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Abstract

Statistical model discovery is a challenging search
over a vast space of models subject to domain-
specific constraints. Efficiently searching over
this space requires expertise in modeling and
the problem domain. Motivated by the domain
knowledge and programming capabilities of large
language models (LMs), we introduce a method
for language model driven automated statistical
model discovery. We cast our automated proce-
dure within the principled framework of Box’s
Loop: the LM iterates between proposing statisti-
cal models represented as probabilistic programs,
acting as a modeler, and critiquing those models,
acting as a domain expert. By leveraging LMs,
we do not have to define a domain-specific lan-
guage of models or design a handcrafted search
procedure, which are key restrictions of previous
systems. We evaluate our method in three set-
tings in probabilistic modeling: searching within
a restricted space of models, searching over an
open-ended space, and improving expert mod-
els under natural language constraints (e.g., this
model should be interpretable to an ecologist).
Our method identifies models on par with human
expert designed models and extends classic mod-
els in interpretable ways. Our results highlight
the promise of LM-driven model discovery.

1. Introduction

Modeling, or generating a parsimonious but explanatory
representation of a complex system, is at the heart of scien-
tific discovery. Model discovery is challenging because it
involves searching over a vast space of candidate models
subject to domain-specific constraints (e.g., find the best
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model that remains interpretable to domain experts). Effi-
ciently searching over the space requires extensive human
expertise: modelers need broad knowledge of different mod-
eling approaches and must work closely with domain ex-
perts to adapt these approaches to a given problem domain.
As a concrete example, consider modeling blood-glucose
dynamics in Type 1 diabetes (T1D) patients; accurately
modeling these dynamics can enable better insulin regula-
tion and reduce complications from the disease. To model
these dynamics, modelers need to understand biomedical
models that capture blood-glucose dynamics in idealized,
lab settings but they also need to understand techniques for
adapting these models to handle real data with noise and
missingness (Miller et al., 2020). Domain experts play a cru-
cial role in this process: modelers must work closely with
clinicians to ensure that the model is consistent with human
physiology. As this example illustrates, model discovery can
require significant human expertise. Automating this pro-
cess could accelerate and democratize scientific discovery.

Automated model discovery is not a new ambition. Previous
systems have been successfully deployed for discovering
physical laws (Bongard & Lipson, 2007; McKinney et al.,
2006; Linka et al., 2023), reverse-engineering non-linear dy-
namical systems (Schmidt & Lipson, 2009), nonparametric
regression (Duvenaud et al., 2013) and unsupervised learn-
ing (Grosse, 2014). However, in these systems, a human
expert had to carefully design a domain specific language
(DSL) of models and specify a hand-crafted search proce-
dure for composing models in that DSL. For example, in the
Automatic Statistician (Duvenaud et al., 2013; Lloyd et al.,
2014), a system for nonparametric regression and time series
modeling, human experts defined a DSL of Gaussian pro-
cess kernels and a search procedure that composes kernels
via addition and multiplication. Defining the DSL and the
operators for composing models requires significant model-
ing expertise. These systems also compromised flexibility
for automation: rather than choosing a model class best-
suited for a problem, experts chose models that compose
conveniently. This breaks the core principle of separation
of modeling from inference (van de Meent et al., 2021).

As we saw above, there are two key roles in the model dis-
covery pipeline: the domain expert and the modeler. We
hypothesize that LMs can supplement these roles and re-
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Figure 1. Language model driven automated model discovery (BoxLM). 1) The prompt for the LM contains the dataset in visual and/or
textual form, dataset metadata (e.g., dataset description), the code for previous probabilistic programs, and natural language feedback. 2)
Given this, the proposal LM proposes new models expressed as probabilistic programs. 3) To fit these programs in a generic way, we
leverage probabilistic programming languages and obtain scores and posterior predictive samples. 4) After we fit models, we compute the
posterior predictive mean and variance. We provide these statistics to a critic LM which produces natural language feedback to guide the
next round of model building. 5) We propagate the best programs, their posterior predictive means and variances, and natural language

feedback forward by updating the prompt.

duce the human expertise required in model discovery. Our
hypothesis is motivated by recent work exploring LM ca-
pabilities. First, LMs have been successfully applied to do-
mains including law (Bommarito & Katz, 2022), medicine
(Lee et al., 2023), and mathematics (Wu et al., 2023). This
suggests that LMs have broad domain knowledge which
may enable them to supplement the domain expert. Second,
LMs can reliably write code (Roziere et al., 2023; Chen
et al., 2021) which means we do not require a human expert
to define a DSL. Instead, we can search over a more open-
ended space of models, provided they can be expressed in
a generic programming language like Python. Third, LMs
have strong inductive reasoning capabilities (e.g., they can
generate hypotheses from limited data) (Wang et al., 2024;
Qiu et al., 2024). We hypothesize these capabilities may
enable them to reason about data (Zhong et al., 2023). These
capabilities, in addition to their knowledge of various mod-
eling approaches, may enable the LM to supplement the
modeler.

Leveraging LMs for automated model discovery is enticing
at a conceptual level. However, in order to deliver on this
promising idea, we need to make several important design
choices. These design choices should exploit the strengths
of LMs but remain grounded in principled statistical model-
ing. First, we need a generic and flexible representation of
a statistical model that can be expressed programmatically
and is amenable to automated inference (e.g., model fit-

ting). Second, we need a method for guiding LM proposals
through natural language.

