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Abstract

Knowledge Distillation (KD) is a predominant
approach for BERT compression. Previous KD-
based methods focus on designing extra align-
ment losses for student model to mimic the be-
havior of teacher model. These methods trans-
fer the knowledge in an indirect way. In this pa-
per, we propose a novel Weight-Inherited Dis-
tillation (WID), which directly transfers knowl-
edge from the teacher. WID does not require
any additional alignment loss and trains a com-
pact student by inheriting the weights, show-
ing a new perspective of knowledge distillation.
Specifically, we design the compactors as map-
pings and then compress the weights via struc-
tural re-parameterization. Experimental results
on the GLUE and SQuAD benchmarks show
that WID outperforms previous state-of-the-art
KD-based baselines. Further analysis indicates
that WID can also learn the attention patterns
from the teacher model without any alignment
loss on attention distributions.

1 Introduction

Transformer-based Pre-trained Language Mod-
els (PLMs), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNET (Yang et al.,
2019), have achieved great success in many Natural
Language Process (NLP) tasks. These models are
pre-trained on massive corpus via self-supervised
tasks to learn contextualized text representations.
However, PLMs have high costs in terms of storage,
memory, and computation time, which brings chal-
lenges to online service in real-life applications.
Therefore, it is crucial and feasible to compress
PLMs while maintaining their performance.
Knowledge Distillation (KD), which trains a
compact student model by mimicking the behav-
ior of a teacher model, is a predominant method
for PLM compression. There are two settings for
KD in BERT compression: task-specific, which
first fine-tune the teacher PLMs on specific tasks
and then perform distillation, and task-agnostic,

Alignment Loss

Approach Logit Feature Hard Loss Task-Agnostic
DistilBERT v 4 v v
TinyBERT (GD) v v X v
PKD v v 4 X
MiniLM X 4 X v
MobileBERT v v v v
WID (ours) X X 4 v

Table 1: Comparison with previous state-of-the-art dis-
tillation methods. Logit and Feature denote whether
logit-based loss and feature-based loss are used for dis-
tillation. To the best of our knowledge, WID is the first
distillation method without any alignment loss and di-
rectly transfers the knowledge by weight inheritance.

which distill PLMs in pre-training stage. For task-
agnostic distillation, the student model can be di-
rectly and generically fine-tuned on various down-
stream tasks (Wang et al., 2020; Sun et al., 2020).
Hence, we conduct our weight-inherited distillation
under task-agnostic setting.

Previous KD-based methods mainly focus on de-
signing alignment losses to minimize the distance
between the teacher model and the student model.
We can further categorize these alignment losses
into: logit-based, which measures the distance of
logit distributions, and feature-based, which aims
to align the intermediate features including token
embeddings, hidden states, and self-attention distri-
butions. However, adopting these alignment losses
brings the following drawbacks: 1) selecting var-
ious loss functions and balancing the weights of
each loss are laborious (Sun et al., 2019; Jiao et al.,
2020); 2) some losses will restrict the architecture
of the student model. For example, attention-based
loss (Jiao et al., 2020; Wang et al., 2020; Sun et al.,
2020) requires the student model to have the same
attention heads as the teacher.

In this work, we propose Weight-Inherited Distil-
lation (WID), which does not require any additional
alignment loss and trains the student by directly
inheriting the weights from teacher. Inspired by



structural re-parameterization in CNN compression
(Ding et al., 2021), we design row compactors and
column compactors and view them as mappings to
compress the weights by row and column, respec-
tively. Figure 1 shows the process of compressing
a linear layer by WID. All compactors are initial-
ized as identity matrices, thus the re-parameterized
teacher model produces identical outputs as the
original teacher. We train the re-parameterized
teacher model on the pre-training task and add
weight penalty to compactors simultaneously. Af-
ter training, we compress the compactors to de-
sired sizes and merge these compactors and origi-
nal weights into compact one. As shown in Table
1, WID is the only method for task-agnostic distil-
lation without any alignment loss.

