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ABSTRACT

Recent studies on the memorization effects of deep neural networks on noisy
labels show that the networks first fit the correctly labeled training samples before
memorizing the mislabeled samples. Motivated by this early-learning phenomenon,
we propose a novel method to prevent memorization of the mislabeled samples.
Unlike the existing approaches which use confidence (captured by winning score
from model prediction) to identify or ignore the mislabeled samples, we introduce
an indicator branch to the original model and enable the model to produce a new
confidence (i.e. indicates whether a sample is clean or mislabeled) for each sample.
The confidence values are incorporated in the proposed loss function which is
learned to assign large values to correctly-labeled samples and small values to
mislabeled ones. We also discuss the limitation of our approach and propose an
auxiliary regularization term to enhance the robustness of the model in challenging
cases. Our empirical analysis shows that the model predicts correctly for both clean
and mislabeled samples in the early learning phase. Based on the predictions in each
iteration, we correct the noisy labels to steer the model towards corrected targets.
Further, we provide the theoretical analysis and conduct numerous experiments
on synthetic and real-world datasets, demonstrating that our approach achieves
comparable and even better results to the state-of-the-art methods.

1 INTRODUCTION

With the emergence of highly-curated datasets such as ImageNet (Deng et al., 2009) and CIFAR-10
(Krizhevsky et al., 2009), deep neural networks have achieved remarkable performance on many
classification tasks. However, it is extremely time-consuming and expensive to label a new large-scale
dataset with high-quality annotations. Alternatively, we may obtain the dataset with lower quality
annotations efficiently through online keywords queries (Li et al., 2017a) or crowdsourcing (Yu
et al., 2018), but noisy labels are inevitably introduced consequently. Previous studies (Arpit et al.,
2017; Zhang et al., 2018) demonstrate that noisy labels are problematic for overparameterized neural
networks, resulting in overfitting and performance degradation. Therefore, it is essential to develop
noise-robust algorithms for deep learning with noisy labels.

The authors of (Arpit et al., 2017; Li et al., 2020b; Liu et al., 2020) have observed that deep neural
networks learn to correctly predict the true labels for all training samples during early learning
stage, and begin to make incorrect predictions in memorization stage as it gradually memorizes
the mislabeled samples (in Figure 1 (a) and (b)). In this paper, we introduce a novel regularization
approach to prevent the memorization of mislabeled samples (in Figure 1 (c)). Our contributions are
summarized as follows:

• We introduce an indicator branch to estimate the ‘confidence’ of model prediction and propose
a novel loss function called confidence adaptive loss (CAL) to exploit the early-learning phase.
According to the intrinsic property of early learning procedure, a large confidence value is likely to
be associated with a clean sample and a small confidence value with a mislabeled one.

• We explore the limitation of CAL and propose an auxiliary regularization term forming confidence
adaptive regularization (CAR) to further segregate the mislabeled samples from the clean samples
in challenging cases. We develop a strategy to iteratively correct the noisy labels instead of using
the noisy labels directly, allowing the model to suppress the influence of the mislabeled samples.
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(a) Cross Entropy
with MultiStep learning rate scheduler

(b) Cross Entropy
with Cosine Annealing learning rate scheduler

(c) Confidence Adaptive Regularization
with Cosine Annealing learning rate scheduler

Figure 1: We conduct the experiments on the CIFAR-10 dataset with 40% symmetric label noise
using ResNet34 (He et al., 2016). The top row shows the fraction of samples with clean labels
that are predicted correctly (purple) and incorrectly (black). In contrast, the bottom row shows
the fraction of samples with false labels that are predicted correctly (purple), memorized (i.e. the
prediction equals the false label, shown in blue), and incorrectly predicted as neither the true nor the
labeled class (black). For samples with clean labels, all three models predict them correctly with the
increasing of epochs. However, for false labels in (a), the model trained with cross-entropy loss first
predicts the true labels correctly, but eventually memorizes the false labels. With the cosine annealing
learning rate scheduler (Loshchilov & Hutter, 2017) in (b), the model only slows down the speed of
memorizing the false labels. However, our approach shown in (c) effectively prevents memorization,
allowing the model to continue learning the correctly-labeled samples to attain high accuracy on
samples with both clean and false labels.

• We derive the gradients of the proposed loss functions and compare them with cross-entropy
loss. Most importantly, we demonstrate that CAL has a similar effect to existing regularization
approaches. It neutralizes the influence of the mislabeled samples on the gradient, and ensure the
contribution from correctly labeled samples to the gradient remains dominant. We also prove the
noise robustness of the auxiliary term to complete the proof for noise robustness of our approach.

• We show that the proposed approach achieves comparable and even better performance to the
state-of-the-art methods on four benchmarks with different types and levels of label noise. We
also perform an ablation study to evaluate the influence of different components and conduct
experiments to evaluate the reliability of iterative label correction.

2 RELATED WORK

We briefly discuss the related noise-robust methods that do not require a set of clean training data (as
opposed to (Xiao et al., 2015; Vahdat, 2017; Li et al., 2017b; Hendrycks et al., 2018)) and assume the
label noise is instance-independent (as opposed to (Cheng et al., 2020; Xia et al., 2020)).

Loss correction These approaches focus on correcting the loss function explicitly by estimating the
noise transition matrix (Goldberger & Ben-Reuven, 2016; Patrini et al., 2017; Tanno et al., 2019).

Robust loss functions These studies develop loss functions that are robust to label noise, including
LDMI (Xu et al., 2019), MAE (Ghosh et al., 2017), GCE (Zhang & Sabuncu, 2018), SL (Wang et al.,
2019) NCE (Ma et al., 2020) and TCE (Feng et al., 2020). Above two categories of methods do not
utilize the early learning phenomenon.
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Sample selection During the early learning stage, the samples with smaller loss values are more
likely to be the correctly-labeled samples. Based on this observation, MentorNet (Jiang et al., 2018)
pre-trains a mentor network for selecting small-loss samples to guide the training of the student
network. Co-teaching related methods (Han et al., 2018; Yu et al., 2019; Wei et al., 2020; Lu et al.,
2021) maintain two networks, and each network is trained on the small-loss samples selected by
its peer network. However, their limitation is that they may eliminate numerous useful samples
for robust learning. Label correction Tanaka et al. (2018) and Yi & Wu (2019) replace the noisy
labels with soft (i.e. model probability) or hard (i.e to one-hot vector) pseudo-labels. Bootstrap
(Reed et al., 2015) corrects the labels by using a convex combination of noisy labels and the model
predictions. SAT (Huang et al., 2020) weigh the sample with its winning score in cross-entropy loss
and updates the labels with model predictions. Arazo et al. (2019) weigh the clean and mislabeled
samples by fitting a two-component Beta mixture model to loss values, and corrects the labels via
convex combination as in (Reed et al., 2015). Similarly, DivideMix (Li et al., 2020a) trains two
networks to separate the clean and mislabeled samples via a two-component Gaussian mixture model,
and further uses MixMatch (Berthelot et al., 2019) to enhance the performance. Regularization Li
et al. (2020b) observe that when the model parameters remain close to the initialization, gradient
descent implicitly ignores the noisy labels. Based on this observation, they prove the gradient descent
early stopping is an effective regularization to achieve robustness to label noise. Hu et al. (2019)
explicitly add the regularizer based on neural tangent kernel (Jacot et al., 2018) to limit the distance
between the model parameters to initialization. ELR (Liu et al., 2020) estimates the target probability
by temporal ensembling (Laine & Aila, 2017) and adds a regularization term to cross entropy loss
to avoid memorization. Other regularization techniques, such as mixup augmentation (Zhang et al.,
2018b), label smoothing (Szegedy et al., 2016) and weight averaging (Tarvainen & Valpola, 2017),
can enhance the performance.

Our approach is related to regularization and label correction. Compared with existing approaches
(Hu et al., 2019; Liu et al., 2020), where a regularization term in loss function is necessary to resist
mislabeled samples, we propose a new loss function CAL which implicitly boosts the gradients
of correctly labeled samples and diminishes the gradients of mislabeled samples. The auxiliary
regularization term in our approach is an add-on component to further enhance the robustness in
challenging cases. To the best of our knowledge, our approach is the first work to obtain the confidence
through an extra branch and provide the gradient analysis of it. In addition, our approach is simpler
and yields comparable performance without combining other regularization techniques.