Algorithm 1 Automated Model Discovery with LMs

input dataset D, number of rounds 7°, £ number of ex-
emplars, m number of proposals per round, (optional)
warm-start example zg, function for scoring a program
score, (optional) function for producing natural lan-
guage feedback criticize
Z+0
while ¢ < T do
{Zf}:il ~ qLM('|Zv 20, ht? D)
{si}™, + score-all(score, {2/}, D)
Z « select-exemplars(k, {z{}™, {s:})
Rt < criticize({zf}m, {si}™,, ht)
end while

To fulfill these requirements, we draw on research in prob-
abilistic programming and inductive reasoning with LMs.
In particular, we introduce the following method: LMs pro-
pose statistical models expressed as probabilistic programs,
given a dataset and some metadata (e.g., dataset descrip-
tion). We then fit these models using generic probabilistic
inference techniques, compute statistics assessing the model
fit, summarize findings from these statistics in natural lan-
guage, and select exemplar models to guide the next round
of proposals (Figure 1). Our approach is connected to recent
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work on hypothesis search and inductive reasoning with
LMs, but targets a fundamentally different problem (Wang
et al., 2024; Qiu et al., 2024). While we also leverage the
inductive reasoning capabilities of LMs, our focus is on sta-
tistical modeling of noisy real-world data, while previous
work focused on learning deterministic input-output rules
that can be implemented with standard Python programs.

We evaluate our method in three settings that cover com-
mon use cases in probabilistic modeling: searching within a
DSL, searching over an open-ended space of probabilistic
models, and improving expert models subject to modeling
constraints expressed in natural language. In the first use
case, we illustrate that our LM system is effective even in a
DSL and matches the performance of the Automatic Statis-
tician (Duvenaud et al., 2013). We then consider the more
general setting of automatically constructing probabilistic
models for real world data; crucially, we do not require a
user to define a DSL and this generality is enabled by our
choice to use probabilistic programs. Our method identi-
fies probabilistic programs that match the performance of
human expert written programs. In the third setting, we
use LMs to improve classic models and illustrate a com-
pelling advantage of using LMs for model discovery: given
that certain modeling constraints can be difficult to express
formally but easy to express in natural language (e.g., this
model should be more physical), we use natural language to
guide LMs towards models that balance interpretability and
flexibility.

2. Automated Box’s Loop with Language
Models

We begin with a brief background on the probabilistic mod-
eling paradigm. We then formally introduce our problem
setting and describe our approach. For an overview, see
Figure 1 and Algorithm 1.

2.1. Background

In probabilistic modeling, our goal is to describe a dataset in
terms of unobserved, latent structure. We describe a dataset
through a probabilistic model which is a joint distribution
p(x, z|n); here © = x1.n denotes N observed data points,
z = z1.py denotes M latent variables, and 7 corresponds to
non-random quantities in the model (Blei, 2014). After spec-
ifying a probabilistic model, we fit the model to observed
data. Fitting a model involves inference, or conditioning
on observed data and computing the posterior distribution
p(z|z). After fitting a model, we perform model criticism.
In the model criticism step, we evaluate the model by in-
terrogating the posterior. In this work, our model criticism
is inspired by a common model criticism technique known
as a posterior predictive check: to identify discrepancies,
samples are drawn from the posterior predictive distribution

and statistics of these samples are compared against those of
the observed data (Gelman et al., 2013). Model building and
model criticism typically take place over multiple iterations
in an iterative process known as Box’s Loop (Box & Hunter,
1962).

There are many different representations of a probabilis-
tic model. Since our goal is automated model discovery,
we use probabilistic programs. Probabilistic programming
languages provide ways to flexibly represent probabilistic
models as programs and support generic inference methods
for any arbitrary program (Wood et al., 2014; Goodman
et al., 2008; van de Meent et al., 2021). In the context
of automated model discovery, these are highly desirable
properties, since LMs can write code reliably and other
representations of probabilistic models can require custom
inference methods. Our approach of using LMs to generate
probabilistic programs is related to the approach taken by
Wong et al. (2023) but is motivated by a different problem.
Our emphasis is on using LMs as a tool for developing sta-
tistical models of real-world datasets, while their focus was
on integrating symbolic methods with LMs.

2.2. Problem formulation

Our framework is motivated by recent work in inductive
reasoning with LMs (Qiu et al., 2024; Wang et al., 2024),
integrating tools with LMs (Gao et al., 2023), and driving
LMs via linguistic feedback (Shinn et al., 2023).

At a high level, we consider a method for learning proba-
bilistic models from data that involves two steps: a model
building step and a criticism step'. Crucially, by learning a
model, we mean searching over a space of model structures
and not just learning the parameters of some fixed model
class. In each step, we leverage LMs. In the proposal step, a
proposal LM proposes probabilistic programs for a dataset.
We then fit these probabilistic programs and evaluate them.
In the criticism step, we provide a critic LM with programs
and statistics assessing model fit (e.g., model criticism statis-
tics) and ask the critic LM to provide feedback to guide the
next round of proposals.

