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ABSTRACT

Emergent communication can lead to more efficient problem-solving heuristics
and more domain specificity. It can perform better than a handcrafted communi-
cation protocol, potentially directing autonomous agents towards unforeseen yet
effective solutions. Previous research has investigated a social deduction game,
called Werewolf, where two groups of autonomous agents, villagers and were-
wolves, interact in an environment named RLupus. We study the impact of al-
lowing the agents to communicate through multiple rounds and evaluate their lan-
guage and performance against the baseline environment. We show that agents
develop a highly successful heuristic using a single word vocabulary. They create
an approach using passwords, allowing them to determine which agents are were-
wolves, which is the winning condition. We explore the possible reasons behind
this strategy, with further experimental analysis showing that our approach speeds
up the convergence of the agents towards a common communication strategy.

1 INTRODUCTION

Emergent communication allows agents to develop their own language as they interact. This allows
for a range of benefits, such as a bespoke vocabulary or syntax, for a given environment and set of
actions, enabling efficient communication and even optimising the agents’ behaviour. The ability
for the language to be completely adapted to the environment allows for unique and better strategies,
as the whole meaning behind the communication channel can be adapted.

Different aspects of how the communication emerges, and its properties, have been investigated,
with one of the first works examining them in the setting of deep learning being that of Lazaridou
et al. (2017), with previous works using other techniques such as iterated learning Smith et al. (2003)
or evolutionary algorithms (Steels, 2003). Most of the emergent communication literature focuses
on relatively simple non-situated settings, with the most common being referential games, where two
agents have to describe and identify a picture from a description (Lazaridou et al., 2017; 2018; Luna
et al., 2020; Dessı̀ et al., 2021). In such settings, there have also been some attempts to consider
multiround communication (Evtimova et al., 2018; Harding Graesser et al., 2019; Kottur et al.,
2017), with promising results in terms of the performance and generalisation of the agents’ language.
However, the work of Kottur et al. (2017) shows that while the language may be effective at solving
the tasks that the agents are presented with, it is not necessarily interpretable (i.e., understandable
by humans) nor compositional (i.e., consisting of symbols that can be combined to either create a
new meaning or convey already learned information).

Emergent communication has also been explored as a way to improve the performance of intelligent
agents in the game of Werewolf (Brandizzi et al., 2021). In this game, players are divided into two
teams, villagers and werewolves, where they have to use their social and deduction skills to identify
players from the opposing team. The performance of the villagers significantly improves when the
agents are allowed to create their own language, instead of using a prescribed protocol, however
the analysis of the language and strategy of the villagers is left for future work. In addition, in the
original environment as presented by (Brandizzi et al., 2021), the villagers only had a single round
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of communication to agree on a player to vote out as an alleged werewolf, which does not allow
them to fully explore other strategies.

In this paper, we determine the effect of a longer period of discussion on the language developed
and the success rate in identifying the werewolves by introducing multiple rounds of communication.
Our work is motivated by the assumption that if agents are allowed more time to communicate, then
they will develop more successful strategies, when compared to handcrafted solutions. We have
seen such improvements already, as shown by Brandizzi et al. (2021) in the AI Wolf competition
Toriumi et al. (2017), but only for a single round of communication. We introduce multiple rounds
instead of just allowing the agents to play for longer, as multiple rounds allow for the possibility of
dialogue emergence, which would be impossible with a single communication round.

2 GAME OF WEREWOLF

The game of Werewolf begins with the assignment of roles to the players. Some players are assigned
the role of werewolves, while others are villagers. To balance the game, the ratio of the roles is
usually at most one werewolf to three villagers.

The game has two phases in which different actions can be taken, “daytime” and “nighttime”. The
first phase is “nighttime”, where the werewolves are allowed to discuss and choose a villager to
vote out. The discussion and the votes of the werewolves are only visible to the werewolves. Af-
ter a player has been chosen by the werewolves, they are removed from the game, and the game
progresses to the “daytime” phase. The “daytime” phase consists of one or more rounds of com-
munication, where players are allowed to exchange a single message per communication round.
During this phase, players are meant to discuss the events that have occurred during all previous
phases. Then, all players have to vote to eliminate someone that they think is a werewolf. After
the “execution”, the game loops back to the “nighttime” phase, and the phases alternate until either
team wins the game.