3 METHODOLOGY

This section presents a framework called confidence adaptive regularization (CAR) for robust learning
from noisy labels. Our approach consists of three key elements: (1) We introduce an indicator
branch to the original deep neural networks and estimate the confidence of the model predictions by
exploiting the early-learning phenomenon through a confidence adaptive loss (CAL). (2) We observe
the limitation of our approach and propose an auxiliary regularization term explicitly designed to
further separate the confidence of clean samples and mislabeled samples in challenging cases. (3) We
iteratively correct the noisy labels by incorporating the model predictions through an exponential
moving average strategy.

3.1 PRELIMINARY

In this paper, we assume the label noise is instance-independent. Consider the K-class classification
problem in noisy-label scenario, the ground truth label y is unavailable. We have a training set
D̂ = {(x[i], ŷ[i])}Ni=1, where x[i] is an input and ŷ[i] ∈ Y = {1, . . . ,K} is the corresponding noisy
label. We denote ŷ[i] ∈ {0, 1}K as one-hot vector of noisy label ŷ[i]. A deep neural network model
Nθ (i.e. prediction branch in Figure 2 (a)) maps an input x[i] to a K-dimensional logits and then
feeds the logits to a softmax function S(·) to obtain p[i] of the conditional probability of each class
given x[i], thus p[i] = S(z[i]), z[i] = Nθ(x[i]). θ denotes the parameters of the neural network and
z[i] ∈ RK×1 denotes the K-dimensional logits (i.e. pre-softmax output). z[i] is calculated by the
fully connected layer from penultimate layer H [i] ∈ RM×1. z[i] =WH [i] + b, where W ∈ RK×M
denotes the weights and b ∈ RK×1 denotes the bias in penultimate layer. Usually, the cross-entropy
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Figure 2: In (a), we introduce an indicator branch in addition to the prediction branch. Given an input
image x[i], the indicator branch produces a single scalar value τ [i] to indicate ‘confidence’ and the
prediction branch produces the softmax prediction probability p[i]. (b) and (c) show the distribution
of confidence τ on the CIFAR-10 and CIFAR-100 with 40% symmetric label noise respectively.

(CE) loss reflects how well the model fits the training set D̂:

Lce = −
1

N

N∑
i=1

(ŷ[i])T log(p[i]). (1)

However, as noisy label ŷ[i] is likely to be wrong, the model gradually memorizes the samples with
false labels when minimizing Lce (in Figure 1 (a) and (b)).

3.2 CONFIDENCE ADAPTIVE LOSS

In addition to the prediction branch, we introduce an indicator branch just after the penultimate layer
of the original model (in Figure 2 (a)). The M -dimensional penultimate layer H [i] is shared in both
branches. For each input x[i], the prediction branch produces the softmax prediction p[i] as usual.
The indicator branch contains one or more fully connected layers to produce a single scalar value
h[i], and sigmoid function is applied to scale it between 0 to 1. Assume we use one fully connected
layer, h[i] = W ′H [i] + b′, where W ′ ∈ R1×M denotes the weights and b′ ∈ R denotes the bias in
the penultimate layer of the indicator branch. Thus, we have

τ [i] = sigmoid(h[i]), τ [i] ∈ (0, 1), (2)

where τ [i] denotes the confidence value of model prediction given input x[i]. The early-learning
phenomenon reveals that the deep neural networks memorize the correctly-labeled samples before
the mislabeled samples. Thus, we assume that, a sample with a clean label in expectation has a
larger confidence value than a mislabeled sample in the early learning phase. However, DNN model
trained with CE can easily overfits to noisy labels, making the confidence (traditionally obtained by
maxj pj , j ∈ [1,K]) fail to capture it. To let our confidence value τ capture the above assumption,
we propose the confidence adaptive cross entropy (CACE) loss

Lcace = −
1

N

N∑
i=1

(t[i])T log
(
τ [i](p[i] − t[i]) + t[i]

)
, (3)

where t[i] is the one-hot vector of corrected label for each sample x[i]. Generally, one can directly set
t[i] = ŷ[i]. However, it is less effective as ŷ[i] can be wrong, so we propose a strategy to calculate t[i]
in Section 3.4. Intuitively, Lcace can be explained in two-fold: 1) In the early-learning phase, the
model does not overfit the mislabeled samples. Therefore, their p− t remain large. By minimizing
Lcace, it forces τ of mislabeled samples toward 0 as desired. 2) As for correctly-labeled samples,
the model memorizes them first, resulting in the small p− t. Thus, it makes τ have no influence on
minimizing Lcace in the case of correctly-labeled samples. As a result, by only minimizing Lcace,
we may obtain a trivial optimization that the model always produces τ → 0 for any inputs. To avoid
this lazy learning circumstance, we introduce a penalty loss Lp as a cost.

Lp = −
1

N

N∑
i=1

log(τ [i]), (4)
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wherein the target value of τ is always 1 for all inputs. By adding a term Lp to Lcace, τ of correctly
labeled samples are pushed to 1, and τ of mislabeled samples tend to 0 as expected. Hence, we define
the confidence adaptive loss as

LCAL = Lcace + λLp, (5)

where λ controls the strength of penalty loss. As we can see in Figure 2 (b) and (c), the confidence
value τ successfully segregates the mislabeled samples from correctly-labeled samples.

3.3 AUXILIARY REGULARIZATION TERM

We observe that the early learning phenomenon is not obvious when a dataset contains too many
classes (e.g. CIFAR100), i.e, the mean of τ distributions for clean samples and mislabeled samples
are close to each other as shown in Figure 2 (c). Then LCAL is likely to be reduced to Lce (all τ → 1).
To enhance the performance in this situation, we need to make τ of mislabeled samples closer to 0.
Hence we propose a reverse confidence adaptive cross entropy as an auxiliary regularization term.

Lr-cace = −
1

N

N∑
i=1

(
τ [i](p[i] − t[i]) + t[i]

)T
log(t[i]). (6)

As one-hot vector t[i] is inside of the logarithm in Lr-cace, this could cause computational problem
when t[i] contains zeros. Similar to clipping operation, we solve it by defining log(0) = A (where
A is a negative constant), which will be proved important for the theoretical analysis in Section 4.
Putting all together, the confidence adaptive regularization (CAR) is

LCAR = LCAL + βLr-cace = Lcace + λLp + βLr-cace, (7)

where β controls the strength of regularization carried by Lr-cace. In summary, Lcace is designed for
learning confidence by exploiting the early-learning phenomenon. Lp is adopted for avoiding trivial
solution. Lr-cace makes CAR robust to label noise even in challenging cases.

3.4 ITERATIVE LABEL CORRECTION

CAR requires a target probability t for each sample in the training set. Directly using the given noisy
label ŷ as the target is less effective, since the model easily overfits to noisy labels under extreme
label noise. To yield better performance, ELR (Liu et al., 2020) and SELF (Nguyen et al., 2020)
use temporal ensembling (Laine & Aila, 2017) based solely on model predictions to estimate the
target t. However, it may lose the information of the original training set, and the predictions can be
ambiguous when model overfits to noisy labels.

In this paper, we seek to iteratively correct the noisy labels for mitigating the influence of noisy labels.
As shown in Figure 1, the model predicts correctly for both clean and mislabeled samples in the early
learning phase. Base on this obervation, we develop a strategy to estimate the target by utilizing the
noisy label ŷ, model prediction p and confidence value τ . The target t[i] of given x[i] in iteration E
is calculated by

t
[i]
[E] =


ŷ[i] if E < Ec
αt

[i]
[E−1] + (1− α)p[i]

[E] if E ≥ Ec and τ [i][E] ≥ δ
t
[i]
[E−1] otherwise,

(8)

where Ec is the iteration that starts performing label correction and 0 ≤ α < 1 is the momentum. We
set Ec = 60 by default as performance is not sensitive to the choice of Ec. Threshold δ is used to
exclude ambiguous predictions with low confidence. Since we have verified that CAR only learns
from the correctly labeled samples, our strategy not only enhances the stability of model predictions
but also facilitates the model to learn more from clean samples. We analyze the reliability of iterative
label correction and evaluate the performance with different estimation strategies in Appendix E.

