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Abstract

Knowledge Distillation (KD) is a predominant001
approach for BERT compression. Previous KD-002
based methods focus on designing extra align-003
ment losses for student model to mimic the be-004
havior of teacher model. These methods trans-005
fer the knowledge in an indirect way. In this pa-006
per, we propose a novel Weight-Inherited Dis-007
tillation (WID), which directly transfers knowl-008
edge from the teacher. WID does not require009
any additional alignment loss and trains a com-010
pact student by inheriting the weights, show-011
ing a new perspective of knowledge distillation.012
Specifically, we design the compactors as map-013
pings and then compress the weights via struc-014
tural re-parameterization. Experimental results015
on the GLUE and SQuAD benchmarks show016
that WID outperforms previous state-of-the-art017
KD-based baselines. Further analysis indicates018
that WID can also learn the attention patterns019
from the teacher model without any alignment020
loss on attention distributions.021

1 Introduction022

Transformer-based Pre-trained Language Mod-023

els (PLMs), such as BERT (Devlin et al., 2019),024

RoBERTa (Liu et al., 2019), XLNET (Yang et al.,025

2019), have achieved great success in many Natural026

Language Process (NLP) tasks. These models are027

pre-trained on massive corpus via self-supervised028

tasks to learn contextualized text representations.029

However, PLMs have high costs in terms of storage,030

memory, and computation time, which brings chal-031

lenges to online service in real-life applications.032

Therefore, it is crucial and feasible to compress033

PLMs while maintaining their performance.034

Knowledge Distillation (KD), which trains a035

compact student model by mimicking the behav-036

ior of a teacher model, is a predominant method037

for PLM compression. There are two settings for038

KD in BERT compression: task-specific, which039

first fine-tune the teacher PLMs on specific tasks040

and then perform distillation, and task-agnostic,041

Approach Alignment Loss Hard Loss Task-AgnosticLogit Feature

DistilBERT ✓ ✓ ✓ ✓

TinyBERT (GD) ✓ ✓ ✗ ✓

PKD ✓ ✓ ✓ ✗

MiniLM ✗ ✓ ✗ ✓

MobileBERT ✓ ✓ ✓ ✓

WID (ours) ✗ ✗ ✓ ✓

Table 1: Comparison with previous state-of-the-art dis-
tillation methods. Logit and Feature denote whether
logit-based loss and feature-based loss are used for dis-
tillation. To the best of our knowledge, WID is the first
distillation method without any alignment loss and di-
rectly transfers the knowledge by weight inheritance.

which distill PLMs in pre-training stage. For task- 042

agnostic distillation, the student model can be di- 043

rectly and generically fine-tuned on various down- 044

stream tasks (Wang et al., 2020; Sun et al., 2020). 045

Hence, we conduct our weight-inherited distillation 046

under task-agnostic setting. 047

Previous KD-based methods mainly focus on de- 048

signing alignment losses to minimize the distance 049

between the teacher model and the student model. 050

We can further categorize these alignment losses 051

into: logit-based, which measures the distance of 052

logit distributions, and feature-based, which aims 053

to align the intermediate features including token 054

embeddings, hidden states, and self-attention distri- 055

butions. However, adopting these alignment losses 056

brings the following drawbacks: 1) selecting var- 057

ious loss functions and balancing the weights of 058

each loss are laborious (Sun et al., 2019; Jiao et al., 059

2020); 2) some losses will restrict the architecture 060

of the student model. For example, attention-based 061

loss (Jiao et al., 2020; Wang et al., 2020; Sun et al., 062

2020) requires the student model to have the same 063

attention heads as the teacher. 064

In this work, we propose Weight-Inherited Distil- 065

lation (WID), which does not require any additional 066

alignment loss and trains the student by directly 067

inheriting the weights from teacher. Inspired by 068
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structural re-parameterization in CNN compression069