The goal of each team is to eliminate the opposing team. The werewolves can eliminate villagers
during both the “nighttime”, by voting them out, and the “daytime”, by misleading the villagers to
vote for each other. Villagers in turn only have the “daytime” phase to work out who the werewolves
are and vote them out. The game ends when all werewolves are voted out, or when the number of
villagers and werewolves are equal. This condition is introduced because when the numbers are
equal on each team, the villagers cannot win any more, as all votes would be ties.

We provide a visual representation of the game phases in Appendix A and Figure 4. For further
details, including a theoretical analysis of the win rates when played with and without emergent
communication, we refer to the detailed analysis by Brandizzi et al. (2021).

2.1 AGENT ENVIRONMENT

We will be basing our reinforcement learning environment on that of Brandizzi et al. (2021). This
environment uses the Ray (Moritz et al., 2018) and RLLib (Liang et al., 2018) libraries to train all
the villagers. For training, we use the APPO algorithm, which is an asynchronous sampling variant
of the Proximal Policy Optimization (Schulman et al., 2017), provided through RLLib (Liang et al.,
2018). Our agents are Ray LSTM wrapped (Liang et al., 2018) parametric agents with linear layers,
which process the observation data and allow for the message generation. The input for the agents is
an observation from the environment itself, written with OpenAI Gym (Brockman et al., 2016), and
the output is an action to take in the environment, in our case the message and vote of a given agent,
for the current round of communication. We provide further information regarding the technical
details of our environment and agents in Appendix B

We extend the Werewolf environment to a multi-round communication domain and introduce
changes to how the voting works to incentivise quicker convergence on communication between
the villagers. 1

The multi-round approach is implemented during the “daytime” phase when all agents, including
the werewolves, are permitted to communicate. This is done as the werewolves in the original envi-

1Our code is available on GitHub at https://github.com/olipinski/rl werewolf
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ronment have a static policy2 that they have to use (Brandizzi et al., 2021), meaning communication
during the “nighttime” phase has no effect on the werewolves’ vote. Our game can be parameterised
with the number of communication rounds that the agents are allowed to have, therefore allowing us
to vary the amount of time agents have to converse, and measure the effect of this variation.

Secondly, we also incentivise our agents to decide quickly on the target of their vote, while also
maintaining a high consensus rate among them as to who their target will be. This is done through
the agreement loss, as presented by Brandizzi et al. (2021), as well as an indirect loss based on
the number of rounds taken to reach a conclusion. The agreement loss penalises agents who voted
for a target that was not voted out, while our voting threshold is implemented through a required
percentage of votes for the voting outcome to be valid. This means that, when less than X% of
agents agree on a target, then the vote is considered invalid, and no players are eliminated. This
modification can be viewed as adding an independent judge to count all agent votes, where only a
significant plurality is permitted to decide whether to vote out an agent or not. This contrasts with
the original environment, which only required a simple plurality of agents to choose a target, even if
that plurality amounted to just two agents.

3 EVALUATION OF LANGUAGE & PARAMETERS

Our modified version of the environment exposes two additional parameters to explore: the number
of rounds and the voting threshold. We explore them using a grid search, maintaining the other
parameters from the original paper (Brandizzi et al., 2021). Further technical details are available in
Appendix B.

As shown by Brandizzi et al. (2021), their agents have already improved upon the calculated the-
oretical baseline win rates for random policies, through allowing them to use emergent protocols
within a single round of communication. Our agent and game configuration show improvements
over both the theoretical baseline win rates and the previously demonstrated performance (Bran-
dizzi et al., 2021), as we show in Table 1. We define the win rate as the percentage of games that
the villagers win in a single training run, consisting of multiple rotations between “daytime” and
“nighttime” phases until one team wins. We further note that for certain configurations of the round
count and threshold, our agents achieve a 100% win rate. We consider that our comparison to the
original work is adequate, as the core rules of the game have not been changed. We only change
the communicative part of the game and add the reward to match, with otherwise the agents and the
environment staying the same.