4 THEORETICAL ANALYSIS

This section consists of two parts: 1) We illustrate the noise robustness of CAL by analyzing how it
adjusts the gradient accordingly to achieve regularization effect. 2) We prove the robustness of the
auxiliary term Lr-cace under instance-independent label noise as Lr-cace may be added to CAL.
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(a) Cross Entropy
with MultiStep learning rate scheduler

(b) Cross Entropy
with Cosine Annealing learning rate scheduler

(c) Confidence Adaptive Loss
with Cosine Annealing learning rate scheduler

Figure 3: On CIFAR-10 with 40% symmetric label noise using ResNet34, we observe that in (a), the
gradient of clean labels dominates in early learning stage, but afterwards it vanishes and the gradient
of false labels dominates. In (b), it only slows down this effect with cosine annealing learning rate
scheduler. In (c), CAL effectively keeps the gradient of clean labels dominant and diminishes the
gradient of false labels when epoch increases, preventing memorization of mislabeled samples.

4.1 GRADIENT ANALYSIS

For sample-wise analysis, we denote the true label of sample x as y ∈ {1, ...,K}. The ground-truth
distribution over labels for sample x is q(y|x), and

∑K
k=1 q(k|x) = 1. Consider the case of a single

ground-truth label y, then q(y|x) = 1 and q(k|x) = 0 for all k 6= y. We denote the prediction
probability as p(k|x) and

∑K
k=1 p(k|x) = 1. For notation simplicity, we denote pk, qk, py, qy, pj ,

qj as abbreviations for p(k|x), q(k|x), p(y|x), q(y|x), p(j|x) and q(j|x). Besides, we assume no
label correction is performed in the following analysis.

We first explain how the cross-entropy loss Lce (Eq. (1)) fails in noisy-label scenario. The gradient
of sample-wise cross entropy loss Lce with respect to zj is

∂Lce
∂zj

=

{
pj − 1 ≤ 0, qj = qy = 1

pj ≥ 0, qj = 0
(9)

In this case, if j is true class and equals y, but qj = 0 due to the label noise, the contribution of x to
the gradient is reversed. The entry corresponding to the impostor class j′, is also reversed because
qj′ = 1, causing the gradient of mislabeled samples dominates (in Figure 3 (a) and (b)). Thus,
performing stochastic gradient descent eventually results in memorization of the mislabeled samples.
Lemma 1. For the loss function LCAL given in Eq. (5) and LCAR in Eq. (7), the gradient of
sample-wise LCAL and LCAR (β = 1) with respect to the logits zj can be derived as

∂LCAL

∂zj
=


(pj − 1)

pj
pj − 1 + 1/τ

≤ 0, qj = qy = 1 (j is the true class for x) (10a)

pj
py

py − 1 + 1/τ
≥ 0, qj = 0 (j is not the true class for x) (10b)

and

∂LCAR

∂zj
=


(pj − 1)

pj
pj − 1 + 1/τ

−Aτpj(pj − 1) ≤ 0, qj = qy = 1 (11a)

pj
py

py − 1 + 1/τ
−Aτpjpy ≥ 0, qj = 0 (11b)

respectively, where A is a negative constant defined in Section 3.3.

The proof of Lemma 1 is based on gradient derivation in two cases. We defer it in Appendix A.2.

Gradient of LCAL in Eq. (10). Compared to the gradient of Lce in Eq. (9), the gradient of LCAL
has an adaptive multiplier. We denote Q =

pj
pj−1+1/τ . It is monotonically increasing on τ . We have

limτ→1Q = 1, and limτ→0Q = 0. For the samples with the true class j in Eq. (10a), the cross
entropy gradient term pj − 1 of correctly-labeled samples tends to vanish after early learning stage
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because their pj is close to qj = 1, leading mislabeled samples to dominate the gradient. However,
by multiplying Q (note that Q→ 0 for mislabeled samples and Q→ 1 for correctly-labeled samples
due to property of τ as we discussed in Section 3.2), it counteracts the effect of gradient dominating
by mislabeled samples. For the samples that j is not the true class in Eq. (10b), the gradient term pj is
positive. Multiplying Q < 1 effectively dampens the magnitudes of coefficients on these mislabeled
samples, thereby diminishing their effect on the gradient (in Figure 3 (c)).

Gradient of LCAR in Eq. (11). Compared to the gradient of LCAL, an extra term derived from
auxiliary regularization term Lr-cace is added. In the case of qj = qy = 1 in Eq. (11a), the extra term
−Aτpj(pj − 1) < 0 for 0 ≤ pj ≤ 1 and it is a convex quadratic function whose vertex is at pj = 0.5.
It means the extra term −Aτpj(pj − 1) provides the largest acceleration in learning around pj = 0.5
where the most ambiguous scenario occurs. Intuitively, the term −Aτpj(pj − 1) pushes apart the
peaks of confidence distribution for correctly-labeled samples and mislabeled samples. In the case
of qj = 0 in Eq. (11b), the extra term −Aτpjpy > 0 is added. For correctly-labeled samples, py
is larger, adding −Aτpjpy leads the residual probabilities of other unlabeled classes reduce faster.
For mislabeled samples, py is close to 0, no acceleration needed. Overall, adding Lr-cace amplifies
the effect of confidence learning in CAL, resulting in the confidence values of mislabeled samples
become smaller. The empirical results of the influence of confidence distribution on CIFAR-100 with
different strengths of Lr-cace are in Appendix F.

4.2 LABEL NOISE ROBUSTNESS

Here we prove that the Lr-cace is robust to label noise following (Ghosh et al., 2017). We assume
that the noisy sample (x, ŷ) is drawn from distribution Dη(x, ŷ), and the ordinary sample (x, y) is
drawn from D(x, y). We have ŷ = i(y = i) with probability ηii = (1− η) and ŷ = j(y = i) with
probability ηij for all j 6= i and

∑
j 6=i ηij = η. If ηij = η

K−1 for all j 6= i, then the noise is uniform
or symmetric, otherwise, the noise is class-conditional or asymmetric. Given any classifier f and loss
function L, we define the risk of f under clean labels asRL(f) = ED(x,y)[L(f(x, y))], and the risk
under label noise rate η asRηL(f) = ED(x,ŷ)[L(f(x, ŷ))]. Let f∗ and f∗η be the global minimizers
ofRL(f) andRηL(f) respectively. Then, the empirical risk minimization under loss function L is
defined to be noise-tolerant if f∗ is a global minimum of the noisy riskRηL(f).
Theorem 1. Under symmetric or uniform label noise with noise rate η < K−1

K , we have

0 ≤ RLr-cace(f
∗
η )−RLr-cace(f

∗) <
−Aη(K − 1)

K(1− η)− 1
(12)

and
Aη < RηLr-cace

(f∗η )−RηLr-cace
(f∗) ≤ 0 (13)

where f∗ and f∗η be the global minimizers ofRLr-cace(f) andRηLr-cace
(f) respectively.

Theorem 2. Under class-dependent label noise with ηij < 1 − ηi,∀j 6= i,∀i, j ∈ [K], where
ηij = p(ŷ = j|y = i),∀j 6= i and (1− ηi) = p(ŷ = i|y = i), ifRLr-cace(f

∗) = 0, then
0 ≤ RηLr-cace

(f∗)−RηLr-cace
(f∗η ) < G, (14)

where G = A(1−K)ED(x,y)(1− ηy) > 0, f∗ and f∗η be the global minimizers ofRLr-cace(f) and
RηLr-cace

(f) respectively.

Due to the space constraints, we defer the proof of Theorem 1 and Theorem 2 to the Appendix A.2.
Theorem 1 and Theorem 2 ensure that by minimizing Lr-cace under symmetric and asymmetric label
noise, the difference of the risks caused by the derived hypotheses f∗η and f∗ are always bounded.
The bounds are related to the negative constant A. Since A is the approximate of log(0) which is
actually −∞. A larger A (closer to 0) leads to a tighter bound but introduces a larger approximation
error in implementation. A reasonable A we set is -4 in our experiments. For clarity, we also compare
Lr-cace with existing noise-robust loss functions in Appendix A.3.

5 EXPERIMENTS

Comparison with the state-of-the-art methods We evaluate our approach on two benchmark
datasets with simulated label noise, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), and
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Table 1: Test Accuracy (%) on CIFAR-10 and CIFAR-100 with various levels of label noise injected
to the training set. We compare with previous works under the same backbone ResNet34. The results
are averaged over 3 trials. Results are taken from their original papers. The best results are in bold.
Note that SAT, ELR and CAR use cosine annealing learning rate scheduler.

