
Optimal Time Complexities of
Parallel Stochastic Optimization Methods

Under a Fixed Computation Model

Alexander Tyurin
KAUST

Saudi Arabia
alexandertiurin@gmail.com

Peter Richtárik
KAUST

Saudi Arabia
richtarik@gmail.com

Abstract

Parallelization is a popular strategy for improving the performance of iterative
algorithms. Optimization methods are no exception: design of efficient parallel
optimization methods and tight analysis of their theoretical properties are important
research endeavors. While the minimax complexities are well known for sequential
optimization methods, the theory of parallel optimization methods is less explored.
In this paper, we propose a new protocol that generalizes the classical oracle frame-
work approach. Using this protocol, we establish minimax complexities for parallel
optimization methods that have access to an unbiased stochastic gradient oracle
with bounded variance. We consider a fixed computation model characterized
by each worker requiring a fixed but worker-dependent time to calculate stochas-
tic gradient. We prove lower bounds and develop optimal algorithms that attain
them. Our results have surprising consequences for the literature of asynchronous
optimization methods.

1 Introduction

We consider the nonconvex optimization problem

min
x∈Q

{
f(x) := Eξ∼D [f(x; ξ)]

}
, (1)

where f : Rd × Sξ → R, Q ⊆ Rd, and ξ is a random variable with some distribution D on Sξ. In
machine learning, Sξ could be the space of all possible data, D is the distribution of the training
dataset, and f(·, ξ) is the loss of a data sample ξ. In this paper we address the following natural setup:

(i) n workers are available to work in parallel,
(ii) the ith worker requires τi seconds1 to calculate a stochastic gradient of f .

The function f is L–smooth and lower-bounded (see Assumptions 7.1–7.2), and stochastic gradients
are unbiased and σ2-variance-bounded (see Assumption 7.3).

1.1 Classical theory

In the nonconvex setting, gradient descent (GD) is an optimal method with respect to the number of
gradient (∇f) calls (Lan, 2020; Nesterov, 2018; Carmon et al., 2020) for finding an approximately
stationary point of f . Obviously, a key issue with GD is that it requires access to the exact gradients

1Or any other unit of time.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

∇f of the function f. However, in many practical applications, it can be infeasible to calculate
the gradient of E [f(·; ξ)] analytically. Moreover, even if this is possible, e.g., if the distribution D
is described by m possible samples, so that Eξ∼D [f(·; ξ)] = (1/m)

∑m
i=1 f(·; ξi), m can be huge

(Krizhevsky et al., 2017), and gradient evaluation can be arbitrarily expensive.

Stochastic Gradient Descent. Due to the above-mentioned problem, machine learning literature is
preoccupied with the study of algorithms that can work with stochastic gradients instead (Lan, 2020;
Ghadimi and Lan, 2013). For all x ∈ Rd, we assume that the n workers have access to independent,
unbiased, and σ2-variance-bounded stochastic gradients ∇̂f(x, ξ) (see Assumption 7.3), where ξ is
a random sample from D. Under such assumptions, with one worker, stochastic gradient descent
(SGD), i.e., the method xk+1 = xk − γ∇̂f(xk; ξk), where ξk are i.i.d. random samples from D,
is known to be optimal with respect to the number of stochastic gradient calls (Ghadimi and Lan,
2013; Arjevani et al., 2022). SGD guarantees convergence to an ε–stationary point in expectation
after O

(
L∆/ε + σ2L∆/ε2

)
stochastic gradient evaluations, where ∆ := f(x0)− f∗ and x0 ∈ Rd is a

starting point.

1.2 Parallel optimization methods

Using the bounds from Section 1.1, one can easily estimate the performance of these algorithms in
real systems. For instance, if it takes τ1 seconds to calculate a stochastic gradient with one worker,
then SGD guarantees to return a solution after

O

(
τ1

(
L∆

ε
+

σ2L∆

ε2

))
seconds. If instead of a single worker we can access n workers that can calculate stochastic gradients
in parallel, we can consider the following classical parallel methods:

Minibatch SGD. The minibatch SGD method (Minibatch SGD), i.e., the iterative process

xk+1 = xk − γ
1

n

n∑
i=1

∇̂f(xk; ξki),

where γ is a stepsize, ξki are i.i.d. samples from D, and the gradients ∇̂f(xk; ξki) are calculated in
parallel. This method converges after O

(
L∆/ε + σ2L∆/nε2

)
iterations (Cotter et al., 2011; Goyal

et al., 2017; Gower et al., 2019) and after

O

(
τmax

(
L∆

ε
+

σ2L∆

nε2

))
(2)

seconds, where τmax := maxi∈[n] τi is the processing time associated with the slowest machine2.

Although the time complexity (2) of Minibatch SGD improves with the number of workers n, in
general, this does not guarantee better performance due to the delay τmax. In real systems, parallel
computations can be very chaotic, e.g., they can be slow due to inconsistent network communications,
or GPU computation delays (Dutta et al., 2018; Chen et al., 2016).

Asynchronous SGD. We now consider the asynchronous SGD method (Asynchronous SGD) (Recht
et al., 2011; Nguyen et al., 2018; Arjevani et al., 2020; Feyzmahdavian et al., 2016) described by

1. Receive ∇̂f(xk−δk ; ξk−δk) from a worker,

2. xk+1 = xk − γk∇̂f(xk−δk ; ξk−δk),

3. Ask the worker to calculate ∇̂f(xk+1; ξk+1),

where ξk are i.i.d. samples from D, and δk are gradient iteration delays. This is an asynchronous
method: the workers work independently, finish calculations of stochastic gradients with potentially
large and chaotic delays δk, and the result of their computation is applied as soon as it is ready, without
having to wait for other workers. Asynchronous SGD was also considered in the heterogeneous
setting (see details in Section A.2).

2Further, we assume that the last nth worker is the slowest one: τn = τmax.

2

Table 1: Homogeneous and Heterogeneous Case. The required time to get an ε-stationary point
(E[∥∇f(x̂)∥2] ≤ ε) in the nonconvex setting, where ith worker requires τi seconds to calculate a
stochastic gradient. We assume that 0 < τ1 ≤ · · · ≤ τn.

Homogeneous Case

Method Time Complexity

Minibatch SGD τn
(

L∆
ε + σ2L∆

nε2

)
Asynchronous SGD
(Cohen et al., 2021)

(Koloskova et al., 2022)
(Mishchenko et al., 2022)

(
1
n

n∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

nε2

)

Rennala SGD
(Theorem 7.5) min

m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

mε2

)]
Lower Bound
(Theorem 6.4) min

m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

mε2

)]

Heterogeneous Case

Method Time Complexity

Minibatch SGD τn
(

L∆
ε + σ2L∆

nε2

)
Malenia SGD
(Theorem A.4) τn

L∆
ε +

(
1
n

n∑
i=1

τi

)
σ2L∆
nε2

Lower Bound
(Theorem A.2) τn

L∆
ε +

(
1
n

n∑
i=1

τi

)
σ2L∆
nε2

Cohen et al. (2021); Mishchenko et al. (2022); Koloskova et al. (2022) provide the current state-of-
the-art analysis of Asynchronous SGD. In particular, they prove that Asynchronous SGD converges
after O

(
nL∆/ε + σ2L∆/ε2

)
iterations. To show the superiority of Asynchronous SGD, Mishchenko

et al. (2022) consider the following fixed computation model: the ith worker requires τi seconds to
calculate stochastic gradients. In this setting, Asynchronous SGD converges after

O

(1

n

n∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

nε2

) (3)

seconds (we reprove this fact in Section L). Thus, Asynchronous SGD can be (1/n)
∑n

i=1
τmax/τi

times faster than Minibatch SGD.

Besides Asynchronous SGD, many other strategies utilize parallelization (Dutta et al., 2018; Wood-
worth et al., 2020; Wu et al., 2022), and can potentially improve over Minibatch SGD.

2 Problem and Contribution

In this paper, we seek to find the optimal time complexity in the setting from Section 1: our goal is to
provide a lower bound and a method that attains it. Our main contributions are:

(i) Lower bound. In Sections 4 & 5, we define new Protocols 2 & 3, and a new complexity
measure mtime (see (6)), which we believe are more appropriate for the analysis of parallel
optimization algorithms. In Section 6, we prove the time complexity lower bound for
(nonconvex) functions and algorithms that work with parallel asynchronous oracles.

(i) Optimal method. In Section 7, we develop a minimax optimal method—Rennala3 SGD—
that attains this lower bound.

In addition, we investigate several other related questions. As an independent result, in Section 8
we prove that all methods which synchronize workers in each iteration (e.g., Minibatch SGD) have
provably worse time complexity than asynchronous methods (e.g., Rennala SGD (see Method 4),
Asynchronous SGD). In Section A, we extend our theory to the heterogeneous case, in which the
workers have access to different distributions (datasets), and provide a lower bound and a new method
that attains it. In Section B, we provide the optimal time complexities in the convex setting.

3
https://eldenring.wiki.fextralife.com/Rennala+Queen+of+the+Full+Moon: Rennala, Queen of the Full Moon is a Legend Boss in Elden Ring.

Though not a demigod, Rennala is one of the shardbearers who resides in the Academy of Raya Lucaria. Rennala is a powerful sorceress, head of the Carian Royal
family, and erstwhile leader of the Academy.

3

https://eldenring.wiki.fextralife.com/Rennala+Queen+of+the+Full+Moon

3 Classical Oracle Protocol

Let us recall the classical approach to obtaining lower bounds for optimization algorithms. We need
to define a function class F , an oracle class O, and an algorithm class A. We then analyze the
complexity of an algorithm A = {Ak}∞k=0 ∈ A, using the following protocol:

Protocol 1 Classical Oracle Protocol
1: Input: function f ∈ F , oracle and distribution (O,D) ∈ O(f), algorithm A ∈ A
2: for k = 0, . . . ,∞ do
3: xk = Ak(g1, . . . , gk) ▷ x0 = A0 for k = 0.

4: gk+1 = O(xk, ξk+1), ξk+1 ∼ D
5: end for

More formally, in first-order stochastic optimization, the oracle class O returns a random mapping
O : Rd × Sξ → Rd based on a function f ∈ F and a distribution D; we use the notation
(O,D) ∈ O(f). An algorithm A = {Ak}∞k=0 ∈ A is a sequence such that

Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ Rd ∀k ≥ 1, and A0 ∈ Rd. (4)

Typically, an oracle O returns an unbiased stochastic gradient that satisfies Assumption 7.3: O(x, ξ) =

∇̂f(x; ξ) for all x ∈ Rd and ξ ∈ Sξ. Let us fix an oracle class O. Then, in the nonconvex first-order
stochastic setting, we analyze the complexity measure

moracle (A,F) := inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf
{
k ∈ N

∣∣∣E [∥∥∇f(xk)
∥∥2] ≤ ε

}
, (5)

where the sequence {xk}k is generated by Protocol 1. Virtually all previous works are concerned with
lower bounds of optimization problems using Protocol 1 and the complexity measure (5) (Nemirovskij
and Yudin, 1983; Carmon et al., 2020; Arjevani et al., 2022; Nesterov, 2018).

4 Time Oracle Protocol

In the previous sections, we discuss the classical approach to estimating the complexities of algorithms.
Briefly, these approaches seek to quantify the worst-case number of iterations or oracle calls that
are required to find a solution (see (5)), which is very natural for sequential methods. However, and
this is a key observation of our work, this approach is not convenient if we want to analyze parallel
methods. We now propose an alternative protocol that can be more helpful in this situation:

Protocol 2 Time Oracle Protocol
1: Input: functions f ∈ F , oracle and distribution (O,D) ∈ O(f), algorithm A ∈ A
2: s0 = 0
3: for k = 0, . . . ,∞ do
4: (tk+1, xk) = Ak(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (sk+1, gk+1) = O(tk+1, xk, sk, ξk+1), ξk+1 ∼ D
6: end for

Protocol 2 is almost identical to Protocol 1 except for one key detail: Protocol 2 requires the
algorithms to return a sequence {tk+1}∞k=1 such that tk+1 ≥ tk ≥ 0 for all k ≥ 0. We assume that
t0 = 0. We also assume that the oracles take to the input the states sk and output them (the role of
these states will be made clear later). In this case, we provide the following definition of an algorithm.

Definition 4.1. An algorithm A = {Ak}∞k=0 is a sequence such that

Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0 × Rd ∀k ≥ 1, A0 ∈ R≥0 × Rd,

4

and, for all k ≥ 1 and g1, . . . , gk ∈ Rd, tk+1 ≥ tk, where tk+1 and tk are defined as (tk+1, ·) =
Ak(g1, . . . , gk) and (tk, ·) = Ak−1(g1, . . . , gk−1).

Let us explain the role of the sequence {tk}k. In Protocol 1, an algorithm outputs a point xk and
then asks the oracle: Provide me a gradient at the point xk. In contrast, in Protocol 2 an algorithm
outputs a point xk and a time tk+1, and asks the oracle: Start calculating a gradient at the point xk

at a time tk+1. We have a constraint that tk+1 ≥ tk for all k ≥ 0, which means that the algorithm is
not allowed to travel into the past.

Using Protocol 2, we propose to use another complexity measure instead of (5):

mtime (A,F) := inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [infk∈St

∥∥∇f(xk)
∥∥2] ≤ ε

}
,

St :=
{
k ∈ N0

∣∣tk ≤ t
}
,

(6)

where the sequences tk and xk are generated by Protocol 2. In (5), we seek to find the worst-case
number of iterations k required to get E

[∥∥∇f(xk)
∥∥2] ≤ ε for any A ∈ A. In (6), we seek to find

the worst-case case time t required to find an ε-stationary point for any A ∈ A.

We now provide an example, considering an oracle that calculates a stochastic gradient in τ seconds.
Let us define the appropriate oracle for this problem:

O∇̂f
τ : R≥0︸︷︷︸

time

× Rd︸︷︷︸
point

× (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
input state

×Sξ → (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that O∇̂f
τ (t, x, (st, sx, sq), ξ) =


((t, x, 1), 0), sq = 0,

((st, sx, 1), 0), sq = 1 and t < st + τ,

((0, 0, 0), ∇̂f(sx; ξ)), sq = 1 and t ≥ st + τ,

(7)

and ∇̂f is a mapping such that ∇̂f : Rd × Sξ → Rd. Further, we additionally assume that ∇̂f is an
unbiased σ2-variance-bounded stochastic gradient (see Assumption 7.3).

Note that the oracle O∇̂f
τ emulates the behavior of a real worker. Indeed, the oracle can return three

different outputs. If sq = 0, it means that the oracle has been idle, then “starts the calculation” of the
gradient at the point x, and changes the state sq to 1. Also, using the state, it remembers the time
moment t when the calculation began and the point x. Next, if sq = 1 and t < st + τ, it means the
oracle is still calculating the gradient, so if an algorithm sends time t such that t < st + τ, then it
receives the zero vector. Finally, if sq = 1, as soon as an algorithm sends time t such that t ≥ st + τ,
then the oracle will be ready to provide the gradient. Note that the oracle provides the gradient
calculated at the point x that was requested when the oracle was idle. Thus, the time between the
request of an algorithm to get the gradient and the time when the algorithm gets the gradient is at
least τ seconds.

In Protocol 2, we have a game between an algorithm A ∈ A and an oracle class O, where algorithms
can decide the sequence of times tk. Thus, an algorithm wants to find enough information from an
oracle as soon as possible to obtain ε–stationary point.

Let us consider an example. For the oracle class O that generates the oracle from (7), we can
define the SGD method in the following way. We take any starting point x0 ∈ Rd, a step size
γ = min {1/L, ε/2Lσ2} (see Theorem D.8) and define Ak : (Rd × · · · × Rd)︸ ︷︷ ︸

k times

→ R≥0 ×Rd such that

Ak(g1, . . . , gk) =


(
τ ⌊k/2⌋ , x0 − γ

k∑
j=1

gk
)
, k (mod 2) = 0,(

τ (⌊k/2⌋+ 1) , 0
)
, k (mod 2) = 1,

(8)

for all k ≥ 1, and A0 = (0, x0). Let us explain the behavior of the algorithm. In the first step of
Protocol 2, when k = 0, the algorithm requests the gradient at the point x0 at the time t1 = 0 since

5

A0 = (0, x0). The oracle O changes the state from s0q = 0 to s1q = 1 and remembers the point x0 in
the state s1x. In the second step of the protocol, when k = 1, the algorithm calls the oracle at the time
τ (⌊k/2⌋+ 1) = τ. In the oracle, the condition t2 ≥ s1t + τ ⇔ τ ≥ 0 + τ is satisfied, and it returns
the gradient at the point x0. Note that this can only happen if an algorithm does the second call at a
time that is greater or equal to τ.

One can see that after τK seconds, the algorithm returns the point x2K = x0 −
γ
∑K−1

j=0 ∇̂f(x2j ; ξ2j+1), where ξj ∼ D are i.i.d. random variables. The algorithm is equiva-
lent to the SGD method that converges after K = O

(
L∆/ε + σ2L∆/ε2

)
steps for the function

class F∆,L (see Definition 6.1) for x0 = 0. Thus, the complexity mtime ({A},F∆,L) equals
O
(
τ ×

(
L∆/ε + σ2L∆/ε2

))
.

Actually, any algorithm that was designed for Protocol 1 can be used in Protocol 2 with the oracle (7).
Assuming that we have mappings Ak : Rd × · · · ×Rd → Rd for all k ≥ 1, we can define mappings
Âk : Rd × · · · × Rd → R≥0 × Rd via

Âk(g1, . . . , gk) =


(
τ ⌊k/2⌋ , A⌊k/2⌋(g2, g4, . . . , g2k)

)
, k (mod 2) = 0,(

τ (⌊k/2⌋+ 1) , 0
)
, k (mod 2) = 1.

For k = 0, we define Â0 = (0, A0).

5 Time Multiple Oracles Protocol

The protocol framework from the previous section does not seem to be very powerful because one
can easily find the time complexity (6) by knowing (5) and the amount of time that oracle needs to
calculate a gradient. In fact, we provide Protocol 2 for simplicity only. We now consider a protocol
that works with multiple oracles:

Protocol 3 Time Multiple Oracles Protocol

1: Input: function(s) f ∈ F , oracles and distributions ((O1, ..., On), (D1, ...,Dn)) ∈ O(f),
algorithm A ∈ A

2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, xk) = Ak(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, skik+1 , ξ
k+1), ξk+1 ∼ Dik+1 ▷ sk+1

j = skj ∀j ̸= ik+1

6: end for

Compared to Protocol 2, Protocol 3 works with multiple oracles, and algorithms return the indices
ik+1 of the oracle they want to call. This minor add-on to the protocol enables the possibility of
analyzing parallel optimization methods. Also, each oracle Oi can have its own distribution Di.

Let us consider an example with two oracles O1 = O∇̂f
τ1 and O2 = O∇̂f

τ2 from (7). One can see that a
“wise” algorithm will first call the oracle O1 with the time t0 = 0, and then, in the second step, it will
call the oracle O2 also with the time t1 = 0. Note that it is impossible to do the following steps: in
the first step an algorithm calls the oracle O1 with the time t0 = 0, in the second step, the algorithm
calls the oracle O1 with the time t1 = τ1 and receives the gradient, in the third step, the algorithm
calls the oracle O2 with the time t2 = 0. Indeed, this can’t happen because t2 < t1.

An example of a “non-wise” algorithm is an algorithm that, in the first step, calls the oracle O1 with
the time t0 = 0. In the second step, the algorithm calls the oracle O1 with the time t1 = τ1 and
receives the gradient. In the third step, the algorithm calls the oracle O2 with the time t2 = τ1. It
would mean that the “non-wise” algorithm did not use the oracle O2 for τ1 seconds. Consequently,
the “wise” algorithm can receive two gradients after max{τ1, τ2} seconds, while the “non-wise”
algorithm can only receive two gradients after τ1 + τ2 seconds.