3.1 PASSWORD SIGNALLING STRATEGY

During the game, villagers are observed to send the same message every round of communication
and vote off those who do not comply with this strategy. As werewolves do not learn because they
have a static policy, this strategy allows villagers to easily distinguish the alternative agent type. For
this tactic, multiple rounds of communication help the agents develop this test faster, and do not
require a random vote at the beginning. For a single communication round, the agents at the start of
the game have no information about whom the werewolves may be, and so would need to vote for
a random player. Instead, with multiple rounds, they can establish this distinction without having to
cast the final vote. We consider this strategy to be of particular interest, as we believe it resembles
that of the Turing Test (Turing, 1950), with it being performed by multiple separate intelligent agents
on each other, with no involvement of humans.

Analysing the language that our agents have developed for this strategy, we find a focus on a sparse
word vocabulary for the successful tactics, while most unsuccessful strategies have multiple words
in their vocabulary. Moreover, almost all successful agent populations use their single word at
least 90% of the time, with a minor number of outliers. Therefore, our agents do not develop
a compositional language, but rather a kind of password. We speculate that this is because any
additional words would not bring an improvement to their performance. With just this code, they
can already achieve a high, if not the maximal, win rate, and therefore reward. Hence, we could
say that this strategy creates a very efficient language, for this specific environment, where the
werewolves use a static policy.

2We explain the details of the static policy in Appendix B
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Figure 1: Most used unique message and its top
ten distance-one adjacents increasing as the villager
win percentage increases. This positive correlation
shows winning strategies mostly use a single unique
message, with some exploration of adjacent mes-
sages (i.e. using (1,1,1,0) instead of previously used
(1,1,0,0))

Figure 2: Impact of both the voting plurality thresh-
old and number of rounds on the convergence speed.
As both parameters increase, we can observe the de-
crease in the average number of episodes required to
reach the 75% win rate. Shaded areas represent the
95% confidence interval.

We can see the usage of the most common word, and its distance-one adjacents, defined as any
message that has a single character difference from the most common message, in Figure 1. We can
observe the same correlation without including the distance-one adjacents, however their inclusion
smooths out the graph. We gather the word usage information from the latter parts of the training
of our agents, focusing on learners where the strategy has already developed and has completed its
exploration phase. We consider this approach to be the same as freezing the agents’ policies, as
the win rate improvements plateau during the second half of the training time and there is minimal
variation in the policies at this stage.

3.2 CONVERGENCE SPEED

We have observed that our modifications impact the convergence speed significantly. We define
the convergence point as the episode number where our agents reach over 75% win rate, which
we chose as an arbitrary threshold for a successful strategy. Both the number of rounds and the
voting threshold decrease the average convergence episode. We find that the higher the number of
communication rounds, the quicker the agents converge. Furthermore, we can see that the average
convergence speed increases as the voting threshold increases. Both of these relationships are vi-
sualised in Figure 2. This means that enforcing a higher agreement rate between agents could also
positively impact the speed with which they develop a common language or code. The number of
rounds also positively affects the convergence and decreases the amount of time that is required to
find a good strategy, observed in Figure 2.

Statistical analysis is performed on the impact that both the number of rounds and the voting thresh-
old have on the convergence speed. Our results show that the number of rounds has a statistically
significant effect on both win rate and convergence speed. This confirms that the more time the
agents have to converse, the quicker they can converge on a common strategy. The voting threshold,
however, does not have a statistically significant effect. 3 Our inclusion of the voting threshold was
supposed to incentivise faster convergence in the agents, by penalising agents that vote for different
agents each round. The negative result for the voting threshold may be explained by the voting
threshold being too close in function to the agreement reward, as implemented by Brandizzi et al.
(2021).

3.3 COMPARISON TO THE ORIGINAL ENVIRONMENT

The authors of RLupus (Brandizzi et al., 2021) present interesting findings in terms of how emergent
communication affects performance in the game of Werewolf. They show that, with certain configu-
rations for the message length and vocabulary size, the agents which are allowed to create their own
language will outperform others. Moreover, when compared with the AI Wolf competition (Toriumi
et al., 2017), the emergent communication agents surpass their handwritten counterparts.