(Ding et al., 2021), we design row compactors and070

column compactors and view them as mappings to071

compress the weights by row and column, respec-072

tively. Figure 1 shows the process of compressing073

a linear layer by WID. All compactors are initial-074

ized as identity matrices, thus the re-parameterized075

teacher model produces identical outputs as the076

original teacher. We train the re-parameterized077

teacher model on the pre-training task and add078

weight penalty to compactors simultaneously. Af-079

ter training, we compress the compactors to de-080

sired sizes and merge these compactors and origi-081

nal weights into compact one. As shown in Table082

1, WID is the only method for task-agnostic distil-083

lation without any alignment loss.084

We conduct extensive experiments on down-085

stream NLP tasks, including the GLUE and086

SQuAD benchmarks. Experimental results demon-087

strate that WID outperforms traditional KD-based088

baselines. Further analysis shows that WID can089

also learn knowledge such as self-attention patterns090

from the teacher model.091

Our contributions can be summarized as follows:092

• We propose Weight-Inherited Distilla-093

tion (WID), revealing a new pathway to094

knowledge distillation by directly inheriting095

the weights via structural re-parameterization.096

• We conduct WID for task-agnostic BERT097

compression. Experiments on the GLUE and098

SQuAD benchmark datasets demonstrate the099

effectiveness of WID for model compression.100

• We perform further analyses on how to get bet-101

ter performance in BERT compression. More-102

over, we find that WID can also learn attention103

patterns from the teacher.104

2 Preliminaries105

In this section, we present a brief introduction to106

the transformer. Moreover, we also present existing107

KD-based methods for transformer networks.108

2.1 Embedding Layer109

In BERT (Devlin et al., 2019), the input texts are to-110

kenized to tokens by WordPiece (Wu et al., 2016).111

The representations ({xi}|x|i=1) of input sequence112

are constructed by summing the corresponding113

token embedding, segment embedding, and posi-114

tion embedding. For the token embedding layer in115

BERT, the weight is WT ∈ R|V |×d, where |V | and 116

d denote the size of the vocabulary and the hidden 117

state vector. 118

2.2 Transformer Layer 119

Transformer layer is adopted to encode the con- 120

textual information of input texts. The input vec- 121

tor ({xi}|x|i=1) are packed to H0 = [x1, · · · ,x|x|]. 122

After that, the L-layer transformer computes the 123

encoding vectors following: 124

Hl = Transformerl(Hl−1), l ∈ [1, L]. (1) 125

The final output HL = [hL1 , · · · , hL|x|] ∈ R|x|×d 126

is employed as the contextualized representation 127

of {xi}|x|i=1. Each transformer layer consists of a 128

multi-head self-attention (MHA) sub-layer and a 129

feed-forward (FFN) sub-layer. In these two sub- 130

layers, the residual connection(He et al., 2016) is 131

employed, followed by layer normalization (Ba 132

et al., 2016). 133

MHA For the l-th transformer layer with A at- 134

tention heads, the output Ol,a of the attention head 135

a ∈ [1, A] is calculated as: 136

Ql,a = Hl−1WQ
l,a

Kl,a = Hl−1WK
l,a

Vl,a = Hl−1WV
l,a

(2) 137

138

Ol,a = Al,aVl,a,Al,a = softmax(
Ql,aK

T
l,a√

dk
)

(3) 139

where linear projection WQ
l,a,W

K
l,a,W

V
l,a ∈ 140

Rd×dk and dk = d
A is the dimension of each head. 141

The final output of MHA sub-layer is as follows: 142

Ol = LN(Hl−1 + (||Aa=1Ol,a)W
O
l ) (4) 143

where WO
l ∈ Rd×d , LN is layer normalization 144

and || denotes the concatenation operation. 145

FFN The l-th FFN sub-layer consists of an up 146

projection and a down projection , parameterized 147

by Wl,u ∈ Rd×df , Wl,d ∈ Rdf×d, and corre- 148

sponding bias bl,u ∈ Rdf , bl,d ∈ Rd: 149

FFN(Ol) = gelu(OlWl,u + bl,u)Wl,d + bl,d.
(5) 150

Typically, df = 4d. Finally, we obtain the output 151

of layer l by: 152

Hl = LN(Ol + FFN(Ol)). (6) 153
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2.3 Knowledge Distillation154