We believe that Protocol 3 and the complexity (6) is a better choice for analyzing the complexities of
parallel methods than the classical Protocol 1. In the next section, we will use Protocol 3 to obtain
lower bounds for parallel optimization methods.

6

6 Lower Bound for Parallel Optimization Methods

Considering Protocol 3, we define a special function class F , oracle class O, and algorithm class A.
We consider the same function class as Nesterov (2018); Arjevani et al. (2022); Carmon et al. (2020):
Definition 6.1 (Function Class F∆,L). We assume that function f : Rd → R is differen-
tiable, L-smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd, and ∆-bounded, i.e.,
f(0)− infx∈Rd f(x) ≤ ∆. A set of all functions with such properties we denote by F∆,L.

In this paper, we analyze the class of “zero-respecting” algorithms, defined next.
Definition 6.2 (Algorithm Class Azr). Let us consider Protocol 3. We say that an algorithm A from
Definition 4.1 is a zero-respecting algorithm, if supp

(
xk
)
⊆
⋃k

j=1 supp
(
gj
)

for all k ∈ N0, where
supp(x) := {i ∈ [d] |xi ̸= 0}. A set of all algorithms with this property we define as Azr.

A zero-respecting algorithm does not try to change the coordinates for which no information was
received from oracles. This family is considered by Arjevani et al. (2022); Carmon et al. (2020), and
includes SGD, Minibatch and Asynchronous SGD, and Adam (Kingma and Ba, 2014).

Definition 6.3 (Oracle Class Oσ2

τ1,...,τn). Let us consider an oracle class such that, for any f ∈ F∆,L,

it returns oracles Oi = O∇̂f
τi and distributions Di for all i ∈ [n], where ∇̂f is an unbiased σ2-

variance-bounded mapping (see Assumption 7.3). The oracles O∇̂f
τi are defined in (7). We define

such oracle class as Oσ2

τ1,...,τn . Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

We take Oσ2

τ1,...,τn because it emulates the behavior of workers in real systems, where workers can
have different processing times (delays) τi. Note that Oσ2

τ1,...,τn has the freedom to choose a mapping
∇̂f. We only assume that the mapping is unbiased and σ2-variance-bounded. We are now ready to
present our first result; a lower bound:

Theorem 6.4. Let us consider the oracle class Oσ2

τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.
We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In view Protocol 3, for any algorithm A ∈ Azr, there exists
a function f ∈ F∆,L and oracles and distributions ((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oσ2

τ1,...,τn(f)

such that E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

The quantities c′ and c are universal constants.

Theorem 6.4 states that

mtime (Azr,F∆,L) = Ω

 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) . (9)

The interpretation behind this complexity will be discussed later in Section 7.3. No algorithms known
to us attain (9). For instance, Asynchronous SGD has the time complexity (3). Let us assume that
σ2
/ε ≤ p and p ∈ [n]. Then (lower bound from (9)) = O

((
1
p

∑p
i=1

1
τi

)−1(L∆
ε

))
. In this case, the

lower bound in (9) will be at least
(
1
n

∑n
i=1

1
τi

)−1
/
(
1
p

∑p
i=1

1
τi

)−1
times smaller. It means that

either the obtained lower bound is not tight, or Asynchronous SGD is a suboptimal method. In the
following section we provide a method that attains the lower bound. The obtained lower bound is
valid even if an algorithm has the freedom to interrupt oracles. See details in Section F.

6.1 Related work

For convex problems, Woodworth et al. (2018) proposed the graph oracle, which generalizes the
classical gradient oracle (Nemirovskij and Yudin, 1983; Nesterov, 2018), and provided lower bounds

7

for a rather general family of parallel methods. Arjevani et al. (2020) analyzed the delayed gradient
descent method, which is Asynchronous SGD when all iteration delays δk = δ are a constant.

As far as we know, Woodworth et al. (2018) provide the most suitable and tightest prior framework
for analyzing lower bound complexities for problem (1). However, as we shall see, our framework us
more powerful. Moreover, they only consider the convex case. In Section M, we use the framework
of Woodworth et al. (2018) and analyze the fixed computation model, where ith worker requires τi
seconds to calculate stochastic gradients. In Section B, we consider the convex setting and show
that the lower bound obtained by their framework is not tight and can be improved. While the graph
oracle framework by Woodworth et al. (2018) is related to the classical oracle protocol (Section 3)
and also calculates the number of oracle calls in order to get lower bounds, our approach directly
estimates the required time. For more details, see Section B and the discussion in Section B.1.1.

Method 4 Rennala SGD
1: Input: starting point x0, stepsize γ, batch size S
2: Run Method 5 in all workers
3: for k = 0, 1, . . . ,K − 1 do
4: Init gk = 0 and s = 1
5: while s ≤ S do
6: Wait for the next worker
7: Receive gradient and iteration index (g, k′)
8: if k′ = k then
9: gk = gk + 1

S g; s = s+ 1
10: end if
11: Send (xk, k) to the worker
12: end while
13: xk+1 = xk − γgk

14: end for

Method 5 Worker’s Infinite Loop

1: Init g = 0 and k′ = −1
2: while True do
3: Send (g, k′) to the server
4: Receive (xk, k) from the server
5: k′ = k
6: g = ∇̂f(xk; ξ), ξ ∼ D
7: end while

7 Minimax Optimal Method

We now propose and analyze a new method: Rennala SGD (see Method 4). Methods with a similar
structure were proposed previously (e.g., (Dutta et al., 2018)), but we are not aware of any method
with precisely the same parameters and structure. For us, in this paper, the theoretical bounds are
more important than the method itself.

Let us briefly describe the structure of the method. At the start, Method 4 asks all workers to run
Method 5. Method 5 is a standard routine: the workers receive points xk from the server, calculate
stochastic gradients, and send them back to the server. Besides that, the workers receive and send
the iteration counter k of the received points xk. At the server’s side, in each iteration k, Method 4
calculates gk and performs the standard gradient-type step xk+1 = xk−γgk. The calculation of gk is
done in a loop. The server waits for the workers to receive a stochastic gradient and an iteration index.
The most important part of the method is that the server ignores a stochastic gradient if its iteration
index is not equal to the current iteration index. In fact, this means that gk = (1/S)

∑S
i=1 ∇̂f(xk; ξi),

where ξi are i.i.d. samples. In other words, the server ignores all stochastic gradients that were
calculated at the points x0, · · · , xk−1.

It may seem that Method 4 does not fully use the information due to ignoring some stochastic
gradients. That contradicts the philosophy of Asynchronous SGD, which tries to use all stochastic
gradients calculated in the previous points. Nevertheless, we show that Rennala SGD has better time
complexity than Asynchronous SGD, and this complexity matches the lower bound from Theorem 6.4.
The fact that Rennala SGD ignores the previous iterates is motivated by the proof of the lower bound
in Section 6. In the proof, any algorithm, on the constructed “worst case” function, does not progress
to a stationary point if it calculates a stochastic gradient at a non-relevant point. This suggested to us
to construct a method that would focus all workers on the last iterate.

7.1 Assumptions

Let us consider the following assumptions.

8

Assumption 7.1. f is differentiable & L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.

Assumption 7.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

Assumption 7.3. For all x ∈ Rd, stochastic gradients ∇̂f(x; ξ) are unbiased and σ2-variance-

bounded, i.e., Eξ

[
∇̂f(x; ξ)

]
= ∇f(x) and Eξ

[∥∥∥∇̂f(x; ξ)−∇f(x)
∥∥∥2] ≤ σ2, where σ2 ≥ 0.

7.2 Analysis of Rennala SGD

Theorem 7.4. Assume that Assumptions 7.1, 7.2 and 7.3 hold. Let us take the batch size S =
max

{⌈
σ2
/ε
⌉
, 1
}
, and γ = min

{
1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 4. Then after

K ≥ 24∆L

ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

In the following theorem, we provide the time complexity of Method 4.
Theorem 7.5. Consider Theorem 7.4. We assume that ith worker returns a stochastic gradient every
τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then after

96× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) (10)

seconds, Method 4 guarantees to find an ε-stationary point.

This result with Theorem 6.4 state that

mtime (Azr,F∆,L) = Θ

 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) (11)

for Protocol 3 and and the oracle class Oσ2

τ1,...,τn from Definition 6.3.

7.3 Discussion

Theorem 7.5 and Theorem 6.4 state that Method 4 is minimax optimal under the assumption that
the delays of the workers are fixed and equal to τi. Note that this assumption is required only in
Theorem 7.5, and Theorem 7.4 holds without it.

In the same setup, the previous works (Cohen et al., 2021; Mishchenko et al., 2022; Koloskova et al.,
2022) obtained the weaker time complexity (3). We do not rule out that it might be possible for the
analysis, the parameters or the structure of Asynchronous SGD to be improved and obtain the optimal
time complexity (10). We leave this to future work. However, instead, we developed Method 4
that has not only the optimal time complexity, but also a very simple structure and analysis (see
Section D.4.1). Our claims are supported by experiments in Section J.

The reader can see that we provide the complexity in a nonconstructive way, as the minimization over
the parameter m ∈ [n]. Note that Method 4 automatically finds the optimal m in (7.5), and it does not
require the knowledge of the delays τi to do so! Let us explain the intuition behind the complexity
(10). Let m∗ be the optimal parameter of (10) with the smallest index. In Section D.4.3, we show
that all workers with the delays τi for all i > m∗ can be simply ignored since their delays are too
large, and their inclusion would only harm the convergence time of the method. So, the method
automatically ignores them! However, in Asynchronous SGD, these harmful workers can contribute
to the optimization process, which can be the reason for the suboptimality of Asynchronous SGD.

In general, there are two important regimes: σ2
/ε ≪ n (“low noise/large # of workers”) and σ2

/ε ≫ n
(“high noise/small # of workers”). Intuitively, in the “high noise/small # of workers” regime, (11) is
minimized when m is close to n. However, in the “low noise/large # of workers”, the optimal m can
be much smaller than n.

9

8 Synchronized Start of Workers

In the previous sections, we obtain the time complexities for the case when the workers asyn-
chronously compute stochastic gradients. It is important that the complexities are obtained assuming
that the workers can start their calculations asynchronously. However, in practice, it is common to
train machine learning models with multiple workers/GPUs, so that all workers are synchronized
after each stochastic gradient calculation (Goyal et al., 2017; Sergeev and Balso, 2018). The sim-
plest example of such a strategy is Minibatch SGD (see Section 1.2). We want to find an answer
to the question: what is the best time complexity we can get if we assume that the workers start
simultaneously? In Section G, we formalize this setting, and show that the time complexity equals to

mtime (Azr,F∆,L) = Θ

(
min
m∈[n]

[
τm

(
L∆

ε
+

σ2L∆

mε2

)])
(12)

for Protocol 2 and the oracle class Oσ2,sync
τ1,...,τn from Definition G.1. Comparing (11) and (12), one

can see that methods that start the calculations of workers simultaneously are provably worse than
methods that allow workers to start the calculations asynchronously.

9 Future Work

In this work, we consider the setup where the times τi are fixed. In future work, one can consider
natural, important, and more general scenarios where they can be random, follow some distribu-
tion, and/or depend on the random variables ξ from Assumption 7.3 (be correlated with stochastic
gradients).

Acknowledgements

This work of P. Richtárik and A. Tyurin was supported by the KAUST Baseline Research Scheme
(KAUST BRF) and the KAUST Extreme Computing Research Center (KAUST ECRC), and the
work of P. Richtárik was supported by the SDAIA-KAUST Center of Excellence in Data Science and
Artificial Intelligence (SDAIA-KAUST AI).

References
Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2022). Lower

bounds for non-convex stochastic optimization. Mathematical Programming, pages 1–50.

Arjevani, Y., Shamir, O., and Srebro, N. (2020). A tight convergence analysis for stochastic gradient
descent with delayed updates. In Algorithmic Learning Theory, pages 111–132. PMLR.

Aytekin, A., Feyzmahdavian, H. R., and Johansson, M. (2016). Analysis and implementation of an
asynchronous optimization algorithm for the parameter server. arXiv preprint arXiv:1610.05507.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2020). Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120.

Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. (2016). Revisiting distributed syn-
chronous sgd. arXiv preprint arXiv:1604.00981.

Cohen, A., Daniely, A., Drori, Y., Koren, T., and Schain, M. (2021). Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems,
34:9024–9035.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. (2011). Better mini-batch algorithms via
accelerated gradient methods. Advances in Neural Information Processing Systems, 24.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P. (2018). Slow and stale gradients can win
the race: Error-runtime trade-offs in distributed SGD. In International Conference on Artificial
Intelligence and Statistics, pages 803–812. PMLR.

10

Feyzmahdavian, H. R., Aytekin, A., and Johansson, M. (2016). An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control,
61(12):3740–3754.

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtárik, P. (2019). SGD:
General analysis and improved rates. In International Conference on Machine Learning, pages
5200–5209. PMLR.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y.,
and He, K. (2017). Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677.

Khaled, A. and Richtárik, P. (2020). Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Koloskova, A., Stich, S. U., and Jaggi, M. (2022). Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. arXiv preprint arXiv:2206.08307.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90.

Lan, G. (2020). First-order and stochastic optimization methods for machine learning. Springer.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Mishchenko, K., Bach, F., Even, M., and Woodworth, B. (2022). Asynchronous SGD beats minibatch
SGD under arbitrary delays. arXiv preprint arXiv:2206.07638.

Mishchenko, K., Iutzeler, F., Malick, J., and Amini, M.-R. (2018). A delay-tolerant proximal-gradient
algorithm for distributed learning. In International Conference on Machine Learning, pages
3587–3595. PMLR.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimiza-
tion.

Nesterov, Y. (2018). Lectures on convex optimization, volume 137. Springer.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat, M., Malek, M., and Huba, D. (2022).
Federated learning with buffered asynchronous aggregation. In International Conference on
Artificial Intelligence and Statistics, pages 3581–3607. PMLR.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtárik, P., Scheinberg, K., and Takác, M. (2018). SGD and
hogwild! convergence without the bounded gradients assumption. In International Conference on
Machine Learning, pages 3750–3758. PMLR.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems, 24.

Sergeev, A. and Balso, M. D. (2018). Horovod: Fast and easy distributed deep learning in TensorFlow.
arXiv preprint arXiv:1802.05799.

Woodworth, B., Patel, K. K., Stich, S., Dai, Z., Bullins, B., Mcmahan, B., Shamir, O., and Srebro,
N. (2020). Is local SGD better than minibatch SGD? In International Conference on Machine
Learning, pages 10334–10343. PMLR.

11

Woodworth, B. E., Wang, J., Smith, A., McMahan, B., and Srebro, N. (2018). Graph oracle models,
lower bounds, and gaps for parallel stochastic optimization. Advances in Neural Information
Processing Systems, 31.

Wu, X., Magnusson, S., Feyzmahdavian, H. R., and Johansson, M. (2022). Delay-adaptive step-sizes
for asynchronous learning. arXiv preprint arXiv:2202.08550.

12

Contents

1 Introduction 1

1.1 Classical theory . 1

1.2 Parallel optimization methods . 2

2 Problem and Contribution 3

3 Classical Oracle Protocol 4

4 Time Oracle Protocol 4

5 Time Multiple Oracles Protocol 6

6 Lower Bound for Parallel Optimization Methods 7

6.1 Related work . 7

7 Minimax Optimal Method 8

7.1 Assumptions . 8

7.2 Analysis of Rennala SGD . 9

7.3 Discussion . 9

8 Synchronized Start of Workers 10

9 Future Work 10

A Heterogeneous Regime 16

A.1 Lower bound . 16

A.2 Related work and discussion . 17

A.3 Minimax optimal method . 17

A.4 Discussion . 18

B Convex Case 18

B.1 Lower Bound . 18

B.1.1 Discussion . 19

B.2 Minimax optimal method . 20

B.2.1 Assumptions . 20

B.2.2 Analysis of Rennala SGD and Accelerated Rennala SGD in convex case . . 20

C Table of Notations 21

D Proofs for Homogeneous Regime 21

D.1 The “worst case” function . 21

D.2 Proof of Theorem 6.4 . 21

D.3 Auxillary lemmas . 23

13

D.3.1 Proof of Lemma D.2 . 23

D.3.2 Proof of Lemma D.6 . 27

D.3.3 Lemma D.7 . 30

D.4 Proof of Theorems 7.4 and 7.5 . 32

D.4.1 Proof of Theorems 7.4 . 32

D.4.2 The classical SGD theorem . 32

D.4.3 Proof of Theorems 7.5 . 34

E Proofs for Heterogeneous Regime 35

E.1 Proof of Theorem A.2 . 35

E.2 Proof of Lemma E.1 . 38

E.3 Proof of Theorem A.3 . 40

E.4 Proof of Theorem A.4 . 41

F Interrupt Oracle Calculations 42

G Time Complexity with Synchronized Start 43

G.1 Minimax optimal method . 43

G.2 Proof of Theorem G.2 . 44

G.2.1 Proof of Lemma G.5 . 46

G.2.2 Lemma G.9 . 49

G.2.3 Proof of Lemma G.8 . 49

G.3 Proof of Theorem G.3 . 52

G.4 Proof of Theorem G.4 . 52

H Proofs for Convex Case 53

H.1 The “worst case” function in convex case . 53

H.2 Proof of Theorem B.4 . 53

H.3 Proof of Theorem B.8 . 55

H.3.1 The classical SGD theorem in convex optimization 55

H.4 Proof of Theorem B.9 . 56

H.5 Proof of Theorem B.10 . 57

H.6 Proof of Theorem B.11 . 57

I Construction of Algorithm for Rennala SGD 58

J Experiments 59

J.1 Setup . 59

J.2 Results . 59

K Experiment with Small-Scale Machine Learning Task 59

L Time Complexity of Asynchronous SGD 61

14

M Analysis of Fixed-Computation Model Using Graph Oracle Models 62

M.1 Example when the lower bound from (Woodworth et al., 2018) is not tight 62

15

Table 2: Heterogeneous Case. The required time to get an ε-stationary point in the nonconvex
setting, where ith worker requires τi seconds to calculate a stochastic gradient. We assume that
0 < τ1 ≤ · · · ≤ τn.

Heterogeneous Case
Method Time Complexity

Minibatch SGD τn

(
L∆
ε + σ2L∆

nε2

)
Malenia SGD
(Theorem A.4) τn

L∆
ε +

(
1
n

n∑
i=1

τi

)
σ2L∆
nε2

Lower Bound
(Theorem A.2) τn

L∆
ε +

(
1
n

n∑
i=1

τi

)
σ2L∆
nε2

A Heterogeneous Regime

Up to this point, we discussed the regime when all workers calculate i.i.d. stochastic gradients. In
distributed optimization and federated learning (Konečný et al., 2016), it can be possible that the
workers hold different datasets. Let us consider the following optimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

Eξi∼Di
[fi(x; ξi)]

}
, (13)

where fi : Rd × Sξi → Rd and ξi are random variables with some distributions Di on Sξi . Problem
(13) generalizes problem (1). Here we have the same goals as in the previous sections. We want to
obtain the minimax complexities for the case when the workers contain different datasets.

A.1 Lower bound

For the heterogeneous case, we modify Definition 6.3:

Definition A.1 (Oracle Class Oσ2,heterog
τ1,...,τn).