We conduct extensive experiments on down-
stream NLP tasks, including the GLUE and
SQuAD benchmarks. Experimental results demon-
strate that WID outperforms traditional KD-based
baselines. Further analysis shows that WID can
also learn knowledge such as self-attention patterns
from the teacher model.

Our contributions can be summarized as follows:

* We propose Weight-Inherited Distilla-
tion (WID), revealing a new pathway to
knowledge distillation by directly inheriting
the weights via structural re-parameterization.

* We conduct WID for task-agnostic BERT
compression. Experiments on the GLUE and
SQuAD benchmark datasets demonstrate the
effectiveness of WID for model compression.

* We perform further analyses on how to get bet-
ter performance in BERT compression. More-
over, we find that WID can also learn attention
patterns from the teacher.

2 Preliminaries

In this section, we present a brief introduction to
the transformer. Moreover, we also present existing
KD-based methods for transformer networks.

2.1 Embedding Layer

In BERT (Devlin et al., 2019), the input texts are to-
kenized to tokens by WordPiece (Wu et al., 2016).
The representations ({xi}iﬂl) of input sequence
are constructed by summing the corresponding
token embedding, segment embedding, and posi-
tion embedding. For the token embedding layer in

BERT, the weight is W7 € RIVI*9, where |V| and
d denote the size of the vocabulary and the hidden
state vector.

2.2 Transformer Layer

Transformer layer is adopted to encode the con-
textual information of input texts. The input vec-
tor ({xi}ﬁl) are packed to H? =[x, -+, Xy].
After that, the L-layer transformer computes the
encoding vectors following:

H! = Transformer;(H'™1), I € [1,L]. (1)

The final output H = [l ... ,hﬁ:‘] e Rlzlxd
is employed as the contextualized representation
of {}(Z}Lx:l1 Each transformer layer consists of a
multi-head self-attention (MHA) sub-layer and a
feed-forward (FFN) sub-layer. In these two sub-
layers, the residual connection(He et al., 2016) is
employed, followed by layer normalization (Ba

etal., 2016).

MHA For the [-th transformer layer with A at-
tention heads, the output Oy ,, of the attention head
a € [1, A] is calculated as:

Qo =HT'WP,

K, =H"'W[ (2)
Vi.=H"W},

Ql aKlTa
Ol7 = 1&17 \23 >Al7 = softmax(———")
a a a a \/CTk
3)
where linear projection WlQa,WlKa,WlVa €

R4k and dj, = 4 is the dimension of each head.
The final output of MHA sub-layer is as follows:

O, = LNH"! + (|L,0,,)W?) @)

where WZO € R 1N is layer normalization
and || denotes the concatenation operation.

FFN The [-th FEN sub-layer consists of an up
projection and a down projection , parameterized
by W, € R4 W, ,; € R4 and corre-
sponding bias b; ,, € R, b4 € R

FFN(O;) = gelu(O; Wy, + by )Wy 4 + by g.

)
Typically, d; = 4d. Finally, we obtain the output
of layer [ by:

H' = LN(O; + FFN(Oy)). (6)



2.3 Knowledge Distillation

Knowledge Distillation (KD) aims to transfer the
knowledge from teacher model 7" to compact stu-
dent model S. The student model S is trained
to mimic the behaviors of teacher model 7' via
minimizing the distance between them. The ob-
ject losses can be categorized into logit-based and
feature-based.

For logit-based loss, the target is to minimize
the logit distribution ps from student and p; from
teacher, which can be formalized as:

'Clogit = Hl(ps/Ty pt/T)v (7)

where 7 is the temperature and H; is the cross-
entropy loss or KL-divergence.

Feature-based loss aims to align the intermediate
features between the teacher and the student by:

Efeature :/HQ(fS(:E)va(J:))a (8)

where H, is the loss function such as Mean Square
Error (MSE) and f(x) notes for the intermediate
output including hidden state vector H and atten-
tion distribution A.

As shown in Table 1, logit-based and feature-
based loss can be jointly employed for better dis-
tillation. However, balancing the weights of each
loss is laborious. For example, the overall loss of
PKD (Sun et al., 2019) is:

L= (1 - a)/v‘hard + aﬁlogit + Bﬁfeaturm &)

where L4 is the loss on target tasks and a and
5 are the hyper-parameters. They perform grid
search over o and 7, where a € {0.2,0.5,0.7}
and 7 € {5,10,20}. After that, they fix o and
7 with the best performance and search 5 €
{10,100, 500, 1000}.

