
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SADDLE-TO-SADDLE DYNAMICS IN DEEP RELU
NETWORKS: LOW-RANK BIAS IN THE FIRST SADDLE
ESCAPE

Anonymous authors
Paper under double-blind review

ABSTRACT

When a deep ReLU network is initialized with small weights, gradient descent (GD)
is at first dominated by the saddle at the origin in parameter space. We study the
so-called escape directions along which GD leaves the origin, which play a similar
role as the eigenvectors of the Hessian for strict saddles. We show that the optimal
escape direction features a low-rank bias in its deeper layers: the first singular
value of the ℓ-th layer weight matrix is at least ℓ

1
4 larger than any other singular

value. We also prove a number of related results about these escape directions.
We suggest that deep ReLU networks exhibit saddle-to-saddle dynamics, with GD
visiting a sequence of saddles with increasing bottleneck rank (Jacot, 2023a).

1 INTRODUCTION

In spite of the groundbreaking success of DNNs, the training dynamics of GD in these models
remain ill-understood, especially when the number of hidden layers is large. A significant step in
our understanding is the (relatively recent) realization that there exist multiple regimes of training in
large neural networks: a kernel or lazy regime, where DNNs simply implement kernel methods w.r.t.
the NTK (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019), and an active (or rich) regime
characterized by the presence of feature learning (Chizat & Bach, 2018a; Rotskoff & Vanden-Eijnden,
2018; Chizat & Bach, 2018b) and some form of sparsity such as a low-rank bias (Li et al., 2020;
Gunasekar et al., 2017; Arora et al., 2019a).

The kernel regime is significantly simpler than the active one because the dynamics can be linearized
around the initialization (Jacot et al., 2018; Lee et al., 2019), and the loss is approximately
quadratic/convex in the region traversed by GD (Jacot et al., 2020) (it also satisfies the PL inequality
(Liu et al., 2020)). This makes it possible to prove strong convergence guarantees (Du et al., 2019;
Allen-Zhu et al., 2019) and apply generalization bounds from the kernel methods literature almost
directly (Arora et al., 2019b; Bordelon et al., 2020). Our understanding of the kernel regime is
essentially complete, but some functions are unlearnable in the kernel regime yet learnable in the
active regime (Bach, 2017; Ghorbani et al., 2020).

There are arguably many active regimes corresponding to different ways to leave the kernel regime,
including small weight initialization (Woodworth et al., 2020), large learning rate (Lewkowycz et al.,
2020; Damian et al., 2022), large noise in training (Smith et al., 2021; Pesme et al., 2021; Vivien
et al., 2022; Wang & Jacot, 2024), late training with the cross-entropy loss (Ji & Telgarsky, 2018;
Chizat & Bach, 2020), and weight decay (E et al., 2019; Ongie et al., 2020; Jacot, 2023a).

We will focus on the effect of initialization scale, where a phase change from kernel regime to
active regime occurs as the variance of the initial weights decays towards zero. Here again we can
distinguish two active regimes (Luo et al., 2021): the mean-field regime which lies right at transition
between regimes (Chizat & Bach, 2018a; Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018), and the
saddle-to-saddle regime (Saxe et al., 2014; Jacot et al., 2022; Pesme & Flammarion, 2023; Boursier
et al., 2022) for even smaller initialization.

The mean-field limit was first described for shallow networks (Chizat & Bach, 2018a; Rotskoff &
Vanden-Eijnden, 2018; Mei et al., 2018), and has more recently been extended to the deep case
(Araújo et al., 2019; Bordelon & Pehlevan, 2022). A limitation of these approaches is that the limiting

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

dynamics remain complex, especially in the deep case where they are described by algorithms that
are not only very costly in the worst case (Bordelon & Pehlevan, 2022; Yang & Hu, 2020), but also
difficult to interpret and reason about. This high complexity could be explained by the fact that
the mean-field limit is critical, i.e. it lies exactly at the transition between kernel and active, and
therefore it must capture the complexity of both of those regimes, as well as of the whole spectrum of
intermediate dynamics.

1.1 SADDLE-TO-SADDLE DYNAMICS

This motivates the study of the saddle-to-saddle regime for even smaller initializations. As the name
suggests, this regime is characterized by GD visiting a number of saddles before reaching a global
minimizer. Roughly speaking, because of the small initializations, GD starts in the vicinity of the
saddle which lies at the origin in parameter space and remains stuck there for a number of steps until
it finds an escape direction, leading to a sudden drop in the loss. This escape direction exhibits a
form of approximate sparsity (amongst other properties) that is preserved by GD. At this point, the
level of sparsity can either be enough to fit the training data in which case the loss will drop to zero
and training will stop, but if the network is ‘too sparse’ to fit the data, GD will approach another
saddle at a lower cost (which is locally optimal given the sparsity) before escaping along a less sparse
escape direction. GD can visit a sequence of saddles before reaching a final network that fits the data
while being as sparse as possible. This has been described as performing a greedy algorithm (Li et al.,
2020) where one tries to find the best data-fit with a sparsity constraint that is gradually weakened
until the training data can be fitted.

Such incremental learning dynamics were first observed in diagonal linear networks (Saxe et al.,
2014; 2019; Gidel et al., 2019) (and by extension to linear CNNs, which are diagonal nets in Fourier
space), before being extended to linear fully-connected networks (Arora et al., 2019a; Li et al., 2020;
Jacot et al., 2022; Tu et al., 2024; Kunin et al., 2024). These result in coordinate sparsity of the
learned vector for diagonal networks and rank sparsity of the learned matrix for fully-connected
networks.

For nonlinear networks, the focus has been mainly on shallow networks, where a condensation effect
is observed, wherein groups of neurons end up having the same activations (up to scaling). Roughly
speaking, in the first escape direction, a first group of hidden neurons comes out first, all with the
same activation (up to scaling), in the subsequent saddles, new groups can emerge or an existing
group can split in two (Chizat & Bach, 2018a) (though sometimes they may fail to split leading to
problems (Boursier & Flammarion, 2024)). This condensation effect leads to a form of sparsity, since
each group then behaves as a single neuron, thus reducing the effective number of neurons (Luo
et al., 2021; Simsek et al., 2021). These dynamics could be understood as implicitly implementing a
Frank-Wolfe algorithm (Bach, 2017): alternating between finding new neurons to ’add’ to the mix,
and then tuning the mixing weights to get the best possible fit (Kunin et al., 2025).

To our knowledge, all prior theoretical analysis of saddle-to-saddle dynamics in deep nonlinear
networks rely on an equivalence to deep linear networks, which can arises with differentiable
nonlinearities (e.g. arctan) allowing for a Taylor approximation of the origin (Bai et al., 2022),
or in specific settings where the ReLUs do not change signs (Zhang et al., 2025). This leads to a
low-rank bias, where all layers are rank-one in the first escape direction. Saddle-to-saddle dynamics
with multiple steps have been observed empirically in deep ReLU networks trained on supervised
(Atanasov et al., 2024) and self-supervised (Simon et al., 2023) tasks, and these empirics motivate
our present theoretical study.

1.2 BOTTLENECK RANK INCREMENTAL LEARNING

Surprisingly, we show a more complex rank sparsity structure in deep ReLU networks: the majority
of layers are rank-one (or approximately so), with possibly a few high-rank layers at the beginning
of the network, in contrast to linear nets, shallow ReLU networks, and deep nets with differentiable
nonlinearity where all layers are rank-one in the first escape.

This fits into the bottleneck structure and related bottleneck rank (BN-rank) observed in large depth
ReLU networks trained with weight decay (Jacot, 2023a;b; Wen & Jacot, 2024; Jacot & Kaiser,
2024), where almost all layers share the same low rank, with a few higher rank layers located close

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to the input and output layers. Additionally, in the middle low-rank layers ("inside the bottleneck"),
the activations are approximately non-negative, so that the ReLU approximates the identity in these
layers.

The bottleneck rank RankBN (f) is a notion of rank for finite piecewise linear functions f , defined
as the minimal integer k∗ such that f can be decomposed f = h ◦ g with intermediate dimension
k∗ (Jacot, 2023a). For large depths, it is optimal in the sense of minimizing the parameter norm to
represent f with a bottleneck structure, where the first few high-dim. layers represent g, followed
by many rank k∗ layers representing the identity on the dimension k∗ intermediate representation,
before using the last few layers to represent h.

Our results imply that the first escape direction of deep ReLU networks has BN-rank one, because
almost all layers are approximately rank-one except a few high rank layers in the beginning. This
is a "half" bottleneck structure, since it lacks high dimensional layers before the outputs, but it still
fits within the BN-rank theory, suggesting that the BN-rank is the correct notion of sparsity in deep
ReLU networks (rather than the traditional notion of rank).