Dataset CIFAR-10 CIFAR-100

Noise type symm asymm symm asymm

Method/Noise ratio 20% 40% 60% 80% 40% 20% 40% 60% 80% 40%

Cross Entropy 86.98 ± 0.12 81.88 ± 0.29 74.14 ± 0.56 53.82 ± 1.04 80.11 ± 1.44 58.72 ± 0.26 48.20 ± 0.65 37.41 ± 0.94 18.10 ± 0.82 42.74 ± 0.61

Forward T̂ (Patrini et al., 2017) 87.99 ± 0.36 83.25 ± 0.38 74.96 ± 0.65 54.64 ± 0.44 83.55 ± 0.58 39.19 ± 2.61 31.05 ± 1.44 19.12 ± 1.95 8.99 ± 0.58 34.44 ± 1.93

Bootstrap (Reed et al., 2015) 86.23 ± 0.23 82.23 ± 0.37 75.12 ± 0.56 54.12 ± 1.32 81.21 ± 1.47 58.27 ± 0.21 47.66 ± 0.55 34.68 ± 1.10 21.64 ± 0.97 45.12 ± 0.57

GCE (Zhang & Sabuncu, 2018) 89.83 ± 0.20 87.13 ± 0.22 82.54 ± 0.23 64.07 ± 1.38 76.74 ± 0.61 66.81 ± 0.42 61.77 ± 0.24 53.16 ± 0.78 29.16 ± 0.74 47.22 ± 1.15

Joint Opt (Tanaka et al., 2018) 92.25 90.79 86.87 69.16 - 58.15 54.81 47.94 17.18 -

NLNL (Kim et al., 2019) 94.23 92.43 88.32 - 89.86 71.52 66.39 56.51 - 45.70

SL (Wang et al., 2019) 89.83 ± 0.20 87.13 ± 0.26 82.81 ± 0.61 68.12 ± 0.81 82.51 ± 0.45 70.38 ± 0.13 62.27 ± 0.22 54.82 ± 0.57 25.91 ± 0.44 69.32 ± 0.87

DAC (Thulasidasan et al., 2019) 92.91 90.71 86.30 74.84 - 73.55 66.92 57.17 32.16 -

SELF (Nguyen et al., 2020) - 91.13 - 63.59 - - 66.71 - 35.56 -

SAT (Huang et al., 2020) 94.14 92.64 89.23 78.58 - 75.77 71.38 62.69 38.72 -

ELR (Liu et al., 2020) 92.12 ± 0.35 91.43 ± 0.21 88.87 ± 0.24 80.69 ± 0.57 90.35 ± 0.38 74.68 ± 0.31 68.43 ± 0.42 60.05 ± 0.78 30.27 ± 0.86 73.73 ± 0.34

CAR (Ours) 94.37 ± 0.04 93.49 ± 0.07 90.56 ± 0.07 80.98 ± 0.27 92.09 ± 0.12 77.90 ± 0.14 75.38 ± 0.08 69.78 ± 0.69 38.24 ± 0.55 74.89 ± 0.20

Table 2: Comparison with state-of-the-art methods trained on Clothing1M. Results of other methods
are taken from original papers. All methods use an ResNet-50 architecture pretrained on ImageNet.

CE Forward GCE SL Joint-Optim DMI ELR ELR+ DivideMix CAR(Patrini et al., 2017) (Zhang & Sabuncu, 2018) (Wang et al., 2019) (Tanaka et al., 2018) (Xu et al., 2019) (Liu et al., 2020) (Liu et al., 2020) (Li et al., 2020a)

69.21 69.84 69.75 71.02 72.16 72.46 72.87 74.81 74.76 73.19

two real-world datasets, Clothing1M (Xiao et al., 2015) and WebVision (Li et al., 2017a). More
information of datasets, label noise injection and training details can be found in Appendix C.

Table 1 shows the performance of CAR on CIFAR-10 and CIFAR-100 with different levels of
symmetric and asymmetric label noise. All methods use the same backbone (ResNet34). We compare
CAR to the state-of-the-art approaches that only modify the training loss without extra regularization
techniques, such as mixup data augmentation, two networks, and weight averaging. CAR obtains
the highest performance in most cases and achieves comparable results in the most challenging
cases (e.g. under 80% symmetric noise). We describe the hyperparameters sensitivity of CAR in
Appendix C.4. Table 2 compares CAR to state-of-the-art methods trained on the Clothing1M dataset.
Note that DivideMix and ELR+ may not be completely comparable to ours as they use mixup data
augmentation, two networks, and weight averaging to boost the performance, while CAR is a pure
regularization method. Except for DivideMix and ELR+, CAR outperforms other methods.

Table 3: Comparison with state-of-the-art methods trained on WebVision. Results of other methods
are taken from Li et al. (2020a); Liu et al. (2020). All methods use an InceptionResNetV2 architecture.

D2L Ma et al. (2018) MentorNet Jiang et al. (2018) Co-teaching Han et al. (2018) Iterative-CV Chen et al. (2019) ELR Liu et al. (2020) DivideMix Li et al. (2020a) ELR+ Liu et al. (2020) CAR

WebVision top1 62.68 63.00 63.58 65.24 76.26 77.32 77.78 77.41
top5 84.00 81.40 85.20 85.34 91.26 91.64 91.68 92.25

ILSVRC12 top1 57.80 57.80 61.48 61.60 68.71 75.20 70.29 74.09
top5 81.36 79.92 84.70 84.98 87.84 90.84 89.76 92.09

Table 3 compares CAR to state-of-the-art methods trained on the mini WebVision dataset and
evaluated on both WebVision and ImageNet ILSVRC12 validation sets. On WebVision, CAR
outperforms others on top5 accuracy, even better than DivideMix and ELR+. On top1 accuracy, CAR
is slightly superior to DivideMix and achieves comparable performance to ELR+. On ILSVRC12,
DivideMix achieves superior performance in terms of top1 accuracy, while CAR achieves the best
top5 accuracy even without using extra techqniues to boost the performance.

Ablation study Table 4 reports the influence of three individual components in CAR: auxiliary
regularization term Lr-cace, iterative label correction and indicator branch. Removing Lr-cace does
not hurt the performance on CIFAR-10. However, adding the reverse term Lr-cace does improve the
performance on CIFAR-100. The larger the noise is, the more improvement we obtain. Removing the

8
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Table 4: Influence of three components in our approach. � means the model fails to converge.

Dataset CIFAR-10 CIFAR-100

Noise type symm asymm symm asymm

Noise ratio 40% 80% 40% 40% 80% 40%

CAR 93.49 ± 0.07 80.98 ± 0.27 92.09 ± 0.12 75.38 ± 0.08 38.24 ± 0.55 74.89 ± 0.20
– Lr-cace 93.49 ± 0.07 80.98 ± 0.27 92.09 ± 0.12 74.65 ± 0.09 34.79 ± 0.71 74.73 ± 0.12
– label correction 89.47 ± 0.50 76.91 ± 0.22 88.23 ± 0.22 69.91 ± 0.21 31.33 ± 0.38 55.68 ± 0.17
– indicator branch 90.94 ± 0.28 � 91.55 ± 0.07 � � �

Cl
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ls

False labels

Figure 4: Average confidence values τ of
false labels w.r.t clean labels on CIFAR-10
with 40% symmetric label noise.

Corrected labels

C
le

an
 la

be
ls

Figure 5: Confusion matrix of corrected la-
bels w.r.t clean labels on CIFAR-10 with 40%
symmetric label noise.

iterative label correction leads to a significant performance drop. This suggests that correcting the
noisy labels by properly using model predictions is crucial for avoiding memorization. To validate
the effect of adding the indicator branch, we conduct another way to calculate confidence value
without using indicator branch: using the highest probability as the confidence value, which means
τ [i] = maxj p

[i]
j , j ∈ [1,K]. Without using the indicator branch, the model only converges in two

easy cases. Hence, directly calculating the confidence by model output does interfere with the original
prediction branch, while adding an extra indicator branch solves this problem.

Identification of mislabeled samples When exploiting the progress of the early learning phase by
CAL, we have observed that the correctly-labeled samples have larger confidence values than the
mislabeled samples. We report the average confidence values of samples in Figure 4. The (i, j)-th
block represents the average confidence value of samples with clean label i and false label j. We
observe that the confidence values on the diagonal blocks are higher than those on non-diagonal
blocks, which means that our confidence value has an effect similar to the probability of extra class in
DAC (Thulasidasan et al., 2019) and AUM (Pleiss et al., 2020). The key difference is that DAC and
AUM identify the mislabeled samples based on probability generated byK+1 class and drop the most
likely mislabeled samples to perform second stage classification, while we incorporate the confidence
values in loss function and implicitly achieve the regularization effect to avoid memorization of
mislabeled samples. Confidence values on other levels of label noise can be found in Appendix D.