3For details of our statistical analysis, please see Appendix C.
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Table 1: Results for both our and the original (Brandizzi et al., 2021) environment. Our configuration notation
is consistent with Brandizzi et al. (2021), where “SR” is signal range (i.e. the number of characters available,
where 2 would be binary), “SL” is signal length, and “PL” is the number of players. “WR” is assigned to
“Win Rate”, with “TH” and “RS” being threshold value and number of rounds respectively. Lastly, the “Con-
vergence” column refers to the episode number, or convergence point, that the agents with that configuration
achieved. All values are reported for the best run of each configuration, with better ones (as compared between
the original environment and our modified version) displayed in bold. Mean ± standard deviation and t-Based
95% confidence interval are reported in the parentheses. Convergence episode for the original configurations is
reported as obtained by our reproduction.

Configuration TH RS Our WR (%) Original WR (%) Convergence (106)

SL9-SR2-PL9 1 36 100
(60± 31, (32, 88)) N/A 0.70

(0.94± 0.84, (−0.61, 2.49))

SL9-SR2-PL9 0 1 99
(78± 32, (40, 115)) 45 1.29

(1.57± 0.41, (0.81, 2.33))

SL9-SR2-PL21 1 3 96
(83± 13, (76, 89)) N/A 0.70

(1.47± 0.42, (1.24, 1.7))

SL9-SR2-PL21 0 1 95
(78± 27, (60, 97)) 98 1.19

(1.28± 0.59, (0.86, 1.69))

SL21-SR2-PL21 0.4 3 100
(80± 17, (63, 96)) N/A 0.62

(0.93± 0.19, (0.71, 1.14))

SL21-SR2-PL21 0 1 98
(92± 13, (80, 104)) 94 0.58

(0.72± 0.12, (0.6, 0.83))

In Table 1 we compare our results to the original environment. With our modifications, we achieve
a lower total episode count before convergence for two out of three compared configurations, while
also achieving a higher win rate for two out of the three configurations. This shows that allowing
the agents to communicate for longer offers to improve both metrics of the game. We have also
included reproductions of the configurations that were presented by Brandizzi et al. (2021) with our
modifications to the code for a better comparison. We can note that our reproductions have higher
win rates than reported, which could mean that the original runs were not fully converged, possibly
owing to the time or compute power available for the original study. Nevertheless, our results still
improve over the reproductions.

4 CONCLUSIONS

Emergent communication is an area of research that is currently having a resurgence of interest, due
to the success of techniques from deep learning. The aim is to allow agents to develop their own
communication, that is optimised for the setting they operate in. The benefits are efficiency, reduced
designer effort and creativity in problem-solving. We have introduced multi-round communication
to the originally single round environment of Werewolf, as presented by Brandizzi et al. (2021), to
study these properties. We show that the number of communication rounds decreases the conver-
gence time of the agents, with statistical analysis showing that this correlation is significant. Finally,
we investigate the strategies that the agents develop to achieve the high win rates, and show that our
agents are using password signalling allowing villages to efficiently identity each other. Our results
confirm that allowing agents to communicate for longer offers improvements to the main metrics of
the environment, and may point towards new paths to explore for other settings.

5



Published as a workshop paper at EmeCom at ICLR 2022

ACKNOWLEDGMENTS

This work was supported by the UK Research and Innovation Centre for Doctoral Training in Ma-
chine Intelligence for Nano-electronic Devices and Systems [EP/S024298/1]

The authors would like to thank Lloyd’s Register Foundation for their support.

The authors acknowledge the use of the IRIDIS High-Performance Computing Facility, and associ-
ated support services at the University of Southampton, in the completion of this work.

We would like to thank the authors of Brandizzi et al. (2021) for their helpful comments and discus-
sion about using their environment.

We would also like to thank the anonymous reviewers for their helpful comments on improving our
work.

REFERENCES

N. Brandizzi, D. Grossi, and L. Iocchi. RLupus: Cooperation through emergent communication in
The Werewolf social deduction game. Intelligenza Artificiale, 15(2), 2021.

G. Brockman, V. Cheung, L.g Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv:1606.01540 [cs], 2016.

R. Dessı̀, E. Kharitonov, and M. Baroni. Interpretable agent communication from scratch(with a
generic visual processor emerging on the side). arXiv:2106.04258 [cs], 2021.

K. Evtimova, A. Drozdov, D. Kiela, and K. Cho. Emergent Communication in a Multi-Modal,
Multi-Step Referential Game. In ICLR, 2018.