We conjecture that deep ReLU networks exhibit similar saddle-to-saddle dynamics as e.g. linear
networks, with the distinction that it is the BN-rank that gradually increases rather than the traditional
rank.

1.3 CONTRIBUTIONS

In this paper, we give a description of the saddle at the origin in deep ReLU networks, and the
possible escape directions that GD could take as it escapes this first saddle. As in (Jacot et al., 2022),
each escape direction can be assigned an escape speed, and we show that the optimal escape speed is
non-decreasing in depth (Proposition 3.2).

We then prove in Theorem 3.1 that the optimal escape directions feature a low-rank bias that gets
stronger in deeper layers (i.e. layers closer to the output layer). More precisely the weight matrix Wℓ

and activations Zσ
ℓ over the training set for ℓ = 1, . . . , L are ℓ−

1
4 -approximately rank 1 in the sense

that their second singular value is O(ℓ−
1
4 ) times smaller than the first. Furthermore, deeper layers

are also more linear, i.e. the effect of the ReLU becomes weaker.

Finally, we provide in Section 4 an example of a simple dataset whose optimal escape direction has
the following structure: the first weight matrix is rank two, followed by rank-one matrices. This
shows that the structure of our first result where the first layers are not approximately rank-one but the
deeper layers are is not an artifact of our proof technique and reflects real examples. This contrasts
with previous saddle-to-saddle dynamics, where all layers are approximately rank-one in the first
escape direction.

2 SADDLE AT THE ORIGIN

We represent the training dataset x1, . . . , xN ∈ Rdin as a din × N matrix X . We consider a
fully-connected neural network of depth L with widths n0 = din, n1, . . . , nL = dout and ReLU
nonlinearity σ(x) = max{x, 0}. The nℓ×N dimensional matrices of activation Zσ

ℓ and preactivation
Zℓ at the ℓ-th layer are then defined recursively as

Zσ
0 = X

Zℓ = WℓZ
σ
ℓ−1

Zσ
ℓ = σ(Zℓ),

for the nℓ × nℓ−1 weight matrix Wℓ , ℓ = 1, . . . , L. The weight matrices W1, . . . ,WL are the
parameters of the network, and we concatenate them into a single vector of parameters θ of dimension
P =

∑
ℓ nℓnℓ−1. The outputs of the network are the last layer’s preactivations Yθ = ZL.

We consider a general cost C : Rdout×N → R that takes the network outputs Yθ and returns the loss
L(θ) = C(Yθ). The parameters θ(t) are then trained with gradient flow (GF) on the loss L

∂tθ(t) = −∇L(θ(t))
starting from a random initialization θ0 ∼ N (0, σ2

0) for a small σ0.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

One can easily check that the origin θ = 0 is a critical point of the loss. Our analysis will focus on
the neighborhood of this saddle, and for such small parameters the outputs Yθ will be small, we can
therefore approximate the loss as

L(θ) = C(0) + Tr
[
∇C(0)TYθ

]
+O(∥Yθ∥2), (1)

where ∇C(0) is an nL × N matrix. Since we only care about the dynamics of gradient flow, the
first term can be dropped. We will therefore mainly focus on the localized loss L0(θ) = Tr[GTYθ],
writing G = ∇C(0) for simplicity.

The localized loss L0 can be thought of as resulting from zooming into origin. It captures the loss
in the neighborhood of the origin. Note that since the ReLU is not differentiable, neither is the loss
at the origin, so that we cannot use the traditional strategy of approximating L0 by a polynomial.
However, this loss has the advantage of being homogeneous with degree L, i.e. L0(λθ) = λLL0(θ),
which will be key in our analysis.

2.1 GRADIENT FLOW ON HOMOGENEOUS LOSSES

On a homogeneous loss, the GF dynamics decompose into dynamics of the norm ∥θ∥ and of the
normalized parameters θ̄ = θ/∥θ∥:

∂t∥θ(t)∥ = −θ̄(t)T∇L0(θ(t)) = −L∥θ(t)∥L−1L0(θ̄(t))

∂tθ̄(t) = −∥θ(t)∥L−2
(
I − θ̄(t)θ̄(t)T

)
∇L0(θ̄(t)).

where we used Euler’s homogeneous function theorem: θT∇L0(θ) = LL0(θ).

Notice that (I − θ̄θ̄T ) is the projection to the tangent space of the sphere at θ̄, which implies that the
normalized parameters are doing projected GF over the unit sphere on the L0 loss (up to a prefactor
of ∥θ∥L−2 which can be interpreted as a speed up of the dynamics for larger norms).

Therefore, we may reparametrize time t(s), such that s(t) =
∫ s

0
∥θ(s1)∥L−2ds1, which correspond

to switching to a time-dependent learning rate ηs = ∥θ(s)∥2−L, we obtain the dynamics:

∂s∥θ(s)∥ = −L∥θ(s)∥L0(θ̄(s))

∂sθ̄(s) = −
(
I − θ̄(s)θ̄(s)T

)
∇L0(θ̄(s)).

We can therefore solve for θ̄(s) on its own, and the norm ∥θ(s)∥ then takes the form

∥θ(s)∥ = ∥θ(0)∥ exp
(
−L

∫ s

0

L0(θ̄(s1))ds1

)
.

If needed, these solutions can then be translated back in t-time, using the formula

t(s) =

∫ s

0

∥θ(s1)∥2−Lds1 = ∥θ(0)∥2−L

∫ s

0

exp

(
L(L− 2)

∫ s1

0

L0(θ̄(s2))ds2

)
ds1.

2.2 ESCAPE DIRECTIONS AND THEIR SPEEDS

Assuming convergence of the projected gradient flow θ̄(s), for all initializations x0 there will be a
time s1 where θ̄(s1) will be close to a critical point of L0 restricted to the sphere, i.e. a point θ̄∗ such
that

(
I − θ̄∗θ̄∗T

)
∇L0(θ̄

∗) = 0. We call these escape directions (assuming L0(θ̄
∗) < 0), because

once such a direction is reached, θ̄(s) will remain approximately constant, while the parameter norm
will grow fast.
Definition 2.1. An escape direction is a vector on the sphere ρ ∈ L1/2SP−1 such that ∇L0(ρ) =
−sρ for some s ∈ R+, which we call the escape speed associated with ρ. We switch from the unit
sphere to the radius

√
L sphere as it will lead to cleaner formulas.

An optimal escape direction ρ∗ ∈ L1/2SP−1 is an escape direction with the largest speed s∗ > 0. It
is a minimizer of L0 restricted to L1/2SP−1:

ρ∗ ∈ argminρ∈L1/2SP−1 L0(ρ).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

If the parameters start aligned with an escape direction θ0 ∝ ρ, then GF on the localized loss will
diverge towards infinity in a straight line with rate determined by the depth L and the escape speed s:
Proposition 2.2. Considering gradient flow on the localized loss L0, if at some time t0 the parameter
satisfies

θ(t0) = ρ with ρ ∈ L1/2SP−1 and ∇L0(ρ) = −s ρ,

then for all t ≥ t0 the normalized direction remains constant, and the norm ∥θ(t)∥ satisfies

∥θ(t)∥ =


(
∥θ(t0)∥ 2−L + (2− L)Ls (t− t0)

) 1
2−L , if L ̸= 2,

∥θ(t0)∥ exp
(
2 s (t− t0)

)
, if L = 2.

Of course, GF on the localized loss L0 is only a good approximation for the GF on the full loss
L as long as the outputs Yθ are small. This will apply up to some escape time t1(r) which is
the first time GF attains a parameter norm of ∥θ∥ = r, thus guaranteeing a bound on the labels

∥Yθ(t)∥F ≤ ∥WL∥op · · · ∥W1∥op∥X∥F ≤
(

r√
L

)L

∥X∥F . Proposition 2.2 allows us to approximate
this escape time:

t1(r)− t0 ≈


1

(L− 2)Ls

[
∥θ(t0)∥ 2−L + r2−L

]
, if L ̸= 2,

1
2s log

r
∥θ(t0)∥ , if L = 2.

After this escape time, we expect the localized GF to diverge from the true GF: the localized GF
diverges towards infinity (in finite time when L > 2), while the true GF typically slows down as it
approaches another saddle or a minima. This paper focuses on the dynamics before the escape time.

In general, we do not start aligned with an escape direction, but since the normalized parameters θ̄(s)
follow GF restricted to the sphere , they will converge to an escape direction, at which point a similar
explosion of the norm will take place.

Note that the dynamics of θ̄(s) (in reparametrized s-time) are unaffected by multiplying the
initialization θ0 by a factor α > 0. Therefore the time s1 of convergence to an escape direction is
independent of α, and at the time s1, the parameter norm will depend linearly on α: ∥θ(s1)∥ = Cα
for some C > 0. We can therefore always choose a small enough α so that the Taylor approximation
(Equation 1) remains valid up to the time of convergence s1.