We start with a dataset D = {x;,,;}"_,. Here x; € R?
are fixed d-dimensional input values (e.g., features) and
y; € R are the observations. Let X be the vocabulary of
the LM. For each dataset, we have an associated metadata
set C € X241, which consists of natural language descrip-
tions of D (e.g., animal ages vs length) and natural language
descriptions of each feature in D (e.g., length of animal).
Context informs how human modelers leverage prior knowl-
edge; for example, if a modeler knows their dataset consists
of monthly carbon dioxide measurements over a fifty-year

'To avoid overloading the word “model”, we will refer to lan-
guage models as LMs.
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time span, they will choose a model that can capture period-
icity and a linear trend. Our goal is to find a probabilistic
program z ~ ¥* that maximizes some notion of quality,
which we take here to be either the log marginal likelihood
or expected log predictive density (ELPD) estimated via
cross validation (LOO) (Vehtari et al., 2017).

2.3. Approach

Model Building Step In the model building step, we au-
tomatically generate probabilistic programs for modeling a
dataset given information about the dataset and previously
proposed programs. In particular, to generate candidates for
round ¢, we sample m probabilistic programs z} from the
proposal LM, g m(+). In our experiments, we use GPT-4 V
(Achiam et al., 2023) (gpt4-11-06-preview), which
has multimodal capabilities. We leverage in-context learn-
ing, or LM’s ability to learn from examples in a prompt, to
guide the LM’s proposals based on high-scoring programs in
the past (Brown et al., 2020). Specifically, gp»m “conditions”
on ht € ¥*, a natural language instruction synthesizing pre-
vious modeling approaches and suggesting new approaches,
k exemplars {21, ... zx }, and a visual or textual representa-
tion of D. Optionally, gr\ also conditions on a warm-start
expert program z:
2t~ qum(-l20, 21, - - . 26, AT, D).

We run this at a temperature of 0.7. Chain-of-thought reason-
ing, or generating intermediate reasoning steps, improves
the performance of LMs (Wei et al., 2022; Kojima et al.,
2022). Motivated by this, we instruct gy to reflect on the
properties of the dataset or plot of the data, sketch a high-
level modeling approach, state the hypotheses that it will
address before writing a program, and add comments to
code that address specific hypotheses.

To create exemplars z1, ..., 2z, for round t for qp v, we
choose the best k programs among the m proposed pro-
grams in round ¢ — 1.

Model Fitting Step In the model fitting step, we fit a
probabilistic program to data. This requires us to perform
(approximate) inference for generic probabilistic models. To
accomplish this, we leverage pymc (Abril-Pla et al., 2023),
a Python probabilistic programming library. pymc automat-
ically assigns a Markov Chain Monte Carlo (MCMC) sam-
pler to perform inference; by default pymc uses a Hamil-
tonian Monte Carlo sampler (Homan & Gelman, 2014).
Crucially, by using a probabilistic program, we decouple
modeling from inference: the proposal LM’s role is to build
a good model, while pymc takes care of inference. Our
approach of offloading computations to an external tool is
connected to recent work enhancing LMs by giving them
tools (e.g., Python interpreter) (Gao et al., 2023; Schick
et al., 2023).

Model Criticism Step In the criticism step, we ask the
critic LM, prs, to produce natural language criticism of
fitted models; we use this criticism to drive model revision.
First, we can obtain a scalar score measuring the model fit
(e.g., ELPD LOOQ) for each proposed model. Second, to en-
able the critic LM to do something akin to a posterior predic-
tive check, we obtain samples from the posterior predictive
distribution (e.g., p(z’|z,2) = [ p(2’|2)p(z|z)) and then
compute summary statistics of these posterior predictive
samples (Gelman et al., 2013). For simplicity, we com-
pute the posterior predictive means and variances for each
fitted probabilistic program. We then provide py s with
select probabilistic programs, their scores S (e.g., ELPD
LOO), the posterior predictive means and variances P, and
the dataset itself D; we explore both visual and textual
dataframe based representations of the posterior predictive
and the dataset. Finally, we ask py s to distill this criticism
in natural language (e.g., von Bertalanffy growth function
with informative priors) which we use to drive the next
round of model building (Shinn et al., 2023).

The key design choice is which programs to provide to
pru (e.g., critic exemplars). Naively, we could provide all
proposed programs across all rounds to pr, ;. However, this
list grows each round and has redundancy. Furthermore,
LMs struggle to reason over long contexts. We therefore
explore a simple approach to selecting exemplars where we
provide py s with the top d programs Z1, ... Z; from the
current round ¢. To produce h!*!, we sample:

hH_l ~ pLM('|217 . .,2d7'D,S,'P).

In the appendix, we report additional results for an approach
inspired by a state-space update (Baum & Petrie, 1966;
Kalman, 1960; Rabiner, 1989). To avoid storing the entire
history of proposed programs, we interpret h'*! as a latent
state and compute it using the previous state A’ and the new
fitted programs {z;}7, at round ¢:

ht+1 ~ pLM('|Zla sy Bmy ht5D787P)'

In practice, we implement this by asking ppy to add and
delete hypotheses. We find that these two approaches have
similar performances. We run this criticism step at a temper-
ature of 0.0 to limit stochasticity in the criticism produced.

We refer to our full LM-driven automated Box’s loop as
BoxLM.

