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Abstract
Processing long contexts poses a significant001
challenge for large language models (LLMs)002
due to their inherent context window limita-003
tions and the computational burden of extensive004
key-value (KV) activations, which severely im-005
pact efficiency. For information-seeking tasks,006
full context perception is often unnecessary, as007
a query’s information needs can dynamically008
range from localized details to a global perspec-009
tive, depending on its complexity. However,010
existing methods struggle to adapt effectively011
to this dynamic information needs.012

In the paper, we propose a method for pro-013
cessing long-context information-seeking tasks014
via query-guided ACtivation REfilling (ACRE).015
ACRE constructs a Bi-layer KV Cache for long016
contexts, where the layer-1 (L1) cache com-017
pactly captures global information, and the018
layer-2 (L2) cache provides detailed, localized019
information. ACRE establishes a proxying rela-020
tionship between the two caches, allowing the021
input query to attend to the L1 cache and dy-022
namically refill it with relevant entries from the023
L2 cache. This mechanism integrates global024
understanding with query-specific local details,025
thereby enhancing answer decoding. Experi-026
ments on a variety of long-context information-027
seeking datasets demonstrate ACRE’s effec-028
tiveness, achieving significant improvements in029
both performance and efficiency. We provide030
our source codes in this anonymous repository.031

1 Introduction032

Recently, large language models (LLMs) have be-033

come widely used for daily information-seeking034

tasks, such as ChatGPT (OpenAI, 2023). How-035

ever, their capabilities are inherently limited by the036

difficulty of updating parametric knowledge. To037

address this, incorporating external knowledge as038

context has become a common approach (Zhao039

et al., 2024). In practice, this external knowledge040

often involves long contexts, such as long docu-041

ments or novels, which pose significant challenges042
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Figure 1: Comparison of ACRE, standard RAG, and
efficient long LLMs for information-seeking tasks. Stan-
dard RAG retrieves evidence without full-context per-
ception, and long LLMs struggle with contexts exceed-
ing their native window. ACRE overcomes these limi-
tations with a resource-efficient bi-layer KV cache and
query-guided refilling, capturing both global and local
information while enhancing performance.

due to the large KV activations accumulated during 043

inference, demanding substantial computational re- 044

sources and reducing efficiency (Xu et al., 2023; 045

Bai et al., 2024b; Zhang et al., 2024c). 046

To address the challenges posed by excessive KV 047

activations, previous works have proposed various 048

strategies: reducing the precision of activation ten- 049

sors (Liu et al., 2024; Xu et al., 2024), dividing long 050

contexts into smaller chunks for independent pro- 051

cessing (Lee et al., 2024; Yoon et al., 2024), or com- 052

pressing KV activations into shorter representations 053

through selection or sparse attention (Zhang et al., 054

2023; Li et al., 2024; Xiao et al., 2024; Jiang et al., 055

2024). Retrieval-Augmented Generation (RAG) 056

has also emerged as a promising approach, retriev- 057

ing precise evidence from long contexts to support 058

answer generation (Gao et al., 2024). 059

However, most existing methods follow a uni- 060

lateral strategy: either compromising the seman- 061

tic richness of KV activations to create compact 062

global representations, such as with quantized acti- 063

vations (Liu et al., 2024), or concentrating solely 064

on detailed local information, such as RAG meth- 065

ods (Gao et al., 2024). Moreover, most lightweight 066
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KV methods remain constrained by the native con-067