3 LOW RANK BIAS AND APPROXIMATE LINEARITY OF THE ESCAPE
DIRECTIONS

The main result of this paper is that at the optimal escape directions, the deeper layers (i.e. for large
ℓ) are approximately low-rank and have almost no nonlinearity effect:
Theorem 3.1. Consider an optimal escape direction

θ⋆ = argmin
∥θ∥2=L

Tr
[
G⊤Yθ

]
with optimal speed s∗ = min∥θ∥2=L Tr

[
G⊤Yθ

]
, then for all layers ℓ with ℓ > c2 we have:∑

i≥2 s
2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

,

∑
i≥2 s

2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

,
∥Zσ

ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
c

1− cℓ−
1
2

ℓ−
1
2

where si(A) is the i-th largest singular value of A and c = ∥X∥F ∥G∥F

s∗

√
2 log ∥X∥F ∥G∥F

s∗ .

In the rest of the section, we will prove a result that shows that the optimal escape speed s∗ is
increasing in depth, thus controlling the constant c in depth. This guarantees that the condition ℓ > c2

holds for all but finitely many of the initial layers of the network.

We then present a sketch of proof for the Theorem, stating a few intermediate results that are of
independent interest.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1 OPTIMAL SPEED IS INCREASING IN DEPTH

The bounds of Theorem 3.1 are strongest when the optimal escape direction s∗ is large. Thankfully,
the optimal escape speed is increasing in L:

Proposition 3.2. Given a depth L network with L0(θ) = −s0 for s0 > 0 and ∥θ∥2 = L, we can
construct a network of depth L+ k for any k ≥ 1 with parameters θ′ that satisfies ∥θ′∥2 = L+ k
and L0(θ

′) ≤ L0(θ). Therefore, the optimal escape speed s∗(L) is a non-decreasing function.

Furthermore, in the deeper network, we have Rank(ZL′) = RankWL′ = 1 for all L′ ≥ L and
ZL′ = Zσ

L′ for all L′ > L.

To construct the deeper network, we first transform the last weights WL to be rank-one (this is
possible without increasing L0), and we then add rank-one weights in the additional layers. Some
very similar structures have been used in previous work (Jacot, 2023a; Bai et al., 2022).

3.2 SKETCH OF PROOF

To prove Theorem 3.1, we first show that if the inputs are approximately rank-one, then the optimal
escape will be approximately rank-one in all layers:

Proposition 3.3. Consider the minimizer θ∗ = argmin∥θ∥2≤L Tr
[
G⊤Yθ(uv

⊤ +X)
]

where u, v ∈
Rn, u, v ≥ 0 entry wise and ∥X∥F ≤ ϵ for some ϵ > 0. Then for all ℓ we have:∑

i≥2 s
2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

,

∑
i≥2 s

2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

,
∥Zσ

ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
∥G∥F

s∗ − ∥G∥F ϵ
ϵ.

This also implies that if a hidden representation is approximately rank-one in one layer ℓ0, then it
must also be approximately rank-one in all subsequent layers ℓ ≥ ℓ0. We can prove the existence of
many such low-rank layers assuming the escape speed is large enough:

Proposition 3.4. Assuming Tr[G⊤ZL] ≤ −s0 for some constant s0 > 0 and ∥θ∥2 ≤ L then for any
ratio p ∈ (0, 1) there are at least (1− p)L layers that are approximately rank-one in the sense that∑

i≥2 s
2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

≤ 2 log

(
∥X∥F ∥G∥F

s0

)
1

pL

The proof of Theorem 3.1 therefore goes as follows: for any ℓ = pL, Proposition 3.4 implies that
there are at least (1− p)L = L− ℓ layers that are approximately rank-one. The earliest such layer ℓ0
must satisfy ℓ0 ≤ ℓ. Proposition 3.3 implies that all layers after ℓ0 must be approximately rank-one,
including the ℓ-th layer.

The two propositions are also of independent interest. Proposition 3.3 gives an example of inputs
where all layers are low-rank, not just the deeper layers. Proposition 3.4 applies to any parameter
with fast enough escape speed, not just to the optimal escape direction, and guarantees a similar low
rank structure. Interestingly, in contrast to the other results, it does not say anything about where
those low-rank layers are.

3.3 EMPIRICAL RESULTS ON MNIST

We empirically confirm the presence of low-rank structure in networks trained on the MNIST dataset.
Specifically, we train a 6-layer fully connected network without bias terms and with small weight
initialization.

Figure 1 highlights two distinct saddle points during training. After escaping the first saddle, we
observe the emergence of a single dominant singular value in every layer, with this effect being
particularly pronounced in the deeper layers (layers 4–6). While our theoretical analysis explains
the behavior after the first saddle escape, our experiments reveal that, towards the end of training, a
second dominant singular value appears. This suggests that the rank of the weight matrices increases
following subsequent saddle escapes. A detailed visualization of the singular value evolution in each
layer is provided in Appendix 3.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.0 1.2 1.4 1.6 1.8
step 1e6

0.0

0.5

1.0

1.5

2.0

(a) Training Loss

1 2 3 4 5 60

2

4

6

8

10

12

s i
(W

)

(b) After the first saddle escape

1 2 3 4 5 60

2

4

6

8

10

12

s i
(W

)

(c) Final Iteration

Figure 1: Deeper layers show a stronger bias toward low-rank structure than earlier layers on
MNIST. Left: Training loss over training time. Vertical lines indicate the specific iterations at which
singular values are extracted. Center and Right: Top 10 singular values of the weight matrices per
layer ℓ for layers 1–6 including input and output layer.

4 THE OPTIMAL ESCAPE DIRECTION IS NOT ALWAYS EXACTLY RANK ONE

Our discussion has thus far consisted of results which paint the picture that deep ReLU networks
trained from small initialization first escape the origin in a direction which is approximately rank one
in each weight matrix. Much of our labor has been in identifying suitable notions of “approximately
rank one.” Before concluding, it is worth asking: do we actually need such notions? In fact, if one
performs straightforward numerical experiments on simple datasets, one will often find that the first
escape direction is exactly rank one in each layer. Might we hope that the optimal escape direction is
in fact always exactly rank one?

In this section, we provide a simple counterexample in which the optimal escape direction is rank two
in the first layer. We then give numerical experiments which show that (projected) gradient descent
actually finds this rank-two solution.
Example 1 (Rank-two optimal escape direction). Consider the unit circle dataset (xj)

N
j=1 =(

sin
(
2π∗j
N

)
, cos

(
2π∗j
N

))N
j=1

with alternating loss gradients G = ((−1)j)Nj=1.1 Let N = 8. Consider
training a depth-three bias-free ReLU MLP with hidden width at least four from small initialization
on this dataset. Then the optimal rank-one escape direction has speed s1 =

√
2− 1 ≈ 0.414, but

there exists a better rank-two escape direction with speed s2 = 1
2 .

Proof. Our network has weight matrices W1,W2,W3 which parameterize the network function as
Yθ = W3σ ◦W2σ ◦W1X . As discussed in Subsection 2.2, we wish to minimize the escape speed
s = −Tr[G⊤Yθ] such that

∑
ℓ ∥Wℓ∥2F = 3. We know from homogeneity that the minimizer will

have ∥Wℓ∥F = 1 for all ℓ.

If we additionally constrain all three weight matrices to be rank-one, then a width-one ReLU network
can achieve the same maximal escape speed (a network with only rank 1 layers can only represent
‘one neuron functions’: Yθ = uσ(vTx) for some vectors u, v, independently of depth). Taking into
account the positivity of ReLU, we need only study a width-one network with W1 = [cos(ϕ), sin(ϕ)]
for some ϕ ∈ [0, 2π), W2 = [1], and W3 = [±1]. The only degree of freedom remaining is the angle
ϕ to which W1 is attuned. We solve this 1D optimization problem in Appendix C.1, finding that the
optima fall at ϕ = πj

4 for j ∈ Z, giving speed s1 =
√
2− 1 ≈ 0.414.

Without such a rank-one constraint, we can improve this speed. We use only four neurons in the first
hidden layer and one neuron in the second hidden layer (setting all incoming and outgoing weights to
other neurons to zero) and choose the following weights for the active neurons:

W1 = 1
2

 1 0
0 1
−1 0
0 −1

 , W2 = 1
2 [1 −1 1 −1] , W3 = [1] . (2)

This gives a speed s2 = 1
2 .