Knowledge Distillation (KD) aims to transfer the155

knowledge from teacher model T to compact stu-156

dent model S. The student model S is trained157

to mimic the behaviors of teacher model T via158

minimizing the distance between them. The ob-159

ject losses can be categorized into logit-based and160

feature-based.161

For logit-based loss, the target is to minimize162

the logit distribution ps from student and pt from163

teacher, which can be formalized as:164

Llogit = H1(ps/τ,pt/τ), (7)165

where τ is the temperature and H1 is the cross-166

entropy loss or KL-divergence.167

Feature-based loss aims to align the intermediate168

features between the teacher and the student by:169

Lfeature = H2(f
S(x), fT (x)), (8)170

where H2 is the loss function such as Mean Square171

Error (MSE) and f(x) notes for the intermediate172

output including hidden state vector H and atten-173

tion distribution A.174

As shown in Table 1, logit-based and feature-175

based loss can be jointly employed for better dis-176

tillation. However, balancing the weights of each177

loss is laborious. For example, the overall loss of178

PKD (Sun et al., 2019) is:179

L = (1− α)Lhard + αLlogit + βLfeature, (9)180

where Lhard is the loss on target tasks and α and181

β are the hyper-parameters. They perform grid182

search over α and τ , where α ∈ {0.2, 0.5, 0.7}183

and τ ∈ {5, 10, 20}. After that, they fix α and184

τ with the best performance and search β ∈185

{10, 100, 500, 1000}.186

Meanwhile, selecting various loss functions is187

also laborious. In PKD, Lfeature is defined as the188

mean square loss between the normalized hidden189

states for each layer. DistilBERT (Sanh et al., 2019)190

adopts the cosine embedding loss for hidden states191

vectors. In TinyBERT (Jiao et al., 2020), they em-192

ploy the mean square loss for self-attention dis-193

tributions, embedding layer outputs, and hidden194

states.195

3 Weight-Inherited Distillation196

In this section, we propose a novel Weight-197

Inherited Distillation (WID) method for198

Linear 
Layer 𝑳𝑳𝑻𝑻

Row 
Compactor

Column
Compactor

Merge compactors and 𝑳𝑳𝑻𝑻

B × CB× B → D× B C × C → C× E

Input Output

Compact
Layer 𝑳𝑳𝑺𝑺

D × E

Input Output

Linear 
Layer 𝑳𝑳𝑻𝑻

Row 
Compactor

Column
Compactor

Compress compactors 

B × CB× B C × C

Input Output

Linear 
Layer 𝑳𝑳𝑻𝑻

B × C

Input Output

Add compactors then train

Figure 1: Overview of compressing linear layer LT with
weight WLT ∈ RB×C to compact linear layer LS with
weight WLS ∈ RD×E via WID. Both row compactor
and column compactor are initialized as identity ma-
trices. After training, we compress the compactors and
merge them with original layer. All the linear layers in
teacher model are compressed simultaneously.

transformer-based models without any align- 199

ment loss. The WID aims to directly leverage 200

knowledge in weight and compress the teacher 201

model by learning mappings for the compact 202

student model. 203

3.1 Structural Re-parameterization 204

As mentioned in Section 2, the PLMs (e.g., BERT) 205

consist of embedding layers and transformer layers. 206

To compress the BERT, we have to learn a mapping 207

from the larger weight in the teacher model to the 208

compact one. In WID, we adopt the structural re- 209

parameterization and design the row compactors 210

and column compactors. 211

Figure 1 gives an example showing the process 212

of compressing the original weight WLT ∈ RB×C 213

to compact weight WLS ∈ RD×E adopting the 214

row compactor and the column compactor. First, 215

we insert the row compactor with weight Wrc ∈ 216

RB×B and the column compactor with weight 217

Wcc ∈ RC×C before and after the linear layer 218

LT from teacher model. All compactors are linear 219

layers without bias and their weights are initialized 220

as identity matrices. For an arbitrary input X , the 221

re-parameterized teacher model produces identical 222

outputs as the original, since 223

WLTX = WrcWLTWccX. (10) 224

3



column 
compactor

backward
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column mask
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fused 
gradients

1. Train Stage 2. Compress Stage

column 
compactor

column mask

compressed
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Input

Embedding 
Layer
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…

Output loss
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update

Figure 2: Training and compression for column compactor. During the training process, we add weight penalty
gradients by column and progressively select the mask to fuse the penalty gradients and original loss gradients. For
gradients fusion, we decouple penalty gradients and original loss gradients to avoid gradient competition. After
training, we prune the column compactor following the column mask.