Reliability of Label correction Recall that we perform iterative label correction in Section 3.4.
Since the target is calculated by a moving average between noisy labels and model predictions, our
approach is able to gradually correct the false labels. The correction accuracy can be calculated
by 1

N

∑N
i 1{argmax y[i] = argmax t[i]}, where y[i] is the clean label of x[i]. We evaluate the

correction accuracy on CIFAR-10 and CIFAR-100 with 40% symmetric label noise. CAR obtains
correction accuracy of 95.1% and 86.4%, respectively. The confusion matrix of corrected labels w.r.t
the clean labels on CIFAR-10 is shown in Figure 5. We observe that CAR corrects the false labels
impressively well for all classes. Results of various levels of label noise and real-world datasets can
be found in Appendix D. The evaluation for stability of iterative label correction is in Appendix G.

6 CONCLUSION

Based on the early learning and memorization phenomenon of deep neural networks in the presence
of noisy labels, we propose an adaptive regularization method that implicitly adjusts the gradient to
prevent memorization on noisy labels. Through extensive experiments across multiple datasets, our
approach yields comparable and even superior results to the state-of-the-art methods.
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A THEORETICAL ANALYSIS

A.1 GRADIENT DERIVATION OF LCAL AND LCAR

Assume the target t equals to ground truth distribution. The sample-wise LCAL can be rewrite as:

LCAL = Lcace + λLp = −
K∑
k=1

qk log(τ(pk − qk) + qk)− λ log τ. (1)

The derivation of the LCAL with respect to the logits is as follows:

∂LCAL

∂zj
=
∂Lcace
∂zj

= −
K∑
k=1

τqk
τ(pk − qk) + qk

∂pk
∂zj

. (2)

Since pk = S(z)= ezk∑K
j=1 e

zj
, we have

∂pk
∂zj

=
∂
(

ezk∑K
j=1 e

zj

)
∂zj

=

∂ezk
∂zj

(
∑K
j=1 e

zj )− ezk ∂
(∑K

j=1 e
zj

)
∂zj

(
∑K
j=1 e

zj )2
. (3)

In the case of k = j :

∂pk
∂zj

=
∂ezk
∂zk

(
∑K
k=1 e

zk)− ezk ∂
(∑K

k=1 e
zk

)
∂zk

(
∑K
k=1 e

zk)2
=
ezk(

∑K
k=1 e

zk)− ezk · ezk
(
∑K
k=1 e

zk)2

=
ezk∑K
k=1 e

zk
−
( ezk∑K

k=1 e
zk

)2
= pk − p2k. (4)

In the case of k 6= j :

∂pk
∂zj

=
0 · (∑K

j=1 e
zj )− ezk · ezj

(
∑K
j=1 e

zj )2
= − ezk∑K

j=1 e
zj

ezj∑K
j=1 e

zj
= −pkpj . (5)

Combining Eq. (4) and (5) into Eq. (2), we obtain:

∂LCAL

∂zj
=−

K∑
k=1

τqk
τ(pk − qk) + qk

∂pk
∂zj

=− τqj
τ(pj − qj) + qj

∂pj
∂zj
−

K∑
k 6=j

τqk
τ(pk − qk) + qk

∂pk
∂zj

=− τqj
τ(pj − qj) + qj

(pj − p2j )−
K∑
k 6=j

τqk
τ(pk − qk) + qk

(−pkpj)

=− τqjpj
τ(pj − qj) + qj

+ pj

K∑
k=1

τqkpk
τ(pk − qk) + qk

. (6)

Therefore, if qj = qy = 1, then

∂LCAL

∂zj
=− τpj

τpj − τ + 1
+ pj

τqjpj
τ(pj − 1) + 1

= (pj − 1)
τpj

τpj − τ + 1
= (pj − 1)

pj
pj − 1 + 1/τ

.

(7)

If qj = 0, then

∂LCAL

∂zj
=pj

τqypy
τ(py − qy) + qy

= pj
py

py − 1 + 1/τ
. (8)
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The sample-wise LCAR can be rewrite as (assume β = 1):

LCAR = LCAL + βLr-cace = LCAL −
K∑
k=1

(τ(pk − qk) + qk) log qk. (9)

Since we have obtain the gradient of LCAL, we now only analyze the gradient of Lr-cace with respect
to the logits as follows:

∂Lr-cace

∂zj
= −

K∑
k=1

τ∂pk
∂zj

log qk. (10)

Combining Eq. (4) and (5), into Eq. (10), we have

∂Lr-cace

∂zj
=− τ(pj − p2j ) log qj − τ

K∑
k 6=j

(−pkpj) log qk

=− τpj log qj + τ

K∑
k=1

pkpj log qk. (11)

We denote log 0 = A, thus if qj = qy = 1, then

∂Lr-cace

∂zj
= −τpj log 1 + τpj(pj log 1 +

K∑
k 6=j

pk log 0) = τpj(1− pj)A = −Aτpj(pj − 1). (12)

If qj = 0, then

∂Lr-cace

∂zj
= −τpj log 0 + τpj(py log 1 + (1− py) log 0) = −Aτpj + τpj(1− py)A = −Aτpjpy.

(13)

Therefore, the gradients of LCAR is

∂LCAR

∂zj
=


(pj − 1)

pj
pj−1+1/τ −Aτpj(pj − 1), qj = qy = 1

pj
py

py−1+1/τ −Aτpjpy, qj = 0
(14)

A.2 FORMAL PROOF FOR LEMMA 1, LEMMA2, THEOREM 1 AND THEOREM 2

Lemma 1. For the loss function LCAL given in Eq. (5) and LCAR in Eq. (7), the gradient of
sample-wise LCAL and LCAR (β = 1) with respect to the logits zj can be derived as

∂LCAL

∂zj
=


(pj − 1)

pj
pj−1+1/τ ≤ 0, qj = qy = 1 (j is the true class for sample x)

pj
py

py−1+1/τ ≥ 0, qj = 0 (j is not the true class for sample x)

and

∂LCAR

∂zj
=


(pj − 1)

pj
pj−1+1/τ −Aτpj(pj − 1) ≤ 0, qj = qy = 1

pj
py

py−1+1/τ −Aτpjpy ≥ 0, qj = 0

respectively.

Proof. From the Appendix A.1, we obtain the gradient of the sample-wise LCAL with respect to the
logits zj is

∂LCAL

∂zj
=
∂Lcace
∂zj

= −
K∑
k=1

τqk
τ(pk − qk) + qk

∂pk
∂zj

(15)
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where ∂pk
∂zj

can be further derived base on whether k = j by follows:

∂pk
∂zj

=

{
pk − p2k k = j
−pjpk k 6= j

(16)

According to Eq. (15) and (16), the gradient of LCAL can be derived as:

∂LCAL

∂zj
=


(pj − 1)

pj
pj−1+1/τ , qj = qy = 1

pj
py

py−1+1/τ , qj = 0
(17)

Since pj ≤ 1, we have pj−1 ≤ 0. As τ < 1, the term py
py−1+1/τ > 0, we have (pj−1) py

py−1+1/τ ≤ 0

and pj
py

py−1+1/τ ≥ 0. Similarly, the gradient of simplified LCAR (β = 1) can be derived as:

∂LCAR

∂zj
=
∂LCAL

∂zj
+
∂Lr-cace

∂zj
=


(pj − 1)

pj
pj−1+1/τ −Aτpj(pj − 1), qj = qy = 1

pj
py

py−1+1/τ −Aτpjpy, qj = 0
(18)

Since A is a negative constant, we obtain −Aτpj(pj − 1) ≤ 0. Thus, in the case of qj = qy = 1,
∂LCAR
∂zj

≤ 0 and in the case of qj = 0, ∂LCAR
∂zj

≥ 0 as claimed. Complete derivations can be found in
the Appendix A.1.

The result in Lemma 1 ensures that, during the gradient decent, learning continues on true classes
when trained with LCAL and LCAR. We then prove the noise robustness of Lr-cace.