1Such alternating loss gradients can result straightforwardly from, for example, targets Y = ((−1)j)Nj=1 and
the usual squared loss.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 0 1
x1

1

0

1
x

2 +1

-1

Unit circle dataset

0 10000 20000
step

0.0

√
2 − 1

0.5

−
T

r[
G
> f
θ
(X

)]

Escape simulations (width = 16)

101 102 103

width

0.25

0.50

0.75

1.00

Su
cc

es
sfu

l f
ra

cti
on

Escape simulation results

Figure 2: Depth-3 neural networks find rank-two escape directions on a toy dataset. Left:
visualization of the dataset. Red and blue points have loss gradient values G = 1 and G = −1,
respectively. Center: several training runs of projected gradient descent on the first-order loss
objective under the parameter norm constraint ∥θ∥2 = L. Runs whose objective exceeds

√
2− 1, the

best achievable value for rank-one weights, are colored blue and deemed successful. Right: as width
increases, the fraction of successful runs increases. See Figure 6 for a visualization of the training
runs at all widths.

This counterexample shows that the optimal escape direction may in fact be non-rank-one, and thus
it is reasonable to search for a sense in which, for a sufficiently deep network, the optimal escape
direction is approximately rank one.2

4.1 NUMERICAL EXPERIMENTS: WIDE NETWORKS FIND THE OPTIMAL ESCAPE DIRECTION

Of course, the existence of such a non-rank-one optimal escape direction is only interesting if gradient
descent actually finds it. In this case, it does. We train networks of varying width with projected
gradient descent to minimize the loss on the sphere ∥θ∥2 = 3. As shown in Figure 2, wider networks
are more likely to converge to the faster, rank-two escape direction.

5 DISCUSSION: SADDLE-TO-SADDLE DYNAMICS

The results of this paper only describe the very first step of a much more complex training path.
They describe the escape from the first saddle at origin, but it is likely that the full dynamics
might visit the neighborhood of multiple saddles, as is the case for linear networks (Jacot et al.,
2022; Li et al., 2020) or shallow ReLU networks (Abbe et al., 2021; 2022). We now state a few
conjectures/hypotheses, which should be viewed as possible next steps towards the goal of describing
the complete Saddle-to-Saddle dynamics:

(1) Large width GD finds the optimal escape direction: Our numerical experiments suggest that
wider networks are able to find the optimal escape direction with GD, even when this optimal escape
direction has some higher rank layers. The intuition is that the more neurons, the more likely it is
that a subset of neurons implement a ‘circuit’ that is similar to an optimal escape direction, and that
this group will out-compete the other neurons and end up dominating. Note that even in shallow
networks, finding this optimal escape direction is known to be NP-hard (Bach, 2017), which implies
that an exponential number of neurons might be required in the worst case.

(2) Exact rank-one at most layers: Inspired by our illustrating example, we believe that it is likely
that the optimal escape directions might only have a finite number of high-rank layers at the beginning,
followed by rank-one identity layers until the outputs.

Note that if we assume that the optimal escape direction s∗(L), plateaus after a certain L0, i.e.
s∗(L) = s∗(L0) for all L ≥ L0, then Proposition 3.2 already implies that there is an optimal escape

2It is worth noting that there may exist an even faster escape direction than the rank-two solution we identify
(though we doubt it; see numerical experiments), but in any case we may be assured that the fastest escape
direction is not rank one.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

direction where all layers ℓ ≥ L0 are rank 1. Conversely, if there is an optimal escape directions with
only rank-one layers after the L0-th layer, then s∗(L) = s∗(L0) for all L ≥ L0.

(3) rank-one layers remain rank-one until the next saddle:

Assuming that GD does find the optimal escape direction, it will have approximately rank-one layers
as it escapes the saddle. The next step is to show that these layers remain approximately rank-one
until reaching a second saddle.

In linear networks, this follows from the fact that the optimal escape direction is rank-one and
balanced (i.e. WT

ℓ Wℓ = Wℓ−1W
T
ℓ−1 for all layers ℓ), and that the space of rank-one and balanced

network is an invariant space under GF.

The ReLU case is more difficult because we have only approximately rank-one layers. More precisely
to guarantee that there is a layer that is ϵ-approximately rank-one, we need both a small initialization
and a large depth, in contrast to linear networks where a small enough initialization is sufficient. Our
second conjecture would help with this aspect.

The next difficulty is to show that the approximate rank-one layers remain so for a sufficient amount
of time. The key tool to prove this in linear networks is balancedness. ReLU networks only satisfy
weak balancedness in general , i.e. diag(WT

ℓ Wℓ) = diag(Wℓ−1W
T
ℓ−1), however the stronger

balancedness applies at layers where the pre-activations have non-negative entries: Zℓ ≥ 0.

(4) BN-rank incremental learning The final goal is to prove that these Saddle-to-Saddle dynamics
allow ReLU networks to implement a form of greedy low BN-rank search where a minimal BN-rank
interpolator is greedily searched by first searching among BN-rank one functions then gradually
among higher rank functions, stopping at the smallest BN-rank sufficient to fit the data.

Again, this is inspired by an analogy to linear network, which implement a greedy low-rank algorithm
to minimize the traditional rank. In parameter space, the GD dynamics visits a sequence of saddles of
increasing rank. It starts close to the saddle at the origin (the best rank 0 fit), before escaping along a
rank-one direction until reaching a rank-one critical point (locally optimal rank-one fit). If the loss
is zero at this point, the GD dynamics stop, otherwise this best rank-one fit is a saddle where GD
plateaus for some time until escaping along a rank 2 direction, and so on and so forth (Jacot et al.,
2022).

The so-called Bottleneck rank RankBN (f) (Jacot, 2023a) is the smallest integer k such that f can
be represented as the composition of two functions f = h ◦ g with inner dimension k. Several
recent papers have shown how the BN rank plays a central role in deep ReLU networks trained
with weight-decay/L2-regularization (Jacot, 2023a;b; Wen & Jacot, 2024; Jacot & Kaiser, 2024). In
particular, these works observe the emergence of a bottleneck structure as the depth grows, where all
middle layers of the network share the same low rank (discarding small singular values of Wℓ), which
equals the BN rank of the network, with only a finite number of high-rank layers at the beginning and
end of the network.

Our results can be interpreted as saying that the optimal escape direction of the saddle at the origin
exhibits a ‘half-bottleneck’ (because there are only high-dimensional layers at the beginning of the
network, not at the end) with BN-rank one. This suggests that the Saddle-to-Saddle dynamics in deep
ReLU networks could correspond to a greedy low-BN-rank search, where the BN-rank increases
gradually between each plateau/saddle. Interestingly, previous theoretical analysis of the bottleneck
structure were only able to prove the existence of low-rank layers but not necessarily locate them
(Jacot, 2023b), our ability to prove that the deeper layers are all approximately low-rank is therefore
a significant improvement over the previous proof techniques.

It is possible that in contrast to linear network, the complete Saddle-to-Saddle dynamics would
require both a small initialization and large depth. This matches our numerical experiments in Figure
1 and Figure 4 in the appendix, where we observe more distinct plateaus in depth 6 layer compared to
a depth 4 layer. This suggests that in contrast to linear networks, where the plateaus can be made
longer and more distinct by taking smaller initialization, for ReLU networks we need to also increase
the depth to achieve the same effect.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Abbe, Enric Boix-Adserà, Matthew Stewart Brennan, Guy Bresler, and Dheeraj Mysore
Nagaraj. The staircase property: How hierarchical structure can guide deep learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
fj6rFciApc.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for certain deep neural
networks. arXiv preprint arXiv:1906.00193, 2019.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019a. ISSN 1049-5258.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems, 32, 2019b.

Alexander Atanasov, Alexandru Meterez, James B Simon, and Cengiz Pehlevan. The optimization
landscape of sgd across the feature learning strength. arXiv preprint arXiv:2410.04642, 2024.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, and Yaoyu Zhang. Embedding principle in depth for the loss
landscape analysis of deep neural networks. arXiv preprint arXiv:2205.13283, 2022.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240–32256,
2022.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. arXiv preprint arXiv:2002.02561, 2020.

Etienne Boursier and Nicolas Flammarion. Early alignment in two-layer networks training is a
two-edged sword. arXiv preprint arXiv:2401.10791, 2024.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of shallow
reLU networks for square loss and orthogonal inputs. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=L74c-iUxQ1I.

Lénaïc Chizat and Francis Bach. On the Global Convergence of Gradient
Descent for Over-parameterized Models using Optimal Transport. In
Advances in Neural Information Processing Systems 31, pp. 3040–3050.
Curran Associates, Inc., 2018a. URL http://papers.nips.cc/paper/
7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.
pdf.

Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable programming.
arXiv preprint arXiv:1812.07956, 2018b.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pp. 1305–1338. PMLR, 09–12 Jul 2020. URL http://proceedings.mlr.press/v125/
chizat20a.html.