Meanwhile, selecting various loss functions is
also laborious. In PKD, L f¢4tye is defined as the
mean square loss between the normalized hidden
states for each layer. DistilBERT (Sanh et al., 2019)
adopts the cosine embedding loss for hidden states
vectors. In TinyBERT (Jiao et al., 2020), they em-
ploy the mean square loss for self-attention dis-
tributions, embedding layer outputs, and hidden
states.

3 Weight-Inherited Distillation

In this section, we propose a novel Weight-
Inherited Distillation (WID) method for
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Figure 1: Overview of compressing linear layer L1 with
weight W7 € RB*C to compact linear layer Lg with
weight WEs ¢ RP*F via WID. Both row compactor
and column compactor are initialized as identity ma-
trices. After training, we compress the compactors and
merge them with original layer. All the linear layers in
teacher model are compressed simultaneously.

transformer-based models without any align-
ment loss. The WID aims to directly leverage
knowledge in weight and compress the teacher
model by learning mappings for the compact
student model.

3.1 Structural Re-parameterization

As mentioned in Section 2, the PLMs (e.g., BERT)
consist of embedding layers and transformer layers.
To compress the BERT, we have to learn a mapping
from the larger weight in the teacher model to the
compact one. In WID, we adopt the structural re-
parameterization and design the row compactors
and column compactors.

Figure 1 gives an example showing the process
of compressing the original weight WlT ¢ RBXC
to compact weight W’s ¢ RP*E adopting the
row compactor and the column compactor. First,
we insert the row compactor with weight W' ¢
RE*B and the column compactor with weight
W ¢ REXC before and after the linear layer
L7 from teacher model. All compactors are linear
layers without bias and their weights are initialized
as identity matrices. For an arbitrary input X, the
re-parameterized teacher model produces identical
outputs as the original, since

Wit X = Wrewlrwee x, (10)
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Figure 2: Training and compression for column compactor. During the training process, we add weight penalty
gradients by column and progressively select the mask to fuse the penalty gradients and original loss gradients. For
gradients fusion, we decouple penalty gradients and original loss gradients to avoid gradient competition. After
training, we prune the column compactor following the column mask.

Second, we train the re-parameterized teacher
model on the pre-training task. During training,
we add the row penalty to row compactor and col-
umn penalty to column compactor. The goal is
to maintain the performance of the teacher model
and compress the compactor simultaneously. Af-
ter training, the row compactor is compressed by
pruning B — D rows, and the column compactor
is compressed by pruning C' — E columns. The
objects are as follows:

W' e RBXB N Wrc’ c RDXB

Wee ¢ RCXC N WCCI c RCXE. (11)

More details can be found in Section 3.2. Final,
we merge the compressed compactors wre wee
and the original teacher layer WX7 to obtain the
compact layer for the student following:
WLS _ Wrc’WLTch’ c RDXE (12)
For the weights to compress the row only, such
as the output layer for MLM task with size RV,
we adopt the row compactor exclusively. Similarly,
we employ the column compactor exclusively for
the weights to compress the column only, such as
the token embedding matrix W € RIVIxd,

3.2 Compactor Compression

In WID, we design row compactors and column
compactors and view them as mappings to com-
press the weights by row and column, respectively.
Compared to directly learning these compactors,
our key insight is to initialize these compactors

with identity matrices and compress them to the
desired size progressively.