Let us consider an oracle class such that, for any f = 1
n

∑n
i=1 fi ∈ F∆,L, it returns oracles

Oi = O
∇̂fi
τi and distributions Di for all i ∈ [n], where ∇̂fi is an unbiased σ2-variance-bounded

mapping for all i ∈ [n] (see Assumption 7.3). The oracles O∇̂fi
τi are defined in (7). We define such

oracle class as Oσ2,heterog
τ1,...,τn . Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

Theorem A.2. Let us consider the oracle class Oσ2,heterog
τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤

· · · ≤ τn. We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In the view Protocol 3, for any algo-
rithm A ∈ Azr, there exists a function f = 1

n

∑n
i=1 fi ∈ F∆,L and oracles and distributions

((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oσ2,heterog
τ1,...,τn (f1, . . . , fn) such that E

[
infk∈St

∥∥∇f(xk)
∥∥2] > ε,

where St :=
{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c×

(
τn

L∆

ε
+

(
1

n

n∑
i=1

τi

)
σ2L∆

nε2

)
. (14)

The quantity c′ and c are universal constants.

Theorem A.2 states that

mtime (Azr,F∆,L) = Ω

(
τn

L∆

ε
+

(
1

n

n∑
i=1

τi

)
σ2L∆

nε2

)
.

One can see that the lower bound for the heterogeneous case is larger than (9). In Section A.3, we
provide a method that attains the lower bound.

16

A.2 Related work and discussion

The optimization problem (13) is well-investigated by many papers, including (Aytekin et al., 2016;
Mishchenko et al., 2018; Nguyen et al., 2022; Wu et al., 2022; Koloskova et al., 2022; Mishchenko
et al., 2022). There were attempts to analyze Asynchronous SGD in the heterogeneous regime.
For instance, Mishchenko et al. (2022) proved the convergence to a neighborhood of a solution
only. In general, it is quite challenging to get good rates for Asynchronous SGD without additional
assumptions about the similarity of the functions fi (Koloskova et al., 2022; Mishchenko et al., 2022).

In the non-stochastic case, when σ2 = 0, Wu et al. (2022) analyzed the PIAG method in the non-
stochastic heterogeneous regime and showed convergence. Although the performance of PIAG can
be good in practice, in the worst case PIAG requires O

(
τnL̂∆/ε

)
seconds to converge, where τn is the

time delay of the slowest worker, L̂ :=
√∑n

i=1 L
2
i , and Li is a Lipschitz constant of ∇fi. Note that

the synchronous Minibatch SGD (see Section 1.2) method has the complexity O(τnL∆/ε) , which is
always better.4

Our lower bound in Theorem A.2 does not leave hope of breaking the dependence on the worst
straggler in the heterogeneous case. In the stochastic case, the lower bound is slightly more optimistic
in the regimes when the statistical term (the second term in (14)) is large. If the stragglers do not
have too large delays, then their contributions to the arithmetic mean can be small. Note that in
Theorem 6.4 in the homogeneous case, we have the harmonic mean of the delays instead.

A.3 Minimax optimal method

In this section, we provide Malenia5 SGD (see Method 6) that is slightly different from Rennala SGD
(Method 4). There are two main differences: the first one is that Method 6 has different gradients
estimators gki for each worker, and the second one is the constraint

(
1
n

∑n
i=1

1/Bi

)−1
< S/n in the

inner loop6. The more gradients we get from the workers, the larger the term
(
1
n

∑n
i=1

1/Bi

)−1
.

Method 6 Malenia SGD
1: Input: starting point x0, stepsize γ, parameter S
2: Run Method 7 in all workers
3: for k = 0, 1, . . . ,K − 1 do
4: Init gki = 0 and Bi = 0

5: while
(

1
n

∑n
i=1

1
Bi

)−1

< S
n do

6: Wait for the next worker
7: Receive gradient, iteration index, worker’s index (g, k′, i)
8: if k′ = k then
9: gki = gki + g

10: Bi = Bi + 1
11: end if
12: Send (xk, k) to the worker
13: end while
14: gk = 1

n

∑n
i=1

1
Bi

gki
15: xk+1 = xk − γgk

16: end for

As in Section 7.2, we can provide the convergence theorems.

Theorem A.3. Assume that Assumptions 7.1 and 7.2 hold for the function f . Assumption 7.3
holds for the function fi for all i ∈ [n]. Let us take the parameter S = max

{⌈
σ2
/ε
⌉
, n
}
, and

4In the nonconvex case, L̂ can be arbitrarily larger than L.
5
https://eldenring.wiki.fextralife.com/Malenia+Blade+of+Miquella: Malenia, Blade of Miquella and Malenia, Goddess of Rot is two-phase a

Demigod Boss in Elden Ring. She’s the twin of Miquella, the most powerful of the Empyreans, and gained renown for her legendary battle against Starscourge Radahn
during the Shattering, in which she unleashed the power of the Scarlet Rot and reduced Caelid to ruins.

6We assume that
(
1
n

∑n
i=1

1/Bi

)−1
= 0 if exists i ∈ [n] such that Bi = 0.

17

https://eldenring.wiki.fextralife.com/Malenia+Blade+of+Miquella

Method 7 Worker’s Infinite Loop

1: Init g = 0, k′ = −1, and worker’s index i
2: while True do
3: Send (g, k′, i) to the server
4: Receive (xk, k) from the server
5: k′ = k
6: g = ∇̂fi(x

k; ξ), ξ ∼ D
7: end while

γ = min
{

1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 6, then after K ≥ 24∆L/ε iterations the method guarantees

that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Theorem A.4. Let us consider Theorem A.3. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then
after

96

(
τn

L∆

ε
+

(
1

n

n∑
i=1

τi

)
σ2L∆

nε2

)
(15)

seconds, Method 6 guarantees to find an ε-stationary point.

Comparing Theorem A.2 and Theorem A.4, one can see that the complexity (15) is optimal. Note
that Theorem A.3 holds without assumptions that the delays τi are fixed.

A.4 Discussion

Unlike Asynchronous SGD and PIAG, Malenia SGD ignores all stochastic gradients that were
calculated in the previous iterations, which appears to be counterproductive. Nevertheless, we show
that Malenia SGD converges, and the time complexity is optimal with respect to all parameters. Note
that Malenia SGD does not require the Lipschitz smoothness of the local functions fi, does not
depend on the time delays τi, does not need any similarity assumptions about the functions fi, and
can be applied to problems where the function is not Lipschitz (does not have bounded gradients).
The analysis of the method is elementary and does not go far away from the theory of the classical
SGD method. When the ratio σ2

/ε is large, Malenia SGD is better than Minibatch SGD (see (2)) by
Θ
(
τn/

(
1
n

∑n
i=1 τi

))
times.

B Convex Case

B.1 Lower Bound

Let us consider the optimization problem (1) in the case when the function f is convex. For the
convex case, using Protocol 2, we propose to use another complexity measure instead of (6):

mtime (A,F) := inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [infk∈St

f(xk)

]
− inf

x∈Q
f(x) ≤ ε

}
,

St :=
{
k ∈ N0

∣∣tk ≤ t
}
,

(16)

where the sequences tk and xk are generated by Protocol 2. Let us consider the following class of
convex functions:
Definition B.1 (Function Class F conv

R,M,L).
Let us define B2(0, R) :=

{
x ∈ Rd | ∥x∥ ≤ R

}
. We assume that a function f : Rd → R is convex,

differentiable, L-smooth on the set B2(0, R), i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ B2(0, R),

and M -Lipschitz on the set B2(0, R), i.e.,
|f(x)− f(y)| ≤ M ∥x− y∥ ∀x, y ∈ B2(0, R).

A set of all functions with such properties we define as F conv
R,M,L.

18

Table 3: Convex Homogeneous Case. The required time to get an ε-solution in the convex setting,
where ith worker requires τi seconds to calculate a stochastic gradient. We assume that 0 < τ1 ≤
· · · ≤ τn.

Method Time Complexity

Minibatch SGD τn
(
min

{√
LR√
ε

, M2R2

ε2

}
+ σ2R2

nε2

)
Asynchronous SGD

(Mishchenko et al., 2022)

(
1
n

∑n
i=1

1
τi

)−1 (
LR2

ε + σ2R2

nε2

)
(Accelerated) Rennala SGD

(Theorems B.9 and B.11) min
m∈[n]

[(
1
m

∑m
i=1

1
τi

)−1 (
min

{√
LR√
ε

, M2R2

ε2

}
+ σ2R2

mε2

)]

Lower Bound (Theorem B.4) min
m∈[n]

[(
1
m

∑m
i=1

1
τi

)−1 (
min

{√
LR√
ε

, M2R2

ε2

}
+ σ2R2

mε2

)]
Lower Bound (Section M)
(Woodworth et al., 2018) τ1 min

{√
LR√
ε

, M2R2

ε2

}
+

(
1
n

∑n
i=1

1
τi

)−1
σ2R2

nε2

For the convex case, we analyze the following class of algorithms:

Definition B.2 (Algorithm Class AR
zr).

Let us consider Protocol 3. We say that an algorithm A from Definition 4.1 belongs to a class AR
zr iff

A ∈ Azr and xk ∈ B2(0, R) for all k ≥ 0.

We also define an oracle class:

Definition B.3 (Oracle Class Oconv,σ2

τ1,...,τn).
Let us consider an oracle class such that, for any f ∈ F conv

R,M,L, it returns oracles Oi = O∇̂f
τi and

distributions Di for all i ∈ [n], where ∇̂f is an unbiased σ2-variance-bounded mapping on the set
B2(0, R). The oracles O∇̂f

τi are defined in (7). We define such oracle class as Oconv,σ2

τ1,...,τn . Without loss
of generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

For this setup, we provide the lower bound for the class of convex functions in the next theorem.

Theorem B.4. Let us consider the oracle class Oconv,σ2

τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.

We fix any R,L,M, ε > 0 such that
√
LR > c1

√
ε > 0 and M2R2 > c2ε

2. In the view Protocol 3,
for any algorithm A ∈ AR

zr , there exists a function f ∈ F conv
R,M,L and oracles and distributions

((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oconv,σ2

τ1,...,τn(f) such that

E
[
inf
k∈St

f(xk)

]
− inf

x∈B2(0,R)
f(x) > ε,

where St :=
{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
min

{√
LR√
ε

,
M2R2

ε2

}
+

σ2R2

mε2

) .

The quantities c1, c2 and c are universal constants.

B.1.1 Discussion

We improve the lower bound obtained by (Woodworth et al., 2018) (see Table 3). Woodworth et al.
(2018) try to reduce any optimization problem to an oracle graph. Then, they get a lower bound using
the depth and the number of nodes in a graph. Our approach is different, as we directly estimate the
required time and avoid the reduction to an oracle graph. One can think that our “oracle graph” is
always linear in Protocol 3, but every node in an “oracle graph” is associated with a timestamp and
an index. Unlike the oracle in (Woodworth et al., 2018), which always returns a stochastic gradient,
our oracle (7) returns a stochastic gradient only if the conditions are satisfied. Also, Woodworth et al.
(2018) construct different “worst case” functions and oracles for the “optimization” and “statistical”
terms. While our construction consists only of one function and one oracle.

19

B.2 Minimax optimal method

B.2.1 Assumptions

Additionally to some assumptions from Section 7.1, we use the following assumptions in the convex
case.
Assumption B.5. The function f is convex and attains the minimum at some point x∗ ∈ Rd.

Assumption B.6. The function f is M–Lipschitz, i.e.,

|f(x)− f(y)| ≤ M ∥x− y∥ , ∀x, y ∈ Rd.

Assumption B.7. For all x ∈ Rd, stochastic gradients ∇̂f(x; ξ) are unbiased and have σ2-variance-

bounded, i.e., Eξ∼D

[
∇̂f(x; ξ)

]
∈ ∂f(x) and Eξ∼D

[∥∥∥∇̂f(x; ξ)− E
[
∇̂f(x; ξ)

]∥∥∥2] ≤ σ2, where

σ2 ≥ 0.

B.2.2 Analysis of Rennala SGD and Accelerated Rennala SGD in convex case

Theorem B.8. Assume that Assumptions B.5, B.6 and B.7 hold. Let us take the batch size
S = max

{⌈
σ2
/M2

⌉
, 1
}
, and γ = ε

M2+σ2/S = Θ(ε/M2) in Method 4, then after K ≥ 2M2R2
/ε2

iterations the method guarantees that E
[
f(x̂K)

]
− f(x∗) ≤ ε, where x̂K = 1

K

∑K−1
k=0 xk and

R =
∥∥x∗ − x0

∥∥ .
Theorem B.9. Let us consider Theorem B.8. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then
after

8 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
M2R2

ε2
+

σ2R2

mε2

) (17)

seconds Method 4 guarantees to find an ε-solution.

Let us provide the theorems in the smooth convex case. We consider the accelerated version of
Rennala SGD. In particular, we assume that instead of Line 13 in Method 4, we have

γk+1 = γ(k + 1), αk+1 = 2/(k + 2)

yk+1 = (1− αk+1)x
k + αk+1u

k, (u0 = x0)

uk+1 = uk − γk+1gk,

xk+1 = (1− αk+1)x
k + αk+1u

k+1.

(18)

We refer to such method as Accelerated Method 4 or Accelerated Rennala SGD. The acceleration
technique is based on (Lan, 2020).
Theorem B.10. Assume that Assumptions B.5, 7.1 and 7.3 hold. Let us take the batch size

S = max
{⌈

(σ2R)/(ε3/2
√
L)
⌉
, 1
}
, and γ = min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated

Method 4, then after K ≥ 8
√
LR√
ε

iterations the method guarantees that E
[
f(xK)

]
− f(x∗) ≤ ε,

where R ≥
∥∥x∗ − x0

∥∥ .
Theorem B.11. Let us consider Theorem B.10. We assume that ith worker returns a stochastic
gradient every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤
τn. Then after

32 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(√
LR√
ε

+
σ2R2

mε2

)
seconds Accelerated Method 4 guarantees to find an ε-solution.

20

C Table of Notations

Notation Meaning
g = O(f) Exist C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z
g = Ω(f) Exist C ′ > 0 such that g(z) ≥ C ′ × f(z) for all z ∈ Z
g = Θ(f) g = O(f) and g = Ω(f)
{a, . . . , b} Set {i ∈ Z | a ≤ i ≤ b}

[n] {1, . . . , n}

D Proofs for Homogeneous Regime

D.1 The “worst case” function

In this section, we recall the “worst case” function that we use to prove our lower bounds. This is the
standard function that is used in nonconvex optimization. Let us define

prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

In our proofs, we use the construction from (Carmon et al., 2020; Arjevani et al., 2022). For any
T ∈ N, the authors define

FT (x) := −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (19)

where

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

The main property of the function FT (x) is that its gradients are large unless prog(x) ≥ T.

Lemma D.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.

2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

We use these properties in the proofs.

D.2 Proof of Theorem 6.4

Theorem 6.4. Let us consider the oracle class Oσ2

τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.
We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In view Protocol 3, for any algorithm A ∈ Azr, there exists
a function f ∈ F∆,L and oracles and distributions ((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oσ2

τ1,...,τn(f)

such that E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

The quantities c′ and c are universal constants.

21

Before we prove the theorem, let us briefly explain the idea. In Steps 1 and 2 of the proof, we
construct the appropriate scaled function and stochastic oracles using the function (19). These steps
are almost the same as in (Carmon et al., 2020; Arjevani et al., 2022).

In Step 3, we use the zero-chain property of the function (19) and the zero-respecting property of
algorithms that would guarantee us that unless oracles send us a non-zero coordinate, an algorithm
would not be able to progress to a new coordinate. The oracles send a non-zero coordinate with some
probability p. We have n parallel oracles that flip random coins in parallel. With a large probability,
we show that will not get a new coordinate earlier than

≈ min
m∈[n]

(m∑
i=1

1

τi

)−1(
1

p
+m

)
seconds, where τi are the delays of the oracles. So, with a large probability, we will not be able to
solve the optimization earlier than

≈ T × min
m∈[n]

(m∑
i=1

1

τi

)−1(
1

p
+m

) ,

where T is the dimension of the problem.

Proof. (Step 1: f ∈ F∆,L)

Let us fix λ > 0 and take a function f(x) := Lλ2/l1FT

(
x
λ

)
, where the function FT is defined in

Section D.1. Note that the function f is L-smooth:

∥∇f(x)−∇f(y)∥ = Lλ/l1

∥∥∥FT

(x
λ

)
− FT

(y
λ

)∥∥∥ ≤ Lλ
∥∥∥x
λ
− y

λ

∥∥∥ = L ∥x− y∥ ∀x, y ∈ Rd.

Let us take

T =

⌊
∆l1

Lλ2∆0

⌋
,

then

f(0)− inf
x∈RT

f(x) =
Lλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2∆0T

l1
≤ ∆.

We showed that the function f ∈ F∆,L.

(Step 2: Oracle Class)

In the oracles Oi, we have the freedom to choose a mapping ∇̂f(·; ·) (see (7)). Let us take

[∇̂f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ RT ,

and Di = Bernouilli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [x]j as the jth index of a vector
x ∈ RT . It is left to show this mapping is unbiased and σ2-variance-bounded. Indeed,

E
[
[∇̂f(x, ξ)]i

]
= ∇if(x)

(
1 + 1 [i > prog(x)]

(
E [ξ]

p
− 1

))
= ∇if(x)

for all i ∈ [T], and

E
[∥∥∥∇̂f(x; ξ)−∇f(x)

∥∥∥2] ≤ max
j∈[T]

|∇jf(x)|2 E

[(
ξ

p
− 1

)2
]

because the difference is non-zero only in one coordinate. Thus

E
[∥∥∥∇̂f(x, ξ)−∇f(x)

∥∥∥2] ≤ ∥∇f(x)∥2∞ (1− p)

p
=

L2λ2
∥∥FT

(
x
λ

)∥∥2
∞ (1− p)

l21p

≤ L2λ2γ2
∞(1− p)

l21p
≤ σ2,

22

where we take

p = min

{
L2λ2γ2

∞
σ2l21

, 1

}
.

(Step 3: Analysis of Protocol)

We choose

λ =

√
2εl1
L

to ensure that ∥∇f(x)∥2 = L2λ2

l21

∥∥∇FT (
x
λ)
∥∥2 > 2ε1 [prog(x) < T] for all x ∈ RT , where we use

Lemma D.1. Thus

T =

⌊
∆L

2εl1∆0

⌋
and

p = min

{
2εγ2

∞
σ2

, 1

}
.

Protocol 3 generates a sequence {xk}∞k=0. We have

inf
k∈St

∥∥∇f(xk)
∥∥2 > 2ε inf

k∈St

1
[
prog(xk) < T

]
. (20)

Using Lemma D.2 with δ = 1/2 and (20), we obtain

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] ≥ 2εP

(
inf
k∈St

1
[
prog(xk) < T

]
≥ 1

)
> ε

for

t =
1

24
min
m∈[n]

(m∑
i=1

1

τi

)−1(
σ2

2εγ2
∞

+m

)(∆L

2εl1∆0
− 2

)
.

D.3 Auxillary lemmas

D.3.1 Proof of Lemma D.2

Lemma D.2. Let us fix T, T ′ ∈ N such that T ≤ T ′, consider Protocol 3 with a differentiable
function f : RT ′ → R such that prog(∇f(x)) ≤ prog(x) + 1 for all x ∈ domain(f), delays
0 < τ1 ≤ · · · ≤ τn, distributions Di = Bernouilli(p) and oracles Oi = O∇̂f

τi for all i ∈ [n],
mappings

[∇̂f(x; ξ)]j = ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ RT ′

,∀ξ ∈ {0, 1},∀j ∈ [T],

(21)

and an algorithm A ∈ Azr. With probability not less than 1− δ,

inf
k∈St

1
[
prog(xk) < T

]
≥ 1

for

t ≤ 1

24
min
m∈[n]

(m∑
i=1

1

τi

)−1(
1

p
+m

)(T

2
+ log δ

)
,

where the iterates xk are defined in Protocol 3.