10

https://openreview.net/forum?id=fj6rFciApc
https://openreview.net/forum?id=fj6rFciApc
https://openreview.net/forum?id=L74c-iUxQ1I
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://proceedings.mlr.press/v125/chizat20a.html
http://proceedings.mlr.press/v125/chizat20a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. arXiv preprint arXiv:2209.15594, 2022.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

Weinan E, Chao Ma, and Lei Wu. Barron spaces and the compositional function spaces for neural
network models. arXiv preprint arXiv:1906.08039, 2019.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/f39ae9ff3a81f499230c4126e01f421b-Paper.pdf.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pp. 6152–6160, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=6iDHce-0B-a.

Arthur Jacot. Bottleneck structure in learned features: Low-dimension vs regularity tradeoff. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 23607–23629. Curran Associates, Inc.,
2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/4a6695df88f2de0d49f875189ea181ef-Paper-Conference.pdf.

Arthur Jacot and Alexandre Kaiser. Hamiltonian mechanics of feature learning: Bottleneck structure
in leaky resnets, 2024. URL https://arxiv.org/abs/2405.17573.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems 31,
pp. 8580–8589. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.
pdf.

Arthur Jacot, Franck Gabriel, and Clément Hongler. The asymptotic spectrum of the hessian of
dnn throughout training. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgscaNYPS.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle
dynamics in deep linear networks: Small initialization training, symmetry, and sparsity, 2022.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. CoRR,
abs/1810.02032, 2018. URL http://arxiv.org/abs/1810.02032.

Daniel Kunin, Allan Raventós, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, and
Surya Ganguli. Get rich quick: exact solutions reveal how unbalanced initializations promote rapid
feature learning. Advances in Neural Information Processing Systems, 37:81157–81203, 2024.

Daniel Kunin, Giovanni Luca Marchetti, Feng Chen, Dhruva Karkada, James B Simon, Michael R
DeWeese, Surya Ganguli, and Nina Miolane. Alternating gradient flows: A theory of feature
learning in two-layer neural networks. arXiv preprint arXiv:2506.06489, 2025.

11

https://openreview.net/forum?id=S1eK3i09YQ
https://proceedings.neurips.cc/paper/2019/file/f39ae9ff3a81f499230c4126e01f421b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f39ae9ff3a81f499230c4126e01f421b-Paper.pdf
https://openreview.net/forum?id=6iDHce-0B-a
https://openreview.net/forum?id=6iDHce-0B-a
https://proceedings.neurips.cc/paper_files/paper/2023/file/4a6695df88f2de0d49f875189ea181ef-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4a6695df88f2de0d49f875189ea181ef-Paper-Conference.pdf
https://arxiv.org/abs/2405.17573
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
https://openreview.net/forum?id=SkgscaNYPS
http://arxiv.org/abs/1810.02032


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pp. 8572–8583,
2019.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. In International Conference on Learning
Representations, 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-parameterized
systems of non-linear equations: the lessons of deep learning. arXiv preprint arXiv:2003.00307,
2020.

Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu neural
networks at infinite-width limit. Journal of Machine Learning Research, 22(71):1–47, 2021. URL
http://jmlr.org/papers/v22/20-1123.html.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1lNPxHKDH.

Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 7475–7505. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd
for diagonal linear networks: a provable benefit of stochasticity. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 29218–29230. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/f4661398cb1a3abd3ffe58600bf11322-Paper.pdf.

Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles:
long time convergence and asymptotic error scaling of neural networks. In
Advances in Neural Information Processing Systems 31, pp. 7146–7155.
Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7945-parameters-as-interacting-particles-long-time-convergence-and-asymptotic-error-scaling-of-neural-networks.
pdf.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks, 2014.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1820226116. URL https:
//www.pnas.org/content/116/23/11537.

James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetterman, and Joshua
Albrecht. On the stepwise nature of self-supervised learning. In International Conference on
Machine Learning, pp. 31852–31876. PMLR, 2023.

12

http://jmlr.org/papers/v22/20-1123.html
https://openreview.net/forum?id=H1lNPxHKDH
https://proceedings.neurips.cc/paper_files/paper/2023/file/17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f4661398cb1a3abd3ffe58600bf11322-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f4661398cb1a3abd3ffe58600bf11322-Paper.pdf
http://papers.nips.cc/paper/7945-parameters-as-interacting-particles-long-time-convergence-and-asymptotic-error-scaling-of-neural-networks.pdf
http://papers.nips.cc/paper/7945-parameters-as-interacting-particles-long-time-convergence-and-asymptotic-error-scaling-of-neural-networks.pdf
http://papers.nips.cc/paper/7945-parameters-as-interacting-particles-long-time-convergence-and-asymptotic-error-scaling-of-neural-networks.pdf
https://www.pnas.org/content/116/23/11537
https://www.pnas.org/content/116/23/11537


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 9722–9732. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/simsek21a.html.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Zhenfeng Tu, Santiago Aranguri, and Arthur Jacot. Mixed dynamics in linear networks: Unifying the
lazy and active regimes. to appear at NeurIPS, 2024.

Loucas Pillaud Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic) gradient
descent implicitly solves the lasso for quadratic parametrisation. In Conference on Learning
Theory, pp. 2127–2159. PMLR, 2022.

Zihan Wang and Arthur Jacot. Implicit bias of SGD in l2-regularized linear DNNs: One-way jumps
from high to low rank. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=P1aobHnjjj.

Yuxiao Wen and Arthur Jacot. Which frequencies do CNNs need? Emergent bottleneck structure in
feature learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
52779–52800. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
wen24d.html.

Blake Woodworth, Suriya Gunasekar, Pedro Savarese, Edward Moroshko, Itay Golan, Jason Lee,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models, 2020.
URL https://openreview.net/forum?id=Byg9bxrtwS.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks, 2020.

Yedi Zhang, Andrew M Saxe, and Peter E Latham. When are bias-free relu networks effectively
linear networks? Transactions on Machine Learning Research, 4:1–36, 2025.

13

https://proceedings.mlr.press/v139/simsek21a.html
https://proceedings.mlr.press/v139/simsek21a.html
https://openreview.net/forum?id=P1aobHnjjj
https://proceedings.mlr.press/v235/wen24d.html
https://proceedings.mlr.press/v235/wen24d.html
https://openreview.net/forum?id=Byg9bxrtwS


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS OF THEOREMS

A.1 GRADIENT FLOW ON HOMOGENEOUS LOSSES

Proposition A.1. On a homogeneous loss, the GF dynamics decompose into dynamics of the norm
∥θ∥ and of the normalized parameters θ̄ = θ/∥θ∥:

∂t∥θ(t)∥ = −θ̄(t)T∇L0(θ(t)) = −L∥θ(t)∥L−1L0(θ̄(t))

∂tθ̄(t) = −∥θ(t)∥L−2
(
I − θ̄(t)θ̄(t)T

)
∇L0(θ̄(t)).

Proof. Since L0 satisfies gradient flow with respect to θ, we have
dθ

dt
= −∇L0(θ).

Because L0 is L-homogeneous, Euler’s homogeneous function theorem implies:
θ⊤∇L0(θ) = LL0(θ).

Now, define the normalized parameter

θ̄ =
θ

∥θ∥
.

Differentiating θ̄ with respect to time t using the quotient rule yields:

dθ̄

dt
=

d

dt

(
θ

∥θ∥

)
=

dθ
dt ∥θ∥ − θ d∥θ∥

dt

∥θ∥2
.

Substituting dθ
dt = −∇L0(θ) gives:

dθ̄

dt
=

−∇L0(θ) ∥θ∥ − θ d∥θ∥
dt

∥θ∥2
.

To compute d∥θ∥
dt , note that

∥θ∥ = (θ⊤θ)1/2.
Differentiating, we obtain:

d∥θ∥
dt

=
1

∥θ∥
θ⊤

dθ

dt
=

1

∥θ∥
θ⊤

(
−∇L0(θ)

)
.

Using the homogeneity property θ⊤∇L0(θ) = LL0(θ), this simplifies to:
d∥θ∥
dt

= −LL0(θ)

∥θ∥
.

Substitute this back into the expression for dθ̄
dt :

dθ̄

dt
=

−∇L0(θ) ∥θ∥+ θ LL0(θ)
∥θ∥

∥θ∥2
.

This can be simplified as:
dθ̄

dt
=

−∇L0(θ)

∥θ∥
+

θ

∥θ∥3
LL0(θ).