text length limit, leading to significant performance068

degradation when processing contexts that exceed069

this limit (Zhang et al., 2024b).070

In information-seeking tasks, we argue that the071

information needs of a user query can dynamically072

range from localized details to a global perspective,073

depending on the query’s complexity. For instance,074

given a novel, the query “What are the main charac-075

ters’ names?” involves localized information needs076

and can be answered using specific local evidence.077

In contrast, the query “How do the main characters078

drive the story’s development?” requires a global079

understanding of the entire book.080

To address dynamic information needs in081

information-seeking tasks, we propose ACRE, a082

method that employs a bilateral strategy to capture083

a global perspective across the full context and en-084

hance local details using query-guided activation085

refilling. Figure 1 presents an overview of ACRE’s086

framework along with a comparison against effi-087

cient long LLMs and RAG methods.088

Specifically, ACRE constructs a bi-layer KV ac-089

tivation cache for long contexts, comprising an L1090

cache and an L2 cache. The L1 cache captures091

compact yet global information from the full con-092

text, while the L2 cache retains localized, detailed093

information. Notably, the L1 cache is significantly094

smaller than the L2 cache. During the forward pass095

of the LLM, the L1 and L2 caches are interleaved096

into a nested structure, with each L1 tensor opti-097

mized to proxy the semantics of its corresponding098

L2 cache. To enhance efficiency, we replace the099

original full attention mechanism—where each to-100

ken attends to all preceding tokens—with a tailored101

selective attention mechanism. In this approach,102

tokens perform full attention on recent L1 and L2103

tokens but only attend to distant L1 tokens. This104

selective attention mechanism significantly reduces105

computational costs, enabling ACRE to process106

long contexts more efficiently.107

After the forward pass, the nested KV cache is108

decomposed back into separate L1 and L2 caches.109

For an input query, ACRE first uses the query to110

attend to the compact L1 cache. Based on the result-111

ing attention score distribution, ACRE selectively112

refills key entries of the L1 cache with the corre-113

sponding L2 cache entries, thereby enriching local114

details. This process is referred to as query-guided115

activation refilling.116

ACRE is trained through an efficient two-stage117

process. The first stage focuses on constructing the118

bi-layer KV cache, while the second stage targets 119

query-guided activation refilling. Throughout both 120

stages, ACRE updates only a small subset of model 121

parameters, ensuring training efficiency. 122

We evaluate ACRE across a wide range of 123

long-context information-seeking tasks (Bai et al., 124

2024b; Zhang et al., 2024c; Qian et al., 2024b). 125

The experimental results confirm the effectiveness 126

of ACRE. Our key contributions are summarized 127

as follows: (1) We design a flexible and efficient 128

bi-layer KV activation cache mechanism for long 129

contexts, which captures compact global informa- 130

tion while preserving local details. (2) We intro- 131

duce ACRE, a method that leverages the bi-layer 132

KV activation cache with a query-guided activa- 133

tion refilling mechanism to efficiently handle long- 134

context information-seeking tasks. (3) We demon- 135

strate that ACRE achieves superior performance 136

on long-context information-seeking tasks, effec- 137

tively handling contexts much longer than LLMs’ 138

typical context limits, while substantially reducing 139

computational resources and latency. 140

2 Method 141

2.1 Preliminary 142

The process of solving information-seeking tasks 143

using LLMs can be succinctly described as Y = 144

M(X ), where M(·) denotes the LLM, Y repre- 145

sents the output answer and X represents the in- 146

put sequence. X can take various forms, ranging 147

from a standalone query to a complex instruction 148

prompt. In this paper, we focus on information- 149

seeking tasks with long contexts. Therefore, we 150

define the input sequence X as comprising a query 151

q and a long context C, denoted by X = (C, q). 152

For the input X , a Transformer-based LLM com- 153

putes multi-head attention (MHA) as follows: 154

Q = X ·WQ, (1) 155

K = X ·WK , (2) 156

V = X ·WV , (3) 157

A(Q,K,V ) = softmax
(
Q ·K⊤
√
d

)
· V , (4) 158

where X represents the hidden states of the input 159

sequence X , and WQ, WK , and WV are the pro- 160

jection weight matrices for the query Q, key K, 161

and value V , respectively (Vaswani et al., 2023). 162

The attention function A(·) is applied iteratively 163

across multiple layers and attention heads. For 164

simplicity, we omit the layer and head indices. 165
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Figure 2: Overview of ACRE. (a) ACRE constructs the Bi-layer KV cache from a long context. (b) For an input
query, ACRE refills the L1 KV cache with query-relevant entries from the L2 KV cache and decodes the final
answer based on the refilled cache. (c) The two-stage optimization process used to train ACRE is illustrated.