Second, we train the re-parameterized teacher225

model on the pre-training task. During training,226

we add the row penalty to row compactor and col-227

umn penalty to column compactor. The goal is228

to maintain the performance of the teacher model229

and compress the compactor simultaneously. Af-230

ter training, the row compactor is compressed by231

pruning B −D rows, and the column compactor232

is compressed by pruning C − E columns. The233

objects are as follows:234

Wrc ∈ RB×B → Wrc′ ∈ RD×B

Wcc ∈ RC×C → Wcc′ ∈ RC×E .
(11)235

More details can be found in Section 3.2. Final,236

we merge the compressed compactors Wrc′ ,Wcc′237

and the original teacher layer WLT to obtain the238

compact layer for the student following:239

WLS = Wrc′WLTWcc′ ∈ RD×E (12)240

For the weights to compress the row only, such241

as the output layer for MLM task with size Rd×|V |,242

we adopt the row compactor exclusively. Similarly,243

we employ the column compactor exclusively for244

the weights to compress the column only, such as245

the token embedding matrix WT ∈ R|V |×d.246

3.2 Compactor Compression247

In WID, we design row compactors and column248

compactors and view them as mappings to com-249

press the weights by row and column, respectively.250

Compared to directly learning these compactors,251

our key insight is to initialize these compactors252

with identity matrices and compress them to the 253

desired size progressively. 254

Figure 2 presents the training and compression 255

process for the column compactor. Given the 256

column compactor Wcc ∈ RC×C and original 257

gradients gccori ∈ RC×C , the penalty gradients 258

gccpen ∈ RC×C are calculated as follows: 259

gccpen =
Wcc

||Wcc||p
(13) 260

where ||Wcc||p denotes the p-norm cross each 261

column. Based on the ||Wcc||p, we pick top-k 262

columns with lower norm value and set the corre- 263

sponding value in our column mask M = {0, 1}C 264

to be 1. For gradients fusion, we decouple penalty 265

gradients and original loss gradients to avoid gradi- 266

ent competition. Thus, the original gradients gccori 267

and the penalty gradients gccpen are fused as follows: 268

269

gccfused[:, i] =

{
gccpen[:, i], if M [i] = 1

gccori[:, i], if M [i] = 0
(14) 270

where 0 ≤ i ≤ C. The fused gradients gccfused 271

are employed to update the column compactor by 272

optimizer. After training, we prune the column 273

compactor by column mask: 274

Wcc′ = Wcc[:, i], where M [i] = 1. (15) 275

Moreover, the processing is similar for row com- 276

pactors. We calculate ||Wrc||p for each row and 277

select the top-k rows with the lower norm value. 278
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Algorithm 1 Weight-Inherited Distillation
Input: teacher model T with width dt
Params: k: number of rows/columns to compress, N : steps
to increase k, d: increment for k each time
Output: student model S with width ds
1: Add compactors for T to construct the re-parameterized

teacher model T̂ . Initialize the weights for compactors as
identity matrices.

2: k ← 0 ; M ← [ ]
3: for i = 0 to max training steps do
4: Forward a batch through T̂ , derive the gradients gori

for each compactor
5: if i%N == 0 & k < dt − ds then
6: Calculate p-norm values
7: Select the top-k row/column with the lower norm

to get M
8: Get penalty gradients gpen following Eq. 13
9: gfused ← f(gori, gpen,M) following Eq. 14

10: k ← k + d
11: end if
12: Update the compactors with corresponding gfused and

original layers with gori
13: end for
14: Compress the compactors following Eq. 15
15: Merge the compactors and original layers following Eq.

12 to get compact layers for S
16: return S

For stability and better performance, we com-279

press the compactors progressively. Specifically,280

we increase k for some steps until reaching the de-281

sired size during the training stage. More details282

are shown in Algorithm 1.283

4 Experiments284

4.1 Task-Agnostic Distillation285

We employ the uncased version of BERTbase as our286

teacher model 1. BERTbase (Devlin et al., 2019)287

is a 12-layer transformer model (d=768, A=12,288

L=12), which contains 110M parameters. For289

student models, we compress the teacher model290

to various model sizes for comparison, including291

WID55 (d=516, A=12, L=12) with 55M parame-292

ters and WID11 (d=192, A=12, L=12) with 11M293

parameters. We use the documents of English294

Wikipedia and BookCorpus (Zhu et al., 2015) for295

pre-training following Devlin et al. (2019). We296

use Adamw (Loshchilov and Hutter, 2019) with297

β1 = 0.9, β2 = 0.99. The compactors are trained298

with peak learning rate 5e-5 and the original linear299

layers with peak learning rate 1e-6. For WID, we300

adopt the 2-norm and set N=500, d=⌊(dt−ds)/16⌋.301

It costs about 64 hours to train for 400,000 steps302

with a batch size of 960 on 8 A100 GPUs.303

1We employ the weight from https://huggingface.co/bert-
base-uncased.