L. Harding Graesser, K. Cho, and D. Kiela. Emergent Linguistic Phenomena in Multi-Agent Com-
munication Games. In EMNLP, pp. 3700–3710, 2019.

S. Kottur, J. M. F. Moura, S. Lee, and D. Batra. Natural Language Does Not Emerge ’Naturally’ in
Multi-Agent Dialog. In EMNLP, pp. 2962–2967, 2017.

A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-Agent Cooperation and the Emergence of
(Natural) Language. In ICLR, 2017.

A. Lazaridou, K. M. Hermann, K. Tuyls, and S. Clark. Emergence of Linguistic Communication
from Referential Games with Symbolic and Pixel Input. In ICLR, 2018.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan, and
I. Stoica. RLlib: Abstractions for Distributed Reinforcement Learning. In ICML, 2018.

D. R. Luna, E. M. Ponti, D. Hupkes, and E. Bruni. Internal and External Pressures on Language
Emergence: Least Effort, Object Constancy and Frequency. In EMNLP, pp. 4428–4437, 2020.

W. McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python
in Science Conference, 2010. doi: 10.25080/Majora-92bf1922-00a.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul,
M. I. Jordan, and I. Stoica. Ray: A Distributed Framework for Emerging AI Applications.
arXiv:1712.05889 [cs, stat], 2018.

The pandas Development Team. pandas-dev/pandas: Pandas, February 2020. URL https://doi.org/
10.5281/zenodo.3509134.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. CoRR, abs/1707.06347, 2017.

K. Smith, S. Kirby, and H. Brighton. Iterated learning: a framework for the emergence of language.
Artificial Life, 9(4):371–386, 2003. ISSN 1064-5462.

L. Steels. Evolving grounded communication for robots. Trends in cognitive sciences, 7(7):308–312,
2003. Publisher: Elsevier.

6

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134


Published as a workshop paper at EmeCom at ICLR 2022

F. Toriumi, H. Osawa, M. Inaba, D. Katagami, K. Shinoda, and H. Matsubara. AI Wolf Contest —
Development of Game AI Using Collective Intelligence —. In Computer Games, Communica-
tions in Computer and Information Science, pp. 101–115, 2017.

A. M. Turing. Computing Machinery and Intelligence. Mind, LIX(236), 1950.

P. Virtanen, R. Gommers, T.s E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C J Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17,
2020.

A APPENDIX: FURTHER ANALYSIS OF THE WIN RATE

We can look at the direct impact that both of our additional parameters have on the average win rate
of the villagers. Figure 3 illustrates the interaction between the parameters in terms of the win rate,
with the shaded areas representing the 95% confidence interval.

When looking purely at the effect of the number of rounds, for a larger amount the win rates tend
to be lower, as we can see in Figure 5. However, the number of rounds together with the voting
threshold increases the average win rate past the previously reported values (Brandizzi et al., 2021),
and results in an overall positive trend.

We hypothesise that this decrease is due to the longer training times, as the larger number of rounds
requires more computation, and therefore does not achieve convergence within the same time as our
other configurations. We can see that the number of total episodes decreases as the number of rounds
increases, which is due to the limited amount of time that we could run the simulations in Figure 6.

B APPENDIX: TECHNICAL DETAILS

B.1 HYPERPARAMETERS & TRAINING

For our parameter grid, we have used the values of [0, 0.2, 0.4, 0.6, 1] and [1, 3, 12, 36] for the
threshold and number of rounds respectively. We run our simulations for an average of 3M episodes.
With our experimental setup as described, we have performed a total of 180 runs for a total of 3600
hrs of GPU time. An average run of 3M episodes took ∼20 hours on a single NVIDIA RTX8000
GPU.

B.2 ENVIRONMENT AND AGENTS

Our agents use the APPO, or Asynchronous Proximal Policy Optimisation from RLLib (Liang et al.,
2018), for learning. This algorithm is in turn based on the PPO algorithm (Schulman et al., 2017).

The reward scheme for the villagers is relatively simple, and seeks to incentivise specific behaviours.
The rewards that we assign are -5 for death, as to tell our agents to avoid being voted out/eaten by
the werewolf; +25 for winning the game, to incentivise winning strategies; -25 for losing the game
so that the agents avoid any losing strategies; -1 for picking a target other than the one that was
voted out, to reinforce uniform voting; and finally -2 for wasting a round, or not reaching the voting
threshold, to further incentivise voting in unison.