We wish to express the right-hand side in terms of θ̄. Using the scaling property of the gradient for a
homogeneous function, we have

∇L0(θ) = ∥θ∥L−1∇L0(θ̄),

and recalling that
θ⊤∇L0(θ) = LL0(θ),

we finally obtain:
dθ̄

dt
= −∥θ∥L−2∇L0(θ̄) + ∥θ∥L−4θ θ⊤∇L0(θ̄) = −∥θ∥L−2

(
I − θ̄θ̄⊤

)
∇L0(θ̄).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EXPLOSION IN ESCAPE DIRECTION

Proposition A.2. If at some time t0 the parameter satisfies

θ(t0) = ρ with ρ ∈ L1/2SP−1 and ∇L0(ρ) = −s ρ,

then for all t ≥ t0 the normalized direction remains constant, and the norm ∥θ(t)∥ satisfies

∥θ(t)∥ =


(
∥θ(t0)∥ 2−L + (2− L)Ls (t− t0)

) 1
2−L , if L ̸= 2,

∥θ(t0)∥ exp
(
2 s (t− t0)

)
, if L = 2.

Proof. Using the chain rule we have

d

dt
∥θ(t)∥ =

1

∥θ(t)∥
θ(t)⊤

dθ

dt
= − 1

∥θ(t)∥
θ(t)⊤∇L0

(
θ(t)

)
.

Using Euler’s theorem,
θ(t)⊤∇L0

(
θ(t)

)
= LL0

(
θ(t)

)
,

we obtain
d

dt
∥θ(t)∥ = − L

∥θ(t)∥
L0

(
θ(t)

)
.

Since θ(t) = ∥θ(t)∥θ̄(t) and by homogeneity

L0

(
θ(t)

)
= ∥θ(t)∥L L0

(
θ̄(t)

)
,

and because θ̄(t) = θ̄(t0) for all t ≥ t0 with L0

(
θ̄(t0)

)
= −s, we deduce

L0

(
θ(t)

)
= −s ∥θ(t)∥L.

Substituting this back, we have

d

dt
∥θ(t)∥ = − L

∥θ(t)∥

(
−s ∥θ(t)∥L

)
= Ls ∥θ(t)∥L−1.

Defining R(t) = ∥θ(t)∥, the above becomes the separable ordinary differential equation

dR

dt
= LsRL−1, R(t0) = ∥θ(t0)∥.

Case 1: L ̸= 2. We separate variables:

R1−L dR = Ls dt.

Integrate from t0 to t: ∫ R(t)

R(t0)

R1−L dR =

∫ t

t0

Ls dτ.

The left-hand side integrates to

R2−L

2− L

∣∣∣∣∣
R(t)

R(t0)

=
R(t)2−L −R(t0)

2−L

2− L
.

Hence,
R(t)2−L −R(t0)

2−L

2− L
= Ls (t− t0).

Solving for R(t) gives

R(t)2−L = R(t0)
2−L + (2− L)Ls (t− t0),

or equivalently,

∥θ(t)∥ =
(
∥θ(t0)∥ 2−L + (2− L)Ls (t− t0)

) 1
2−L .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Case 2: L = 2. The ODE reduces to
dR

dt
= 2 sR,

which is linear. Its unique solution is

R(t) = R(t0) exp
(
2 s (t− t0)

)
,

that is,
∥θ(t)∥ = ∥θ(t0)∥ exp

(
2 s (t− t0)

)
.

A.3 OPTIMAL SPEED IS INCREASING IN DEPTH

Proposition A.3. Given a depth L network with L0(θ) = −s0 for s0 > 0 and ∥θ∥2 = L, we can
construct a network of depth L+ k for any k ≥ 1 with parameters θ′ that satisfies ∥θ′∥2 = L+ k
and L0(θ

′) ≤ L0(θ). Therefore, the optimal escape speed s∗(L) is a non-decreasing function.

Furthermore, in the deeper network, we have Rank(ZL′) = RankWL′ = 1 for all L′ ≥ L and
ZL′ = Zσ

L′ for all L′ > L.

Proof. We denote with Wℓ,·i the i-th column of Wℓ and with Wℓ,i· the i-th row of Wℓ. We can
decompose the trace using the columns WL,·i and rows WL−1,i· in the following way:

Tr
[
G⊤ZL

]
=

wL∑
i=1

Tr
[
G⊤WL,·iσ(WL−1,i·ZL−2)

]
.

The negative contribution is entirely due to the WL matrix as the application of the activation function
yields a non-negative matrix. For this sum there exists some i∗ ∈ [wL] that maximizes the negative
contribution so that for all i ∈ [wL]:

Tr
[
G⊤W̄L,·i∗σ(W̄L−1,i∗·ZL−2)

]
≤ Tr

[
G⊤W̄L,·iσ(W̄L−1,i·ZL−2)

]
where x̄ denotes the normalized vector x̄ = x

∥x∥2
. We define a new network of depth L+ k using the

following matrices W̃ℓ:

W̃L−1 =

√∑
i

∥WL,·i∥∥WL−1,i·∥


W̄L−1,i∗·

0
0
...
0

 ,

W̃L+k =

√∑
i

∥WL,·i∥∥WL−1,i·∥
(
W̄L,·i∗ 0 0 · · · 0

)
,

W̃ℓ =


1 0 0 · · ·
0 0 0 · · ·
...

...
. . .

...
0 0 · · · 0

 , ℓ = L, . . . , L+ k − 1,

W̃ℓ = Wℓ, ℓ = 1, 2, . . . , L− 2

We observe that the trace of the new network is lower or equal to the trace of the original network:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Tr
[
G⊤Z̃L+k

]
= Tr

[
G⊤W̃L+kσ(W̃L+k−1,i·ZL+k−2)

]
= Tr

[
G⊤W̄L,·i∗σ(W̄L−1,i∗·ZL−2)

] wL∑
i=1

∥WL,·i∥∥WL−1,i·∥

≤
wL∑
i=1

∥WL,·i∥∥WL−1,i·∥Tr
[
G⊤W̄L,·iσ(W̄L−1,i·ZL−2)

]
=

wL∑
i=1

Tr
[
G⊤WL,·iσ(WL−1,i·ZL−2)

]
= Tr

[
G⊤ZL

]
.

The norm of the new network is :

∥θ̃∥2 =

L−2∑
ℓ=1

∥Wℓ∥2 + 2

wL∑
i=1

∥WL,·i∥∥WL−1,i·∥+ k

≤
L∑

ℓ=1

∥Wℓ∥2 + k

≤ L+ k

A.4 LOW RANK BIAS

A.4.1 WEAK CONTROL

Before presenting our results we will describe a simple lemma that’s useful to our proofs.

Lemma A.4. For a depth-L network with ∥θ2∥ ≤ L we have that

L∏
ℓ=1

∥Wℓ∥F ≤ 1

Proof. This essentially follows from the AM-GM inequality:

(
∥θ∥2

L
) = (

1

L

∑
ℓ

∥Wℓ∥2F )
L
2 ≥ (

∏
ℓ

∥Wℓ∥2F )
1
2 =

∏
ℓ

∥Wℓ∥F

and using the bounded norm assumption

1
L
2 = 1 ≥ (

∥θ∥2

L
)

L
2 .

Proposition A.5. Given that Tr[G⊤ZL] ≤ −s0, for some constant s0 > 0 and ∥θ∥2 ≤ L then for
any ratio p ∈ (0, 1) there are at least (1− p)L layers that are approximately rank 1 in the sense that
the singular values si of Zσ

ℓ satisfy

∑
i≥2 s

2
i∑

i≥1 s
2
i

≤ 2
log ∥X∥F + log ∥G∥F − log s0

pL
. (3)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. We expand the activations,

∥Zσ
0 ∥2F

∥ZL∥2F
=

∥Zσ
L−1∥2op

∥ZL∥2F

L−1∏
ℓ=1

∥Zσ
ℓ−1∥2op

∥Zσ
ℓ ∥2F

L−1∏
ℓ=0

∥Zσ
ℓ ∥2F

∥Zσ
ℓ ∥2op

.

Where the operator norm of a matrix is its largest singular value.

Since Zℓ = WℓZ
σ
ℓ−1, we have

∥Zℓ∥2F ≤ ∥Wℓ∥2F ∥Zσ
ℓ−1∥2op.

So by using lemma A.4,

∥Zσ
L−1∥2op

∥ZL∥2F

L−1∏
ℓ=1

∥Zσ
ℓ−1∥2op

∥Zσ
ℓ ∥2F

L−1∏
ℓ=0

∥Zσ
ℓ ∥2F

∥Zσ
ℓ ∥2op

≥
L−1∏
ℓ=0

∥Zσ
ℓ ∥2F

∥Zσ
ℓ ∥2op

On the other hand we have that

∥Zσ
0 ∥2F ∥G∥2F

Tr[G⊤ZL]
2 ≥ ∥Zσ

0 ∥2F
∥ZL∥2F

since the inner product is always lower than the norm product.

Now by combining the above we get

L−1∏
ℓ=0

∥Zσ
ℓ ∥2F

∥Zσ
ℓ ∥2op

≤ ∥Zσ
0 ∥2F ∥G∥2F

Tr[G⊤ZL]
2 .