Recall that noisy label of x is ŷ ∈ {1, ...,K} and its true label is y ∈ {1, ...,K}. We assume
that the noisy sample (x, ŷ) is drawn from distribution Dη(x, ŷ), and the ordinary sample (x, y) is
drawn from D(x, y). Note that this paper follows the most common setting where label noise is
instance-independent. Then we have ŷ = i(y = i) with probability ηii = (1− η) and ŷ = j(y = i)
with probability ηij for all j 6= i and

∑
j 6=i ηij = η. If ηij = η

K−1 for all j 6= i, then the noise is
said to be uniform or symmetric, otherwise, the noise is said to be class-conditional or asymmetric.
Given any classifier f and loss function L, we define the risk of f under clean labels as RL(f) =
ED(x,y)[L(f(x, y))], and the risk under label noise rate η as RηL(f) = ED(x,ŷ)[L(f(x, ŷ))]. Let
f∗ and f∗η be the global minimizers of RL(f) and RηL(f) respectively. Then, the empirical risk
minimization under loss function L is defined to be noise-tolerant if f∗ is a global minimum of the
noisy riskRηL(f).
Lemma 2. For any x, the sum of Lr-cace with respect to all the classes satisfies:

0 <

K∑
j=1

Lr-cace(f(x), j) < A(1−K), (19)

where A = log(0) is a negative constant that depends on the clipping operation.

Proof. By the definition of Lr-cace, we can rewrite the sample-wise Lr-cace as

Lr-cace = −
K∑
k=1

(
τ(p(k|x)− q(k|x)) + q(k|x)

)
log q(k|x)

= −
(
τ(p(y|x)− q(y|x)) + q(y|x)

)
log q(y|x)−

∑
k 6=y

(
τ(p(k|x)− q(k|x)) + q(k|x)

)
log q(k|x)

= −
(
τp(y|x)− τ + 1

)
log 1−Aτ

∑
k 6=y

p(k|x)
= −Aτ(1− p(y|x)). (20)

Therefore, we have
K∑
j=1

Lr-cace(f(x), j) =

K∑
j=1

−Aτ(1− p(j|x)) = −AτK +Aτ

K∑
j=1

p(j|x) = Aτ(1−K)
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As τ ∈ (0, 1), A is a negative constant, K is a constant, hence

0 <

K∑
j=1

Lr-cace(f(x), j) < A(1−K),

which concludes the proof.

Theorem 1. Under symmetric or uniform label noise with noise rate η < K−1
K , we have

0 ≤ RLr-cace(f
∗
η )−RLr-cace(f

∗) <
−Aη(K − 1)

K(1− η)− 1

and

Aη < RηLr-cace
(f∗η )−RηLr-cace

(f∗) ≤ 0

where f∗ and f∗η be the global minimizers ofRLr-cace(f) andRηLr-cace
(f) respectively.

Proof. For symmetric noise, we have, for any f 1

RηLr-cace
(f) = EDη(x,ŷ)[Lr-cace(f(x), ŷ)]

= ExED(y|x)ED(ŷ|x,y)[Lr-cace(f(x), ŷ)]

= ED(x,y)

[
(1− η)Lr-cace(f(x), y) +

η

K − 1

∑
j 6=y
Lr-cace(f(x), j)

]
= (1− η)RLr-sace(f) +

η

K − 1

( K∑
j=1

Lr-cace(f(x), j)−RLr-cace(f)
)

= (1− ηK

K − 1
)RLr-cace(f) +

η

K − 1

K∑
j=1

Lr-cace(f(x), j)

From Lemma 2, for all f , we have:

ψRLr-cace(f) < RηLr-cace
(f) < −Aη + ψRLr-cace(f)

where ψ = (1 − ηK
K−1 ). Since η < K−1

K , we have ψ > 0. Thus, we can rewrite the inequality in
terms ofRLr-cace(f):

1

ψ
(RηLr-cace

(f) +Aη) < RLr-cace(f) <
1

ψ
RηLr-cace

(f)

Thus, for f∗η ,

RLr-cace(f
∗
η )−RLr-cace(f

∗) <
1

ψ
(RηLr-cace

(f∗η )−RηLr-cace
(f∗)−Aη)

or equivalently,

RηLr-cace
(f∗η )−RηLr-cace

(f∗) > ψ(RLr-cace(f
∗
η )−RLr-cace(f

∗)) +Aη

Since f∗ is the global minimizer ofRLr-cace(f) and f∗η is the global minimizer ofRηLr-cace
(f), we

have

0 ≤ RLr-cace(f
∗
η )−RLr-cace(f

∗) <
−Aη
ψ

=
−Aη(K − 1)

K(1− η)− 1

and

Aη < RηLr-cace
(f∗η )−RηLr-cace

(f∗) ≤ 0

which concludes the proof.
1In the following, note that ExEy|x = Ex,y = ED(x,y), which denote expectation with respect to the

corresponding conditional distributions.
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Theorem 2. Under class-dependent label noise with ηij < 1 − ηi,∀j 6= i,∀i, j ∈ [K], where
ηij = p(ŷ = j|y = i),∀j 6= i and (1− ηi) = p(ŷ = i|y = i), ifRLr-cace(f

∗) = 0, then
0 ≤ RηLr-cace

(f∗)−RηLr-cace
(f∗η ) < G,

where G = A(1−K)ED(x,y)(1− ηy) > 0, f∗ and f∗η be the global minimizers ofRLr-cace(f) and
RηLr-cace

(f) respectively.

Proof. For asymmetric or class-dependent noise, we have
RηLr-cace

(f) = EDη(x,ŷ)[Lr-cace(f(x), ŷ)]

= ExED(y|x)

[
(1− ηy)Lr-cace(f(x), y) +

∑
j 6=y

ηyjLr-cace(f(x), j)
]

= ED(x,y)

[
(1− ηy)

( K∑
j=1

Lr-cace(f(x), j)−
∑
j 6=y

Lr-cace(f(x), j)
)]

+ ED(x,y)

[∑
j 6=y

ηyjLr-cace(f(x), j)
]

< ED(x,y)

[
(1− ηy)

(
A(1−K)−

∑
j 6=y

Lr-cace(f(x), j)
)]

+ ED(x,y)

[∑
j 6=y

ηyjLr-cace(f(x), j)
]

= A(1−K)ED(x,y)(1− ηy)− ED(x,y)

[∑
j 6=y

(1− ηy − ηyj)Lr-cace(f(x), j)
]
.

On the other hand, we also have

RηLr-cace
(f) > −ED(x,y)

[∑
j 6=y

(1− ηy − ηyj)Lr-cace(f(x), j)
]

Hence, we obtain
RηLr-cace

(f∗)−RηLr-cace
(f∗η ) < A(1−K)ED(x,y)(1− ηy)

+ ED(x,y)

[∑
j 6=y

(1− ηy − ηyj)
(
Lr-cace(f

∗
η (x), j)− Lr-cace(f

∗(x), j)
)]

Next, we prove the bound. First, (1 − ηy − ηyj) > 0 as per the assumption that ηyj < 1 − ηy.
Second, our assumption hasRr-cace(f

∗) = 0, we have Lr-cace(f
∗(x), y) = 0. This is only satisfied

iff f∗j (x) = 1 when j = y, and f∗j (x) = 0 when j 6= y. According to the definition of Lr-cace, we
have Lr-cace(f

∗(x), j) = −Aτ , ∀j 6= y, and Lr-cace(f
∗
η (x), j) ≤ −Aτ , ∀j ∈ [K]. We then obtain

ED(x,y)

[∑
j 6=y

(1− ηy − ηyj)
(
Lr-cace(f

∗
η (x), j)− Lr-cace(f

∗(x), j)
)]
≤ 0

Therefore, we have
RηLr-cace

(f∗)−RηLr-cace
(f∗η ) < A(1−K)ED(x,y)(1− ηy)

Since f∗η is the global minimizers ofRηLr-cace
(f), we haveRηLr-cace

(f∗)−RηLr-cace
(f∗η ) ≥ 0, which

concludes the proof.