Figure 2 presents the training and compression
process for the column compactor. Given the
column compactor W ¢ RE*C and original
gradients gS7. € RCE*C the penalty gradients
Gpen € RE* are calculated as follows:

cc
6o = T (13)
P

where |[W<||, denotes the p-norm cross each
column. Based on the ||[W||,, we pick top-k
columns with lower norm value and set the corre-
sponding value in our column mask M = {0,1}¢
to be 1. For gradients fusion, we decouple penalty
gradients and original loss gradients to avoid gradi-
ent competition. Thus, the original gradients g<¢

ort
and the penalty gradients g;,, are fused as follows:

Gpenlsy ], if M[i]

14
g, it =0

g;itsed[:v Z] =

1
0
where 0 < ¢ < C. The fused gradients g%/ ..,
are employed to update the column compactor by
optimizer. After training, we prune the column
compactor by column mask:

W = W, 4], where M[i] = 1.  (15)
Moreover, the processing is similar for row com-

pactors. We calculate ||[W"¢||, for each row and
select the top-k rows with the lower norm value.



Algorithm 1 Weight-Inherited Distillation

Input: teacher model 7 with width d;

Params: k: number of rows/columns to compress, IN: steps
to increase k, d: increment for k each time

Output: student model S with width d;

1: Add compactors for 7 to construct the re-parameterized
teacher model 7. Initialize the weights for compactors as
identity matrices.

2: k+0; M+ []

: for ¢ = 0 to max training steps do
4:  Forward a batch through 7T, derive the gradients gor;
for each compactor

15

5:  if i%N ==0& k < d¢ — ds then

6: Calculate p-norm values

7: Select the top-k row/column with the lower norm

to get M

8: Get penalty gradients gpen following Eq. 13

9: Gfused < f(gori, Gpen, M) following Eq. 14

10: k+—k+d

11:  endif

12:  Update the compactors with corresponding g fyseq and
original layers with gor;

13: end for

14: Compress the compactors following Eq. 15

15: Merge the compactors and original layers following Eq.
12 to get compact layers for S

16: return S

For stability and better performance, we com-
press the compactors progressively. Specifically,
we increase k for some steps until reaching the de-
sired size during the training stage. More details
are shown in Algorithm 1.

4 Experiments

4.1 Task-Agnostic Distillation

We employ the uncased version of BERT},s. as our
teacher model '. BERT},s (Devlin et al., 2019)
is a 12-layer transformer model (d=768, A=12,
L=12), which contains 110M parameters. For
student models, we compress the teacher model
to various model sizes for comparison, including
WIDs5 (d=516, A=12, L=12) with 55M parame-
ters and WIDy; (d=192, A=12, L=12) with 11M
parameters. We use the documents of English
Wikipedia and BookCorpus (Zhu et al., 2015) for
pre-training following Devlin et al. (2019). We
use Adamw (Loshchilov and Hutter, 2019) with
B1 = 0.9, B2 = 0.99. The compactors are trained
with peak learning rate 5e-5 and the original linear
layers with peak learning rate 1e-6. For WID, we
adopt the 2-norm and set N=500, d=| (d;—ds)/16].
It costs about 64 hours to train for 400,000 steps
with a batch size of 960 on 8 A100 GPUs.

"We employ the weight from https://huggingface.co/bert-
base-uncased.

4.2 Downstream Tasks

Following previous PLM disitillation (Sanh et al.,
2019; Wang et al., 2020), we evaluate our WID
on the SQuAD v1.1 (Rajpurkar et al., 2016) and
GLUE benchmark (Wang et al., 2019). The GLUE
benchmark consists of CoLLA (Warstadt et al.,
2019), SST-2(Socher et al., 2013), MRPC (Dolan
and Brockett, 2005), STS-B (Cer et al., 2017), QQP
(Chen et al., 2018), MNLI (Williams et al., 2018),
QNLI(Rajpurkar et al., 2016) and RTE (Bentivogli
et al., 2009). After task-agnostic distillation, we
fine-tune our compressed BERT WID55 and WID11
on these benchmarks adopting the grid search and
report the results on the development sets. The
result of MNLI is the score of MNLI-m. More
details about these datasets including dataset sizes
and metrics and the hyperparameters for fine-tune
can be found in the Appendix A.