The inference process of LLMs can be divided166

into two stages: (1) prefilling and (2) decoding (Liu167

et al., 2024). During the prefilling stage, the input168

sequence X is processed through each layer us-169

ing MHA, and the layer-wise key-value activations170

[K,V ] are cached. These cached activations are171

reused in the decoding stage to avoid redundant172

computations, enabling efficient processing. How-173

ever, as MHA computation has quadratic complex-174

ity with respect to the sequence length n, handling175

long contexts becomes computationally expensive.176

This often results in slow processing speeds and177

out-of-memory issues, particularly when dealing178

with long input contexts (Dong et al., 2023).179

To address the challenges posed by oversized180

KV caches for long contexts, we propose ACRE,181

a framework that constructs a Bi-layer KV Cache182

and employs a Query-Guided Refilling mechanism183

to enable a flexible KV cache that captures both184

global context and query-specific local details, en-185

suring efficient and high-quality answer decoding.186

2.2 Overview of ACRE187

Figure 2 provides an overview of ACRE. Specif-188

ically, for a information-seeking task with a long189

context C, ACRE organizes the long context into a190

bi-layer KV activation cache during the pre-filling191

stage, as shown in Figure 2 (a).192

The construction of the Bi-layer KV Cache be-193

gins by interleaving newly introduced L1 tokens194

into the input context. Through model forwarding, 195

a nested KV cache [K̃, Ṽ ] is obtained. This nested 196

KV cache is then decomposed into a Bi-layer KV 197

cache: the layer-1 (L1) cache, which is compact 198

and stores global information from the full long 199

context, and the layer-2 (L2) cache, which holds 200

detailed and localized information. Each tensor 201

in the L1 cache serves as a semantic proxy for a 202

corresponding sequence of tensors in the L2 cache. 203

We denote the L1 KV cache as [KL1,V L1] ∈ 204

Rm×d and the L2 KV cache as [KL2,V L2] ∈ 205

Rn×d. Here, the length of the L1 KV cache, m, 206

is significantly smaller than n, the length of the 207

L2 KV cache. To optimize memory usage, the L2 208

cache can be offloaded to CPU memory, while the 209

L1 cache is retained in GPU memory as a constant 210

cache after constructing the bi-layer KV cache. 211

This design significantly improves memory effi- 212

ciency in practical applications. 213

The Bi-layer KV Cache is constructed exclu- 214

sively for input contexts, enabling it to be reused 215

across different information-seeking tasks that 216

share the same context. Given an input query q, 217

ACRE utilizes q to attend to the L1 cache, comput- 218

ing attention scores. Based on these scores, ACRE 219

selectively refills the L1 cache by retrieving the 220

most informative entries from the L2 cache, which 221

are proxied by the corresponding most attentive 222

L1 cache tensors. This process recovers a partial 223

nested cache to support answer decoding and is re- 224
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ferred to as query-guided activation refilling, which225