Taking the log on both sides,

L−1∑
ℓ=1

log ∥Zσ
ℓ ∥2F − log ∥Zσ

ℓ ∥2op ≤ log
∥Zσ

0 ∥2F ∥G∥2F
Tr[G⊤ZL]

2 .

By contradiction, we see that for any ratio p ∈ (0, 1), there can be at most pL layers where

log ∥Zℓ∥F − log ∥Zℓ∥op ≥ log ∥X∥F + log ∥G∥F − log s0
pL

.

That is there is at least (1− p)L layers where∑
i≥2 s

2
i∑

i≥1 s
2
i

= 1−
∥Zℓ∥2op
∥Zℓ∥2F

≤ 2 log ∥Zℓ∥F − 2 log ∥Zℓ∥op ≤ 2
log ∥X∥F + log ∥G∥F − log s0

pL
.

A.4.2 STRONG CONTROL ON ALMOST RANK 1 INPUT

The following result shows that if the input of the network is approximately rank-1, here encoded as
uvT +X , where u, v are non-negative entry-wise vectors and X is a matrix of small norm ∥X∥F ≤ ϵ,
then all layers are approximately Rank-1 too at the optimal escape direction.

Proposition A.6. Consider the minimizer θ⋆ = argmin∥θ∥2≤L Tr
[
G⊤Yθ(uv

⊤ +X)
]

where u, v ∈
Rn, u, v ≥ 0 entry wise and ∥X∥F ≤ ϵ for some ϵ > 0. Then for all ℓ we have:∑

i≥2 s
2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

,

∑
i≥2 s

2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

,
∥Zσ

ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
∥G∥F

s∗ − ∥G∥F ϵ
ϵ.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. In the case where the input is only the rank 1 matrix uv⊤ we can see that

Tr
[
G⊤Yθ(uv

⊤)
]
= Tr

[
v⊤G⊤Yθ(u)

]
= v⊤G⊤Yθ(u)

and therefore the minimum is achieved when the alignment is maximized:

min∥θ∥2≤Lv
⊤G⊤Yθ(u) = −∥Gv∥∥u∥.

When ∥θ∥2 ≤ L it is true that

∥Yθ(uv
⊤)− Yθ(uv

⊤ +X)∥F ≤
L∏

ℓ=1

∥Wℓ∥F ∥X∥F ≤ ϵ

as a consequence of the Cauchy-Schwarz inequality.

We can also see that

|Tr
[
G⊤Yθ(uv

⊤ +X)
]
− Tr

[
G⊤Yθ(uv

⊤)
]
| ≤ ∥G∥F ϵ.

At the minimum θ⋆ = argmin∥θ∥2=L Tr
[
G⊤Yθ(uv

⊤ +X)
]

we observe that

Tr
[
G⊤Yθ⋆(uv⊤ +X)

]
≤ Tr

[
G⊤Yθ̂(uv

⊤ +X)
]
≤ −∥Gv∥∥u∥+ ∥G∥F ϵ

where θ̂ = argminTr
[
G⊤Yθ(uv

⊤)
]
.

On the other direction we get

Tr
[
G⊤Yθ⋆(uv⊤ +X))

]
≥ −Tr

[
G⊤Yθ⋆(uv⊤)

]
− ∥G∥F ϵ

≥ −∥Gv∥∥Yθ⋆(u)∥ − ∥G∥F ϵ (4)

where we used the Cauchy-Schwarz inequality in the last line.

Combining the two, we get

∥Yθ⋆(u)∥
∥u∥

≥ 1− 2∥G∥F
∥Gv∥∥u∥

ϵ

and since ∥θ∥2 ≤ L it is also true that the LHS of the above inequality is upper bounded by 1.

We can also see that

∥Y ⋆
θ (uv

⊤ +X)∥
∥uv⊤ +X∥

≥ ∥Y ⋆
θ (uv

⊤)∥ − ϵ

∥uv⊤∥+ ϵ
=

∥Y ⋆
θ (u)∥
∥u∥ − ϵ

∥u∥∥v∥

1 + ϵ
∥u∥∥v∥

and by using the above inequality we get

∥Y ⋆
θ (uv

⊤ +X)∥
∥uv⊤ +X∥

≥ 1−
2∥G∥F

∥Gv∥∥u∥ − 2 1
∥u∥∥v∥

1 + ϵ
∥u∥∥v∥

ϵ ≥ 1− 2(
∥G∥F

∥Gv∥∥u∥
+

1

∥u∥∥v∥
)ϵ.

Now we can expand the activations,

∥Y ⋆
θ (uv

⊤ +X)∥
∥uv⊤ +X∥

=

L∏
ℓ=1

∥Zℓ∥F
∥Zσ

ℓ−1∥F
∥Zσ

ℓ−1∥F
∥Zℓ−1∥F

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and using the fact that
∏

ℓ ∥Wℓ∥F ≤ 1

L∏
ℓ=1

∥WℓZℓ−1∥F
∥Wℓ∥F ∥Zσ

ℓ−1∥F
∥Zσ

ℓ−1∥F
∥Zℓ−1∥F

≥
L∏

ℓ=1

∥WℓZℓ−1∥F
∥Zσ

ℓ−1∥F
∥Zσ

ℓ−1∥F
∥Zℓ−1∥F

. (5)

We split the norm of the activations using the inequalities

∥WℓZ
σ
ℓ−1∥F

∥Wℓ∥F ∥Zσ
ℓ−1∥F

≤
∥Wℓ∥op∥Zσ

ℓ−1∥F
∥Wℓ∥F ∥Zσ

ℓ−1∥F
=

∥Wℓ∥op
∥Wℓ∥F

and

∥WℓZ
σ
ℓ−1∥F

∥Wℓ∥F ∥Zσ
ℓ−1∥F

≤
∥Wℓ∥F ∥Zσ

ℓ−1∥op
∥Wℓ∥F ∥Zσ

ℓ−1∥F
=

∥Zσ
ℓ−1∥op

∥Zσ
ℓ−1∥F

so we get

L∏
ℓ=1

min{∥Wℓ∥op
∥Wℓ∥F

,
∥Zσ

ℓ−1∥op
∥Zσ

ℓ−1∥F
}
∥Zσ

ℓ−1∥F
∥Zℓ−1∥F

≥ 1− 2(
∥G∥F

∥Gv∥∥u∥
+

1

∥u∥∥v∥
)ϵ.

By squaring and rearranging the terms we get for the first ratio:

∑
i≥2 s

2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

≤ 4(
∥G∥F

∥Gv∥∥u∥
+

1

∥u∥∥v∥
)ϵ

which further simplifies to

∑
i≥2 s

2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

≤ 8
∥G∥F

∥Gv∥∥u∥
ϵ.

Using inequality 4 we observe that:

∥Gv∥∥u∥ ≥ s⋆ − ∥G∥F ϵ

and hence

∑
i≥2 s

2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

≤ 8
∥G∥F

s⋆ − ∥G∥F ϵ
ϵ.

We proceed similarly for the singular values of Zℓ.

For the matrices Zℓ and Zσ
ℓ we note that their Frobenius inner product is zero, so

∥Zℓ∥2F = ∥Zσ
ℓ ∥2F + ∥Zℓ − Zσ

ℓ ∥2F

Re-arranging gives the inequality

∥Zσ
ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
∥G∥F

s⋆ − ∥G∥F ϵ
ϵ.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.4.3 STRONG CONTROL

We can combine the above two statements to show that at the maximum escape speed, the final layers
will be almost rank-1. To prove that we first apply proposition A.5 to find a layer ℓ0 that is almost
rank-1. We need an additional lemma that ensures that we can select non-negative singular vectors
for the largest singular value of the activation Zℓ1 . Then we can apply proposition A.6 to conclude
that all layers ℓ ≥ ℓ0 will be approximately rank-1.

Lemma A.7. For A ∈ Rm×n with non-negative entries and s1 its largest singular value we can find
right and left singular values u1, v1 for s1 which are non-negative entry-wise.

Proof. The right singular vector for s1 satisfies

A⊤Au1 = s1u1

and since A is non-negative A⊤A is also non-negative. We can now apply an extended version of
the Perron-Frobenius theorem for non-negative matrices to select the eigenvector u1 ≥ 0 entry-wise.
Now we select

v1 =
Au1

s1

which is a left singular vector as it satisfies Av1 = s1u1 and since A, u are non-negative, v is also
non-negative.