3. Experiments

3.1. Searching over a DSL: automated Gaussian process
kernel discovery

We first evaluate LM’s ability to search over a constrained
space of models; in some settings, a domain expert may re-
quire the modeler to search over a DSL for reasons such as
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Monthly air passengers

Dataset BoxLM+ BoxLM Periodic ~AS SM N-BEATS — Data

Air 0.08 w 0.15 0.19 0.06 0.22 Lo L— periodic * linear + ratquad
Beer 0.07 0.22 0.15 0.06 0.05 0.02

Heart 0.21 0.21 020 021 021 0.07

Milk 0.12 0.10 0.10 0.11 0.09 0.04 09

Wine 0.14 0.16 021 013 0.18 0.17

Wool 0.20 0.19 0.19 023 013 0.18 o

Figure 2. Test set performance on time series datasets. Our BoxLM system identifies compositional kernels with performance on par
with strong baselines. (left) Comparison of BoxLM test mean absolute error (MAE) against Automatic Statistician using greedy search
(AS), spectral mixture kernel (SM), periodic kernel (Periodic), and N-BEATS. BoxLM+ searches over an augmented kernel space.
We bold the best and underline the second best among the GP methods, treating N-BEATS as a powerful non-GP-constrained baseline.

(right) Extrapolations from GP with a BoxLM-discovered kernel.

interpretability. In particular, we consider time-series mod-
eling with Gaussian processes (GPs) as in the Automatic
Statistician (Duvenaud et al., 2013). GPs are probabilistic
models that specify a distribution over functions. GPs are
defined by a mean function and a positive-definite kernel
function k(x, x’) that gives the covariance between f(x)
and f(x’) as a function of x and x’. The properties of a GP
depend significantly on the kernel and therefore choosing a
kernel that reflects domain knowledge (e.g., linearity, period-
icity) is a key design choice. One common way to produce a
more flexible kernel is to compose kernels via addition and
multiplication, leveraging the closure properties of kernels.
Here, we evaluate LMs’ ability to search over a space of
kernels to identify an appropriate composition of kernels.

Setup Mirroring Duvenaud et al. (2013), we define a space
of base kernels. In the prompt, we ask qr, s to perform one
of the three operations (addition, multiplication, and replace-
ment) on one of the in-context exemplar programs. For the
first round, we ask gy, s to produce an initial guess based
on the structure of the dataset, which we provide as a plot.
Given a kernel expression, we learn the kernel hyperpa-
rameters via gradient-based optimization of the marginal
likelihood.

Results We evaluate our method on six common univari-
ate time series datasets. We compare against the Auto-
matic Statistician, a greedy algorithm proposed by Duve-
naud et al. (2013) (run until a depth of 10), and two GP
baselines: a periodic kernel and a spectral mixture ker-
nel, a strong non-compositional baseline. We also com-
pare against N-BEATS, a strong neural baseline (Wilson &
Adams, 2013; Oreshkin et al., 2019). In Figure 2, we com-
pare the mean absolute error (MAE) on held-out test data for
all datasets. To account for stochasticity in the Automatic
Statistician implementation we used (Saad et al., 2023) and

stochasticity in different repetitions of our pipeline, we av-
erage the test MAE across three model runs. Our method,
denoted LM in the table, matches the performance of the
Automatic Statistician, showing that BoxLM can efficiently
search over a constrained space of models. We also experi-
ment with augmenting the base kernel space with additional
kernels (denoted BoxLM+ in the table). In some cases, this
additional flexibility is beneficial. For example, by using
the additional kernels, BoxLM+ can much better capture
the Australian beer sales dataset than LM; in other cases,
the additional flexibility does not appreciably improve per-
formance. On the right panel, we show the extrapolations
and identified kernel for the monthly air passenger dataset;
BoxLM+ identifies a kernel with a periodic times linear
component to capture the increasing amplitude in the data.

3.2. Open-ended probabilistic model discovery for
real-world datasets

By integrating LMs into the model discovery process, we
can search over a much broader class of models. Here, we
explore BoxLMs’ ability to automatically construct pymc
probabilistic programs (Abril-Pla et al., 2023) for datasets.

Dataset We consider four real world datasets from the
Stan PosteriorDB dataset (Magnusson et al., 2023): (1) a
dataset consisting of average improvements in SAT scores
after an SAT improvement program across eight different
high schools, (2) a dataset consisting of ages of twenty-seven
dugongs and their lengths, (3) a surgical dataset consisting
of mortality rates in twelve hospitals performing cardiac
surgery on babies, and (4) a dataset of peregrine popula-
tion counts in the French Jura from 1964 to 2003. Each
dataset has an associated human expert written probabilis-
tic program in Stan, which we translate into pymc. These
expert programs are generally open-source contributions
from the Stan developer community. The datasets cover
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common modeling motifs, such as hierarchical modeling
and regression.

Ablations To study how domain knowledge affects the
LM’s modeling capabilities and to mitigate concerns about
dataset leakage, we consider two ablations. In the first ab-
lation, we construct a simulated analog for each dataset:
for each dataset, we generate synthetic observations by
sampling from the prior of a generative model or by sam-
pling from a model with fixed parameters. We denote these
datasets as simulated datasets. For example, to generate
a simulated dataset for the eight schools dataset, we
sample from the prior of the human expert program. In
some cases, such as the dugongs dataset, the prior distri-
butions over parameters are highly unconstrained and we
therefore fix values for the parameters instead. For example,
to generate a simulated analog of the dugongs dataset, we
fix the values of the parameters «, /3,y used in the expert
model y; = o — 3y + ¢; where ¢; ~ N(0,0?). Since
it is unlikely that these simulated datasets appeared in the
training data, this ablation helps mitigate concerns about
dataset leakage.