23

Proof. (Part 1): Comment: in this part, we formally show that if infk∈St 1
[
prog(xk) < T

]
< 1

holds, then we have the inequality
∑T

i=1 t̂ηi
≤ t, where t̂ηi

are random variables with some
known “good” distributions. If infk∈St 1

[
prog(xk) < T

]
< 1, then it means that exists k such that

prog(xk) = T. Note that the algorithm is zero-respecting, so it can not progress to T th coordinate
unless the oracles generate stochastic gradients with non-zero 1st, 2nd, ..., T th coordinates. The
oracles flip coins in parallel, so the algorithm should wait for the moment when the oracles flip a
success. At the same time, it takes time to generate a coin (calculate a stochastic gradient), and the
oracles can not flip more than k coins before some time t̂k. So if the ηi is an index of the first success
to generate a non-zero ith coordinate, then the algorithm should wait at least t̂ηi seconds. Next, we
give a formal proof.

Let us fix t ≥ 0 and define the smallest index k(i) of the sequence when the progress prog(xk(i))
equals i :

k(i) := inf
{
k ∈ N0 | i = prog(xk)

}
∈ N0 ∪ {∞}.

If infk∈St
1
[
prog(xk) < T

]
< 1 holds, then exists k ∈ St such that prog(xk) = T, thus, by the

definition of k(T), tk(T) ≤ tk ≤ t, and k(T) < ∞. Note that tk(T) is the smallest time when we
make progress to the T th coordinate.

Since x0 = 0 and A is a zero-respecting algorithm, the algorithm can return a vector xk with the
non-zero first coordinate only if some of returned by the oracles stochastic gradients have the first
coordinate not equal to zero. The oracles Oi are constructed in such a way (see (21) and (7)) that
they zero out a coordinate based on i.i.d. Bernoulli trials.

Definition D.3 (Sequence kξj). Let us consider a set

{k ∈ N | sk−1
ik,q

= 1 and tk ≥ sk−1
ik,t

+ τik}, sk−1
ik

≡ (sk−1
ik,t

, sk−1
ik,q

, sk−1
ik,x

).

We order this set and define the result sequence as {kξj}mj=1, where m ∈ [0,∞] is the size of the
sequence. The sequence kξi is a subsequence of iterations where the oracles use the generated
Bernouilli random variables in the third output of (7). The sequence sk−1

ik
is defined in Protocol 3.

Let ksuccess be the first iteration index when the oracles use a draw ξ = 1, i.e.,

ksuccess := inf{k | ξk = 1 and k ∈ {kξj}
m
j=1} ∈ N ∪ {∞}.

Since the algorithm A is a zero-respecting and the function f is a zero-chain function, i.e.,
prog(∇f(x)) ≤ prog(x) + 1 for all x ∈ domain(f), then prog(gk) = prog(xk) = 0 for all
k < ksuccess. If infk∈St

1
[
prog(xk) < T

]
< 1 holds, then ksuccess < ∞, and tksuccess ≤ tk(1).

The oracles use the generated Bernoulli random variables {ξk | k ∈ {kξj}mj=1}. Let us denote the
index of the first successful trial as η1, i.e.,

η1 := inf{i | ξk
ξ
i = 1 and i ∈ [1,m]} ∈ N ∪ {∞}.

The ith worker can generate the first Bernoulli random variable not earlier than after τi seconds, the
second Bernoulli random variable not earlier than after 2τi seconds, and so forth.

Definition D.4 (Sequence t̂k). Let us consider a multi-set of times

{jτi | j ≥ 1, i ∈ [n]} ≡ {τ1, 2τ1, . . . } ⊎ · · · ⊎ {τn, 2τn, . . . }.

We order this multi-set and define the result sequence as {t̂k}∞k=1, and t̂∞ := limk→∞ t̂k = ∞.

Then η1
th Bernoulli random variable can not be generated earlier than t̂η1 because t̂η1 is the earliest

time when the oracles can generate η1 random variables. Therefore, if infk∈St 1
[
prog(xk) < T

]
< 1

holds, then t̂η1 ≤ tksuccess ≤ tk(1).

Using the same reasoning, tk(j+1) ≥ tk(j) + t̂ηj+1
, where ηj+1 is the index of the first successful

trial of Bernouilli random variables when prog(·) = j in the sequence xk. More formally:

24

Definition D.5 (Sequence kξj,i). Let us consider a set

{k ∈ N | sk−1
ik,q

= 1 and tk ≥ sk−1
ik,t

+ τik and prog(sk−1
ik,x

) = j}.

We order this set and define the result sequence as {kξj,i}
mj+1

i=1 , where mj+1 ∈ [0,∞] is the size of
the sequence. The sequence kξj,i is a subsequence of iterations where the oracles use the generated
Bernouilli random variables in (7) when prog(sx) = j.

Then

ηj+1 := inf{i | ξk
ξ
j,i = 1 and i ∈ [1,mj+1]} ∈ N ∪ {∞} ∀j ∈ {0, . . . , T − 1}. (22)

By the definition of k(j), xk(j) is the first vector of the sequence, that contains a non-zero jth
coordinate. Thus the oracles will start returning stochastic gradients that potentially have a non-zero
j + 1th coordinate starting only from the iteration k(j). Therefore,

tk(T) ≥ tk(T−1) + t̂ηT
≥

T∑
i=1

t̂ηi
.

Combining the observations, if infk∈St 1
[
prog(xk) < T

]
< 1 holds, then

∑T
i=1 t̂ηi ≤ tk(T) ≤ t.

Thus

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
T∑

i=1

t̂ηi ≤ t

)
∀t ≥ 0.

In Section D.3.2, we prove the following inequality that we use in Part 2 of the proof.

Lemma D.6. Let us take lj+1 ∈ N. Then

P (ηj+1 = lj+1|ηj , . . . , η1) ≤ (1− p)lj+1−1p

for all j ∈ {0, . . . , T − 1}.

(Part 2): Comment: in this part, we use the standard technique to bound the large deviations of the
sum

∑T
i=1 t̂ηi .

Let us fix t′ ≥ 0. Recall Definition D.4 of {t̂k}∞k=1. If the number of workers n = 1, then t̂k = kτ1
for all k ≥ 1. For n > 1, the sequence {t̂k}∞k=1 has more complicated structure and depends on the
delays τ1, . . . , τn.

For any k ≥ 1, if t̂k ≤ t′, then k ≤
∑n

i=1⌊
t′

τi
⌋. Indeed, let us assume that k >

∑n
i=1⌊

t′

τi
⌋. The

sequence t̂k is constructed by the ordering the multi-set {jτi | j ≥ 1, i ∈ [n]}. The number of
elements, which are less or equal to t′, equals

∑n
i=1⌊

t′

τi
⌋. Thus, we get a contradiction.

It means that

P
(
t̂ηj+1 ≤ t′

∣∣ηj , . . . , η1) ≤ P

(
ηj+1 ≤

n∑
i=1

⌊
t′

τi

⌋∣∣∣∣∣ηj , . . . , η1
)
.

Using Lemma D.6, we have

P
(
t̂ηj+1 ≤ t′

∣∣ηj , . . . , η1) ≤
∑n

i=1

⌊
t′
τi

⌋∑
j=1

(1− p)j−1p.

If 0 ≤ t′ < τ1, then
∑n

i=1 ⌊t
′
/τi⌋ = 0, and

P
(
t̂ηj+1

≤ t′
∣∣ηj , . . . , η1) = 0.

25

Otherwise, if t′ > τ1, then
∑n

i=1 ⌊t
′
/τi⌋ ≥ 1, and

P
(
t̂ηj+1 ≤ t′

∣∣ηj , . . . , η1) ≤ 1− (1− p)
∑n

i=1

⌊
t′
τi

⌋
≤ p

n∑
i=1

⌊
t′

τi

⌋
,

where we use the fact that 1− (1− p)m ≤ pm for all p ∈ [0, 1] and m ∈ N. For all t′ ≥ 0, we have

P
(
t̂ηj+1

≤ t′
∣∣ηj , . . . , η1) ≤ p

n∑
i=1

⌊
t′

τi

⌋
.

Let us define

p′ := p

n∑
i=1

⌊
t′

τi

⌋
,

then

P
(
t̂ηj+1 ≤ t′

∣∣ηj , . . . , η1) ≤ p′. (23)

Let us fix s ≥ 0 and t̂ ≥ 0. Using the Chernoff method, we have

P

(
T∑

i=1

t̂ηi
≤ t̂

)
= P

(
−s

(
T∑

i=1

t̂ηi

)
≥ −st̂

)
= P

(
exp

(
−s

T∑
i=1

t̂ηi

)
≥ exp

(
−st̂

))

≤ est̂E

[
exp

(
−s

T∑
i=1

t̂ηi

)]
.

Let us bound the expected value separately:

E

[
exp

(
−s

T∑
i=1

t̂ηi

)]
= E

[
T∏

i=1

E
[
e−st̂ηi

∣∣∣ ηi−1, . . . , η1

]]
.

Since t̂ηi
≥ 0, we have

E
[
e−st̂ηi

∣∣∣ ηi−1, . . . , η1

]
= E

[
e−st̂ηi

∣∣∣ t̂ηi ≤ t′, ηi−1, . . . , η1

]
P
(
t̂ηi ≤ t′

∣∣ηi−1, . . . , η1
)

+ E
[
e−st̂ηi

∣∣∣ t̂ηi > t′, ηi−1, . . . , η1

] (
1− P

(
t̂ηi ≤ t′

∣∣ηi−1, . . . , η1
))

≤ P
(
t̂ηi

≤ t′
∣∣ηi−1, . . . , η1

)
+ e−st′

(
1− P

(
t̂ηi

≤ t′
∣∣ηi−1, . . . , η1

))
(23)
≤ p′ + e−st′ (1− p′) .

Thus

E

[
exp

(
−s

T∑
i=1

t̂ηi

)]
≤
(
p′ + e−st′ (1− p′)

)T
and

P

(
T∑

i=1

t̂ηi
≤ t̂

)
≤ est̂

(
p′ + e−st′ (1− p′)

)T
= est̂−st′T

(
1 +

(
est

′
− 1
)
p′
)T

.

Let us take s = 1/t′, and get

P

(
T∑

i=1

t̂ηi
≤ t̂

)
≤ et̂/t

′−T (1 + (e− 1) p′)
T ≤ et̂/t

′−T+2p′T . (24)

Let us recall the definition of p′ :

p′ = p

(
n∑

i=1

⌊
t′

τi

⌋)

26

Now, we have to take the right t′. We will take it using a nonconstructive definition. Assume that

t′ = 1
4p

(∑j∗

i=1
1
τi

)−1

, where

j∗ = inf

m ∈ [n]

∣∣∣∣∣∣ 1

4p

(
m∑
i=1

1

τi

)−1

< τm+1

 (τn+1 ≡ ∞).

This set is not empty because n belongs to it. Using the definition of j∗, we have

p′ = p

(
n∑

i=1

⌊
t′

τi

⌋)
= p

 j∗∑
i=1

⌊
t′

τi

⌋ ≤ pt′

 j∗∑
i=1

1

τi

 =
1

4
.

Substituting this inequality to (24), we obtain

P

(
T∑

i=1

t̂ηi ≤ t̂

)
≤ et̂/t

′−T
2 .

For t̂ ≤ t′
(
T
2 + log δ

)
, we have

P

(
T∑

i=1

t̂ηi ≤ t̂

)
≤ δ.

Recall that t′ = 1
4p

(∑j∗

i=1
1
τi

)−1

. Using Lemma D.7, we have

t′ ≥ 1

24
min
m∈[n]

(m∑
i=1

1

τi

)−1(
1

p
+m

) .

Finally, we obtain

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
T∑

i=1

t̂ηi ≤ t

)
≤ δ (25)

for

t ≤ 1

24
min
m∈[n]

(m∑
i=1

1

τi

)−1(
1

p
+m

)(T

2
+ log δ

)
.

D.3.2 Proof of Lemma D.6

In the following lemma, we use notations from Part 1 of the proof of Lemma D.2.

Lemma D.6. Let us take lj+1 ∈ N. Then

P (ηj+1 = lj+1|ηj , . . . , η1) ≤ (1− p)lj+1−1p

for all j ∈ {0, . . . , T − 1}.

In this lemma, we want to bound the probability for the random variable ηj+1 from (22). ηj+1 is the
index of the first successful trial of the sequence of Bernouilli random variables. At first sight, this is
a trivial task since ηj+1 has a distribution similar to the geometric distribution. But the main problem
here is that the sequence kξj,i and the quantity mj+1 are also random variables. Therefore, we must
be careful with this.

27

Proof. Since the image of the random variables ηj , . . . , η1 is in N ∩ {∞}. Let us take l1, . . . , lj ∈
N ∪ {∞}, and prove the theorem for a probability conditioned on an event

⋂j
i=1{ηi = li} such that

P
(⋂j

i=1{ηi = li}
)
> 0. Therefore, it is enough to prove that

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ (1− p)lj+1−1p.

First, assume that exists i ∈ [j] such that li = ∞. It means that, for all k ≥ 0, prog(xk) < j, thus

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
= 0

for all lj+1 ∈ N. Let us explain this step. if exists i ∈ [j] such that li = ∞, then an algorithm never
get a progress to jth coordinate, thus ηj+1 = inf{i | ξk

ξ
j,i = 1 and i ∈ [1,mj+1]} = ∞ a.s. because

mj+1 = 0 and kξj,i is an empty sequence.

Assume that li < ∞ for all i ∈ [j]. By the definition of ηj+1, we have mj+1 ≥ lj+1 and ξk
ξ
j,1 =

· · · = ξ
kξ
j,lj+1−1 = 0 and ξ

kξ
j,lj+1 = 1. Thus

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ P

lj+1−1⋂
i=1

{ξk
ξ
j,i = 0}, ξk

ξ
j,lj+1 = 1,mj+1 ≥ lj+1

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Since kξj,s < kξj,i a.s. for all s < i ∈ [mj+1], using the law of total probability, we have

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤
∞∑

k1<···<klj+1
=1

P

lj+1−1⋂
i=1

{ξk
ξ
j,i = 0}, ξk

ξ
j,lj+1 = 1,mj+1 ≥ lj+1,

lj+1⋂
i=1

{kξj,i = ki}

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}


=

∞∑
k1<···<klj+1

=1

P

lj+1−1⋂
i=1

{ξki = 0}, ξklj+1 = 1,mj+1 ≥ lj+1,

lj+1⋂
i=1

{kξj,i = ki}

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 ,

where
∑∞

k1<···<klj+1
=1 is a sum over a set {(k1, . . . , klj+1

) ∈ Nlj+1 | ∀i < p ∈ [lj+1] : ki < kp}.
Next, if the event

lj+1⋂
i=1

{kξj,i = ki}
⋂

{mj+1 ≥ lj+1}

holds, then an event
⋂lj+1

i=1 Aki
holds, where

Aki
:= {ski−1

iki ,q
= 1 and tki ≥ ski−1

iki ,t
+ τiki and prog(ski−1

iki ,x
) = j}.

At the same time, if
⋂lj+1

i=1 Aki
holds, then {mj+1 ≥ lj+1} holds. Therefore,

lj+1⋂
i=1

{kξj,i = ki}
⋂

{mj+1 ≥ lj+1} =

lj+1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)
and

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

28

≤
∞∑

k1<···<klj+1
=1

P

lj+1−1⋂
i=1

{ξki = 0}, ξklj+1 = 1,

lj+1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Let us define σ(ξ1, . . . , ξklj+1−1) as a sigma-algebra generated by ξ1, . . . , ξklj+1−1 . Note that, for
all i ∈ [lj+1 − 1], the event {ξki = 0} ∈ σ(ξ1, . . . , ξklj+1−1). Also, for all i ∈ [lj+1], the event
{kξj,i = ki}

⋂
Aki

∈ σ(ξ1, . . . , ξklj+1−1). Finally, since kξi−1,li
< kξj,lj+1

, the event

Aklj+1

⋂
{kξj,lj+1

= klj+1
}
⋂

{ηi = li} ⊆ σ(ξ1, . . . , ξklj+1−1)

for all i ∈ [j]. Therefore, the event {ξklj+1 = 1} is independent of the event

lj+1−1⋂
i=1

{ξki = 0}
lj+1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

) j⋂
i=1

{ηi = li} ∈ σ(ξ1, . . . , ξklj+1−1)

because ξk are i.i.d. random variables. Using the independence and the equality P
(
ξklj+1 = 1

)
= p,

we have

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p

∞∑
k1<···<klj+1

=1

P

lj+1−1⋂
i=1

{ξki = 0},
lj+1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Since the events {kξj,lj+1
= klj+1

}
⋂
Aklj+1

do not intersect, we can use the additivity of the
probability. If lj+1 = 1, we get

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ pP

(∞⋃
i=1

(
{kξj,lj+1

= i}
⋂

Ai

)∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ p,

and prove the lemma for lj+1 = 1. Otherwise, if lj+1 > 1, we obtain

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p

∞∑
k1<···<klj+1−1=1

P

lj+1−1⋂
i=1

{ξki = 0},
lj+1−1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)
,

∞⋃
i=klj+1−1+1

(
{kξj,lj+1

= i}
⋂

Ai

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

For any events A and B, we have P (A,B) ≤ P (A) , thus

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p

∞∑
k1<···<klj+1−1=1

P

lj+1−1⋂
i=1

{ξki = 0},
lj+1−1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Let us continue for lj+1 > 1 and rewrite the last inequality:

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

29

≤ p

∞∑
k1<···<klj+1−1=1

P

lj+1−2⋂
i=1

{ξki = 0}, ξklj+1−1 = 0,

lj+1−1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Note that, for all i ∈ [lj+1−2], the event {ξki = 0} ∈ σ(ξ1, . . . , ξklj+1−2). Also, for all i ∈ [lj+1−1],

the event {kξj,i = ki}
⋂
Aki

∈ σ(ξ1, . . . , ξklj+1−2). Finally, since kξi−1,li
< kξj,lj+1−1, the event

Aklj+1−1

⋂
{kξj,lj+1−1 = klj+1−1}

⋂
{ηi = li} ⊆ σ(ξ1, . . . , ξklj+1−2)

for all i ∈ [j]. Therefore, the event {ξklj+1−1 = 0} is independent of the event

lj+1−2⋂
i=1

{ξki = 0}
lj+1−1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

) j⋂
i=1

{ηi = li}.

Thus, we have

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p(1− p)

∞∑
k1<···<klj+1−1=1

P

lj+1−2⋂
i=1

{ξki = 0},
lj+1−1⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Since the events {kξj,lj+1−1 = klj+1−1}
⋂
Aklj+1−1

do not intersect, we use the additivity of the
probability. If lj+1 = 2, we get

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ p(1− p)P

(∞⋃
i=1

(
{kξj,lj+1−1 = i}

⋂
Ai

)∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ p(1− p),

and prove the lemma for lj+1 = 2. Otherwise, if lj+1 > 2, we obtain

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p(1− p)

∞∑
k1<···<klj+1−2=1

P

lj+1−2⋂
i=1

{ξki = 0},
lj+1−2⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)
,

∞⋃
i=klj+1−2+1

(
{kξj,lj+1−1 = i}

⋂
Ai

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}


≤ p(1− p)

∞∑
k1<···<klj+1−2=1

P

lj+1−2⋂
i=1

{ξki = 0},
lj+1−2⋂
i=1

(
{kξj,i = ki}

⋂
Aki

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 ,

where we use P (A,B) ≤ P (A) for any events A and B. Using mathematical induction, we can
continue and get that

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ p(1− p)lj+1−1.

D.3.3 Lemma D.7

This is a technical lemma that we use in the proof of Lemma D.2.

30

Lemma D.7. Let us consider a sorted sequence 0 < τ1 ≤ · · · ≤ τn ≤ τn+1 = ∞ and a constant
S ≥ 1

4 . We define

t1 := S

 j∗1∑
i=1

1

τi

−1

,

where

j∗1 = inf

m ∈ [n]

∣∣∣∣∣∣S
(

m∑
i=1

1

τi

)−1

< τm+1

 ,

and

t2 := min
j∈[n]

(j∑
i=1

1

τi

)−1

(S + j)

 .