4.2 Downstream Tasks 304

Following previous PLM disitillation (Sanh et al., 305

2019; Wang et al., 2020), we evaluate our WID 306

on the SQuAD v1.1 (Rajpurkar et al., 2016) and 307

GLUE benchmark (Wang et al., 2019). The GLUE 308

benchmark consists of CoLA (Warstadt et al., 309

2019), SST-2(Socher et al., 2013), MRPC (Dolan 310

and Brockett, 2005), STS-B (Cer et al., 2017), QQP 311

(Chen et al., 2018), MNLI (Williams et al., 2018), 312

QNLI(Rajpurkar et al., 2016) and RTE (Bentivogli 313

et al., 2009). After task-agnostic distillation, we 314

fine-tune our compressed BERT WID55 and WID11 315

on these benchmarks adopting the grid search and 316

report the results on the development sets. The 317

result of MNLI is the score of MNLI-m. More 318

details about these datasets including dataset sizes 319

and metrics and the hyperparameters for fine-tune 320

can be found in the Appendix A. 321

4.3 Baselines 322

For a fair comparison, we compare our WID with 323

the task-agnostic distillation baselines. These 324

baselines include: 1) DistilBERT (Sanh et al., 325

2019), which distills the student by the combina- 326

tion of the original MLM loss, the cosine distance 327

for features, and the KL divergence for output log- 328

its. 2) TinyBERT (GD) (Jiao et al., 2020), which 329

aligns the attention distributions and hidden states 330

for general distillation. 3) MiniLM (Wang et al., 331

2020) and MiniLM v2 (Wang et al., 2021), which 332

align the attention matrix and values-values scaled 333

dot-product. We also reproduce the TinyBERT in 334

the same architecture as WID, following the of- 335

ficial code. For fair comparison, we employ the 336

same corpus and follows the official hyperparame- 337

ters. We do not compare with MobileBERT (Sun 338

et al., 2020) since its teacher is IB-BERTlarge (much 339

higher accuracy than BERTbase) and its computa- 340

tions (4096 batch size * 740,000 steps) is much 341

higher. Moreover, we also compare WID with task- 342

specific methods in Appendix C. 343

4.4 Main Results 344

We compare our WID with other task-agnostic dis- 345

tillation methods in various model size. All the 346

methods utilize the BERTbase as teacher model. 347

As shown in Table 2, WID retains 98.9% and 348

90.9% performance of BERTbase with 49.2% and 349

10.2% parameters, respectively. In particular, on 350

the CoLA task, our proposed WID55 gets a higher 351

score than BERTbase. Compared to the baselines 352
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Method FLOPs Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

BERTbase 22.7B 110.1M 92.7 59.1 90.4 91.7 91.4 70.8 90.1 84.5 89.6/82.6 84.3

DistilBERT 11.9B 67.5M 91.3 51.3 87.5 89.2 88.5 59.9 86.9 82.2 86.2/78.1 80.1
MiniLM 11.9B 67.5M 92.0 49.2 - 91.0 91.0 71.5 - - -/- -
MiniLM v2 11.9B 67.5M 92.4 52.5 - 90.8 91.1 72.1 - - -/- -
TinyBERT (GD)† 11.9B 67.5M 92.9 44.1 89.5 90.7 91.0 73.7 89.6 83.8 84.0/74.2 81.3
TinyBERT (GD)‡ 10.4B 54.9M 92.3 47.0 87.3 90.8 90.9 69.7 89.0 83.3 85.4/76.2 81.2
WID55 (ours) 10.4B 54.9M 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 88.5/80.8 83.4

TinyBERT (GD)‡ 1.6B 11.3M 88.4 30.3 80.4 87.5 89.1 65.3 84.0 79.4 80.5/70.7 75.6
WID11 (ours) 1.6B 11.3M 88.8 44.2 81.9 85.4 89.5 60.3 84.5 78.4 81.2/72.4 76.7

Table 2: Comparison between our WID and the previous task-agnostic distillation methods. For SQuAD v1.1,
we report the F1/EM scores. We compare the task-agnostic distilled models without both data augmentation and
task-specific distillation. WID achieves better performances than TinyBERT under various model size. † means that
we fine-tune the official weights. ‡ means that we reproduce the methods following the official code. Other results
are taken from corresponding papers.