In the second ablation, we remove the dataset metadata from
the LM prompt. In particular, we remove the dataset de-
scription, replace the column names with domain-agnostic
column names (e.g., To, ¥), and replace the axis labels with
uninformative labels. We denote these datasets as no meta-
data datasets. By removing this metadata, we can character-
ize how LMs use domain knowledge.

Quantitative Results In Table 1, we compare the perfor-
mance of our method across different datasets and ablations
relative to the expert programs. We emphasize that the
expert programs are strong baselines, especially for the sim-
ulated datasets where the expert programs generated the
data. We highlight numbers corresponding to significant
differences, where significance is defined as an ELPD LOO
difference of greater than four times the standard error esti-
mate.

BoxLM reliably identifies programs on par with expert pro-
grams; we validate convergence using standard Markov
Chain Monte Carlo diagnostics. Interestingly, removing
metadata or switching to simulated datasets does not gener-
ally reduce performance relative to the expert program. The
main exception is the surgical dataset. By replacing the
labels with x( and y, BoxLM formulates this problem as a
regression problem instead of using a hierarchical model
like the expert model. For the peregrine dataset, remov-
ing metadata improves performance. We discuss this further
in the next section.

Qualitative Analysis: Language Models are Domain Ex-
perts Earlier, we asked whether LMs can reliably play
the role of a domain expert. In our ablations, we study how

metadata influences the model search process by examining
how removing metadata changes the programs proposed by
BoxLM. In Figure 3, we plot the model fit and list the cor-
responding BoxLM programs in the figure caption. For the
peregrine dataset, when given all the metadata, BoxLM
models this dataset using a logistic growth model, which is
motivated by the problem domain. However, logistic growth
models cannot capture the initial decline in population. In-
terestingly, when we remove all metadata, BoxLM performs
better, because it uses a quartic polynomial to model the data.
This closes the gap in performance with the expert program.
This highlights how prior knowledge can have a (sometimes
overly) strong influence on the modeling choices of BoxLM.
We observe a similar trend with the dugongs growth curve
dataset. When given metadata, BoxLM uses a von Berta-
lanffy growth function (von Bertalanffy, 1949), which is
commonly used to model animal growth. When we remove
all metadata, BoxLM uses a polynomial function with a log-
arithmically transformed value for the inputs. Here, both
modeling approaches fit the data well. Interestingly, BoxLM
sets the prior parameters in these models in a data-informed
way. For example, BoxLM sets the asymptotic length in the
von Bertanlanffy function based on the observed lengths in
the dataset. See code snippet in Figure 7 of the Appendix.
For the eight schools dataset, BoxLM identifies a hierarchi-
cal model even without metadata, illustrating that model
criticism can compensate for lack of domain knowledge.
We illustrate the improvement round to round in Figure 6.

Dataset Expert LM
Eight schools -30.70  -30.42
Eight schools sim -18.09  -18.31
Eight schools sim no metadata -18.09  -16.36
Dugongs 2252 2340
Dugongs sim 50.04 57.40
Dugongs sim no metadata 50.04 55.24
Surgical -40.29  -38.03
Surgical sim -39.80  -38.38
Surgical sim no metadata -39.80  -63.72
Peregrine -142.19 -173.11
Peregrine sim -130.48 -179.06
Peregrine sim no meta -130.48 -136.39

Table 1. Comparison of BoxLM programs against expert pro-
grams We perform this comparison across four different datasets
and two different ablations that replace observations with synthetic
observations and remove all metadata. We report the expected
predictive log density estimated via leave-one-out cross valida-
tion. We bold statistically significant differences and underline
non-significant differences. LM programs match the performance
of human expert programs on 9/12 datasets.
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Peregrine Surgical

—— Metadata

Dugongs Eight schools

—— No Metadata ,» 2

Figure 3. Domain knowledge shapes BoxLM modeling approaches. In the top row, we keep all metadata (e.g., dataset description).
In the bottom row, we remove metadata that reveals information about the domain. This leads to qualitatively different approaches for
three datasets; for eight schools, BoxLM discovers a hierarchical model even without metadata. We list the corresponding programs

K

for these different ablations: (top row) EEN (e

/Po) exp(—rt))’

BetaBin(n, a, 8), Lint(1 — exp(—k(age — t0))); (bottom row)

a+ bz + cxd + dzd + exd, o + Bxo + yxd, o + B1log o + B2 log 2 + B3 log .

3.3. Improving classic models under modeling
constraints

In the previous experiment, we explored BoxLM’s ability to
identify models tabula rasa (e.g., without any initial seed
model). However, in many scientific settings, we begin
with a well-known model and are tasked with improving
it. Here, we explore BoxLM’s ability to improve upon a
Lotka-Volterra model of predator-prey dynamics. In addi-
tion, a crucial component of model discovery is respecting
“soft” modeling constraints that are easy to express in natu-
ral language but hard to formalize (e.g., ecologists should
think this is a plausible model). We therefore illustrate an-
other advantage of BoxLM: we can express these modeling
constraints in natural language and use them to drive LM
proposals.