is shown in Figure 2 (b).226

By leveraging both the L1 KV cache and the227

query-specific L2 KV cache, the final KV cache228

captures global information from the full long con-229

text while preserving local details. This design230

significantly enhances the performance of long-231

context information-seeking tasks. In the following232

sections, we provide the technical details of ACRE.233

2.3 Bi-Layer KV Cache234

To construct the bi-layer KV cache, we introduce235

a new type of token, called L1 tokens, denoted as236

XL1 = (xL11 , · · · , xL1m ). The original tokens of237

the input sequence are referred to as L2 tokens,238

denoted as XL2 = (x1, · · · , xn). By interleaving239

the L1 and L2 tokens, the input sequence X is240

transformed into a nested sequence X̃ :241

X̃ = (x1, · · · , xl, xL11 , xl+1, · · · , xn, xL1m ), (5)242

where each L1 token is inserted after every l L2243

tokens, acting as a semantic proxy for the preceding244

l L2 tokens. We refer to l as the L1/L2 interval.245

For the L1 tokens, we initialize an additional set of246

trainable weight matrices W L1
Q , W L1

K , and W L1
V ,247

while keeping the original weight matrices for L2248

tokens frozen.249

After constructing the nested sequence X̃ , we250

adapt the attention computation defined in Eq. (4).251

Specifically, for the key K, the original projection252

K = X ·WK is replaced with:253

K =

{
x ·W L1

K , if x is an L1 token,
x ·WK , if x is an L2 token,

(6)254

where x ∈ X . Through multi-head attention, this255

modification yields the nested key activations:256

K̃ = [k1, · · · ,kl,k
L1
1 , · · · ,kn,k

L1
m ]. (7)257

Similarly, the nested value activations Ṽ are com-258

puted as:259

Ṽ = [v1, · · · ,vl,vL1
1 , · · · ,vn,vL1

m ]. (8)260

By decomposing the nested KV cache, we obtain261

the bi-layer KV cache as follows:262

KL1 = [kL1
1 , · · · ,kL1

m ], (9)263

V L1 = [vL1
1 , · · · ,vL1

m ], (10)264

KL2 =
[
k1, · · · ,kl︸ ︷︷ ︸

kL1
1

, · · · ,kn−l, · · · ,kn︸ ︷︷ ︸
kL1
m

]
, (11)265

V L2 =
[
v1, · · · ,vl︸ ︷︷ ︸

vL1
1

, · · · ,vn−l, · · · ,vn︸ ︷︷ ︸
vL1
m

]
, (12)266

where k1, · · · ,kl︸ ︷︷ ︸
kL1
1

represents the proxying relation- 267

ship between the L1 cache and the L2 cache. 268

As previously mentioned, directly computing 269

full attention over the long sequence X is both com- 270

putationally expensive and resource-intensive. To 271

efficiently construct the bi-layer KV cache, we pro- 272

pose a selective attention mechanism. This mecha- 273

nism maintains a relatively small working context 274

window W , enabling current tokens to perform full 275

attention on recent L1 and L2 tokens while only 276

attending to distant L1 tokens. For instance, when 277

computing KV activations at step n, we prune the 278

previous KV cache [K̃, Ṽ ] as follows: 279

K̃ = [kL1
1 , · · · ,kL1

i ,kj , · · · ,kn,k
L1
m ], (13) 280

Ṽ = [vL1
1 , · · · ,vL1

i︸ ︷︷ ︸
distant L1 tokens

,vj , · · · ,vn,vL1
m︸ ︷︷ ︸

recent L1 / L2 tokens

], (14) 281

subject to the constraints | K̃ |≤ W and | Ṽ |≤ 282

W . Through this mechanism, we sequentially pro- 283

cess the full sequence X̃ into KV activations us- 284

ing a short working context window, achieving 285

both high computational efficiency and econom- 286

ical memory usage. 287

2.4 Query-Guided Activation Refilling 288

After constructing the bi-layer KV cache for the 289

context, we obtain the L1 KV cache [KL1,V L1], 290

which serves as a global yet compact representa- 291

tion of the full long context, and the L2 KV cache 292

[KL2,V L2], which provides detailed but memory- 293

intensive representations. To optimize memory 294

usage, the L1 KV cache is retained as a constant 295

cache in GPU memory, while the L2 KV cache is 296

offloaded to CPU memory. 297

For an input query q, relying solely on the L1 KV 298

cache is feasible but lacks query-specific detailed 299

information. To address this limitation, ACRE 300

proposes refilling the compact L1 KV cache with 301

selected entries from the L2 KV cache that are 302

most relevant for answering the query. Specifi- 303

cally, the query state Qq for the input query q is 304

computed as Qq = q · WQ. Using this query 305

state, the attention distribution is calculated as: 306

A = softmax
(

Qq ·KL1⊤
√
d

)
, where A ∈ Rh×m×t, 307

h is the number of attention heads, m is the length 308

of L1 cache, and t is the length of the query q. The 309

attention scores S are then obtained by applying 310

mean pooling: 311

S = Pooldim=0,2(A), S ∈ Rm, (15) 312
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where S serves as a guiding signal to select rele-313

vant entries from the L2 KV cache. The selection314

process is defined as:315

I = arg topk(S), (16)316

k =

⌊
min(W −m, η)