Then
t1 ≤ t2 ≤ 6t1.

Proof. Additionally, let us define

j∗2 = argmin
j∈[n]

(j∑
i=1

1

τi

)−1

(S + j)

 ,

where j∗2 is the smallest index. For j∗2 = 1, we have

t2 = τ1 (S + 1) > τ1.

For j∗2 > 1, we have  j∗2∑
i=1

1

τi

−1

(S + j∗2) <

j∗2−1∑
i=1

1

τi

−1

(S + j∗2 − 1) .

From this inequality, we getj∗2−1∑
i=1

1

τi

 (S + j∗2) <

 j∗2∑
i=1

1

τi

 (S + j∗2 − 1)

and  j∗2∑
i=1

1

τi

 <
1

τj∗2
(S + j∗2) .

Thus τj∗2 < t2 for all j∗2 ≥ 1.

Then either j∗2 ≤ j∗1 and

t2 =

 j∗2∑
i=1

1

τi

−1

(S + j∗2) ≥ S

 j∗2∑
i=1

1

τi

−1

≥ S

 j∗1∑
i=1

1

τi

−1

= t1,

or j∗2 > j∗1 and

t2 > τj∗2 ≥ τj∗1+1 > S

 j∗1∑
i=1

1

τi

−1

= t1,

where we used the definition of j∗1 . It concludes that t2 ≥ t1.

31

Assume that j∗1 > S + 1. Since the harmonic mean of a sequence less or equal to the maximum, we
have

S

j∗1−1∑
i=1

1

τi

−1

< (j∗1 − 1)

j∗1−1∑
i=1

1

τi

−1

≤ τj∗1−1 ≤ τj∗1 .

This inequality contradicts the definition of j∗1 . It means that j∗1 ≤ S + 1 and

t2 ≤

 j∗1∑
i=1

1

τi

−1

(S + j∗1) ≤

 j∗1∑
i=1

1

τi

−1

(2S + 1) ≤

 j∗1∑
i=1

1

τi

−1

(6S) ≤ 6t1.

D.4 Proof of Theorems 7.4 and 7.5

D.4.1 Proof of Theorems 7.4

Theorem 7.4. Assume that Assumptions 7.1, 7.2 and 7.3 hold. Let us take the batch size S =
max

{⌈
σ2
/ε
⌉
, 1
}
, and γ = min

{
1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 4. Then after

K ≥ 24∆L

ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Proof. Note that Method 4 is just the stochastic gradient method with the batch size S. Method 4 can
be rewritten as xk+1 = xk − γ 1

S

∑S
i=1 ∇̂f(xk; ξi), where the ξi are independent random samples.

It means that we can use the classical SGD result (see Theorem D.8). For a stepsize

γ = min

{
1

L
,

εS

2Lσ2

}
,

we have

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε,

if

K ≥ 12∆L

ε
+

12∆Lσ2

ε2S
.

Using the choice of S, we showed that Method 4 converges after

K ≥ 24∆L

ε

steps with

γ = min

{
1

L
,

εS

2Lσ2

}
≥ 1

2L
.

D.4.2 The classical SGD theorem

We reprove the classical SGD result (Ghadimi and Lan, 2013; Khaled and Richtárik, 2020).
Theorem D.8. Assume that Assumptions 7.1 and 7.2 hold. We consider the SGD method:

xk+1 = xk − γg(xk),

where

γ = min

{
1

L
,

ε

2Lσ2

}

32

For a fixed x ∈ Rd, g(x) is a random vector such that E [g(x)] = ∇f(x),

E
[
∥g(x)−∇f(x)∥2

]
≤ σ2, (26)

and g(xk) are independent vectors for all k ≥ 0. Then

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε

for

K ≥ 4∆L

ε
+

8∆Lσ2

ε2
.

Proof. From Assumption 7.1, we have

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2

= f(xk)− γ
〈
∇f(xk), g(xk)

〉
+

Lγ2

2

∥∥g(xk)
∥∥2 .

We denote Gk as a sigma-algebra generated by g(x0), . . . , g(xk−1). Using unbiasedness and (26),
we obtain

E
[
f(xk+1)

∣∣Gk
]
≤ f(xk)− γ

(
1− Lγ

2

)∥∥∇f(xk)
∥∥2 + Lγ2

2
E
[∥∥gk −∇f(xk)

∥∥2∣∣∣Gk
]

≤ f(xk)− γ

(
1− Lγ

2

)∥∥∇f(xk)
∥∥2 + Lγ2σ2

2
.

Since γ ≤ 1/L, we get

E
[
f(xk+1)

∣∣Gk
]
≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 + Lγ2σ2

2
.

We subtract f∗ and take the full expectation to obtain

E
[
f(xk+1)− f∗] ≤ E

[
f(xk)− f∗]− γ

2
E
[∥∥∇f(xk)

∥∥2]+ Lγ2σ2

2
.

Next, we sum the inequality for k ∈ {0, . . . ,K − 1}:

E
[
f(xK)− f∗] ≤ f(x0)− f∗ −

K−1∑
k=0

γ

2
E
[∥∥∇f(xk)

∥∥2]+ KLγ2σ2

2

= ∆−
K−1∑
k=0

γ

2
E
[∥∥∇f(xk)

∥∥2]+ KLγ2σ2

2
.

Finally, we rearrange the terms and use that E
[
f(xK)− f∗] ≥ 0:

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ 2∆

γK
+ Lγσ2.

The choice of γ and K ensures that

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε.

33

D.4.3 Proof of Theorems 7.5

Theorem 7.5. Consider Theorem 7.4. We assume that ith worker returns a stochastic gradient every
τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then after

96× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) (10)

seconds, Method 4 guarantees to find an ε-stationary point.

Proof. In this setup, the method converges after K×{time required to collect a batch of the size S}.
Without loss of generality, we assume that τ1 ≤ · · · ≤ τn.

Let us define time that is enough to collect a batch of the size S as t′. Obviously, one can always take
t′ = 3τn

⌈
S
n

⌉
and guarantees that every worker calculates at least

⌈
S
n

⌉
stochastic gradients, but we

will provide a tighter t′.

We define Bi as the number of received gradients with an iteration index equals to k.7 For each
worker, there are two options: either the ith worker does not send a gradient with an iteration index k
and Bi = 0, or it sends at least once and Bi > 0.

In the worst case, for ith worker, the time required to calculate Bi gradients equals

ti :=

{
τi (1 +Bi) Bi > 0

0 Bi = 0

because either Bi > 0 and, in the worst case, a worker finishes the calculation of a gradient from the
previous iteration (that we ignore) and only then starts the calculation of a gradient of the current
iteration k, or Bi = 0 and the server does not receive any gradients from a worker.

Note that all workers work in parallel, so our goal is to find feasible points t′ ∈ R and B1, · · · , Bn ∈
N0 such that

t′ ≥ max
i∈[n]

ti

B1, · · · , Bn ∈ N0 (27)
n∑

i=1

Bi ≥ S

First, we relax an assumption that Bi ∈ N0 and assume that Bi ∈ R for all i ∈ [n] :

t′ ≥ max
i∈[n]

ti

B1, · · · , Bn ∈ R (28)
B1, · · · , Bn ≥ 0
n∑

i=1

Bi ≥ S

If Bi ∈ R are feasible points of (28), then

max
i∈[n]

ti = max
Bi>0

τi (1 +Bi) ≤ max
Bi>0

τi (1 + ⌈Bi⌉)

≤ max
Bi>0

τi (2 +Bi) ≤ 2 max
Bi>0

τi (1 +Bi) = 2max
i∈[n]

ti.

It means that if t′ ∈ R and B1, · · · , Bn are feasible points of (28), then 2t′ and ⌈B1⌉, · · · , ⌈Bn⌉ are
feasible points of (27).

Let us define

t′(j) :=

(
j∑

i=1

1

τi

)−1

(S + j) ∀j ∈ [n],

7Note that a worker may send a gradient from the previous iterations that we ignore in the method.

34

and take j∗ = argminj∈[n] t
′(j), j∗ is the smallest index from all minimizers of t′(j). Let us show

that t′(j∗) and

Bi =

{
t′(j∗)
τi

− 1, i ≤ j∗

0, i > j∗

are feasible points of (28). First, we have

n∑
i=1

Bi =

j∗∑
i=1

(
t′(j∗)

τi
− 1

)
=

 j∗∑
i=1

1

τi

−1

(S + j∗)

 j∗∑
i=1

1

τi

− j∗ = S.

Next, we show that Bi > 0 for all i ≤ j∗. If j∗ = 1, then t′(1) = τ1(S + 1), thus B1 = S > 0. If
j∗ > 1, then, by its definition, we have t′(j∗) < t′(j∗ − 1), thus j∗∑

i=1

1

τi

−1

(S + j∗) <

j∗−1∑
i=1

1

τi

−1

(S + j∗ − 1) .

From this inequality, we getj∗−1∑
i=1

1

τi

 (S + j∗) <

 j∗∑
i=1

1

τi

 (S + j∗ − 1)

and  j∗∑
i=1

1

τi

 <
1

τj∗
(S + j∗) .

From the last inequality, we get that τj∗ < t′(j∗), thus Bi ≥ Bj∗ > 0 for all i ≤ j∗. It is left to show
that

max
i∈[n]

ti = max
i≤j∗

τi (Bi + 1) = t′(j∗).

Finally, we can conclude that Method 4 returns a solution after

K × 2t′(j∗) =
48∆L

ε
min
j∈[n]

(j∑
i=1

1

τi

)−1

(S + j)


seconds.

E Proofs for Heterogeneous Regime

E.1 Proof of Theorem A.2

Theorem A.2. Let us consider the oracle class Oσ2,heterog
τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤

· · · ≤ τn. We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In the view Protocol 3, for any algo-
rithm A ∈ Azr, there exists a function f = 1

n

∑n
i=1 fi ∈ F∆,L and oracles and distributions

((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oσ2,heterog
τ1,...,τn (f1, . . . , fn) such that E

[
infk∈St

∥∥∇f(xk)
∥∥2] > ε,

where St :=
{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c×

(
τn

L∆

ε
+

(
1

n

n∑
i=1

τi

)
σ2L∆

nε2

)
. (14)

The quantity c′ and c are universal constants.

The structure of the following proof is similar to the proof of Theorem 6.4. In the heterogeneous
regime, the main difference is that we have more freedom to choose the functions fi.

35

Proof. In (14), we have the sum of two terms. We split the proof in two parts for each of the terms.
(Part 1)
(Step 1: f ∈ F∆,L)
Let us fix λ > 0. We consider the following functions fi :

fi(x) :=

{
0, i < n,
nLλ2

l1
FT

(
x
λ

)
, i = n.

Let us show that the function f is L-smooth:

∥∇f(x)−∇f(y)∥ =
1

n

∥∥∥∥∥
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥ =
Lλ

l1

∥∥∥∇FT

(x
λ

)
−∇FT

(y
λ

)∥∥∥ ≤ L ∥x− y∥ .

Let us take

T =

⌊
∆l1

Lλ2∆0

⌋
,

then

f(0)− inf
x∈RT

f(x) =
1

n

nLλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2∆0T

l1
≤ ∆.

We showed that the function f ∈ F∆,L.
(Step 2: Oracle Class)

In the oracles Oi, we have the freedom to choose a mapping ∇̂fi(·; ·) (see (7)). In this part of the proof,
we simply take non-stochastic mappings ∇̂fi(x; ξ) := ∇fi(x) that are, obviously, unbiased and σ2-
variance-bounded. We can take an arbitrary distribution, for instance, let us take Di = Bernouilli(1)
for all i ∈ [n].

(Step 3: Analysis of Protocol)

We take

λ =
l1
√
ε

L
to ensure that

∥∇f(x)∥2 =
1

n2
∥∇fn(x)∥2 =

L2λ2

l21

∥∥∥∇FT

(x
λ

)∥∥∥2 >
L2λ2

l21
= ε

for all x ∈ RT such that prog(x) < T. Thus

T =

⌊
∆L

l1ε∆0

⌋
.

Only the nth worker contains a nonzero function and can provide a gradient every τn seconds. Since
A is a zero-respecting algorithm and the function fn is a zero-chain function, for all k ≥ 0 such that

tk < τnT,

we have ∥∥∇f(xk)
∥∥ > ε

because we need at least T oracle calls to obtain prog(xk) ≥ T. It means that

inf
k∈St

∥∥∇f(xk)
∥∥2 > ε

for

t = τn

(
∆L

l1ε∆0
− 1

)
.

We now prove the second part of the lower bound.
(Part 2)
(Step 1: f ∈ F∆,L)

36

Let us fix λ > 0. We assume that x = [x1, . . . , xn] ∈ RnT . We define xi ∈ RT as the ith block of a
vector x = [x1, . . . , xn] ∈ RnT . We consider the following functions fi :

fi(x) :=
nLλ2

i

l1
FT

(
xi

λi

)
.

The function fi depends only on a subset of variables xi from x. Let us show that the function f is
L-smooth. Indeed, we have

∥∇fi(x)−∇fi(y)∥ =
nLλi

l1

∥∥∥∥∇FT

(
xi

λi

)
−∇FT

(
yi
λi

)∥∥∥∥ ≤ nL ∥xi − yi∥ ∀i ∈ [n],

and

∥∇f(x)−∇f(y)∥2 =
1

n2

∥∥∥∥∥
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

=
1

n2

n∑
i=1

∥∇fi(x)−∇fi(y)∥2

≤ 1

n2

n∑
i=1

n2L2 ∥xi − yi∥2 = L2 ∥x− y∥2 .

Let us take

T =

⌊
∆l1

L
∑n

j=1 λ
2
j∆

0

⌋
,

then

f(0)− inf
x∈RT

f(x) =
1

n

n∑
i=1

nLλ2
i

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

n∑
i=1

Lλ2
i∆

0T

l1
≤ ∆.

We showed that the function f ∈ F∆,L.

(Step 2: Oracle Class)

In the oracles Oi, we have the freedom to choose a mapping ∇̂fi(·; ·) (see (7)). Let us take

[∇̂fi(x; ξ)]j := ∇jfi(x)

(
1 + 1 [j > (i− 1)T + prog(xi)]

(
ξ

pi
− 1

))
∀x ∈ RnT ,

Di = Bernouilli(pi), and pi ∈ (0, 1] for all i ∈ [n]. Let us show it is unbiased and σ2-variance-
bounded:

E
[
[∇̂fi(x; ξ)]j

]
= ∇jfi(x)

(
1 + 1 [j > (i− 1)T + prog(xi)]

(
E [ξ]

pi
− 1

))
= ∇jfi(x)

for all j ∈ nT, and

E
[∥∥∥∇̂fi(x; ξ)−∇fi(x)

∥∥∥2] ≤ ∥∇fi(x)∥2∞ E

[(
E [ξ]

pi
− 1

)2
]

because the difference is non-zero only in one coordinate. Thus

E
[∥∥∥∇̂fi(x; ξ)−∇fi(x)

∥∥∥2] ≤ ∥∇fi(x)∥2∞ (1− pi)

pi
=

n2L2λ2
i

∥∥∥FT

(
xi

λi

)∥∥∥2
∞

(1− pi)

l21pi

≤ n2L2λ2
i γ

2
∞(1− pi)

l21pi
≤ σ2,

where we take

pi = min

{
n2L2λ2

i γ
2
∞

σ2l21
, 1

}
.

(Step 3: Analysis of Protocol)

37

We fix η > 0 and choose

λi =
l1
√
ηετi

L
√∑n

i=1 τi

to ensure that

∥∇f(x)∥2 =
1

n2

n∑
i=1

∥∇fi(x)∥2 =

n∑
i=1

L2λ2
i

l21

∥∥∥∥∇FTi

(
xi

λi

)∥∥∥∥2
=

n∑
i=1

ηετi∑n
i=1 τi

∥∥∥∥∇FTi

(
xi

λi

)∥∥∥∥2 >

n∑
i=1

ηετi∑n
i=1 τi

1[prog(xi) < T] (29)

for all x = [x1, . . . , xn] ∈ RT . Thus

T =

⌊
∆L

ηεl1∆0

⌋
and

pi = min

{
n2γ2

∞ηετi
σ2
∑n

i=1 τi
, 1

}
∀i ∈ [n]. (30)

Protocol 3 generates the sequence {xk}∞k=0 ≡ {[xk
1 , . . . , x

k
n]}∞k=0. From (29), we have

inf
k∈St

∥∥∇f(xk)
∥∥2 > inf

k∈St

n∑
i=1

ηετi∑n
i=1 τi

1[prog(xk
i) < T] ≥

n∑
i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T].

(31)

Further, we require the following auxillary lemma. See the proof in Section E.2.

Lemma E.1. For η = 4, with probability not less than 1/2,

n∑
i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T] > 2ε

for

t ≤ 1

24

(
σ2
∑n

i=1 τi
n2γ2

∞ηε

)(
T

2
− 1

)
.

Using Lemma E.1 and (31), we have

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε

for

t =
1

24

(
σ2
∑n

i=1 τi
4n2γ2

∞ε

)(
∆L

8εl1∆0
− 2

)
.

This finishes the proof of Part 2.

E.2 Proof of Lemma E.1

In the following lemma, we use notations from the proof of Theorem A.2.
Lemma E.1. For η = 4, with probability not less than 1/2,

n∑
i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T] > 2ε

for

t ≤ 1

24

(
σ2
∑n

i=1 τi
n2γ2

∞ηε

)(
T

2
− 1

)
.

38

Proof. Let us fix t ≥ 0. Our goal is to show that the probability of an inequality
n∑

i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε (32)

is small.

We now use the same reasoning as in Lemma D.2. We use a notation {x}i is ith block of the vector x.
Let us fix a worker’s index i ∈ [n].

Definition E.2 (Sequence kξi,j,l). Let us consider a set{
k ∈ N | sk−1

ik,q
= 1, tk ≥ sk−1

ik,t
+ τik , prog

({
sk−1
ik,x

}
i

)
= j, ik = i

}
, sk−1

ik
≡ (sk−1

ik,t
, sk−1

ik,q
, sk−1

ik,x
).

We order this set and define the result sequence as {kξi,j,l}
mi,j+1

i=1 , where mi,j+1 ∈ [0,∞] is the
size of the sequence. The sequence kξi,j,l is a subsequence of iterations where the ith oracle use the
generated Bernouilli random variables in (7) when prog ({sx}i) = j. The sequence sk−1

ik
is defined

in Protocol 3.

Then
ηi,j+1 := inf{l | ξk

ξ
i,j,l = 1 and l ∈ [1,mi,j+1]} ∈ N ∪ {∞}.

The quantity ηi,j+1 is the index of the first successful trial, when prog(·) = j in the ith block of
the sequence xk. Since the algorithm A is a zero-respecting algorithm, for all k < kξi,j,ηi,j+1

, the
progress prog(xk

i) < j + 1.

As in Lemma D.2 (we skip the proof since the idea is the same. It is only required to use the different
notations: xk → xk

i , t̂ηj
→ t̂i,ηi,j

), for all i ∈ [n], one can show that if infk∈St
1[prog(xk

i) < T] < 1

holds, then
∑T

j=1 t̂i,ηi,j
≤ t, where t̂i,k := kτi for all k ≥ 1. The time t̂i,k is the smallest possible

time when the ith oracle can return the kth stochastic gradient. Thus

P

(
n∑

i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)
≤ P

 n∑
i=1

ηετi∑n
i=1 τi

1

 T∑
j=1

t̂i,ηi,j ≤ t

 ≤ 2ε

 .