4.3 Baselines

For a fair comparison, we compare our WID with
the task-agnostic distillation baselines. These
baselines include: 1) DistilBERT (Sanh et al.,
2019), which distills the student by the combina-
tion of the original MLM loss, the cosine distance
for features, and the KL divergence for output log-
its. 2) TinyBERT (GD) (Jiao et al., 2020), which
aligns the attention distributions and hidden states
for general distillation. 3) MiniLM (Wang et al.,
2020) and MiniLM v2 (Wang et al., 2021), which
align the attention matrix and values-values scaled
dot-product. We also reproduce the TinyBERT in
the same architecture as WID, following the of-
ficial code. For fair comparison, we employ the
same corpus and follows the official hyperparame-
ters. We do not compare with MobileBERT (Sun
etal., 2020) since its teacher is IB-BERT ;e (much
higher accuracy than BERT},s) and its computa-
tions (4096 batch size * 740,000 steps) is much
higher. Moreover, we also compare WID with task-
specific methods in Appendix C.

4.4 Main Results

We compare our WID with other task-agnostic dis-
tillation methods in various model size. All the
methods utilize the BERT},s. as teacher model.
As shown in Table 2, WID retains 98.9% and
90.9% performance of BERTy, With 49.2% and
10.2% parameters, respectively. In particular, on
the CoLA task, our proposed WIDs5 gets a higher
score than BERTy,5.. Compared to the baselines



Method | FLOPs Params | SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD | AVG
BERTpuse | 227B 110M | 927 591 904 917 914 708 90 845 89.6/82.6 | 843
DistilBERT I19B  675M | 913 513 875 892 885 599 869 822 86.2/78.1 | 80.1
MiniLM 119B  675M | 920 492 - 910 910 715 - - - -

MiniLM v2 119B  675M | 924 525 - 908 9Ll 721 - - /- -

TinyBERT (GD)' | 119B  67.5M | 929 441 895 907 910 737 89.6 838 84.0/74.2 | 813
TinyBERT (GD) | 104B  549M | 923 470 873 908 909 697 89.0 833 85.4/762 | 812
WIDss (ours) 104B 549M | 924 617 882 901 910 704 879 829 88.5/80.8 | 83.4
TinyBERT (GD)! | 1.6B  113M | 884 303 804 875 89.1 653 840 794 80.5/70.7 | 75.6
WID; (ours) 16B  113M | 888 442 819 854 895 603 845 784 81.2/724 | 767

Table 2: Comparison between our WID and the previous task-agnostic distillation methods. For SQuAD vl1.1,
we report the F1/EM scores. We compare the task-agnostic distilled models without both data augmentation and
task-specific distillation. WID achieves better performances than TinyBERT under various model size. T means that
we fine-tune the official weights. { means that we reproduce the methods following the official code. Other results

are taken from corresponding papers.

with 67.5M parameters, WIDss gets comparable
performance with MiniLM and higher performance
than DistilBERT with less parameters. Meanwhile,
WID outperforms the TinyBERT under the same
architecture on GLUE benchmarks and SQuAD,
showing its supremacy over the traditional KD
methods with logit-based loss and feature-based
loss. Without CoLLA, WIDss gets an average score
of 85.8 and still outperforms the TinyBERT (GD)
with an average score of 85.0.

Larger Performance Gap Since performance
gap between teacher and student has always been a
crucial point and difficulty in the knowledge distil-
lation. We conduct experiments for smaller student
models (11.3M parameters). We reproduce the
task-agnostic TinyBERT under the General Distil-
lation (GD) as baseline. As shown in Table 2, we
find that WID (average score: 76.7) still outper-
forms TinyBERT (average score: 75.6) when the
student model is about 10x smaller.

5 Analysis and Discussion

5.1 Compare WID with Pruning and
Self-Distillation

We propose WID, a weight-inherited distillation
method for task-agnostic BERT compression with-
out extra alignment loss, which learns mappings
from the teacher model to compact student via re-
parameterization. To compress the linear layer,
we design the row compactor and column com-
pactor for row squeezing and column squeezing,
respectively. However, WID is very likely to be
fused with pruning (LeCun et al., 1989) and self-
distillation(Zhang et al., 2019).

Pruning aims to remove redundant weights from

a neural network to achieve parameter-efficiency
while preserving model performance, including un-
structured pruning which sets weights to 0, and
structured pruning which removes components.
However, unstructured pruning does not compress
the model size, while structured pruning prunes
the weights directly. In WID, we do not remove
any parts from the original teacher model. Instead
of that, we learn the compactors to compress the
weights via structural re-parameterization.