l

⌋
, (17)317

where k is dynamically determined based on the318

maximum length of the predefined working context319

window W or the maximum refilling length η, and320

I represents the set of selected indices.321

After selection, the L1 KV cache is refilled with322

the chosen entries from the L2 KV cache. For ex-323

ample, if I = {2}, the refilled KV cache becomes:324

K = [kL1
1 ,kl+1, · · · ,k2l,k

L1
2 , · · · ,kL1

m ], (18)325

V = [vL1
1 , vl+1, · · · ,v2l︸ ︷︷ ︸

refilled L2 KV cache

,vL1
2 , · · · ,vL1

m ]. (19)326

This refilling process is performed independently327

for each layer. With the refilled KV cache, ACRE328

decodes the final answer Y in a standard auto-329

regressive manner.330

2.5 Model Optimization331

ACRE is characterized by its Bi-layer KV Cache332

structure and Query-Guided Activation Refilling333

mechanism. Its effectiveness relies on two key abil-334

ities: (1) the L1 KV activations must faithfully rep-335

resent the L2 KV activations, and (2) given an input336

query q, the most relevant L2 KV activations must337

be efficiently retrieved. To optimize these abilities,338

we employ a two-stage optimization strategy.339

In stage 1, the objective is to maximize the se-340

mantic volume of the L1 KV activations to effec-341

tively represent the corresponding L2 KV activa-342

tions. This is achieved by predicting the next token343

using the previously accumulated L1 tokens and344

the recent L2 tokens. The optimization can be ex-345

pressed through a cross-entropy loss:346

Lstage-1 = −
T∑
t=1

logP(xt | xL1[1:i], x[j:t−1]), (20)347

where xL1[1:i] denotes the accumulated L1 tokens,348

and x[j:t−1] denotes the recent L2 tokens.349

In stage 2, the objective is to enable ACRE to350

retrieve the most relevant L2 KV activations for351

refilling the L1 KV cache based on an input query352

q. Since the L2 KV cache is proxied by the L1353

KV cache, accurately attending to the most useful354

L1 KV activations allows retrieval of the corre- 355

sponding L2 KV activations via the proxying re- 356

lationship. To achieve this, we optimize ACRE 357

using task-specific data comprising long contexts 358

and input queries. The optimization employs the 359

following loss function: 360

Lstage-2 = −
T∑
t=1

logP(yt | XL2, q), (21) 361

where y represents the ground-truth answer, and 362

q is the input query. This loss ensures that ACRE 363

learns to produce accurate answers solely based on 364

the L1 KV cache while maintaining its ability to 365

retrieve the most relevant L2 KV activations. 366

3 Experiments 367

3.1 Dataset 368

We evaluate ACRE and all baseline models across 369

12 information-seeking tasks from three public 370

long-context benchmarks: LongBench (Bai et al., 371

2024b), InfiniteBench (Zhang et al., 2024c), and 372

UltraDomain (Qian et al., 2024b). These 12 373

datasets are categorized as follows: (1) Com- 374

plex QA (Qian et al., 2024b): Financial, Legal, 375

Physics, Biology, Math, and CS. These tasks in- 376

volve practical, high-level queries with extra-long 377

contexts spanning specialized domains. Many 378

queries demand a global and in-depth understand- 379

ing of the full context, making them especially 380

challenging. (2) Single-Document QA: Narra- 381

tiveQA (Kociský et al., 2018), Qasper (Dasigi 382

et al., 2021), MultiFieldQA (Bai et al., 2024b), 383

and En.QA (Zhang et al., 2024c). (3) Multi- 384

Document QA: 2WikiMQA (Ho et al., 2020), and 385

MuSiQue (Trivedi et al., 2022). 386

3.2 Baseline Models 387

We compare ACRE with the following baselines: 388

Original: Directly fits the maximum context length 389

of the underlying LLMs. KIVI (Liu et al., 2024): 390

Quantizes KV activations into 4-bit precision. Bea- 391

con (Zhang et al., 2024a): Compresses the full 392

KV activations into beacon activations. SelfEx- 393

tend (Jin et al., 2024): Applies hierarchical po- 394

sitional encoding to extend the model’s context 395

window. MInference (Jiang et al., 2024): Dynami- 396

cally applies different sparse attention mechanisms 397

across all attention heads. StreamingLLM (Xiao 398

et al., 2024): Attends only to recent tokens and 399

sink tokens. RAG: Uses standard RAG pipelines 400
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Table 1: Main experimental results. The best results are in bold, and the second-best are underlined. All methods
use Qwen2.5-3B-Instruct as the underlying LLM. Baselines in the second block directly process the full context,
while those in the third block divide the context into chunks and find evidence using a retriever. In the second row,
ave(|C|)(k) means the average context length.

Dataset nar fin legal phy bio en.qa math cs qas mul 2wiki mus
ave(|C|)(k) 18.4 40.6 51.4 105.8 125.3 192.6 197.9 215.9 3.6 4.6 4.9 11.2

AVE. CONTEXT LENGTH > 16K AVE. LENGTH < 16K

Original 22.0 36.8 42.6 38.2 35.8 20.1 36.3 35.6 37.4 48.5 36.3 22.1

KIVI 21.1 27.0 39.5 35.3 33.2 15.6 32.1 33.4 37.1 46.1 35.0 22.1
Beacon 20.2 37.8 43.9 37.1 33.7 18.3 31.8 32.3 30.4 35.6 24.7 24.7
SelfExtent 20.8 37.5 40.0 29.1 29.9 11.4 31.6 30.4 36.0 49.6 37.1 25.1
StreamingLLM 18.8 27.3 26.2 31.4 27.4 8.3 30.0 26.9 33.4 38.6 32.1 12.2
MInference 22.2 35.6 37.2 32.9 28.5 8.9 30.3 27.1 36.2 48.6 36.0 23.5

RAG 18.9 36.9 38.6 22.1 18.4 11.3 19.2 19.3 38.6 46.6 37.8 20.8
RQRAG 19.0 37.0 39.0 28.0 23.0 12.0 26.1 24.1 37.6 47.3 37.4 21.8
MemoRAG 24.0 41.5 44.8 36.9 33.2 13.2 33.1 33.4 34.1 49.1 38.0 26.0