Dataset To create our dataset, we simulate data from the
following “perturbed” Lotka-Volterra dynamics

db

E =ab— ﬂbc

d 5
d—j = —ve + 0bc%%.

Setup BoxLMis tasked with implementing an ODE model
in Python using Jax (Bradbury et al., 2018). Estimating the
parameters of Lotka-Volterra models via Bayesian inference
is challenging. We instead learn the parameters via gradient
descent which can be straightforwardly implemented using
modern automatic differentiation libraries (Chen et al., 2018;
Kidger, 2021); in particular, we use diffrax (Kidger,
2021), a Jax-based ODE library that supports learning
ODE parameters via backpropagation. We consider three
variations: warm-start with constraints (WS-Constraint),
warm-start with no constraints (WS-No Constraint), and
no warm-start (No-WS) that differ in their initial seed pro-
gram and the initial instructions which express modeling

constraints. In all variations, we provide the LM with a
scatter plot of training datapoints. In the no warm-start
variation, we provide the LM with an implementation of
standard Lotka-Volterra dynamics using dif frax and the
predictions obtained from fitting standard Lotka-Volterra to
the training data. In both warm-start variations, we provide
the LM with (1) an implementation of a hybrid neural ODE
that introduces an additive correction term to the predator
dynamics, parameterized by a multilayer perceptron (MLP),
and (2) the predictions obtained from fitting this model to
the training data. In the constrained warm-start variation, we
ask the LM to produce a hybrid neural ODE model that is
interpretable to an ecology expert who suggested a Holling’s
type II response (Rosenzweig & MacArthur, 1963). In the
unconstrained warm-start variation, we provide the same
seed program but do not impose this additional interpretabil-
ity constraint. For models with both neural and physical
components, we employ a two-stage learning procedure so
that the neural component does not dominate the dynamics;
see Appendix C for details.

Results In Figure 4 (left), we plot the predictions obtained
from integrating the learned dynamics for an ODE pro-
posed by Box LM, the training data points generated from
the true dynamics, and the predictions from the standard
Lotka-Volterra model. We fit free parameters to the training
data via gradient descent. The grey region indicates the
extrapolation region.

BoxLM can significantly improve upon the standard Lotka-
Volterra model by introducing corrections to the dynamics
(Figure 4). The standard Lotka-Volterra model cannot cap-
ture the decreasing amplitude in the data; furthermore, there
is a slight phase shift relative to the training datapoints.
In contrast, BoxLM identifies an ODE that captures these
properties and extrapolates accurately. In Figure 4 (right),
we compare these programs against a neural ODE base-
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Figure 4. Correcting misspecified Lotka-Volterra dynamics. BoxLM can introduce corrections to standard Lotka-Volterra dynamics (no
warm-start) and a hybrid neural ODE approach (warm-start) that outperform several baselines. (left) LM-proposed model predictions on
training data and extrapolations (grey region). (right) Test MAE of LM models (No-WS, WS—Constraint,and WS-No Constraint)
compared to the standard Lotka-Volterra model LV, a Neural ODE, and a hybrid Neural ODE model with a multiplicative correction to
the prey-predator dynamics (Hybrid).

LM proposed Lotka-Volterra programs

I def no_warm_start(t, vy,
2 # Hypothesis 1: Logistic growth for prey with carrying capacity kappa
# Hypothesis 2: Saturation effect in predation rate with parameter psi
db_dt = alpha * b » (1 - b / kappa) — beta * b x ¢ / (1 + psi » b)
dc_dt = —gamma * c + delta * b » ¢ - epsilon * cx*x2

_coeffs):

w o~ W

I def warm_start_constrained(t, y, _mlp):

2 inputs = jnp.array([b]) # Input is prey density (bunny population)

3 # Neural network learns a modifier for the handling time based on prey density
4 handling_time_modifier = _mlp (inputs)

5 # Modulate the predation rate beta in a non-linear manner according to handling

time
6 db_dt = alpha * b — beta * b » ¢ / (1 + handling_time_modifier[0] * b)
7 dc_dt = —gamma * ¢ + delta * b » ¢ / (1 + handling_time_modifier[0] * Db)
I def warm_start_unconstrained(t, y, _mlp):
2 inputs = jfu.ravel_pytree((b, c)) [0]

mlp_output = _mlp (inputs)

# Fine-tuned scaling of the MLP output to match the amplitude of data more closely

db_dt = alpha b — beta * b x ¢ + 0.02 » mlp_output[0] # Reduced scaling for
bunnies

6 dc_dt = —-gamma * c + delta » b * ¢ + 0.06 * mlp_output[l] # Increased scaling for

cats

A~ W

[

Figure 5. BoxLM can propose corrections to ODEs. (top) In the no warm-start (No—WS) variation, BoxLM introduces corrections
informed by domain knowledge of predator-prey models (carrying capacity, predation saturation). (middle) When prompted to introduce
neural networks in an interpretable way (WS—Constraint), one strategy BoxLM proposes is to make the handling time parameter
depend non-linearly on the prey density, extending a traditional approach to modeling predation saturation. (bottom) When prompted to
introduce neural networks without constraints (WS-No Constraint), BoxLM introduces additive MLP-parameterized corrections and
adjusts the scaling factors.

line, and a hybrid neural ODE baseline that incorporates a
multiplicative correction (parameterized by an MLP) to the
predator-prey interaction term in the predator equation. See
Section C of the Appendix for details on these baselines. For
the LM variations, we report the average test MAE across
three runs. In Figure 4, we see that all BoxLM variations
outperform the baselines.