The observations the agents receive are an OpenAI Gym (Brockman et al., 2016) Box type, which
contains the messages of the other agents and their votes. The action that each agent can take is to
produce a message and a vote for each round of communication. No other actions can be taken by
the agents. After a successful vote, be it by the werewolves during the “nighttime”, or all players
in the “daytime” phase, the voted out player is removed from the game, and may take no further
actions.
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Table 2: Linear Regression Analysis. The win rate and convergence episode are very likely to be affected by
the number of rounds. However, similarly to the previous tests, the voting threshold may not have an effect on
either.

Relationship p-Value R2

Number of Rounds vs Win Rate < 0.001 0.264
Voting Threshold vs Win Rate 0.600 0.002
Number of Rounds vs Convergence Episode < 0.001 0.189
Voting Threshold vs Convergence Episode 0.686 0.001

Table 3: Normality Test Results. Our data is not normally distributed for both the win rate and the episode
count.

Variable Test Type p-Value Statistic

Win Rate Shapiro-Wilk 0.000 0.858
Win Rate D’Agostino and Pearson 0.000 2554.462
Episode Count Shapiro-Wilk 0.000 0.659
Episode Count D’Agostino and Pearson 0.000 67.593

The messages themselves are an array of integers. These can be selected by the agents from the
available range called Signal Range (SR). The length of this array is in turn determined by the
parameter Signal Length (SL).

The messages are passed during all phases as an observation to the agents. Depending on the agent’s
role, it can receive both the “nighttime” and “daytime” observations, if it is a werewolf, or purely
the “daytime” observations, if it is a villager.

For our static werewolf policy, we follow the work done by Brandizzi et al. (2021), and use their
static random target werewolf policy. This policy picks an agent at random to be voted out by the
werewolves. All of our werewolves follow this static policy.

C APPENDIX: STATISTICAL SIGNIFICANCE

To verify our results, we have performed a statistical significance analysis. This analysis relies on
the 180 data points that we have obtained through our simulations. However, as the number of data
points per configuration are relatively low, the overall results for the regression analysis may not be
fully accurate.

Firstly, we analysed the normality of the distribution of both of our dependent variables - the mean
of villager win rates, and the number of episodes that it takes villagers to converge. We performed
the normality analysis with two tests from the SciPy (Virtanen et al., 2020) package. We report the
results of the tests in Table 3.

Secondly, we analysed the correlation and significance of the correlation with the Spearman correla-
tion metric, as our data was not normally distributed. We used the function provided by the pandas
(McKinney, 2010; pandas Development Team, 2020) package. We can see the results of these tests
in Figure 7.

Finally, we analysed our results with a simple linear regression model, from the SciPy (Virtanen
et al., 2020) package. We present the results of this analysis in Table 2.

Overall, from our analyses we can infer that the number of rounds does have a statistically significant
effect on both the win rate and convergence speed, as we have theorised in the main body of this
work. However, our analysis fails to find a relationship between the voting threshold and either of
our dependent variables.
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Figure 3: Impact of both the voting plurality thresh-
old and number of rounds on the win rate. While the
number of rounds decreases the average win rate, the
threshold’s impact is less negative.

Figure 4: Visual representation of the flow of the game
of Werewolf. The game starts at the night phase, pro-
gresses to the day phase, and then loops back around
to the night phase. The discussion in the night phase
only includes werewolves, while in the day phase all
players may converse.

Figure 5: Impact of the number of communication
rounds on the win rate of villagers. We can see that the
number of communication rounds is negatively corre-
lated with the average win rate.

Figure 6: Impact of the number of communication
rounds on the number of training episodes. We hy-
pothesise that this is the reason behind lower perfor-
mance as the number of rounds increases. Due to a
bigger simulations size, as the agents need to exchange
more messages, the configurations with higher number
of rounds perform worse, as they do not have enough
time to converge.

Figure 7: Spearman correlation strength and its significance. The strength for the number of rounds affecting
either the villager win rate or convergence episode is high. However, the relationship between the threshold
and win rate or convergence is much weaker. The significance can be discerned by the number of * next to the
corresponding number, where no * signifies p > 0.05; * is p < 0.05; and ** is p < 0.01
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