ACRE 27.8 46.4 47.7 41.6 38.3 23.6 41.9 45.9 39.6 50.0 36.4 26.2

to retrieve relevant evidence from the full context.401

RQRAG (Chan et al., 2024): Rewrites the input402

query into sub-queries and retrieves evidence for403

each sub-query. MemoRAG (Qian et al., 2024b):404

Applies a memory model to form a compact global405

memory over the full context, providing answer406

clues that assist the retrieval process for better evi-407

dence retrieval.408

In the main experiments (Section 3.3), we use409

Qwen2.5-3B-Instruct as the underlying model. To410

analyze the impact of using different underlying411

models, we also experiment with Llama3.2-3B-412

Instruct and Qwen2.5-7B-Instruct in Section 3.4.413

All three LLMs have a native context window of414

128K (Yang et al., 2024; MetaAI, 2024). The im-415

plementation details of ACRE and all baselines are416

in Appendix A.417

3.3 Main Results418

In Table 3.3, we present the results of the main419

experiments, demonstrating that ACRE outper-420

forms all baselines across most datasets. These421

results highlight the effectiveness of ACRE’s de-422

sign. Specifically, we derive the following findings:423

(1) ACRE consistently outperforms the baseline424

approach of feeding the full context directly into425

LLMs. This improvement stems not only from426

ACRE’s ability to process contexts exceeding the427

native LLM’s context window but also from its428

precise focus on query-relevant local information,429

effectively filtering out irrelevant details through430

query-guided activation refilling. (2) Baselines in431

the second block generally perform worse than di-432

rectly feeding the full context into LLMs. This is433

attributed to semantic loss caused by compressing 434

full KV activations. In contrast, ACRE leverages 435

its bi-layer KV cache and query-guided activation 436

refilling to recover local detailed semantics from 437

the L2 cache that are absent in the L1 cache, re- 438

sulting in superior performance. (3) Baselines in 439

the third block use retrieval tools to extract pre- 440

cise evidence from long contexts. While effec- 441

tive for queries with clear information needs, these 442

methods struggle with complex queries that require 443

a higher-level understanding of the full context. 444

ACRE overcomes this limitation by utilizing the 445

global information in the L1 cache and dynami- 446

cally refilling it with query-relevant local details 447

from the L2 cache, thereby adapting to the varying 448

information needs of different queries. 449

3.4 Ablation Study 450

To thoroughly validate the effectiveness of our 451

method design, we perform detailed ablation stud- 452

ies as follows: 453

(1) Method Design and Model Selection: Fig- 454

ure 3 presents ablation results across different 455

LLMs and variations in model design. First, we 456

evaluate the role of training stages in model per- 457

formance. Without the two-stage training process, 458

ACRE reverts to a vanilla LLM, which performs 459

significantly worse than ACRE. Stage-1 training 460

enables ACRE to construct the bi-layer KV activa- 461

tion cache, thereby improving its long-context pro- 462

cessing capabilities. When both stages are applied, 463

ACRE achieves the best performance, demonstrat- 464

ing the effectiveness of its optimization design. 465

Second, to determine if ACRE’s effectiveness 466
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Figure 3: Ablation Study on Model Design Variations
Across Different LLMs.
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Figure 4: Analysis of the maximum refilling length
η (left) and the impact of the L1/L2 interval l (right).

stems from its training data, we fine-tune a vanilla467

model using ACRE’s training data via SFT, produc-468

ing SFT Vanilla. While SFT improves the vanilla469

model by enhancing its QA capabilities, it still un-470

derperforms compared to ACRE. This highlights471

the unique advantages of ACRE’sdesign.472

Lastly, we replace ACRE’s underlying LLM473

with Qwen2.5-7B (a scaled-up version of the same474

model) and Llama3.2-3B (a model of similar scale475

but different architecture). As shown in Figure 3,476

ACRE’s design consistently proves effective across477

models of varying scales and architectures, con-478

firming its generalizability.479

(2) Impact of Parameter Choice: As described480

in Section 2, ACRE’s performance may be influ-481

enced by two hyperparameters: the maximum re-482

filling length of KV activations η and the L1/L2483

interval l. To investigate their impact, we conduct484

experiments with different values of η and l. Fig-485

ure 4 presents the results of this analysis.486

Specifically, in the left figure, we observe that487

the impact of the refilled activation length varies by488

task. For tasks with queries requiring explicit in-489

formation (e.g., nar and en.qa), answer decoding 490

relies on precise local information. Here, ACRE’s 491

performance peaks at a reasonable refilled length 492

but declines as excessive refilling introduces noise, 493

which biases the decoding process. Conversely, 494

for tasks with queries requiring the integration of 495

global information, ACRE’s performance consis- 496

tently improves with longer refilled lengths. This is 497

because the L1 cache already provides global infor- 498

mation, and additional refilled activations enhance 499

local context. 500

The right figure shows the impact of the L1/L2 501

interval. We find that ACRE’s performance gen- 502

erally decreases as the L1/L2 interval increases. 503

Larger intervals require L1 tokens to summarize 504

more semantics from subsequent L2 tokens, poten- 505

tially overloading the L1 cache. However, larger 506

intervals result in a compact L1 KV cache, offer- 507

ing efficiency. In practical applications, users can 508

adjust parameters to balance efficiency and effec- 509

tiveness based on available resources. 510

In summary, ACRE outperforms directly using 511

vanilla LLMs in most parameter settings, requiring 512

significantly fewer computational resources while 513

achieving higher efficiency. 514

3.5 Efficiency Analysis 515

To evaluate ACRE’s efficiency compared to base- 516

lines in processing long contexts at different scales, 517

we conduct comparative experiments using the 518

vanilla LLM, the efficient attention method MInfer- 519

ence, and ACRE. 520

The results, presented in Table 2, lead to the 521

following conclusions: (1) ACRE consistently pro- 522

cesses long contexts at different scale with com- 523

parable or lower GPU resource usage. This effi- 524

ciency is attributed to the bi-layer KV activation 525

design, which avoids directly processing the full 526

KV activations. (2) ACRE’s efficiency advantage 527

becomes more pronounced with extremely long 528

contexts (e.g., over 512K), where the vanilla LLM 529

runs out of memory, and MInference faces a high 530

risk of out of memory while require longer latency 531

than ACRE. (3) Thanks to its query-guided acti- 532

vation refilling mechanism, ACRE utilizes only 533

the compact L1 KV activations and query-relevant 534

L2 KV activations for answer decoding. This en- 535

ables ACRE to process contexts longer than the 536

native window of the LLM while maintaining an- 537

swer quality. In contrast, baseline models generate 538

nonsensical answers when exceeding LLM’s native 539

context length. 540
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Table 2: Efficiency comparison of Vanilla LLM, MInference, and ACRE. Peak GPU memory (mem, GiB), time
latency (lat, seconds/query), and answer readability (rdbl) are evaluated using 20 samples with contexts over
1024K, truncated to target lengths, and a max generation length of 100 tokens. Tests are conducted on a single
NVIDIA A800 80G GPU. Average scores are reported, with the best in each block highlighted in bold.