Self-distillation(Zhang et al., 2019) is a one-
step online distillation method, which distills the
knowledge in deeper layer to shallow layer dur-
ing the training process of teacher model. Com-
pared to self-distillation, WID is an offline distil-
lation method, since the teacher model is trained
before knowledge distillation. Furthermore, self-
distillation aims to transfer knowledge by aligning
intermediate features or logit distributions, while
WID transfers knowledge by inheriting the weight
directly.

5.2 MHA: Dropping Head or Reducing
Dimension

Multi-Head Attention (MHA) allows the model to
jointly attend to the information from different rep-
resentation subspaces (Vaswani et al., 2017). When
compressing the weights in MHA, there are two
options, including 1) dropping head, which reduces
the number of heads A and 2) reducing dimension,
which reduces the size of each head dj. For Tiny-
BERT (Jiao et al., 2020) and MiniLM (Wang et al.,
2020), they keep A=12 and reduce dj, due to the
constraint of attention-based loss. Our proposed
WID is more flexible, since we do not employ any
alignment loss. Moreover, we can easily achieve



Method ‘ SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD ‘ AVG
WIDglgm 924 61.7 88.2 90.1 91.0 704 879 829  88.5/80.8 | 83.4
WIDglse“d 92.0 61.6 88.2 89.4 910 70.8 87.6 82.6 87.3/79.4 | 83.0
WID{im 88.8 44.2 81.9 854 895 603 845 784  81.2/72.4 | 76.7
WIDh¢ead | 896 46.2 83.1 86.1 89.5 62.1 85.3 79.0 81.7/729 | 77.6

Table 3: Comparison between dropping head and reducing dimension of each head for WIDss with 55M parameters

and WID;; with 11M parameters.

Teacher | Params | SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD | AVG
BERTy,. | 110.IM | 89.6 462 831 861 895 621 853 790 81.7/729 | 77.6
BERTss | 542M | 895 432 846 863 897 632 857 794 812725775
WIDk¢ed | 542M | 89.9 462 848 865 895 646 847 788 82.1/735 | 78.1

Table 4: Comparison between different teacher models which are compressed to WID/¢?, BERTss means the

BERT model with same architecture as WID2¢%,

these two strategies by constraining the column
mask in MHA. For WIDss and WIDy; reported in
Table 2, we reduce the size of each attention head
following TinyBERT for a fair comparison.

To further explore these two strategies, we con-
duct WID under these two settings and report
the scores on downstream tasks. In BERT},g,
we have A=12 and dp=64. The student mod-
els are selected as: WIDgigm (A=12, dj=43),
WID%¢ad (A=8, dy=64), WID¥™ (A=12, d;=16),
and WID}{f“d (A=3, d;,=64). As shown in Table 3,
the dropping head strategy performs slightly worse
under 55M parameters and much better under 11M
parameters. For attention heads in WIDss, both
43 and 64 are large enough to encode the textual
information in the representation subspace. Thus,
the WIDggm with more attention heads gets slightly
better results. Similarly, the attention heads with
size 16 perform worse due to the limited represen-
tation subspace, leading to the poor performance
of WID%im,

5.3 Impact of Teacher Models

To study the impact of teacher models, we compare
the results of three teachers, including 1) BERTge,
2) WID%¢e, which are compressed by BERTpyse
adopting the dropping head strategy, 3) BERTSss,
which shares the same architecture as WID2¢e4,
Both BERT},.s. and BERT55 are downloaded from
the official repository 2. We compress these three
teachers to WID?f“d employing the dropping head
strategy.

Table 4 shows the results of three teachers. Some

Zhttps://github.com/google-research/bert

findings are summarized as follows:

(1) Smaller teacher can also teach smart student.
Both BERTY,s. and BERTss are pre-trained on the
MLM tasks. We can find that the compressed stu-
dent from BERTss gets an average score of 77.5,
which is comparable to 77.7 from the student of
BERT} .