Theorem A.8. Consider an optimal escape direction

θ⋆ = argmin
∥θ∥2=L

Tr
[
G⊤Yθ

]
with optimal speed s∗ = min∥θ∥2=L Tr

[
G⊤Yθ

]
, then for all layers ℓ we have:∑

i≥2 s
2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

,

∑
i≥2 s

2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

,
∥Zσ

ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
c

s∗ − cℓ−
1
2

ℓ−
1
2

where c =
√
2∥X∥F ∥G∥F

√
log ∥X∥F + log ∥G∥F − log s∗.

Proof. We denote Yℓ2:ℓ1(X) = Wℓ2σ(Wℓ2−1...σ(Wℓ1X)...) the network when only the layers from
ℓ1 to ℓ2 are applied.

Using proposition A.5 we can find layers ℓ0 < ℓ1 < ... < ℓn ≤ L that satisfy 3 and are approximately
rank-1. We can select the minimum of those, ℓ0.

Because the argument is valid for at least (1− p)L of the L total layers, the earliest layer ℓ0 must
occur on or before the pL-th layer.

It is true that Zσ
ℓ0

is non-negative entry-wise and so we can apply lemma A.7 to find non-negative
singular vectors u1, v1 that additionally satisfy

∥Zσ
ℓ0 − s1(Z

σ
ℓ0)u1v

⊤
1 ∥2F =

r∑
i=2

s2i ≤ 2∥Zσ
ℓ0∥

2
F

log ∥X∥F + log ∥G∥F − log s∗

pL

≤ 2∥X∥2F
log ∥X∥F + log ∥G∥F − log s∗

pL
.

We now use the fact that for the layers ℓ ≥ ℓ0 we are at the optimal escape direction θ∗.

θ∗ = argmin
∥θL:ℓ0+1∥2=L−ℓ0

Tr
[
G⊤YL:ℓ0+1(Z

σ
ℓ0)

]
.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We can do that since:

min∥θ∥2=L Tr
[
G⊤Yθ

]
≤ min∥θL:ℓ0+1∥2=L−ℓ0 Tr

[
G⊤YL:ℓ0+1(Z

σ
ℓ0)

]
We can now apply proposition A.6 on the sub-network YL:ℓ0+1. For all layers ℓ ≥ ℓ0 we have that:∑

i≥2 s
2
i (Wℓ)∑

i≥1 s
2
i (Wℓ)

,

∑
i≥2 s

2
i (Z

σ
ℓ )∑

i≥1 s
2
i (Z

σ
ℓ )

,
∥Zσ

ℓ − Zℓ∥2F
∥Zℓ∥2F

≤ 8
c

1− c√
pL

1√
pL

where c = ∥X∥F ∥G∥F

s∗

√
2 log ∥X∥F ∥G∥F

s∗ .

We see that, since p ∈ (0, 1) was chosen arbitrarily, we can choose p = ℓ
L for any ℓ. Then since

ℓ0 ≤ pL = ℓ the above inequality will hold for any ℓ-th layer with ℓ > c2.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B MNIST TRAINING DETAILS

We train a 6-layer fully connected neural network (multilayer perceptron, MLP) without biases on
the MNIST dataset, using the cross-entropy loss. The network comprises one input layer, four hidden
layers, and one output layer. Each hidden layer contains 1000 neurons. The weight matrices have the
following dimensions:

• Input layer: W1 ∈ R784×1000

• Hidden layers: Wi ∈ R1000×1000 for i = 2, 3, 4, 5

• Output layer: W6 ∈ R1000×10

The weights are initialized from a normal distribution with mean 0 and standard deviation 1/1000.

We train the model for 1000 epochs using a batch size of 32. The learning rate at each step is adjusted
dynamically according to:

lr(t) =
10

∥θ(t)∥4

where

∥θ(t)∥2 =

6∑
i=1

∥Wi(t)∥2F

and ∥ · ∥F denotes the Frobenius norm.

Each MNIST image x is normalized using the dataset-wide mean µ and standard deviation σ of the
pixel values:

x 7→ x/255− µ

σ

This standardization ensures that the input distribution has approximately zero mean and unit variance,
which helps stabilize training.

A more complete picture of how the singular values of the weight matrices evolve during training is
presented in 3.

We repeated the same experiment with depth-4 fully connected network and we report our findings in
figure 4.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1.0 1.2 1.4 1.6 1.8
step 1e6

0

1

2

3

4

Si
ng

ul
ar

 V
al

ue

Layer 1

1.0 1.2 1.4 1.6 1.8
step 1e6

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Si
ng

ul
ar

 V
al

ue

Layer 2

1.0 1.2 1.4 1.6 1.8
step 1e6

0

1

2

3

4

Si
ng

ul
ar

 V
al

ue

Layer 3

1.0 1.2 1.4 1.6 1.8
step 1e6

0

1

2

3

4

5

Si
ng

ul
ar

 V
al

ue

Layer 4

1.0 1.2 1.4 1.6 1.8
step 1e6

0

1

2

3

4

5

Si
ng

ul
ar

 V
al

ue

Layer 5

1.0 1.2 1.4 1.6 1.8
step 1e6

0

2

4

6

8

10

12

Si
ng

ul
ar

 V
al

ue

Layer 6

1.0 1.2 1.4 1.6 1.8
step 1e6

0.0

0.5

1.0

1.5

2.0

1st saddle escape
2nd saddle escape

Figure 3: Deeper layers show a stronger bias toward low-rank structure than earlier layers on
MNIST. Top two rows: Top 10 singular values of the weight matrices for layers 1–6 including input
and output layer over training time. Bottom: Training loss trajectory on MNIST.

C SUPPORTING MATERIAL FOR SECTION 4

C.1 FINDING THE MAXIMAL RANK-ONE ESCAPE SPEED

Picking up the argument from the proof sketch of Example 1, we have a network function equal to
f(X) = ±σ(W1X), where W1 = [cos(ϕ), sin(ϕ)] and the sign is chosen to give a positive escape
speed. Applied to the dataset of Example 1 and noting that at most four points will have nonzero
function value at a given time, one finds an escape speed is equal to

s =
∣∣∣cos(ξ + π

4

)
− cos(ξ) + cos

(
ξ − π

4

)
− cos

(
ξ − π

2

)∣∣∣ , (6)

where ξ = ϕ mod(π4 ). See Figure 5 for a depiction of this periodic function. Its maximal value of
s =

√
2− 1 falls at multiples of π

4 .

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 100000 300000 500000
step

0.0

0.5

1.0

1.5

2.0

Si
ng

ul
ar

 V
al

ue

Layer 1

0 100000 300000 500000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
ng

ul
ar

 V
al

ue

Layer 2

0 100000 300000 500000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
ng

ul
ar

 V
al

ue

Layer 3

0 100000 300000 500000
step

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Si
ng

ul
ar

 V
al

ue
Layer 4

0 100000 300000 500000
step

0.5

1.0

1.5

2.0

Figure 4: Depth-4 MLP with small initialization on MNIST. Top two rows: Top 10 singular values
of the weight matrices for layers 1–4 including input and output layer over training time. Bottom:
Training loss trajectory on MNIST.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 π
2

π 3π
2

2π

φ

0.0

0.1

0.2

0.3

0.4
es

ca
pe

 sp
ee

d 
s(
φ
)

Figure 5: Visualization of Equation 6.

0 20000
epoch

0.0

0.5

lo
ss

width = 4

0 20000
epoch

0.0

0.5
width = 8

0 20000
epoch

0.0

0.5
width = 16

0 20000
epoch

0.0

0.5
width = 32

0 20000
epoch

0.0

0.5

lo
ss

width = 64

0 20000
epoch

0.0

0.5
width = 128

0 20000
epoch

0.0

0.5
width = 256

0 20000
epoch

0.0

0.5
width = 512

0 20000
epoch

0.0

0.5

lo
ss

width = 1024

101 102 103

width

0.5

1.0

su
cc

es
sfu

l f
ra

c

Figure 6: Visualization of all training runs of projected gradient descent on Example 1. This plot
shows all training runs in the experiment of Figure 2.

26


	Introduction
	Saddle-to-Saddle dynamics
	Bottleneck Rank Incremental learning
	Contributions

	Saddle at the Origin
	Gradient Flow on Homogeneous Losses
	Escape Directions and their Speeds

	Low Rank Bias and Approximate Linearity of the Escape Directions
	Optimal Speed is Increasing in Depth
	Sketch of proof
	Empirical Results on MNIST

	The optimal escape direction is not always exactly rank one
	Numerical experiments: wide networks find the optimal escape direction

	Discussion: Saddle-to-Saddle dynamics
	Proofs of Theorems
	Gradient Flow on Homogeneous Losses
	Explosion in Escape Direction
	Optimal Speed is Increasing in Depth
	Low Rank Bias
	Weak Control
	Strong Control on Almost Rank 1 Input
	Strong Control


	MNIST Training Details
	Supporting material for Section 4
	Finding the maximal rank-one escape speed