Using (25) with n = 1 (and the different notations p → pi, τ1 → τi, and t̂ηj
→ t̂i,ηi,j

), we have

P

 T∑
j=1

t̂i,ηi,j
≤ t

 ≤ δ ∀t ≤ τi
24pi

(
T

2
+ log δ

)
. (33)

We now rearrange the terms and use Markov’s inequality to obtain

P

 n∑
i=1

ηετi∑n
i=1 τi

1

 T∑
j=1

t̂i,ηi,j
> t

 ≤ 2ε


= P

 n∑
i=1

τi1

 T∑
j=1

t̂i,ηi,j
≤ t

 ≥
(
1− 2

η

) n∑
i=1

τi


≤
(
1− 2

η

)−1
(

n∑
i=1

τi

)−1

E

 n∑
i=1

τi1

 T∑
j=1

t̂i,ηi,j
≤ t


=

(
1− 2

η

)−1
(

n∑
i=1

τi

)−1 n∑
i=1

τiP

 T∑
j=1

t̂i,ηi,j
≤ t

 ,

for η > 2. Using the choice of pi in (30), we have

τi
pi

≥
σ2
∑n

i=1 τi
n2γ2

∞ηε

39

for all i ∈ [n]. The last term does not depend on i. Therefore, we can use (33) with

t ≤ 1

24

(
σ2
∑n

i=1 τi
n2γ2

∞ηε

)(
T

2
+ log δ

)
to get

P

 n∑
i=1

ηετi∑n
i=1 τi

1

 T∑
j=1

t̂i,ηi,j
> t

 ≤ 2ε

 ≤
(
1− 2

η

)−1
(

n∑
i=1

τi

)−1(n∑
i=1

τi

)
δ =

(
1− 2

η

)−1

δ.

Finally, for η = 4 and δ = 1/4, we have

P

(
n∑

i=1

ηετi∑n
i=1 τi

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)
≤ 1

2
.

E.3 Proof of Theorem A.3

Theorem A.3. Assume that Assumptions 7.1 and 7.2 hold for the function f . Assumption 7.3
holds for the function fi for all i ∈ [n]. Let us take the parameter S = max

{⌈
σ2
/ε
⌉
, n
}
, and

γ = min
{

1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 6, then after K ≥ 24∆L/ε iterations the method guarantees

that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Proof. Note that Method 6 can be rewritten as xk+1 = xk − γ 1
n

∑n
i=1

1
Bi

∑Bi

j=1 ∇̂fi(x
k; ξi,j),

where the ξi,j are independent random samples. The variance of the gradient estimator equals

E


∥∥∥∥∥∥ 1n

n∑
i=1

1

Bi

Bi∑
j=1

∇̂fi(x
k; ξi,j)−∇f(xk)

∥∥∥∥∥∥
2


=
1

n2

n∑
i=1

E


∥∥∥∥∥∥ 1

Bi

Bi∑
j=1

∇̂fi(x
k; ξi,j)−∇fi(x

k)

∥∥∥∥∥∥
2


=
1

n2

n∑
i=1

1

B2
i

Bi∑
j=1

E
[∥∥∥∇̂fi(x

k; ξi,j)−∇fi(x
k)
∥∥∥2] ≤ 1

n2

n∑
i=1

σ2

Bi
=

(
1

n

n∑
i=1

1

Bi

)
σ2

n
≤ σ2

S
,

where we use the inequality
(

1
n

∑n
i=1

1
Bi

)−1

≥ S
n , We can use the classical SGD result (see

Theorem D.8). For a stepsize

γ = min

{
1

L
,

εS

2Lσ2

}
,

we have

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε,

if

K ≥ 12∆L

ε
+

12∆Lσ2

ε2S
.

Using the choice of S, we obtain that Method 6 converges after

K ≥ 24∆L

ε

steps.

40

E.4 Proof of Theorem A.4

Theorem A.4. Let us consider Theorem A.3. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then
after

96

(
τn

L∆

ε
+

(
1

n

n∑
i=1

τi

)
σ2L∆

nε2

)
(15)

seconds, Method 6 guarantees to find an ε-stationary point.

Proof. The method converges after K×{time required to collect batches with the sizes Bi such that(
1
n

∑n
i=1

1/Bi

)−1 ≥ S
n holds}.

In the worst case, for ith worker, the time required to calculate Bi gradients equals

ti := τi (1 +Bi)

because it is possible that a worker finishes the calculation of a gradient from the previous iteration
(that we ignore) and only then starts the calculation of a gradient of the current iteration.

Our goal is to find feasible points t′ ∈ R and B1, · · · , Bn ∈ N such that

t′ ≥ max
i∈[n]

ti,

B1, · · · , Bn ∈ N, (34)(
1

n

n∑
i=1

1

Bi

)−1

≥ S

n
.

Using the same reasoning as in Theorem 7.5, we relax the assumption that Bi ∈ N and assume that
Bi ∈ R for all i ∈ [n] :

t′ ≥ max
i∈[n]

ti

B1, · · · , Bn ∈ R (35)
B1, · · · , Bn > 0(

1

n

n∑
i=1

1

Bi

)−1

≥ S

n
,

If t′ ∈ R and B1, · · · , Bn are feasible points of (35), then 2t′ and ⌈B1⌉, · · · , ⌈Bn⌉ are feasible points
of (34). Let us show that t′ = 2

(
τn +

(
1
n

∑n
i=1 τi

)
S
n

)
and Bi =

t′

τi
− 1 are feasible points. Indeed,

for all i ∈ [n],

Bi =
t′

τi
− 1 ≥ 2τn

τi
− 1 ≥ 1.

Next, we have

max
i∈[n]

ti = max
i∈[n]

τi (Bi + 1) = t′

and (
1

n

n∑
i=1

1

Bi

)−1

=

(
1

n

n∑
i=1

τi
t′ − τi

)−1

≥

(
1

n

n∑
i=1

2τi
t′

)−1

=
t′

2

(
1

n

n∑
i=1

τi

)−1

≥ S

n
,

where we use t′ − τi ≥ t′/2 + τi − τi = t′/2 for all i ∈ [n]. Finally, it means that Method 6 returns
a solution after

K × 2t′ =
96∆L

ε

(
τn +

(
1

n

n∑
i=1

τi

)
S

n

)
seconds.

41

F Interrupt Oracle Calculations

Let us define a protocol and an oracle where an algorithm can stop the oracle anytime. If an algorithm
stops the oracle, its current calculations are canceled and discarded.

Protocol 8 Time Multiple Oracles Protocol With Control

1: Input: functions f ∈ F , oracles and distributions ((O1, . . . , On), (D1, . . . ,Dn)) ∈ O(f),
algorithm A ∈ A

2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, ck, xk) = Ak(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, ck, skik+1 , ξ
k+1), ξk+1 ∼ D ▷ sk+1

j = skj ∀j ̸= ik+1

6: end for

In Protocol 8, we allow algorithms to output the control variables ck that can be used in the following
oracle.

We take an oracle

O∇̂f
τ : R≥0 × Rd × (R≥0 × Rd × {0, 1})︸ ︷︷ ︸

input state

×{0, 1}︸ ︷︷ ︸
control

×Sξ → (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that

O∇̂f
τ (t, x, (st, sx, sq), c, ξ) =


((t, x, 1), 0), c = 0 and sq = 0,

((st, sx, 1), 0), c = 0 and sq = 1 and t < st + τ,

((0, 0, 0), ∇̂f(sx; ξ)), c = 0 and sq = 1 and t ≥ st + τ,

((0, 0, 0), 0), c = 1,
(36)

and ∇̂f is a mapping such that

∇̂f : Rd × Sξ → Rd.

The oracle (36) generalizes the oracle (7) since an algorithm can send a signal c to the oracle (36) and
interrupt the calculations. Note that if c = 1, then (36) has the same behavior as (7). But, if c = 0,
then the oracle (36) discards all previous information in the state, and changes sq to 0.

Let us define an oracle class:

Definition F.1 (Oracle Class Oσ2,stop
τ1,...,τn).

Let us consider an oracle class such that, for any f ∈ F∆,L, it returns oracles Oi = O∇̂f
τi and

distributions Di for all i ∈ [n], where ∇̂f is an unbiased σ2-variance-bounded mapping (see
Assumption 7.3). The oracles O∇̂f

τi are defined in (36). We define such oracle class as Oσ2,stop
τ1,...,τn .

Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

For the oracle class Oσ2,stop
τ1,...,τn , we state that

mtime (Azr,F∆,L) = Ω

 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

The lower bound is the same as for the oracle class from Definition 6.3. We do not provide a formal
proof, but a close investigation can reveal that the proof is the same as in Theorem 6.4.

Indeed, in Part 1 of the proof of Lemma D.2, we reduce the the inequality
infk∈St

1
[
prog(xk) < T

]
< 1 to the inequality

∑T
i=1 t̂ηi

≤ t, where t̂ηi
is the shortest

time when the oracles can draw a successful Bernouilli random variable. The fact that an algorithm
can interrupt the oracles can not change the quantity t̂ηi

.

42

G Time Complexity with Synchronized Start

In this section, we continue and fill up the discussion in Section 8.

Let us design an oracle for the synchronized start setting. We take an oracle

O∇̂f
τ1,...,τn : R≥0 × Rd × (R≥0 × Rd × {0, 1})︸ ︷︷ ︸

input state

× (Sξ × · · · × Sξ)︸ ︷︷ ︸
n times

→ (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that

O∇̂f
τ1,...,τn(t, x, (st, sx, sq), (ξ1, . . . , ξn)) =

((t, x, 1), 0), sq = 0,

((0, 0, 0), 0), sq = 1 and t ∈ [0, st + τ1),

((0, 0, 0), ∇̂f(sx; ξ1)), sq = 1 and t ∈ [st + τ1, st + τ2),

((0, 0, 0),

2∑
i=1

∇̂f(sx; ξi)), sq = 1 and t ∈ [st + τ2, st + τ3),

. . .

((0, 0, 0),

n∑
i=1

∇̂f(sx; ξi)), sq = 1 and t ∈ [st + τn,∞),

(37)

and ∇̂f is a mapping such that

∇̂f : Rd × Sξ → Rd.

We assume that ξk+1 is a tuple in Protocol 2: ξk+1 ≡ (ξk+1
1 , . . . , ξk+1

n) ∼ D.

The oracle (37) with Protocol 2 emulates the behavior of a setting where we broadcast an iterate x
to all workers, and they start calculations simultaneously. The workers have different time delays,
hence some finish earlier than others. An algorithm can stop the procedure earlier and get calculated
stochastic gradients, but other non-calculated ones will be discarded.

For this oracle, we define an oracle class:

Definition G.1 (Oracle Class Oσ2,sync
τ1,...,τn).

Let us consider an oracle class such that, for any f ∈ F∆,L, it return an oracle O = O∇̂f
τ1,...,τn and

a distribution D, where ∇̂f is an unbiased σ2-variance-bounded mapping (see Assumption 7.3).
The oracle O∇̂f

τ1,...,τn is defined in (37). We define such oracle class as Oσ2,sync
τ1,...,τn . Without loss of

generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

We now provide the lower bound for Protocol 2 and the oracle class Oσ2,sync
τ1,...,τn .

Theorem G.2. Let us consider the oracle class Oσ2,sync
τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.

We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In the view Protocol 2, for any algorithm A ∈ Azr,

there exists a function f ∈ F∆,L and an oracle and a distribution (O,D) ∈ Oσ2,sync
τ1,...,τn(f) such that

E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

[
τm

(
L∆

ε
+

σ2L∆

mε2

)]
.

The quantity c′ and c are universal constants.

G.1 Minimax optimal method

In this section, we analyze the m–Minibatch SGD method (see Method 9). This method generalizes
the Minibatch SGD method from Section 1.2. Unlike Minibatch SGD, the m–Minibatch SGD method
only asks for stochastic gradients from the first m ∈ [n] (fastest) workers. Later, we show that optimal

43

Method 9 m–Minibatch SGD
1: Input: starting point x0, stepsize γ, number of workers m ∈ [n]
2: for k = 0, 1, . . . ,K − 1 do
3: Send the point xk to the first m workers
4: Receive i.i.d. stochastic gradients ∇̂f(xk, ξ1), . . . , ∇̂f(xk, ξm) from the workers
5: xk+1 = xk − γ 1

m

∑m
i=1 ∇̂f(xk, ξi)

6: end for

m is determined by (38). And with this parameter, m–Minibatch SGD method is minimax optimal
under the setting from Sections 8 and G. Note that m–Minibatch SGD is Minibatch SGD if m = n.

We now provide the convergence rate and the time complexity.
Theorem G.3. Assume that Assumptions 7.1, 7.2 and 7.3 hold. Let us take the step size

γ = min

{
1

L
,

εm

2Lσ2

}
in Method 9, then after

K ≥ 12∆L

ε
+

12∆Lσ2

ε2m

iterations the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Theorem G.4. Let us consider Theorem G.3. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Let us
take

m = argmin
m′∈[n]

τm′

(
1 +

σ2

m′ε

)
. (38)

Then after

12 min
m∈[n]

τm

(
L∆

ε
+

σ2L∆

mε2

)
(39)

seconds Method 9 guarantees to find an ε-stationary point.

Despite the triviality of the m–Minibatch SGD and it analysis, we provide it to show that the lower
bound in Theorem G.2 is tight.

G.2 Proof of Theorem G.2

Theorem G.2. Let us consider the oracle class Oσ2,sync
τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.

We fix any L,∆ > 0 and 0 < ε ≤ c′L∆. In the view Protocol 2, for any algorithm A ∈ Azr,

there exists a function f ∈ F∆,L and an oracle and a distribution (O,D) ∈ Oσ2,sync
τ1,...,τn(f) such that

E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

[
τm

(
L∆

ε
+

σ2L∆

mε2

)]
.

The quantity c′ and c are universal constants.

Step 1 and Step 2 mirrors the corresponding steps from the proof of Theorem G.2.

Proof. (Step 1: f ∈ F∆,L)
Let us fix λ > 0. We take the same function f ∈ F∆,L as in the proof of Theorem 6.4. We define

f(x) :=
Lλ2

l1
FT

(x
λ

)
44

with

T =

⌊
∆l1

Lλ2∆0

⌋
.

(Step 2: Oracle Class)
Following the proof of Theorem 6.4, in the oracle O, we take the following stochastic estimator

[∇̂f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ RT , (40)

and D = (Bernouilli(p), . . . ,Bernouilli(p))︸ ︷︷ ︸
n times

, where p ∈ (0, 1]. The stochastic gradient is unbiased

and σ2-variance-bounded if

p = min

{
L2λ2γ2

∞
σ2l21

, 1

}
.

(Step 3: Analysis of Protocol)

We choose

λ =

√
2εl1
L

to ensure that ∥∇f(x)∥2 = L2λ2

l21

∥∥∇FT (
x
λ)
∥∥2 > 2ε1 [prog(x) < T] for all x ∈ RT , where we use

Lemma D.1. Thus

T =

⌊
∆L

2εl1∆0

⌋
and

p = min

{
2εγ2

∞
σ2

, 1

}
.

Protocol 2 generates a sequence {xk}∞k=0. We have

inf
k∈St

∥∥∇f(xk)
∥∥2 > 2ε inf

k∈St

1
[
prog(xk) < T

]
. (41)

Further, we require the following auxillary lemma. See the proof in Section D.3.

Lemma G.5. With probability not less than 1− δ,

inf
k∈St

1
[
prog(xk) < T

]
≥ 1

for

t ≤ 1

2
min
m∈[n]

τm

(
1 +

1

4pm

)(
T

2
+ log δ

)
.

Using Lemma G.5 with δ = 1/2 and (41), we obtain

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] ≥ 2εP

(
inf
k∈St

1
[
prog(xk) < T

])
> ε

for

t =
1

2
min
m∈[n]

τm

(
1 +

σ2

8γ2
∞mε

)(
∆L

2εl1∆0
− 2

)
.

45

G.2.1 Proof of Lemma G.5

Lemma G.5. With probability not less than 1− δ,

inf
k∈St

1
[
prog(xk) < T

]
≥ 1

for

t ≤ 1

2
min
m∈[n]

τm

(
1 +

1

4pm

)(
T

2
+ log δ

)
.

Proof. (Part 1): Comment: in this part, we mirror the proof of Lemma D.2. We also show that
if infk∈St

1
[
prog(xk) < T

]
< 1 holds, then we have the inequality

∑T
i=1 t̂ηi

≤ t, where t̂ηi
are

random variables with some known “good” distributions. However, in this lemma the quantities t̂ηi

are different.
In Protocol 2, the algorithm A consequently calls the oracle O. If infk∈St

1
[
prog(xk) < T

]
< 1

holds, then exists k ∈ St such that prog(xk) = T. Since the algorithm A is zero-respecting, the
mappings Ak will not output a non-zero vector (a vector with a non-zero first coordinate) unless the
oracle returns a non-zero vector.

Let us define the smallest index k(i) of the sequence when the progress prog(xk(i)) equals i :

k(i) := inf
{
k ∈ N0 | i = prog(xk)

}
∈ N0 ∪ {∞}.

Definition G.6 (Sequence (kξp, i
ξ
p)). Let us consider a set

{(k, i) ∈ N× [n] | sk−1
q = 1 and tk ≥ sk−1

t + τi}, sk−1 ≡ (sk−1
t , sk−1

q , sk−1
x).

We order this set lexicographically and define the result sequence as {(kξp, iξp)}mp=1, where m ∈ [0,∞]

is the size of the sequence. The sequence sk−1 is defined in Protocol 2.

Note that the algorithm A is only depends on the random samples
{
ξ
kξ
p

iξp

}m

p=1

since the sequence

{(kξp, iξp)}mp=1 are the indices of the random samples that are used in the oracle (37).

Let us denote the index of the first successful trial as η1, i.e.,

η1 := inf

{
i

∣∣∣∣ ξkξ
p

iξp
= 1 and p ∈ [1,m]

}
∈ N ∪ {∞}.

If infk∈St
1
[
prog(xk) < T

]
< 1 holds, then η1 < ∞. Using the times tk, the algorithm A conse-

quently requests the gradient estimators from the oracle (37).

In each round of the oracle’s calculation, the algorithm can get the vector ∇̂f(sx; ξ1) in not less
than τ1 seconds, the vector

∑2
i=1 ∇̂f(sx; ξi) in less than τ2 seconds, and so forth (see (37)). The

algorithm can repeat any number of these rounds sequentially.

The algorithm A one by one requests m1, . . . ,mi, · · · ∈ {0, . . . , n} gradient estimators from the
oracle (37). It takes at least τmi

seconds (τ0 ≡ 0) to get a vector
∑mi

i=1 ∇̂f(sx; ξi). Let us consider
that k ∈ N is the first index of gradient estimators such that is depends on some ξi = 1. Necessarily,
we have

∑k
j=1 mj ≥ η1. Also, since the A is zero-respecting, we have

∑k
j=1 τmj

≤ tk(1). Note that
k, and m1, . . . ,mk. depend on the algorithm’s strategy. Let us find “the best possible” quantities k,
and m1, . . . ,mk that are independent of an algorithm.

Let us assume that k∗, and m∗
1, . . .m

∗
k minimize the quantity

min
k,m1,...,mk

k∑
j=1

τmj
,

s.t. k ∈ N,
m1, . . .mk ∈ {0, . . . , n},
k∑

j=1

mj ≥ η1.

(42)

46

Then, we have

tk(1) ≥
k∗∑
j=1

τm∗
j
.

Note that if exists j ∈ [k∗] such that m∗
j > η1, then k∗, and m∗

1, . . . ,m
∗
j−1, η1,m

∗
j+1 . . . ,m

∗
k are

also minimizers of (42) since the sequence τk is not decreasing. Therefore, (42) is equivalent to

min
k,m1,...,mk

k∑
j=1

τmj
,

s.t. k ∈ N,
m1, . . .mk ∈ {0, . . . , η1},
k∑

j=1

mj ≥ η1.