A.3 COMPARISON WITH EXISTING NOISE-ROBUST LOSS FUNCTIONS

According to the definition in Section 4, we obtain the sample-wise

Lr-cace = −
K∑
k=1

(
τ(p(k|x)− q(k|x)) + q(k|x)

)
log q(k|x)

= −
(
τ(p(y|x)− q(y|x)) + q(y|x)

)
log q(y|x)−

∑
k 6=y

(
τ(p(k|x)− q(k|x)) + q(k|x)

)
log q(k|x)

= −
(
τp(y|x)− τ + 1

)
log 1−Aτ

∑
k 6=y

p(k|x)
= −Aτ(1− p(y|x)). where τ ∈ (0, 1) and A is a negative constant . (21)
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Similarly, we have sample-wise Lmae Ghosh et al. (2017), Lrce Wang et al. (2019), Lgce Zhang &
Sabuncu (2018) and Ltce Feng et al. (2020) as follows

Lmae =
K∑
k=1

|p(k|x)− q(k|x)| = (1− p(y|x)) +
∑
k 6=y

p(k|x) = 2(1− p(y|x));

Lrce = −
K∑
k=1

p(k|x) log q(k|x) = −p(y|x) log 1−
∑
k 6=y

p(k|x) log 0 = −A(1− p(y|x));

Lgce =
K∑
k=1

q(k|x)1− p(k|x)
ρ

ρ
= q(y|x)1− p(y|x)

ρ

ρ
=

1

ρ
(1− p(y|x)ρ), ρ ∈ (0, 1];

Ltce =
t∑
i=1

(1− p(y|x))i
i

, t ∈ N+ denotes the order of Taylor Series.

We observe that when τ = 1 (even though it is impossible), Lr-cace is reduced to Lrce. IfA = −2 and
τ = 1, Lr-cace is further reduced to Lmae. Since confidence τ is various for different samples, Lr-cace
is more like a dynamic version of Lmae. As for Lgce, limρ→0 Lgce = Lce and Lgce = 1

2Lmae when
ρ = 1. Similarly, limt→∞ Ltce = Lce and Ltce = 1

2Lmae when t = 1. Therefore, both Lgce and
Ltce can be interpreted as the generalization of MAE and CE, which benefits the noise robust from
MAE and training efficiency from CE. However, parameters ρ and t are fixed before training, so it is
hard to tell what is the best parameter for the certain dataset. Instead, combined with LCAL, Lr-cace
contains a dynamic confidence value τ for each sample that automatically learned from dataset,
facilitating the learning from correctly-labeled samples.

B ALGORITHM

Algorithm 1 provides detail pseudocode for CAR. Note that for Cosine Annealing learning rate
scheduler, the condition line 8 becomes e ≥ Ec and τ

[i] ≥ δ and e%Ep == 0, where Ep is the
number of epochs in each period, we fix Ep = 10 in all experiments.

Algorithm 1: Confidence adaptive regularization (CAR)
Input: Deep neural networkNθ with trainable parameters θ; λ is the parameter for penalty term Lp; β is the

parameter for regularization term Lr-cace; Ec is the epoch that starts to estimate target; α is the
momentum in target estimation; training set D, batch size B, total epoch Emax;

1 t = ŷ . Initialize the target by noisy labels;
2 for e = 1, 2, . . . , Emax do
3 Shuffle D into |D|

B
mini-batches ;

4 for n = 1, 2, . . . , |D|
B

do
5 for i in each mini-batch Dn do
6 p[i] = S(Nθ(x[i])) . Obtain model predictions;
7 τ [i] = sigmoid(h[i]) . Obtain corresponding confidence;
8 if e ≥ Ec and τ [i] ≥ δ then
9 t[i] = αt[i] + (1− α)p[i] . Iterative label correction;

10 Calculate the loss LCAR = Lcace + λLp + βLr-cace = − 1
B

∑B
i=1(t

[i])T log
(
τ [i](p[i] − t[i]) +

t[i]
)
− λ

B

∑B
i=1 log(τ

[i])− β
B

∑B
i=1

(
τ [i](p[i] − t[i]) + t[i]

)T
log(t[i]) ;

11 Update θ using stochatic gradient descent ;

12 Output θ.
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Table 5: Detail information of experiment.

(a) Description of the datasets used in the experiments.

Dataset # of train # of val # of test # of classes input size Noise rate (%)

Datasets with clean annotation

CIFAR-10 50K - 10K 10 32 × 32 ≈ 0.0
CIFAR-100 50K - 10K 100 32 × 32 ≈ 0.0

Datasets with real world noisy annotation

Clothing1M 1M 14K 10K 14 224 × 224 ≈ 38.5
Webvision 1.0 66K - 2.5K 50 256 × 256 ≈ 20.0

(b) Description of the hyperparameters used in our
approach.

Hyperparameter Description

λ Control the strength of penalty loss in LCAL.
β Control the strength of regularization term Lr-cace.
Ec The epoch starts to estimate target.
α The momentum in target estimation.
δ The threshold of confidence in target estimation.

C DETAIL DESCRIPTION OF EXPERIMENTS

Source code for the experiments is available in the zip file. All experiments are implemented in
PyTorch and run in a single Nvidia GTX 1080 GPU. For CIFAR-10 and CIFAR-100, we do not
perform early stopping since we don’t assume the presence of clean validation data. All test accuracy
are recorded from the last epoch of training. For Clothing1M, it provides 50k, 14k, 10k refined
clean data for training, validation and testing respectively. Note that we do not use the 50k clean
data. We report the test accuracy when the performance on validation set is optimal. All tables of
CIFAR-10/CIFAR-100 report the mean and standard deviation from 3 trails with different random
seeds. As for larger datasets, we only perform a single trail.

C.1 DATASET DESCRIPTION AND PREPROCESSING

The information of datasets are described in Table 5a. CIFAR-10 and CIFAR-100 are clean datasets,
we describe the label noise injection in Appendix C.2. Clothing1M consists of 1 million training
images from 14 categories collected from online shopping websites with noisy labels generated
from surrounding texts. Its noise level is estimated as 38.5% (Song et al., 2019). Following (?Chen
et al., 2019), we use the mini WebVision dataset which contains the top 50 classes from the Google
image subset of WebVision, which results in approximate 66 thousand images. The noise level of
WebVision is estimated at 20% (Li et al., 2017a).

As for data preprocessing, we apply normalization and regular data augmentation (i.e. random crop
and horizontal flip) on the training sets of all datasets. The cropping size is consistent with existing
works (Liu et al., 2020; Li et al., 2020a). Specifically, 32 for CIFAR-10 and CIFAR-100, 224 × 224
for Clothing 1M (after resizing to 256 × 256), and 227 × 227 for Webvision.

C.2 SIMULATED LABEL NOISE INJECTION

Since the CIFAR-10 and CIFAR-100 are initially clean, we follow Tanaka et al. (2018); Patrini et al.
(2017) for symmetric and asymmetric label noise injection. Specifically, symmetric label noise is
generated by randomly flipping a certain fraction of the labels in the training set following a uniform
distribution. Asymmetric label noise is simulated by flipping their class to another certain class
according to the mislabel confusions in the real world. For CIFAR-10, the asymmetric noisy labels
are generated by mapping truck→ automobile, bird→ airplane, deer→ horse and cat↔ dog. For
CIFAR-100, the noise flips each class into the next, circularly within super-classes.

C.3 TRAINING PROCEDURE

CIFAR-10/CIFAR-100: We use a ResNet-34 and train it using SGD with a momentum of 0.9, a
weight decay of 0.001, and a batch size of 64. The network is trained for 500 epochs for both
CIFAR-10 and CIFAR-100. We use the cosine annealing learning rate Loshchilov & Hutter (2017)
where the maximum number of epoch for each period is 10, the maximum and minimum learning
rate is set to 0.02 and 0.001 respectively. As for cross entropy with MultiStep learning rate scheduler
in Figure 1 and Figure 3 in the paper, we set the initial learning rate as 0.02, and reduce it by a factor
of 10 after 100 and 200 epochs. The reason that we train the model 500 epochs in total is to fully
evaluate whether the model will overfit mislabeled samples, which avoids the interference caused by
early stopping Li et al. (2020b) (i.e. the model may not start overfitting mislabeled samples when
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Figure 6: Test accuracy on CIFAR-10 with 60% symmetric label noise. The mean accuracy over
three runs is reported, along with bars representing one standard deviation from the mean. In each
experiment, the rest of hyperparameters are fixed to the values reported in Section C.4.

the number of training epochs is small, especially when learning rate scheduler is cosine annealing
Loshchilov & Hutter (2017)).

Clothing1M: Following Xiao et al. (2015); Wang et al. (2019), we use a ResNet-50 pretrained
on ImageNet. We train the model with batch size 64. The optimization is done using SGD with a
momentum 0.9, and weight decay 0.001. We use the same cosine annealing learning rate as CIFAR-10
except the minimum learning rate is set to 0.0001 and total epoch is 400. For each epoch, we sample
2000 mini-batches from the training data ensuring that the classes of the noisy labels are balanced.