(2) Educated teacher teach better. The WID?;‘“I
are compressed by BERT},s. adopting the drop-
ping head strategy. Compared to BERTss under
the same architecture, WIDg‘g“d can teach a better
student on both GLUE benchmarks and the SQuAD
task.

5.4 Looking into WID

We visualize the attention distributions between the
teacher BERT},¢ and the student WID‘f{m with the
same input tokens. For more comparison, we also
pre-train BERT|; which shares the same architec-
ture as WIDﬁm. As shown in Figure 3, we find
that WID can learn the attention patterns in vari-
ous layers of the teacher model BERT},,., While
BERT{; is much more different. The results of
more attention heads in these models can be found
in the Appendix B.

In WID, we adopt the hard loss for the pre-
training task during the distillation, without any
alignment loss between the teacher model and the
student model. However, the compressed student
model can also learn the knowledge about attention
patterns. This observation indicates that inherit-
ing the weights can also inheriting the high-level
semantic knowledge.
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Figure 3: Attention distributions under same input tokens for BERT},,s (upper), WIDflfm (middle), and BERT}; (bot-
tom). Our WID can learn the knowledge about attention distributions from teacher without any alignment loss.

6 Related Work

6.1 BERT Compression

Transformer-based Pre-trained Language Mod-
els (PLMs) can be compressed via Quantization
(Stock et al., 2021; Tao et al., 2022), Matrix De-
composition(Mao et al., 2020), Pruning (Xia et al.,
2022; Lagunas et al., 2021), and Knowledge Distil-
lation (Jiao et al., 2020; Wang et al., 2020). We re-
fer the readers to Ganesh et al. (2021) for a compre-
hensive survey. In this paper, we focus on knowl-
edge distillation for bert compression.

6.2 Knowledge Distillation

Knowledge Distillation refers to transfer the knowl-
edge from the teacher model to the student model
(Hinton et al., 2015). The distillation methods
can be directly divided into three main categories:
offline distillation, online distillation, and self-
distillation (Gou et al., 2021). For PLMs, ma-
jority methods follow the offline distillation pat-
tern where the teacher model is pre-trained before
distillation. Meanwhile, distillation methods for
PLMs can be divided into task-agnostic, which dis-
till PLM in pre-training stage, and task-specific,
which fine-tune the teacher model on specific tasks
and then distill.

In this work, we focus on the task-agnostic distil-
lation since the task-specifically fine-tuning proce-
dure of large PLMs is costly and time-consuming
while the task-agnostic distilled models can be di-
rectly fine-tuned on downstream tasks. Previous
methods mainly focus on designing extra matching
losses for the student model to mimic the teacher
model. These loss objects mainly include feature-

based loss for features in intermediate layers and
logit-based loss for output logits. DistilBERT
(Sanh et al., 2019) adopts the output logit and em-
bedding outputs of the teacher to train the student.
TinyBERT (Jiao et al., 2020) and MobileBERT
(Sun et al., 2020) further employ the self-attention
distributions and hidden states for alignment loss.
Such layer-to-layer distillation restrict the number
of student layers or require an extra mapping func-
tion. To address this issue, MiniLM (Wang et al.,
2020) proposes a new loss based on the attention
matrix and values-values scaled dot-product.

Different from previous methods, our proposed
WID does not require additional alignment losses,
thus avoiding labor selection for both loss func-
tions and loss weights. We directly leverage the
knowledge contained in the weights of the teacher
model.

7 Conclusion

In this work, we propose a novel Weight-Inherited
Distillation (WID) method for task-agnostic BERT
compression. In WID, we consider the compres-
sion process as weight mapping, and design the
row compactors and column compactors for row
mapping and column mapping. Empirical results
on various student model sizes demonstrate the ef-
fectiveness of WID. Further analysis indicates that
inheriting the weights can also inheriting high-level
semantic knowledge such as attention patterns. In
future work, we would consider to reduce the extra
memory cost by compactor layers, such as com-
pactor sharing. Moreover, performing the WID on
other backbones such as GNN would be another
interesting topic.