with 67.5M parameters, WID55 gets comparable353

performance with MiniLM and higher performance354

than DistilBERT with less parameters. Meanwhile,355

WID outperforms the TinyBERT under the same356

architecture on GLUE benchmarks and SQuAD,357

showing its supremacy over the traditional KD358

methods with logit-based loss and feature-based359

loss. Without CoLA, WID55 gets an average score360

of 85.8 and still outperforms the TinyBERT (GD)361

with an average score of 85.0.362

Larger Performance Gap Since performance363

gap between teacher and student has always been a364

crucial point and difficulty in the knowledge distil-365

lation. We conduct experiments for smaller student366

models (11.3M parameters). We reproduce the367

task-agnostic TinyBERT under the General Distil-368

lation (GD) as baseline. As shown in Table 2, we369

find that WID (average score: 76.7) still outper-370

forms TinyBERT (average score: 75.6) when the371

student model is about 10x smaller.372

5 Analysis and Discussion373

5.1 Compare WID with Pruning and374

Self-Distillation375

We propose WID, a weight-inherited distillation376

method for task-agnostic BERT compression with-377

out extra alignment loss, which learns mappings378

from the teacher model to compact student via re-379

parameterization. To compress the linear layer,380

we design the row compactor and column com-381

pactor for row squeezing and column squeezing,382

respectively. However, WID is very likely to be383

fused with pruning (LeCun et al., 1989) and self-384

distillation(Zhang et al., 2019).385

Pruning aims to remove redundant weights from386

a neural network to achieve parameter-efficiency 387

while preserving model performance, including un- 388

structured pruning which sets weights to 0, and 389

structured pruning which removes components. 390

However, unstructured pruning does not compress 391

the model size, while structured pruning prunes 392

the weights directly. In WID, we do not remove 393

any parts from the original teacher model. Instead 394

of that, we learn the compactors to compress the 395

weights via structural re-parameterization. 396

Self-distillation(Zhang et al., 2019) is a one- 397

step online distillation method, which distills the 398

knowledge in deeper layer to shallow layer dur- 399

ing the training process of teacher model. Com- 400

pared to self-distillation, WID is an offline distil- 401

lation method, since the teacher model is trained 402

before knowledge distillation. Furthermore, self- 403

distillation aims to transfer knowledge by aligning 404

intermediate features or logit distributions, while 405

WID transfers knowledge by inheriting the weight 406

directly. 407

5.2 MHA: Dropping Head or Reducing 408

Dimension 409

Multi-Head Attention (MHA) allows the model to 410

jointly attend to the information from different rep- 411

resentation subspaces (Vaswani et al., 2017). When 412

compressing the weights in MHA, there are two 413

options, including 1) dropping head, which reduces 414

the number of heads A and 2) reducing dimension, 415

which reduces the size of each head dk. For Tiny- 416

BERT (Jiao et al., 2020) and MiniLM (Wang et al., 417

2020), they keep A=12 and reduce dk due to the 418

constraint of attention-based loss. Our proposed 419

WID is more flexible, since we do not employ any 420

alignment loss. Moreover, we can easily achieve 421
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Method SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

WIDdim
55 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 88.5/80.8 83.4

WIDhead
55 92.0 61.6 88.2 89.4 91.0 70.8 87.6 82.6 87.3/79.4 83.0

WIDdim
11 88.8 44.2 81.9 85.4 89.5 60.3 84.5 78.4 81.2/72.4 76.7

WIDhead
11 89.6 46.2 83.1 86.1 89.5 62.1 85.3 79.0 81.7/72.9 77.6

Table 3: Comparison between dropping head and reducing dimension of each head for WID55 with 55M parameters
and WID11 with 11M parameters.

Teacher Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

BERTbase 110.1M 89.6 46.2 83.1 86.1 89.5 62.1 85.3 79.0 81.7/72.9 77.6
BERT55 54.2M 89.5 43.2 84.6 86.3 89.7 63.2 85.7 79.4 81.2/72.5 77.5
WIDhead

55 54.2M 89.9 46.2 84.8 86.5 89.5 64.6 84.7 78.8 82.1/73.5 78.1

Table 4: Comparison between different teacher models which are compressed to WIDhead
11 . BERT55 means the

BERT model with same architecture as WIDhead
55 .