Length 64K 128K 256K 512K 1024K

mem lat rdbl mem lat rdbl mem lat rdbl mem lat rdbl mem lat rdbl

QWEN2.5-3B-INSTRUCT-128K

Vanilla 18.5 12.1 ✓ 27.9 36.3 ✓ 49.1 103.2 ✗ OOM - ✗ OOM - ✗
MInfer. 15.5 29.2 ✓ 22.0 33.6 ✓ 28.0 57.1 ✗ 39.1 58.9 ✗ 47.2 79.6 ✗
ACRE 20.8 8.4 ✓ 23.0 14.3 ✓ 27.6 28.1 ✓ 44.3 48.2 ✓ 46.8 53.6 ✓

QWEN2.5-7B-INSTRUCT-128K

Vanilla 31.9 21.2 ✓ 46.1 45.3 ✓ 78.3 129.6 ✗ OOM - ✗ OOM - ✗
MInfer. 27.9 29.1 ✓ 34.3 35.6 ✓ 48.1 81.2 ✗ 74.2 132.7 ✗ OOM - ✗
ACRE 31.3 10.5 ✓ 35.1 18.0 ✓ 43.0 37.1 ✓ 72.1 85.6 ✓ 75.6 90.4 ✓

In summary, ACRE demonstrates significant ad-541

vantages in handling long contexts efficiently and542

reliably compared to baseline methods.543

4 Related Work544

Long-context processing is a critical capability of545

LLMs (Zhao et al., 2024). The most fundamental546

approach to enhancing this ability is training LLMs547

on long texts, either sampled from raw corpora or548

synthesized (Xiong et al., 2024; Mohtashami and549

Jaggi, 2024; Fu et al., 2024; Bai et al., 2024a). Con-550

sequently, the native context window of popular551

LLMs has increased significantly, from the earlier552

4K to the current 128K (Peng et al., 2023; Touvron553

et al., 2023; Yang et al., 2024).554

In addition to directly increasing the context win-555

dow, some methods employ strategic positional en-556

coding to enable LLMs to process contexts longer557

than their native window, as demonstrated by (Chen558

et al., 2023b; Song et al., 2023; Liu et al., 2023;559

Jin et al., 2024). However, when processing long560

contexts, LLMs generate large key-value (KV) ac-561

tivations, which consume substantial resources and562

reduce efficiency. To address this, many works563

aim to make KV activations more compact and564

lightweight (Liu et al., 2024; Xu et al., 2024). For565

example, KIVI focuses on reducing the precision566

of KV activations to 2-bit, resulting in significantly567

lighter KV representations (Liu et al., 2024). Other568

methods selectively attend to a small portion of569

KV activations through compression or sparse at-570

tention mechanisms. For instance, StreamingLLM571

proposes attending only to recent tokens and sink572

tokens to maintain compact KV activations (Xiao573

et al., 2024), similar idea also adopted by (Li574

et al., 2024; Zhang et al., 2023; Jiang et al., 2024;575

Zhang et al., 2024a). Beyond optimizing KV activa- 576

tions, alternative methods such as agent-based ap- 577

proaches (Qian et al., 2024a; Lee et al., 2024) and 578

retrieval-augmented generation (Xu et al., 2023; 579

Zhu et al., 2024) have been applied to facilitate 580

long-context processing. These methods split the 581

long context into chunks and retrieve evidence us- 582

ing retrievers or agents. They work well for explicit 583

queries but struggle with implicit ones requiring 584

full-context aggregation. 585

Most existing methods either compact global KV 586

activations into a lightweight form or prune them 587

into shorter forms, often failing to balance global 588

perspective with local informativeness. This limita- 589

tion can compromise performance in information- 590

seeking scenarios, where information needs may 591

dynamically range from global to local. 592

5 Conclusion 593

In this paper, we propose a method, ACRE, de- 594

signed to adapt to the dynamic information needs 595

of long-context information-seeking tasks. ACRE 596

constructs a bi-layer KV activation cache struc- 597

ture for long contexts, where the L1 KV cache 598

stores compact, global information, and the L2 599

KV cache captures detailed, local information. Us- 600

ing query-guided activation refilling, ACRE identi- 601

fies query-specific evidence from the L2 KV cache 602

and refills this local information into the L1 KV 603

cache, resulting in nested KV activations that ef- 604

fectively combine a global perspective with local 605

details. Through experiments on a wide range of 606

information-seeking datasets, we demonstrate the 607

effectiveness of ACRE in simultaneously improv- 608

ing the performance and efficiency of long-context 609

processing for information-seeking tasks. 610
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Limitation611