In Figure 5, we present code snippets corresponding to
representative programs proposed in the constrained and un-
constrained variations. These snippets show how natural lan-
guage constraints can guide BoxLM towards more flexible
models that retain interpretability. For the variation with no
natural language constraints (WS-No Constraint), BoxLM
takes a purely empirical approach. In particular, BoxLM
adjusts the scaling terms on the additive MLP correction
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term. For the WS-Constraint variation, BoxLM proposes
a hybrid approach integrating the neural approach in the
prompt with classic models in the literature; importantly,
even though BoxLM is asked to balance interpretability and
flexibility, Box LM still identifies programs that outperform
the neural ODE and standard Lotka-Volterra baselines. One
approach BoxLM proposes is an extension of the Rosen-
zweig and MacArthur model with a Holling’s type II func-
tional response (Rosenzweig & MacArthur, 1963) to allow a
static parameter to depend dynamically on the prey density:
BoxLM models the handling time, or the time a predator
spends “processing” a prey, as a nonlinear function of the
prey density via an MLP. These results show how we can
use natural language to drive BoxLM towards models that
balance flexibility and interpretability.

4. Conclusion

We introduced a method for leveraging LMs for automated
model discovery. Our method can identify models that per-
form favorably against strong baselines and improve upon
expert models. We also studied how domain knowledge
and natural language constraints influence our system. Alto-
gether, our results highlight the compelling advantages of
LM-driven statistical model discovery.

Our work has important limitations that motivate future re-
search. First, we focused on modeling static datasets. An
interesting direction could be leveraging LMs for active data
collection. Second, since our tasks were restricted to one-
dimensional datasets, simple model criticism statistics were
sufficient and therefore decided in advance (residuals, pos-
terior predictive mean). Another interesting future direction
could be fully automating the criticism step. Finally, while
in-context learning was effective in our tasks, we could ex-
plore finetuning techniques for training a language model to
produce better probabilistic programs.
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Figure 6. Round-to-round improvement. Model revision leads
to improvements on average. (Improvement is not necessarily
monotonic for a given dataset and run.) (top) ELPD LOO score
vs. round for Stan experiments. We normalize the ELPD LOO
scores across programs proposed for 3 rounds of Box’s loop and
average across datasets for the no metadata condition. Larger
is better and error bars correspond to standard error. (bottom)
Squared error vs round for LV experiment. We report the squared
error averaged across three different runs, for the warm-start, no
constraint condition; smaller is better.
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A. Gaussian Process experiments

In the prompt, we ask the LM to use the following operations.

1. Replace a subexpression S with S + 3, where B is any base kernel.
2. Replace a subexpression S with Sz 3, where B is any base kernel.

3. Any base kernel B may be replaced with any other base kernel family.

LM hyperparameters We provide the LM with the following kernels: Exponentiated Quadratic, Periodic, Linear, and
Polynomial. We run our pipeline for two rounds with three proposals each round. We use a temperature of 0.2 for the
Proposal LM and temperature of 0.0 for the Critic LM. We use three in-context exemplars. Our Critic LM conditions on the
best twelve programs so far.

In the augmented variation, we also provide the LM with the following additional kernels: Matern32, Matern52, Cosine, and
the Rational Quadratic kernel. In the augumented variation, we run our pipeline for three rounds with eight proposals each
round. We use a temperature of 0.7 for the Proposal LM and temperature of 0.0 for the Critic LM. We use three in-context
exemplars. Our Critic LM conditions on the best twelve programs so far.

The marginal likelihood can be multimodal in the parameters of the periodic kernel. Therefore, following Duvenaud et al.
(2013), if the proposed kernel has periodic components, we initialize the period at five different initial values, optimize the
marginal likelihood starting from those different initializations, and choose the kernel hyperparameters with the highest
marginal likelihood across those initializations.

Spectral Mixture kernel We use a GP with a spectral mixture kernel (Wilson & Adams, 2013) with 5 mixture components.
For each dataset, we randomly initialize the parameters of the mixture and choose the kernel hyperparameters with the
highest log marginal likelihood across five random initializations.

B. Stan Experiments

Eight Schools Dataset This dataset consists of eight observations: the estimated treatment effect of a SAT coaching
program and the standard error of the treatment effect.

Peregrine dataset This dataset consists of peregrine population counts in the French Jura from 1964 to 2003 (40
observations in total).

Dugongs Dataset The ages and lengths of 27 captured dugongs (sea cows).

Surgical Dataset The mortality rates in 12 hospitals performing cardiac surgery on babies.

LM hyperparameters We run our pipeline for three rounds with eight proposals each round. We use a temperature of 0.7
for the Proposal LM and temperature of 0.0 for the Critic LM. We use three in-context exemplars. Our Critic LM conditions
on the best twelve programs so far.