these two strategies by constraining the column422

mask in MHA. For WID55 and WID11 reported in423

Table 2, we reduce the size of each attention head424

following TinyBERT for a fair comparison.425

To further explore these two strategies, we con-426

duct WID under these two settings and report427

the scores on downstream tasks. In BERTbase,428

we have A=12 and dk=64. The student mod-429

els are selected as: WIDdim
55 (A=12, dk=43),430

WIDhead
55 (A=8, dk=64), WIDdim

11 (A=12, dk=16),431

and WIDhead
11 (A=3, dk=64). As shown in Table 3,432

the dropping head strategy performs slightly worse433

under 55M parameters and much better under 11M434

parameters. For attention heads in WID55, both435

43 and 64 are large enough to encode the textual436

information in the representation subspace. Thus,437

the WIDdim
55 with more attention heads gets slightly438

better results. Similarly, the attention heads with439

size 16 perform worse due to the limited represen-440

tation subspace, leading to the poor performance441

of WIDdim
11 .442

5.3 Impact of Teacher Models443

To study the impact of teacher models, we compare444

the results of three teachers, including 1) BERTbase,445

2) WIDhead
55 , which are compressed by BERTbase446

adopting the dropping head strategy, 3) BERT55,447

which shares the same architecture as WIDhead
55 .448

Both BERTbase and BERT55 are downloaded from449

the official repository 2. We compress these three450

teachers to WIDhead
11 employing the dropping head451

strategy.452

Table 4 shows the results of three teachers. Some453

2https://github.com/google-research/bert

findings are summarized as follows: 454

(1) Smaller teacher can also teach smart student. 455

Both BERTbase and BERT55 are pre-trained on the 456

MLM tasks. We can find that the compressed stu- 457

dent from BERT55 gets an average score of 77.5, 458

which is comparable to 77.7 from the student of 459

BERTbase. 460

(2) Educated teacher teach better. The WIDhead
55 461

are compressed by BERTbase adopting the drop- 462

ping head strategy. Compared to BERT55 under 463

the same architecture, WIDhead
55 can teach a better 464

student on both GLUE benchmarks and the SQuAD 465

task. 466

5.4 Looking into WID 467

We visualize the attention distributions between the 468

teacher BERTbase and the student WIDdim
11 with the 469

same input tokens. For more comparison, we also 470

pre-train BERT11 which shares the same architec- 471

ture as WIDdim
11 . As shown in Figure 3, we find 472

that WID can learn the attention patterns in vari- 473

ous layers of the teacher model BERTbase, while 474

BERT11 is much more different. The results of 475

more attention heads in these models can be found 476

in the Appendix B. 477

In WID, we adopt the hard loss for the pre- 478

training task during the distillation, without any 479

alignment loss between the teacher model and the 480

student model. However, the compressed student 481

model can also learn the knowledge about attention 482

patterns. This observation indicates that inherit- 483

ing the weights can also inheriting the high-level 484

semantic knowledge. 485
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Figure 3: Attention distributions under same input tokens for BERTbase (upper), WIDdim
11 (middle), and BERT11 (bot-

tom). Our WID can learn the knowledge about attention distributions from teacher without any alignment loss.

6 Related Work486

6.1 BERT Compression487

Transformer-based Pre-trained Language Mod-488

els (PLMs) can be compressed via Quantization489

(Stock et al., 2021; Tao et al., 2022), Matrix De-490

composition(Mao et al., 2020), Pruning (Xia et al.,491

2022; Lagunas et al., 2021), and Knowledge Distil-492

lation (Jiao et al., 2020; Wang et al., 2020). We re-493

fer the readers to Ganesh et al. (2021) for a compre-494

hensive survey. In this paper, we focus on knowl-495

edge distillation for bert compression.496

6.2 Knowledge Distillation497

Knowledge Distillation refers to transfer the knowl-498

edge from the teacher model to the student model499

(Hinton et al., 2015). The distillation methods500

can be directly divided into three main categories:501

offline distillation, online distillation, and self-502

distillation (Gou et al., 2021). For PLMs, ma-503

jority methods follow the offline distillation pat-504

tern where the teacher model is pre-trained before505

distillation. Meanwhile, distillation methods for506

PLMs can be divided into task-agnostic, which dis-507

till PLM in pre-training stage, and task-specific,508

which fine-tune the teacher model on specific tasks509

and then distill.510

In this work, we focus on the task-agnostic distil-511

lation since the task-specifically fine-tuning proce-512

dure of large PLMs is costly and time-consuming513

while the task-agnostic distilled models can be di-514

rectly fine-tuned on downstream tasks. Previous515

methods mainly focus on designing extra matching516

losses for the student model to mimic the teacher517

model. These loss objects mainly include feature-518

based loss for features in intermediate layers and 519

logit-based loss for output logits. DistilBERT 520

(Sanh et al., 2019) adopts the output logit and em- 521

bedding outputs of the teacher to train the student. 522

TinyBERT (Jiao et al., 2020) and MobileBERT 523

(Sun et al., 2020) further employ the self-attention 524

distributions and hidden states for alignment loss. 525

Such layer-to-layer distillation restrict the number 526

of student layers or require an extra mapping func- 527

tion. To address this issue, MiniLM (Wang et al., 528

2020) proposes a new loss based on the attention 529

matrix and values-values scaled dot-product. 530

Different from previous methods, our proposed 531

WID does not require additional alignment losses, 532

thus avoiding labor selection for both loss func- 533

tions and loss weights. We directly leverage the 534

knowledge contained in the weights of the teacher 535

model. 536

7 Conclusion 537

In this work, we propose a novel Weight-Inherited 538

Distillation (WID) method for task-agnostic BERT 539

compression. In WID, we consider the compres- 540

sion process as weight mapping, and design the 541

row compactors and column compactors for row 542

mapping and column mapping. Empirical results 543

on various student model sizes demonstrate the ef- 544

fectiveness of WID. Further analysis indicates that 545

inheriting the weights can also inheriting high-level 546

semantic knowledge such as attention patterns. In 547

future work, we would consider to reduce the extra 548

memory cost by compactor layers, such as com- 549

pactor sharing. Moreover, performing the WID on 550

other backbones such as GNN would be another 551

interesting topic. 552
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Limitations553