In this paper, we propose ACRE, a method de-612

signed to adapt to the dynamic information needs613

of long-context information-seeking tasks. ACRE614

constructs a bi-layer KV activation cache to balance615

global context perception and local detail preserva-616

tion, leveraging query-guided activation refilling to617

enhance performance and efficiency. While ACRE618

demonstrates significant advancements, several lim-619

itations are worth noting:620

(1) Our method is primarily designed for621

information-seeking tasks, a major subset of long-622

context processing. This focus is largely driven623

by the availability of training data, as information-624

seeking tasks benefit from abundant QA datasets.625

While ACRE has the potential to adapt to general626

long-context tasks, further exploration with diverse627

task-specific data would be necessary to validate628

its broader applicability.629

(2) ACRE introduces additional parameters for630

constructing the bi-layer KV cache, increasing631

the model size. For example, using Qwen2.5-3B-632

Instruct, ACRE adds approximately 17.2% more633

parameters, requiring additional GPU memory to634

load the model. However, in long-context tasks,635

the majority of GPU memory is consumed by KV636

activations rather than model parameters. Our effi-637

ciency analysis confirms that ACRE reduces overall638

GPU memory consumption when processing long639

contexts, mitigating this limitation to some extent.640

(3) A portion of our training data is syntheti-641

cally generated by commercial LLMs (e.g. GPT-4),642

which may introduce biases inherited from the orig-643

inal corpus or the LLMs used. While such biases644

could impact performance, many current commer-645

cial LLMs incorporate robust safeguards that help646

mitigate these issues. Nonetheless, addressing po-647

tential biases in synthetic data remains an area for648

future improvement.649
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A Implementation details862

For ACRE training, in stage 1, we sample long863

text spans from the RedPajama (Soboleva et al.,864

2023) dataset to create a training set of 2 billion865

tokens. The sampled text lengths are limited to866

a minimum of 4K and a maximum of 64K to-867

kens. We randomly choose L1/L2 interval from868

l ∈ {8, 16, 32, 64, 128}. The model is trained for869

one epoch with a batch size of 8 and a learning870

rate of 5 × 10−5. In stage 2, we collect 28,400871

QA SFT data points from LongAlpaca (Chen et al.,872

2024) and synthetic data from (Zhang et al., 2024a;873

Qian et al., 2024b). We apply the same L1 token874

insertion strategy during training. The model is875

trained for three epochs with a batch size of 8 and876

a learning rate of 1× 10−5 for two epochs. Stage-1877

training takes around 7 hours while stage-2 training878

takes around 13 hours.879

During the two-stage training process, we opti- 880

mize only the newly initialized parameters, keep- 881

ing the original parameters frozen. The number 882

of trainable parameters varies depending on the 883

model. For instance: (1) When using Qwen2.5-3B- 884

instruct, ACRE has around 503M trainable param- 885

eters, accounting for 17.2% of the original parame- 886

ters. (2) When using Llama3.2-3B-instruct, ACRE 887

has around 780M trainable parameters, accounting 888

for 25.6% of the original parameters. This differ- 889

ence arises from variations in the implementation 890

of multi-head attention. 891

For the main experiments, we configure ACRE 892

with an L1/L2 interval l of 16, a maximum refill- 893

ing length η of 4,096, and the maximum work- 894

ing context window W of 32K tokens. For the 895

Bi-Layer KV Cache construction, we utilize the 896

following prompt. During the Query-Guided Ac- 897

tivation Refilling process, we adopt task-specific 898

prompts from the official benchmark repositories, 899

without inserting the context into the task prompt. 900

Prompt for Bi-Layer KV Cache Con-
struction

You are provided with a long article. Read
the article carefully.
After reading, you will be asked to perform
specific tasks based on the content of the
article.
Now, the article begins:
**Article Content:** [context]
The article ends here.
Next, follow the instructions provided to
complete the tasks.

901

For RAG, RQ-RAG, and MemoRAG, we em- 902

ploy BGE-M3 (Chen et al., 2023a) as the retriever 903

and set the hit number to 5. For methods that divide 904

the long context into chunks, we use the semantic- 905

text-splitter tool, chunking the context to a maxi- 906

mum length of 512 tokens. 907

For KIVI, we quantize the KV activations to 4- 908

bit precision. For Beacon, we use the official train- 909

ing code to fine-tune Qwen2.5-3B-Instruct, setting 910

the compression ratio to 8 during inference. For 911

SelfExtend, we set the group size to 32 and the 912

window size to 2048, which is approximate by the 913

official recommended strategy. For StreamingLLM, 914

we use the SinkCache implementation from Trans- 915

formers, configuring the window size to 4096 and 916
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the number of sink tokens to 8. Lastly, for Mem-917

oRAG, we utilize the officially released memorag-918

qwen2-7b-inst as the memory model.919

All methods are evaluated using the task prompts920

provided in the official repositories of their921

corresponding benchmarks1. Additionally, we922

use the same generation hyper-parameters (task-923

dependent) for ACRE and all baseline models.924

All training and evaluation experiments were925

conducted using 8 NVIDIA A800-80G GPUs.926

1LongBench: https://github.com/THUDM/LongBench,
InfiniteBench: https://github.com/OpenBMB/
InfiniteBench
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