(43)

Then, using the simple algebra, we have

tk(1) ≥
k∗∑
j=1

τm∗
j
=

∑
j :m∗

j ̸=0

τm∗
j
=

∑
j :m∗

j ̸=0

m∗
j

τm∗
j

m∗
j

≥
∑

j :m∗
j ̸=0

m∗
j min
m∈[η1]

τm
m

=

k∗∑
j=1

m∗
j min
m∈[η1]

τm
m

≥ η1 min
m∈[η1]

τm
m

.

In the first inequality, we use that m∗
j ∈ {0, . . . , η1} for all j ∈ [k∗]. Next, using Lemma G.9, we get

tk(1) ≥ 1

2
min
m∈[n]

τm

(
1 +

η1
m

)
.

Using the same reasoning, for j ∈ {0, . . . , T − 1},

tk(j+1) ≥ tk(j) +
1

2
min
m∈[n]

τm

(
1 +

ηj+1

m

)
,

where ηj+1 is the index of the first successful trial of Bernouilli random variables when prog(·) = j.
More formally, for all j ∈ {0, . . . , T − 1}:

Definition G.7 (Sequence (kξj,p, i
ξ
j,p)). Let us consider a set

{(k, i) ∈ N× [n] | sk−1
q = 1 and tk ≥ sk−1

t + τi and prog(sk−1
x) = j}, sk−1 ≡ (sk−1

t , sk−1
q , sk−1

x).

We order this set lexicographically and define the result sequence as {(kξj,p, i
ξ
j,p)}

mj+1

p=1 , where
mj+1 ∈ [0,∞] is the size of the sequence. The sequence sk−1 is defined in Protocol 2.

Then,

ηj+1 := inf

{
i

∣∣∣∣ ξkξ
j,p

iξj,p
= 1 and p ∈ [1,mj+1]

}
∈ N ∪ {∞}.

By the definition of k(j), xk(j) is the first iterate such that prog(·) = j. Therefore, the oracle can
potentially start returning gradient estimators with the non-zero j + 1th coordinate from the k(j)th

iteration.

Thus, if infk∈St
1
[
prog(xk) < T

]
< 1 holds, then

1

2

T∑
i=1

min
m∈[n]

τm

(
1 +

ηi
m

)
≤ tk(T) ≤ t.

Finally, we can conclude that

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
1

2

T∑
i=1

min
m∈[n]

τm

(
1 +

ηi
m

)
≤ t

)
∀t ≥ 0. (44)

As in Lemma D.6, we show that

47

Lemma G.8. Let us take lj+1 ∈ N. Then

P (ηj+1 = lj+1|ηj , . . . , η1) ≤ (1− p)lj+1−1p (45)

for all j ∈ {0, . . . , T − 1}.

See the proof in Section G.2.3. Intuitively, the algorithm A can not increase the probability of getting
a successful Bernouilli random variable earlier with its decisions.

Let us temporally define

t̂ηi
:=

1

2
min
m∈[n]

τm

(
1 +

ηi
m

)
for all i ∈ [T].
(Part 2): Comment: in this part, we use the standard technique to bound the large deviations of the
sum

∑T
i=1 t̂ηi

.
Note that a function g : R → R such that g(x) := 1

2 minm∈[n] τm
(
1 + x

m

)
is continuous, strongly-

monotone and invertible. For t′ ≥ 0, we have

P
(
t̂ηj+1 ≤ t′

∣∣ηj , . . . , η1) = P (g(ηj+1) ≤ t′|ηj , . . . , η1) = P
(
ηj+1 ≤ g−1(t′)

∣∣ηj , . . . , η1) .
Using (45), we obtain

P
(
t̂ηj+1

≤ t′
∣∣ηj , . . . , η1) ≤ ⌊g−1(t′)⌋∑

j=1

(1− p)j−1p ≤ p
⌊
g−1(t′)

⌋
.

Let us define
p′ := p

⌊
g−1(t′)

⌋
,

then

P
(
t̂ηj+1

≤ t′
∣∣ηj , . . . , η1) ≤ p′.

Using the Chernoff method, as in Lemma D.2, one can get

P

(
T∑

i=1

t̂ηi ≤ t̂

)
≤ et̂/t

′−T+2p′T .

Let us take

t′ = g

(
1

4p

)
=

1

2
min
m∈[n]

τm

(
1 +

1

4pm

)
,

then

p′ = p

⌊
g−1

(
g

(
1

4p

))⌋
= p

⌊
1

4p

⌋
≤ 1

4
.

Therefore,

P

(
T∑

i=1

t̂ηi
≤ t̂

)
≤ et̂/t

′−T
2 .

Using (44), for

t ≤ 1

2
min
m∈[n]

τm

(
1 +

1

4pm

)(
T

2
+ log δ

)
,

we have

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
T∑

i=1

t̂ηi ≤ t

)
≤ δ.

The last inequality concludes the proof.

48

G.2.2 Lemma G.9

Lemma G.9. Let us consider a sorted sequence 0 < τ1 ≤ · · · ≤ τn and a constant η ∈ N. We define

t1 := η min
m∈[η]

τm
m

,

and

t2 := min
m∈[n]

τm

(
1 +

η

m

)
.

Then
t1 ≤ t2 ≤ 2t1.

Proof. Additionally, let us define

m1 := argmin
m∈[η]

τm
m

and

m2 := argmin
m∈[n]

τm

(
1 +

η

m

)
.

Then, using m1 ≤ η, we have

t2 = min
m∈[n]

τm

(
1 +

η

m

)
≤ τm1

(
1 +

η

m1

)
≤ 2τm1

η

m1
= 2t1.

If m2 ≤ η, then

t1 = η min
m∈[η]

τm
m

≤ η
τm2

m2
≤ τm2

(
1 +

η

m2

)
= t2.

Otherwise, if m2 > η,

t1 = η min
m∈[η]

τm
m

≤ η
τη
η

= τη ≤ τm2
≤ τm2

(
1 +

η

m2

)
= t2.

G.2.3 Proof of Lemma G.8

In the following lemma, we use notations from Part 1 of the proof of Lemma G.5.
Lemma G.8. Let us take lj+1 ∈ N. Then

P (ηj+1 = lj+1|ηj , . . . , η1) ≤ (1− p)lj+1−1p (45)

for all j ∈ {0, . . . , T − 1}.

The idea of the following proof repeats the proof of Lemma G.8. But Protocol 2 with the oracle (37)
differ, so we present the proof for completeness.

Proof. We prove that

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ (1− p)lj+1−1p.

for all l1, . . . , lj ∈ N ∪ {∞} such that P
(⋂j

i=1{ηi = li}
)
> 0.

If exists i ∈ [j] such that li = ∞, then

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
= 0

49

for all lj+1 ∈ N (see details in the proof of Lemma D.6).

Assume that li < ∞ for all i ∈ [j]. By the definition of ηj+1, we have mj+1 ≥ lj+1 and ξ
kξ
j,1

iξj,1
=

· · · = ξ
kξ
j,lj+1−1

iξj,lj+1−1

= 0 and ξ
kξ
j,lj+1

iξj,lj+1

= 1. Thus

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ P

lj+1−1⋂
p=1

{ξk
ξ
j,p

iξj,p
= 0}, ξ

kξ
j,lj+1

iξj,lj+1

= 1,mj+1 ≥ lj+1

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Let us define a set

Slj+1
:= {((k1, i1), . . . , (klj+1

, ilj+1
)) ∈ (N×[n])lj+1 | ∀p < j ∈ [lj+1] : (kp, ip) < (kj , ij)} ∀lj+1 ≥ 1.

Using the law of total probability, we have

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤
∑
Slj+1

P

lj+1−1⋂
p=1

{ξk
ξ
j,p

iξj,p
= 0}, ξ

kξ
j,lj+1

iξj,lj+1

= 1,mj+1 ≥ lj+1,

lj+1⋂
p=1

{(kξj,p, i
ξ
j,p) = (kp, ip)}

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}


=
∑
Slj+1

P

lj+1−1⋂
p=1

{ξkp

ip
= 0}, ξ

klj+1

ilj+1
= 1,mj+1 ≥ lj+1,

lj+1⋂
p=1

{(kξj,p, i
ξ
j,p) = (kp, ip)}

∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

where we take the sum over all ((k1, i1), . . . , (klj+1
, ilj+1

)) ∈ Slj+1
. If the event

lj+1⋂
p=1

{(kξj,p, i
ξ
j,p) = (kp, ip)}

⋂
{mj+1 ≥ lj+1}

holds, then an event
⋂lj+1

p=1 A(kp,ip) holds, where

A(kp,ip) := {skp−1
q = 1 and tkp ≥ s

kp−1
t + τip and prog(skp−1

x) = j}.

At the same time, if
⋂lj+1

p=1 A(kp,ip) holds, then {mj+1 ≥ lj+1} holds. Therefore,

lj+1⋂
p=1

{(kξj,p, i
ξ
j,p) = (kp, ip)}

⋂
{mj+1 ≥ lj+1} =

lj+1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)
and

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤
∑
Slj+1

P

lj+1−1⋂
p=1

{ξkp

ip
= 0}, ξ

klj+1

ilj+1
= 1,

lj+1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

Let us define σi
j as a sigma-algebra generated by (ξ11 , . . . , ξ

1
n), (ξ

2
1 , . . . , ξ

2
n), . . . , (ξ

i
1, . . . , ξ

i
j) for all

i ≥ 0 and j ∈ {0, . . . , n}. Then, we have
lj+1−1⋂
p=1

{ξkp

ip
= 0} ∈ σ

klj+1−1

ilj+1−1
,

and
lj+1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)
∈ σ

klj+1
−1

n

50

since, for all p ∈ [lj+1], the event A(kp,ip) is only determined by skp−1 and tkp that do not depend
on {ξj}∞j=klj+1

. And, for all p ∈ [lj+1], the fact that (kξj,p, i
ξ
j,p) = (kp, ip) does not depend on

{ξj}∞j=klj+1
. Note that kξi−1,li

< kξj,lj+1
(a.s.) for all i ∈ [j]. Thus

A(klj+1
,ilj+1

)

⋂
{(kξj,lj+1

, iξj,lj+1
) = (klj+1

, ilj+1
)}

j⋂
i=1

{ηi = li} ∈ σ
klj+1

−1
n

since, for all i ∈ [j], this event implies that kξi−1,li
< klj+1

. All in all, we have that
lj+1−1⋂
p=1

{ξkp

ip
= 0}

lj+1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

) j⋂
i=1

{ηi = li} ∈ σ
klj+1

−1
n

⋃
σ
klj+1−1

ilj+1−1
.

Since {ξ
klj+1

ilj+1
= 1} is independent of σ

klj+1
−1

n
⋃
σ
klj+1−1

ilj+1−1
,8 we get

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p
∑
Slj+1

P

lj+1−1⋂
p=1

{ξkp

ip
= 0},

lj+1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 .

If lj+1 = 1, observe that the events {(kξj,lj+1
, iξj,lj+1

) = (klj+1 , ilj+1)}
⋂
A(klj+1

,ilj+1
) do not

intersect for all (klj+1 , ilj+1) ∈ N× [n]. Thus, we can use the additivity of the probability, and obtain

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ pP

 ⋃
(k,i)∈N×[n]

(
{(kξj,lj+1

, iξj,lj+1
) = (k, i)}

⋂
A(k,i)

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 ≤ p.

Otherwise, if lj+1 > 1, we also use the fact that the events do not intersect and get

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)

≤ p
∑

Slj+1−1

P

lj+1−1⋂
p=1

{ξkp

ip
= 0},

lj+1−1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)
,

⋃
(k,i)>(klj+1−1,ilj+1−1)

(
{(kξj,lj+1

, iξj,lj+1
) = (k, i)}

⋂
A(k,i)

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}


≤ p

∑
Slj+1−1

P

lj+1−1⋂
p=1

{ξkp

ip
= 0},

lj+1−1⋂
p=1

(
{(kξj,p, i

ξ
j,p) = (kp, ip)}

⋂
A(kp,ip)

)∣∣∣∣∣∣
j⋂

i=1

{ηi = li}

 ,

where we used an inequality P (A,B) ≤ P (A) for any events A and B. We take the sum over all
((k1, i1), . . . , (klj+1−1, ilj+1−1)) ∈ Slj+1−1, where

Slj+1−1 = {((k1, i1), . . . , (klj+1−1, ilj+1−1)) ∈ (N×[n])lj+1−1 | ∀p < j ∈ [lj+1−1] : (kp, ip) < (kj , ij)}.
Using the same reasoning, one can continue and get that

P

(
ηj+1 = lj+1

∣∣∣∣∣
j⋂

i=1

{ηi = li}

)
≤ p(1− p)lj+1−1.

8For all i, j ≥ 0 and l, p ∈ {0, . . . , n}, the union of σi
l and σj

p is a sigma-algebra since either σi
l ⊆ σj

p, or
σj
p ⊆ σi

l .

51

G.3 Proof of Theorem G.3

Theorem G.3. Assume that Assumptions 7.1, 7.2 and 7.3 hold. Let us take the step size

γ = min

{
1

L
,

εm

2Lσ2

}
in Method 9, then after

K ≥ 12∆L

ε
+

12∆Lσ2

ε2m

iterations the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Proof. Note that

xk+1 = xk − γ
1

m

m∑
i=1

∇̂f(xk, ξi),

where the stochatsic gradients are i.i.d. Therefore, we can use the classical SGD result (see Theo-
rem D.8). For a stepsize

γ = min

{
1

L
,

εm

2Lσ2

}
,

we have

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε,

if

K ≥ 12∆L

ε
+

12∆Lσ2

ε2m
.

G.4 Proof of Theorem G.4

Theorem G.4. Let us consider Theorem G.3. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Let us
take

m = argmin
m′∈[n]

τm′

(
1 +

σ2

m′ε

)
. (38)

Then after

12 min
m∈[n]

τm

(
L∆

ε
+

σ2L∆

mε2

)
(39)

seconds Method 9 guarantees to find an ε-stationary point.

Proof. In this setup, the method converges after K × τm seconds because the delay of each iteration
is determined by the slowest worker. Thus, the time complexity equals

τm

(
12∆L

ε
+

12∆Lσ2

ε2m

)
=

12∆L

ε
τm

(
1 +

σ2

εm

)
=

12∆L

ε
min

m′∈[n]
τm

(
1 +

σ2

m′ε

)
,

where we use the choice of the number of workers m.

52

H Proofs for Convex Case

H.1 The “worst case” function in convex case

In this proof, we use the construction from (Woodworth et al., 2018). Let us define B2(0, R) :={
x ∈ RT+1 : ∥x∥ ≤ R

}
.

Let us take functions fl,η : RT+1 → R and f̃l,η : RT+1 → R such that

fl,η(x) := min
y∈RT+1

{
f̃l,η(y) +

η

2
∥y − x∥2

}
and

f̃l,η(x) := max
1≤r≤T+1

(
lxr −

5l2(r − 1)

η

)
,

where l, η > 0 are free parameters. Let us define

y(x) := argmin
y∈RT+1

{
f̃l,η(y) +

η

2
∥y − x∥2

}
.

For ths function fl,η, we have the following properties:
Lemma H.1 (Woodworth et al. (2018)). The function fl,η satisfies:

1. (Lemma 4) The function fl,η is convex, l–Lipschitz, and η–smooth.

2. (eq. 75)

min
x∈B2(0,1)

fl,η(x) ≤ − l√
T + 1

.

3. (Lemma 6) For all x ∈ B2(0, 1), prog(∇fl,η(x)) ≤ prog(x) + 1 and prog(y(x)) ≤
prog(x) + 1.

H.2 Proof of Theorem B.4

Theorem B.4. Let us consider the oracle class Oconv,σ2

τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.

We fix any R,L,M, ε > 0 such that
√
LR > c1

√
ε > 0 and M2R2 > c2ε

2. In the view Protocol 3,
for any algorithm A ∈ AR

zr , there exists a function f ∈ F conv
R,M,L and oracles and distributions

((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oconv,σ2

τ1,...,τn(f) such that

E
[
inf
k∈St

f(xk)

]
− inf

x∈B2(0,R)
f(x) > ε,

where St :=
{
k ∈ N0

∣∣tk ≤ t
}
, and

t = c× min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
min

{√
LR√
ε

,
M2R2

ε2

}
+

σ2R2

mε2

) .

The quantities c1, c2 and c are universal constants.

In Step 1, we almost repeat the proof from Woodworth et al. (2018). Steps 2 and 3 are very close to
Steps 2 and 3 of the proofs for the nonconvex case.

Proof. (Step 1: f ∈ F conv
R,M,L) Following Woodworth et al. (2018), we assume that R = 1. Otherwise,

one can rescale the parameters of the construction. Let us take the function fl,η from Section H.1
with parameters

l = min

{
M,

L

10(T + 1)3/2

}
and η = 10(T + 1)3/2l.

53

Using Lemma H.1, one can see that fl,η is convex, M–Lipschitz, and L–smooth. Therefore, fl,η ∈
F conv

R,M,L. Further, we use the notation f := fl,η.

(Step 2: Oracle Class)
Let us take

[∇̂f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ RT ,

and Di = Bernouilli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [x]j as the jth index of a vector
x ∈ RT+1. It is left to show this mapping is unbiased and σ2-variance-bounded. Indeed,

E
[
[∇̂f(x, ξ)]i

]
= ∇if(x)

(
1 + 1 [i > prog(x)]

(
E [ξ]

p
− 1

))
= ∇if(x)

for all i ∈ [T + 1], and

E
[∥∥∥∇̂f(x; ξ)−∇f(x)

∥∥∥2] ≤ max
j∈[T+1]

|∇jf(x)|2 E

[(
ξ

p
− 1

)2
]

because the difference is non-zero only in one coordinate. Thus

E
[∥∥∥∇̂f(x, ξ)−∇f(x)

∥∥∥2] ≤ ∥∇f(x)∥2∞ (1− p)

p
≤ ∥∇f(x)∥2 (1− p)

p

≤ l2(1− p)

p
≤ σ2 ∀x ∈ B2(0, 1).

where we take

p = min

{
l2

σ2
, 1

}
.

(Step 3: Analysis of Protocol)
Protocol 3 generates the sequence {xk}∞k=0. Then, we have

f(xk) = max
1≤r≤T+1

(
l[y(xk)]r −

5l2(r − 1)

η

)
+

η

2

∥∥y(xk)− xk
∥∥2 ≥ l[y(xk)]T+1 −

5l2T

η
.

Assume that prog(xk) < T. Using Lemma H.1, if prog(xk) < T, then prog(y(xk)) ≤ T and
[y(xk)]T+1 = 0. Therefore, f(xk) ≥ − 5l2T

η ≥ − 5l2(T+1)
η and

f(xk)− min
x∈B2(0,1)

f(x) ≥ l√
T + 1

− 5l2(T + 1)

η
=

l

2
√
T + 1

= min

{
M

2
√
T + 1

,
L

20(T + 1)2

}
if prog(xk) < T. Let us take

T = min

{⌊
M2

64ε2
− 1

⌋
,

⌊ √
L√

80
√
ε
− 1

⌋}
to ensure that

f(xk)− min
x∈B2(0,1)

f(x) ≥ min

{
M

2
√
T + 1

,
L

20(T + 1)2

}
≥ 4ε > 2ε

if prog(xk) < T. It is left to use Lemma D.2 with δ = 1/2:

E
[
inf
k∈St

f(xk)

]
− min

x∈B2(0,1)
f(x) > 2εP

(
inf
k∈St

1
[
prog(xk) < T

]
≥ 1

)
> ε (46)

for

t ≤ 1

24
min
m∈[n]

(m∑
i=1

1

τi

)−1(
σ2

l2
+m

)(T

2
− 1

)

54

=
1

24
min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
σ2

ml2
+ 1

)(T

2
− 1

)
.