Webvision: Following Li et al. (2020a); Liu et al. (2020), we use an InceptionResNetV2 as the
backbone architecture. All other optimization details are the same as for CIFAR-10, except for the
weight decay (0.0005) and the batch size (32).

C.4 HYPERPARAMETERS SELECTION AND SENSITIVITY

Table 5b provides a detailed description of hyperparameters in our approach. We perform hyper-
parameter tuning via grid search: λ = [0.5, 10, 50], β = [0.0, 0.1, 0.3, 0.5], Ec = [20, 60, 100],
α = [0.7, 0.9, 0.99] and δ = [0, 0, 0.35, 0.65, 0.95]. For CIFAR-10, the selected value are λ = 0.5,
β = 0.0, Ec = 60, α = 0.9 and δ = 0.0. For CIFAR-100 with 40% asymmetric label noise, the
selected value are λ = 10, β = 0.1, Ec = 20, α = 0.9, δ = 0.0. For CIFAR-100 with 20%/40%/60%
symmetric label noise, we set λ = 10, β = 0.1, Ec = 60, α = 0.9, δ = 0.95 and λ = 50, β = 0.1,
Ec = 60, α = 0.9, δ = 0.0 for 80% symmetric label noise. For Webvision, we set λ = 50, β = 0.1,
Ec = 200, α = 0.9, δ = 0.0. For Clothing1M, we set λ = 50, β = 0.1, Ec = 60, α = 0.8, δ = 0.0.

Figure 6 and Figure 7 shows the hyperparameters sensitivity of CAR on CIFAR-10 and CIFAR-100
with 60% symmetric label noise respectively. The coefficient of penalty loss λ needs to be large
than 0 to avoid trivial solution but also cannot be too large for CIFAR-10, avoiding neglecting Lcace
term in the loss. As the CIFAR-10 is an easy dataset, no additional regularization requires by Lr-cace
term. Therefore, the regularization coefficient β should be 0 and large β may cause model to underfit.
The performance is robust to Ec and α, as long as the momentum α is large enough (e.g. larger
than 0.7). The choice of confidence threshold δ depends on the difficulty of dataset. A larger δ will
slightly slow down the speed of label correction but helps exclude ambiguous predictions with low
confidence values. Overall, the sensitivity to hyperparameters is quite mild and the performance is
quite robust, unless the parameter is set to be very large or very small, resulting in neglecting Lcace
term or underfitting. We can observe the similar results of CIFAR-100 in Figure 7.
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Figure 7: Test accuracy on CIFAR-100 with 60% symmetric label noise. The mean accuracy over
three runs is reported, along with bars representing one standard deviation from the mean. In each
experiment, the rest of hyperparameters are fixed to the values reported in Section C.4.
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Figure 8: Label correction of Webvision images. Given noisy labels are shown above in red and the
corrected labels are shown below in green.

D MORE RESULTS OF LABEL CORRECTION AND CONFIDENCE VALUE

We report the label correction accuracy for various level of label noise on CIFAR-10 and CIFAR-100
in Table 6. Figure 10 displays the confusion matrix of corrected label w.r.t. the clean labels on
CIFAR-10 with 60% symmetric, 80% symmetric and 40% asymmetric label noise respectively. We
also show the corrected labels for real-world datasets in Figure 8 and Figure 9.
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We report the confidence value for high level of label noise on CIFAR-10 in Figure 11 and Figure 12.
As we can see, the confidence values on the diagonal blocks remain higher than those non-diagonal
blocks.

Table 6: Correction accuracy (%) on CIFAR-10 and CIFAR-100 with various levels of label noise
injected to training set.

Dataset CIFAR-10 CIFAR-100

Noise ratio symm asymm symm asymm
20% 40% 60% 80% 40% 20% 40% 60% 80% 40%

Correction accuracy 97.3 95.1 91.1 81.1 93.8 92.6 86.4 76.5 42.4 87.1

E PERFORMANCE WITH DIFFERENT ESTIMATION STRATEGIES

We compare the performance of CAR with three strategies: 1) our strategy in Section 3.4. 2) temporal
ensembling (Laine & Aila, 2017) that adopted in ELR (Liu et al., 2020). 3) directly using the noisy
labels ŷ without label correction. The temporal ensembling calculate the target by

t
[i]
[E] =


0 if E < Ec
αt

[i]
[E−1] + (1− α)p[i]

[E] if E ≥ Ec
t
[i]
[E−1] otherwise,

(22)

where the target t solely depends on model prediction. Table 7 shows the results. As we can see,
compared to CAR without label correction, CAR with temporal ensembling does not improve much
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Figure 10: Confusion matrix of corrected labels w.r.t clean labels on CIFAR-10 with 60% symmetric,
80% symmetric and 40% asymmetric label noise respectively.
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Figure 11: Average confidence values τ of
false labels w.r.t clean labels on CIFAR-10
with 60% symmetric label noise.
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Figure 12: Average confidence values τ of
false labels w.r.t clean labels on CIFAR-10
with 80% symmetric label noise.

performance in easy cases (e.g. 40% symmetric label noise), and it even gets worse performance in
hard cases (e.g. 80% symmetric label noise). However, CAR with our strategy achieves much better
performance. We also conduct the experiments that use CE with different target estimation strategies.
Surprisingly, CE with our strategy can achieve better performance to CAR in CIFAR-10 with 40%
asymmetric noise. However, the overall performance is worse than the performance of using CAR,
due to the reason that CE will memorize noisy labels after early learning phase.

0.924 0.913 0.891 0.876

Figure 13: The empirical density of confidence value τ on CIFAR-100 with 40% symmetric label
noise. The mean confidence values of mislabeled samples become smaller with the increasing of β.

F INFLUENCE OF Lr-cace ON CONFIDENCE DISTRIBUTION

The empirical results of the influence of confidence distribution on CIFAR-100 with different strengths
of Lr-cace are shown in Figure 13. We can observe that with the larger coefficient β on Lr-cace, the
averge confidence of mislabeled samples is closer to 0. Add the different strengths auxililary term
Lr-cace to CAL does further segregate the mislabeled samples from the clean samples.
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Table 7: The test accuracy of CAR and CE with different target estimation strategies. All the following
experiments use Cosine Annealing learning rate scheduler (Loshchilov & Hutter, 2017).

Dataset CIFAR-10 CIFAR-100

Noise type symm asymm symm asymm

Noise ratio 40% 80% 40% 40% 80% 40%

CAR with our strategy 93.49 ± 0.07 80.98 ± 0.27 92.09 ± 0.12 75.38 ± 0.08 38.24 ± 0.55 74.89 ± 0.20
CAR with temporal ensembling 89.52 ± 0.30 64.07 ± 2.04 80.52 ± 2.21 70.80 ± 0.38 10.28 ± 1.67 63.91 ± 1.65
CAR w/o label correction 89.47 ± 0.50 76.91 ± 0.22 88.23 ± 0.22 69.91 ± 0.21 31.33 ± 0.38 55.68 ± 0.17

CE with our strategy 92.64 ± 0.21 75.51 ± 0.38 92.21 ± 0.11 68.53 ± 0.47 32.36 ± 0.44 73.01 ± 0.90
CE with temporal ensembling 92.12 ± 0.16 72.87 ± 1.98 89.71 ± 1.43 70.45 ± 0.22 9.34 ± 0.78 66.38 ± 0.57
CE w/o label correction 78.26 ± 0.74 56.42 ± 2.49 86.55 ± 1.06 46.34 ± 0.56 11.55 ± 0.35 48.86 ± 0.04
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Figure 14: Label correction accuracy vs.
epochs on CIFAR-10 with different levels of
label noise.
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Figure 15: Label correction accuracy vs.
epochs on CIFAR-100 with different levels of
label noise.

G STABILITY OF ITERATIVE LABEL CORRECTION

We plot the CIFAR-10 and CIFAR-100 label correction accuracy vs. epochs in Figure 14 and Figure
15 respectively. In both datasets, our iterative label correction strategy achieves a stable correction
effect and the correction accuracy does not drop with the increasing of training epochs. In summary,
iterative label correction does not only recovers the noisy labels back to clean labels but also achieves
high correction accuracy. In addition, the correction accuracy remains stable, which demonstates that
incorporating a certain percentage of prediction to update the noisy labels is an efficient and reliable
way to correct noisy labels.
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