Our proposed WID adds row/column compactors554

to learn the mappings from the teacher model to the555

student model. Thus, WID requires additional com-556

putational time and memory. However, WID still557

outperforms TinyBERT with less time costs. As558

shown in Table 6, WIDdim
55 trained with 100k steps559

achieves a higher score and saves more than 50%560

time costs compared to TinyBERT. Meanwhile, we561

believe that such a trade-off is valuable, since a562

faster and better compact student would save more563

time in downstream tasks.564
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A GLUE and SQuAD812

A.1 Data Statistics813

Table 5 shows the sizes of the train/development814

set and the metrics for downstream tasks.815

Task #Train #Dev Metric

SST-2 67k 872 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 20k Accuracy
QQP 364k 40k Accuracy
CoLA 8.5k 1k Matthews corr.
RTE 2.5k 276 Accuracy
STS-B 7k 1.5k Spearman corr.
MRPC 3.7k 408 Accuracy
SQuAD 87.6k 34.7k F1 & EM

Table 5: Data statistics of GLUE and SQuAD datasets.

A.2 Hyperparameters816

We employ the grid search to fine-tune the GLUE817

benchmarks and SQuAD.818

GLUE The learning rate are searched in {1e-5,819

2e-5, 3e-5}. We set the search space for the training820

batch size based on the size of the training set. For821

large dataset including QNLI, MNLI, and QQP,822

the batch size is searched in {32, 48}. For small823

dataset including MRPC, RTE, CoLA and STS-B,824

the batch size is searched in {4, 6}. For SST-2,825

the batch size is searched in {8, 16}. All tasks are826

trained for 10 epochs.827

SQuAD The learning rate is searched in {1e-5,828

2e-5, 3e-5} and batch size is searched in {4,6,8}.829

The training epochs are set to 3.830

B Attention Distributions831

We visualize the attention distributions for the832

teacher BERTbase, pre-trained BERT55 and the stu-833

dent WIDhead
11 under the same input tokens (input834

sentence: "if the world harassed me, it will harass835

you too.") in Figure 4, Figure 5 and Figure 6, re-836

spectively. From the bottom layer to the top layer,837

WID can effectively learn the attention patterns838

from the teacher model while BERT11 is much839

more different.840

C Comparison with Task-Specific841

Distillation842

It can be unfair to directly compare task-agnostic843

WID with task-specific distillation methods, since844

the teacher model in task-specific distillation meth- 845

ods is fine-tuned for the task before distillation. We 846

compare our WID with DynaBERT (Hou et al., 847

2020) and MetaDistill(Zhou et al., 2022). As 848

shown in Table 7, WID still outperforms these task- 849

specific methods on the GLUE benchmarks. 850

D Less Training Steps 851

In Table 2, we report the results of WIDdim
55 trained 852

for 400k steps. We re-implement TinyBERT and 853

train 3 epochs following the setting in Jiao et al. 854

(2020). We reduce the training steps for WIDdim
55 855

to 50k and 100k. All experiments are carried out 856

with 8 A100 GPUs. As shown in Table 6, WIDdim
55 857

trained with 100k steps can still outperform Tiny- 858

bert and save more than 50% training time. 859

Model Steps Time Score

TinyBERT (GD) 450k 33h 81.27
WIDdim

55 50k 8h 80.78
WIDdim

55 100k 16h 81.65
WIDdim

55 400k 64h 83.08

Table 6: Comparison between TinyBERT and WID
trained with less steps on GLUE benchmarks.
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Method FLOPS Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI AVG

BERTbase 22.7B 110.1M 92.7 59.1 90.4 91.7 91.4 70.8 90.1 84.5 83.8

DynaBERT 11.9B 67.5M 92.7 54.6 85.0 90.6 91.1 66.1 88.6 83.7 81.6
MetaDistill 11.9B 67.5M 92.3 58.6 86.8 90.4 91.0 69.4 89.1 83.8 82.7
TinyBERT∗ 11.9B 67.5M 91.9 52.4 86.5 89.8 90.6 67.7 88.7 83.8 81.4
WID55 (ours) 10.4B 54.9M 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 83.4

Table 7: Comparison between our WID and the previous task-specific distillation methods on GLUE benchmarks
without data augmentation. ∗ means the results are taken from Zhou et al. (2022).
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Figure 4: The self-attention distributions for teacher model BERTbase.
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Figure 5: The self-attention distributions for BERT11.
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Figure 6: The self-attention distributions for our proposed WIDdim
11 .
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