We can take universal constants c1 and c2 equal to 8·64 to ensure that T ≥ 6. Therefore, 16ε ≥ l
2
√
T+1

and (46) holds for

t ≤ 1

96
min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
σ2

ml2
(T + 1) + (T + 2)

) ,

for

t ≤ 1

96
min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
σ2

ml2
l2

322ε2
+ (T + 2)

) ,

and for

t ≤ 1

96
min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
σ2

322mε2
+min

{
M2

64ε2
,

√
L√

80
√
ε

}) .

H.3 Proof of Theorem B.8

Theorem B.8. Assume that Assumptions B.5, B.6 and B.7 hold. Let us take the batch size
S = max

{⌈
σ2
/M2

⌉
, 1
}
, and γ = ε

M2+σ2/S = Θ(ε/M2) in Method 4, then after K ≥ 2M2R2
/ε2

iterations the method guarantees that E
[
f(x̂K)

]
− f(x∗) ≤ ε, where x̂K = 1

K

∑K−1
k=0 xk and

R =
∥∥x∗ − x0

∥∥ .
Proof. Using the same reasoning as in the proof of Theorem 7.4, one can see that Method 4 is
just the stochastic gradient method with the batch size S. Method 4 can be rewritten as xk+1 =

xk − γ 1
S

∑S
i=1 ∇̂f(xk; ξi), where the ξi are independent random samples. It means that we can use

the classical SGD result (Theorem H.2). For a stepsize

γ =
ε

M2 + σ2

S

,

we have

E
[
f(x̂K)

]
− f(x∗) ≤ ε

if

K ≥
2M2

∥∥x∗ − x0
∥∥2

ε2
≥

(M2 + σ2

S)
∥∥x∗ − x0

∥∥2
ε2

.

H.3.1 The classical SGD theorem in convex optimization

We reprove the classical SGD result (see, for instance, (Lan, 2020)) for convex functions.
Theorem H.2. Assume that Assumptions B.5 and B.6 hold. We consider the SGD method:

xk+1 = xk − γg(xk),

where

γ =
ε

M2 + σ2

For a fixed x ∈ Rd, g(x) is a random vector such that E [g(x)] ∈ ∂f(x) (∂f(x) is the subdifferential
of the function f at the point x),

E
[
∥g(x)− E [g(x)]∥2

]
≤ σ2,

55

and g(xk) are independent vectors for all k ≥ 0. Then

E

[
f

(
1

K

K−1∑
k=0

xk

)]
− f(x∗) ≤ ε (47)

for

K ≥
(M2 + σ2)

∥∥x∗ − x0
∥∥2

ε2
.

Proof. We denote Gk as a sigma-algebra generated by g(x0), . . . , g(xk−1). Using the convexity, for
all x ∈ Rd, we have

f(x) ≥ f(xk) +
〈
E
[
g(xk)

∣∣Gk
]
, x− xk

〉
= f(xk) + E

[〈
g(xk), x− xk

〉∣∣Gk
]
.

Note that〈
g(xk), x− xk

〉
=
〈
g(xk), xk+1 − xk

〉
+
〈
g(xk), x− xk+1

〉
= −γ

∥∥g(xk)
∥∥2 + 1

γ

〈
xk − xk+1, x− xk+1

〉
= −γ

∥∥g(xk)
∥∥2 + 1

2γ

∥∥xk − xk+1
∥∥2 + 1

2γ

∥∥x− xk+1
∥∥2 − 1

2γ

∥∥x− xk
∥∥2

= −γ

2

∥∥g(xk)
∥∥2 + 1

2γ

∥∥x− xk+1
∥∥2 − 1

2γ

∥∥x− xk
∥∥2

and

E
[∥∥g(xk)

∥∥2∣∣∣Gk
]
= E

[∥∥g(xk)− E
[
g(xk)

∣∣Gk
]∥∥2∣∣∣Gk

]
+
∥∥E [g(xk)

∣∣Gk
]∥∥2 ≤ σ2 +M2.

Therefore, we get

f(xk) ≤ f(x) + E
[〈

g(xk), xk − x
〉∣∣Gk

]
= f(x) +

γ

2
E
[∥∥g(xk)

∥∥2∣∣∣Gk
]
+

1

2γ

∥∥x− xk
∥∥2 − 1

2γ
E
[∥∥x− xk+1

∥∥2∣∣∣Gk
]

≤ f(x) +
γ

2

(
M2 + σ2

)
+

1

2γ

∥∥x− xk
∥∥2 − 1

2γ
E
[∥∥x− xk+1

∥∥2∣∣∣Gk
]
.

By taking the full expectation and summing the last inequality for t from 0 to K − 1, we obtain

E

[
K−1∑
k=0

f(xk)

]
≤ Kf(x) +

Kγ

2

(
M2 + σ2

)
+

1

2γ

∥∥x− x0
∥∥2 − 1

2γ
E
[∥∥x− xK

∥∥2]
≤ Kf(x) +

Kγ

2

(
M2 + σ2

)
+

1

2γ

∥∥x− x0
∥∥2 .

Let divide the last inequality by K, take x = x∗, and use the convexity:

E

[
f

(
1

K

K−1∑
k=0

xk

)]
− f(x∗) ≤ γ

2

(
M2 + σ2

)
+

1

2γK

∥∥x∗ − x0
∥∥2 .

The choices of γ and K ensure that (47) holds.

H.4 Proof of Theorem B.9

Theorem B.9. Let us consider Theorem B.8. We assume that ith worker returns a stochastic gradient
every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn. Then
after

8 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
M2R2

ε2
+

σ2R2

mε2

) (17)

seconds Method 4 guarantees to find an ε-solution.

56

Proof. The proof is the same as in Theorem 7.5. It is only required to estimate the time that is
required to collect a batch of size S. Method 4 returns a solution after

K × 2t′(j∗) =
4M2

∥∥x∗ − x0
∥∥2

ε2
min
j∈[n]

(j∑
i=1

1

τi

)−1

(S + j)


seconds.

H.5 Proof of Theorem B.10

Theorem B.10. Assume that Assumptions B.5, 7.1 and 7.3 hold. Let us take the batch size

S = max
{⌈

(σ2R)/(ε3/2
√
L)
⌉
, 1
}
, and γ = min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated

Method 4, then after K ≥ 8
√
LR√
ε

iterations the method guarantees that E
[
f(xK)

]
− f(x∗) ≤ ε,

where R ≥
∥∥x∗ − x0

∥∥ .
Proof. One can see that Accelerated Method 4 is just the accelerated stochastic gradient method with
the batch size S. It means that we can use the classical SGD result (Proposition 4.4 in Lan (2020)).
For a stepsize

γ = min

{
1

4L
,

[
3R2S

4σ2(K + 1)(K + 2)2

]1/2}
,

we have

E
[
f(xK)

]
− f(x∗) ≤ 4LR2

K2
+

4
√
σ2R2

√
SK

.

Therefore,

E
[
f(xK)

]
− f(x∗) ≤ ε

if

K ≥ 8
√
LR√
ε

≥ 8max

{√
LR√
ε

,
σ2R2

ε2S

}
,

where we use the choice of S.

H.6 Proof of Theorem B.11

Theorem B.11. Let us consider Theorem B.10. We assume that ith worker returns a stochastic
gradient every τi seconds for all i ∈ [n]. Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤
τn. Then after

32 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(√
LR√
ε

+
σ2R2

mε2

)
seconds Accelerated Method 4 guarantees to find an ε-solution.

Proof. The proof is the same as in Theorem 7.5. It is only required to estimate the time that is
required to collect a batch of size S. Accelerated Method 4 returns a solution after

K × 2t′(j∗) =
16

√
LR√
ε

min
j∈[n]

(j∑
i=1

1

τi

)−1

(S + j)


seconds.

57

I Construction of Algorithm for Rennala SGD

In this section, we provide the formal construction of the algorithm from Definition 4.1 for Rennala
SGD. We consider the fixed computation model, where ith worker requires τi seconds to calculate
stochastic gradients. We now define the corresponding sequence {Ak}∞k=0. Let us fix a starting point
x0 ∈ Rd, a stepsize γ ≥ 0, and a batch size S ∈ N.

First, let us consider the sequence {t̂k}∞k=1 from Definition D.4 that represents the times when the
workers would be ready to provide stochastic gradients. Additionally, let us define t̂0 := 0 and a
sequence of the workers’ indices {̂ik}∞k=1 that are corresponding to the times {t̂k}∞k=1. We can define

Ak(g1, . . . , gk) =


(
t̂(⌊k/2⌋), î(⌊k/2⌋+1), x

0 − γ

S

2S×⌊k/(2S)⌋∑
j=1

gj
)
, k (mod 2) = 0,(

t̂(⌊k/2⌋+1), î(⌊k/2⌋+1), 0
)
, k (mod 2) = 1,

(48)

for all k ≥ 1, and A0 = (t̂0, î1, x
0). For the fixed computation model, one can use this algorithm in

Protocol 3 with the oracle (7) to get an equivalent procedure to Method 4.

58

J Experiments

In this section, we compare Rennala SGD with Asynchronous SGD and Minibatch SGD on quadratic
optimization tasks with stochastic gradients. The experiments were implemented in Python 3.7.9.
The distributed environment was emulated on machines with Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz.

J.1 Setup

We consider the homogeneous optimization problem (1) with the convex quadratic function

f(x) =
1

2
x⊤Ax− b⊤x ∀x ∈ Rd.

We take d = 1000,

A =
1

4


2 −1 0

−1
.
. −1

0 −1 2

 ∈ Rd×d and b =
1

4


−1
0
...
0

 ∈ Rd.

Assume that all n workers has access to the following unbiased stochastic gradients:

[∇̂f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ Rd,

where ξ ∼ Di = Bernouilli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [x]j as the jth index of a
vector x ∈ Rd. In our experiments, we take p = 0.01 and the starting point x0 = [

√
d, 0, . . . , 0]⊤.

We emulate our setup by considering that the ith worker requires
√
i seconds to calculate a stochastic

gradient. In all methods, we fine-tune step sizes from a set {2i | i ∈ [−20, 20]}. In Rennala SGD, we
fine-tune the batch size S ∈ {1, 5, 10, 20, 40, 80, 100, 200, 500, 1000}.

J.2 Results

In Figures 1, 2, and 3, we present experiments with different number of workers n ∈
{100, 1000, 10000}. When the number of workers n = 100, Rennala SGD with Asynchronous
SGD converge to the minimum at almost the same rate. However, when we start increasing the
number of workers n, one can see that Asynchronous SGD9 starts converging slower. This is an
expected behavior since the maximum theoretical step size in Asynchronous SGD decreases as the
number of workers n increases (Koloskova et al., 2022; Mishchenko et al., 2022).

K Experiment with Small-Scale Machine Learning Task

We also consider the methods in a more practical scenario. We solve a logistic regression problem
with the MNIST dataset (LeCun et al., 2010). We take n = 1000 workers that hold the same subset
of MNIST of the size 3000. Each worker samples stochastic gradients of size 4. In Figures 4 and
5, we provide convergence rates and a histogram of the time delays from the experiment. As in
(Mishchenko et al., 2018), we can observe that asynchronous methods converge faster than Minibatch
SGD. Unlike Section J where Rennala SGD converges faster than Asynchronous SGD, these methods
have almost the same performance in this particular experiment.

9We implemented Asynchronous SGD with delay-adaptive stepsizes from (Koloskova et al., 2022)

59

0 200 400 600 800 1000
times (seconds)

10 2

10 1

100

101

102

103

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.0625
Asynchronous SGD: Step size: 0.03125
Asynchronous SGD: Step size: 0.015625
Minibatch SGD: Step size: 1.0
Minibatch SGD: Step size: 0.5
Minibatch SGD: Step size: 0.25
Rennala SGD: Step size: 1.0 Batch Size: 10
Rennala SGD: Step size: 2.0 Batch Size: 40
Rennala SGD: Step size: 1.0 Batch Size: 20

Figure 1: # of workers n = 100.

0 1000 2000 3000 4000 5000
times (seconds)

10 2

10 1

100

101

102

103

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.0078125
Asynchronous SGD: Step size: 0.00390625
Asynchronous SGD: Step size: 0.001953125
Minibatch SGD: Step size: 1.0
Minibatch SGD: Step size: 0.5
Minibatch SGD: Step size: 0.25
Rennala SGD: Step size: 1.0 Batch Size: 10
Rennala SGD: Step size: 2.0 Batch Size: 40
Rennala SGD: Step size: 1.0 Batch Size: 5

Figure 2: # of workers n = 1000.

0 200 400 600 800 1000
times (seconds)

10 2

10 1

100

101

102

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
Asynchronous SGD: Step size: 0.000244140625
Asynchronous SGD: Step size: 0.0001220703125
Minibatch SGD: Step size: 1.0 (Timeout)
Minibatch SGD: Step size: 2.0 (Timeout)
Minibatch SGD: Step size: 0.5 (Timeout)
Rennala SGD: Step size: 2.0 Batch Size: 40
Rennala SGD: Step size: 2.0 Batch Size: 80
Rennala SGD: Step size: 1.0 Batch Size: 20

Figure 3: # of workers n = 10000.

60

0 250 500 750 1000 1250 1500 1750 2000
time

10 2

10 1

100

101

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00390625
Asynchronous SGD: Step size: 0.0078125
Asynchronous SGD: Step size: 0.015625
Minibatch SGD: Step size: 4.0
Minibatch SGD: Step size: 2.0
Minibatch SGD: Step size: 8.0
Rennala SGD: Step size: 4.0 Batch Size: 80
Rennala SGD: Step size: 8.0 Batch Size: 80
Rennala SGD: Step size: 4.0 Batch Size: 100

Figure 4: Logistic regression experiment

1 2 3 4 5
time

0

10

20

30

40

50

60

nu
m

be
r o

f d
el

ay
s

Figure 5: Histogram of time delays

L Time Complexity of Asynchronous SGD

The works (Mishchenko et al., 2022; Koloskova et al., 2022) state that Asynchronous SGD convereges
after

O

(
nL∆

ε
+

σ2L∆

ε2

)
iterations. This result directly does not reveal the time complexity of Asynchronous SGD. Let us
provide the time complexity for the case when the workers require exactly τi seconds to compute
stochastic gradients. Let us fix a time t ≥ 0. Then the workers will calculate at most

n∑
i=1

⌊
t

τi

⌋
stochastic gradients. To get ε-stationary point, we have to find the minimal t such that

c×
(
nL∆

ε
+

σ2L∆

ε2

)
≤

n∑
i=1

⌊
t

τi

⌋
, (49)

61

where the quantity c is a numerical constant, since the number of iterations can not be larger than the
number of calculated gradients. Note that

n∑
i=1

⌊
t

τi

⌋
≤

n∑
i=1

t

τi

The time t′ that satisfies

c

(
nL∆

ε
+

σ2L∆

ε2

)
=

n∑
i=1

t′

τi

is

t′ = c

(
1

n

n∑
i=1

1

τi

)−1(
L∆

ε
+

σ2L∆

nε2

)
. (50)

Therefore, the minimal time t that satisfies (49) is greater or equal to (50).

M Analysis of Fixed-Computation Model Using Graph Oracle Models

In this section, we analyze the fixed computation model, where ith worker requires τi seconds to
calculate stochastic gradients. Without loss of generality, let us assume that 0 < τ1 ≤ · · · ≤ τn.
We use the graph oracle framework by Woodworth et al. (2018). Let us fix some t > τn. Then,
in the fixed computation model, the depth of the graph oracle D is at least Ω (t/τ1) . This is the
number of gradients that the first node can calculate after t seconds. The size of the graph N equals
Θ
(∑n

i=1
t
τi

)
since all workers calculate in parallel. Applying these estimates to Theorem 1 of

(Woodworth et al., 2018), one can see that, for convex, L–smooth, M -Lipschitz problems with
unbiased and σ2-variance-bounded stochastic gradients on the ball B2(0, R), the lower bound is at
most equals

O

min

{
MR√
t/τ1

,
LR2

(t/τ1)2

}
+

σR√∑n
i=1

t
τi

 .

From this estimate, we can conclude that in order to get an ε–solution, it is required

t = O

τ1 min

{
M2R2

ε2
,

√
LR√
ε

}
+

(
1

n

n∑
i=1

1

τi

)−1
σ2R2

nε2


seconds.

M.1 Example when the lower bound from (Woodworth et al., 2018) is not tight

Let us provide an example when the lower bound from Theorem B.4 is strictly higher. Let us take
τi =

√
i for all i ∈ [n]. Then, it is sufficient to compare

min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
min

{√
LR√
ε

,
M2R2

ε2

}
+

σ2R2

mε2

)
and

τ1 min

{√
LR√
ε

,
M2R2

ε2

}
+

(
1

n

n∑
i=1

1

τi

)−1
σ2R2

nε2
.

Let us divide both formulas by the term with minimum and obtain

min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1 (
1 +

a

m

)
62

and

τ1 +

(
1

n

n∑
i=1

1

τi

)−1
a

n

for some a ≥ 0. Since
∑m

i=1
1
τi

=
∑m

i=1
1√
i
= Θ(

√
m) , then we get

min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1 (
1 +

a

m

) = Θ

(
min
m∈[n]

[√
m
(
1 +

a

m

)])
= Θ

(√
a
)

and

τ1 +

(
1

n

n∑
i=1

1

τi

)−1
a

n
= Θ

(
1 +

a√
n

)
,

if a ≤ n. For instance, let us additionally assume that a =
√
n, then the first term equals Θ

(
n1/4

)
,

while the second equals Θ(1). Theorefore, the lower bound from Theorem B.4 is tighter.

63

	Introduction
	Classical theory
	Parallel optimization methods

	Problem and Contribution
	Classical Oracle Protocol
	Time Oracle Protocol
	Time Multiple Oracles Protocol
	Lower Bound for Parallel Optimization Methods
	Related work

	Minimax Optimal Method
	Assumptions
	Analysis of Rennala SGD
	Discussion

	Synchronized Start of Workers
	Future Work
	Heterogeneous Regime
	Lower bound
	Related work and discussion
	Minimax optimal method
	Discussion

	Convex Case
	Lower Bound
	Discussion

	Minimax optimal method
	Assumptions
	Analysis of Rennala SGD and Accelerated Rennala SGD in convex case

	Table of Notations
	Proofs for Homogeneous Regime
	The ``worst case'' function
	Proof of Theorem 6.4
	Auxillary lemmas
	Proof of Lemma D.2
	Proof of Lemma D.6
	Lemma D.7

	Proof of Theorems 7.4 and 7.5
	Proof of Theorems 7.4
	The classical SGD theorem
	Proof of Theorems 7.5

	Proofs for Heterogeneous Regime
	Proof of Theorem A.2
	Proof of Lemma E.1
	Proof of Theorem A.3
	Proof of Theorem A.4

	Interrupt Oracle Calculations
	Time Complexity with Synchronized Start
	Minimax optimal method
	Proof of Theorem G.2
	Proof of Lemma G.5
	Lemma G.9
	Proof of Lemma G.8

	Proof of Theorem G.3
	Proof of Theorem G.4

	Proofs for Convex Case
	The ``worst case'' function in convex case
	Proof of Theorem B.4
	Proof of Theorem B.8
	The classical SGD theorem in convex optimization

	Proof of Theorem B.9
	Proof of Theorem B.10
	Proof of Theorem B.11

	Construction of Algorithm for Rennala SGD
	Experiments
	Setup
	Results

	Experiment with Small-Scale Machine Learning Task
	Time Complexity of Asynchronous SGD
	Analysis of Fixed-Computation Model Using Graph Oracle Models
	Example when the lower bound from woodworth2018graph is not tight

