Rank-constrained Linear Least Squares
	Main Algorithm
	Experiments
	Experiments for Tucker Decomposition
	Experiments for CP Decomposition

	Conclusions