Limitations

Our proposed WID adds row/column compactors
to learn the mappings from the teacher model to the
student model. Thus, WID requires additional com-
putational time and memory. However, WID still
outperforms TinyBERT with less time costs. As
shown in Table 6, WIDggm trained with 100k steps
achieves a higher score and saves more than 50%
time costs compared to TinyBERT. Meanwhile, we
believe that such a trade-off is valuable, since a
faster and better compact student would save more
time in downstream tasks.
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A GLUE and SQuAD
A.1 Data Statistics

Table 5 shows the sizes of the train/development
set and the metrics for downstream tasks.

Task #Train #Dev Metric
SST-2 67k 872 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 20k Accuracy
QQP 364k 40k Accuracy
CoLA 8.5k 1k  Matthews corr.
RTE 2.5k 276 Accuracy
STS-B 7k 1.5k Spearman corr.
MRPC 3.7k 408 Accuracy
SQuAD  87.6k 34.7k F1 & EM

Table 5: Data statistics of GLUE and SQuAD datasets.

A.2 Hyperparameters

We employ the grid search to fine-tune the GLUE
benchmarks and SQuAD.

GLUE The learning rate are searched in {1e-5,
2e-5, 3e-5}. We set the search space for the training
batch size based on the size of the training set. For
large dataset including QNLI, MNLI, and QQP,
the batch size is searched in {32, 48}. For small
dataset including MRPC, RTE, CoLLA and STS-B,
the batch size is searched in {4, 6}. For SST-2,
the batch size is searched in {8, 16}. All tasks are
trained for 10 epochs.

SQuAD The learning rate is searched in {1e-5,
2e-5, 3e-5} and batch size is searched in {4,6,8}.
The training epochs are set to 3.

B Attention Distributions

We visualize the attention distributions for the
teacher BERT g, pre-trained BERTss and the stu-
dent WID}ff“d under the same input tokens (input
sentence: "if the world harassed me, it will harass
you too.") in Figure 4, Figure 5 and Figure 6, re-
spectively. From the bottom layer to the top layer,
WID can effectively learn the attention patterns
from the teacher model while BERT;; is much
more different.

C Comparison with Task-Specific
Distillation

It can be unfair to directly compare task-agnostic
WID with task-specific distillation methods, since
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the teacher model in task-specific distillation meth-
ods is fine-tuned for the task before distillation. We
compare our WID with DynaBERT (Hou et al.,
2020) and MetaDistill(Zhou et al., 2022). As
shown in Table 7, WID still outperforms these task-
specific methods on the GLUE benchmarks.

D Less Training Steps

In Table 2, we report the results of WIDg’lgm trained
for 400k steps. We re-implement TinyBERT and
train 3 epochs following the setting in Jiao et al.
(2020). We reduce the training steps for WID‘Sigm
to 50k and 100k. All experiments are carried out
with 8 A100 GPUs. As shown in Table 6, WIDggm
trained with 100k steps can still outperform Tiny-
bert and save more than 50% training time.

Model Steps Time Score
TinyBERT (GD) 450k  33h 81.27
WIDZim 50k 8h 80.78
WIDZim 100k 16h 81.65
WIDZim 400k  64h  83.08

Table 6: Comparison between TinyBERT and WID
trained with less steps on GLUE benchmarks.



Method ‘FLOPS Params ‘ SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI ‘ AVG

BERTpe | 227B 110.IM | 927  59.1 904 917 914 708 90.1 845 | 838

DynaBERT 11.9B 67.5M 92.7 54.6 85.0 906 91.1 66.1 88.6 83.7 81.6
MetaDistill 11.9B 67.5M 92.3 58.6 86.8 904 910 694 89.1 83.8 82.7
TinyBERT* 11.9B 67.5M 91.9 524 86.5 80.8 90.6 67.7 88.7 83.8 814
WIDss (ours) | 10.4B 54.9M 92.4 61.7 88.2 90.1 910 704 879 829 | 834

Table 7: Comparison between our WID and the previous task-specific distillation methods on GLUE benchmarks
without data augmentation. * means the results are taken from Zhou et al. (2022).
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Figure 4: The self-attention distributions for teacher model BERT e
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