Markov Chain Monte Carlo diagnostics We evaluated the fidelity of the learned posteriors using the Gelman-Rubin R

diagnostic (Gelman & Rubin, 1992) and by examining the Bulk Effective Sample Size (ESS). In particular, the programs
reported in the table all had R < 1.01 and mean bulk ESS >= 400 per chain.

C. Lotka-Volterra

Dataset To create our dataset, we simulate data from the following “perturbed” Lotka-Volterra dynamics

% = ab — Bbc €))]
% = —vc + 0bc%%® 2
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Language model produced pymc code snippet for modeling Peregrine population count

| def dugongs_gen_model () :

2 # Priors for von Bertalanffy growth function parameters

3 IL_inf = pm.Uniform(’L_inf’, lower=0, upper=3) # Asymptotic length, bounded by
observed data

4 k = pm.Uniform(’'k’, lower=0, upper=1l) # Growth coefficient, bounded by reasonable
values

5 t0 = pm.Uniform(’'t0’, lower=-5, upper=5) # Theoretical age at zero length

6 # Expected length at each age using von Bertalanffy growth function

7 expected_length = IL_inf % (1 - pm.math.exp(-k * (ages - t0)))

8 # Likelihood for observed lengths

9 sigma = pm.Uniform(’sigma’, lower=0, upper=1l) # Standard deviation of observed
lengths around the mean
10 y_obs = pm.Normal ('y_obs’, mu=expected_length, sigma=sigma, observed=lengths)

Figure 7. LM proposes programs informed by domain knowledge LM chooses a model informed by the domain (animal length vs age)
and sets the priors based on the dataset (e.g., the largest length in the dataset is smaller than 3).

Wesetaa =0.9,5 =1.1,0 = —1.2,y = 2.1. The parameter « characterizes the prey’s maximum growth rate and 3 controls
how the predator population modulate the growth rate. The parameter -y characterizes the prey’s maximum death rate and ¢
controls how the predator’s growth rate depends on the prey population density. In contrast to the standard Lotka-Volterra
dynamics, we raise c to a fractional power.

We now describe the various baselines we compare against in Section 3.3.

Standard Lotka-Volterra We fit the free parameters of the standard Lotkva-Volterra differential equations.

% = ab — Bbc 3)
d—; = —~c + dbe 4

Neural ODE baseline We parameterize the predator and prey equations with an MLP. We run a hyperparameter search
over four widths (4, 8, 16, 32) and 3 depths (1,2,4). We use a learning rate of 3e-3 and train using full-batch gradient descent
with Adam for 1500 iterations.

Hybrid Neural ODE baseline We implement a Hybrid Neural ODE baseline that introduces a correction to the predator-
prey interaction term. Note that, we follow a two-stage “boosting” type procedure to fit the parameters of the MLP. First,
we fit the free parameters «, 3,7y,  to the data. We then freeze those parameters and fit the MLP parameters. Without this
two-staged approach, the MLP term can dominate the dynamics. The MLP term has one layer and four hidden units and we
train the MLP with full batch gradient descent with Adam using a learning rate of 3e-3.

db
dt:a.b_g.b.c (%)
dc
5 = et b (e 0.1 mip(b,c) ©

In the warm-start variations, we provide the LM with an initial hybrid Neural ODE baseline that introduces an additive
correction to prey equation. The MLP term has one layer and four hidden units.

%:a'b—@“b-c—i—o.rmlp(b,c) Q)
e ctsbec ®)
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LM hyperparameters We run our pipeline for four rounds with twelve proposals each round. We use a temperature of 0.7
for the Proposal LM and temperature of 0.0 for the Critic LM. We use three in-context exemplars. Our Critic LM conditions
on the best twelve programs so far.

D. Failure rates of GPT-4 V proposed programs

Model Percent successfully scored
GPT-4 textual dataframe 78%
GPT-4 vision only 70%
GPT-3.5 76%

Table 2. Percentage of pymc programs that we can successfully perform inference in for Stan experiments.

E. Additional ODE results

VanDerPol Duffing

Displacement

Time Time

Figure 8. Modeling nonlinear ODEs. LM can introduce polynomial corrections to simple harmonic oscillator (SHO) that provide a better
fit. Grey region indicates extrapolation region.

We evaluated on three additional ODEs (nonlinear oscillators) from this github repository pysindy. These ODEs include
a Duffing ODE, Van Der Pol oscillator, and a Cubic Harmonic Damped oscillator. We give BoxLM a simple harmonic
oscillator to start and ask it to introduce polynomial corrections to improve the fit. Consistent with Section 3.3, our approach
can generally improve upon a baseline ODE and extrapolate accurately into the test region.

F. Visual Interface/GPT-3.5 Ablations

Context length limits are a potential limitation if we provide the dataset in textual format in the prompt. We therefore
experiment with a visual-only variation. We remove all textual representations of datasets and model criticism statistics
from the prompt and only provide visual plots of these datasets and statistics. We show this visual-only variation does not
harm the performance relative to textual variation and should not suffer as much from context length limits as the dataset
grows larger. We also show we can obtain similar results with GPT-3.5 Turbo, which is significantly less costly than GPT-4.

G. State-space model hidden state update experiments

We present the same results from the main text but take a state-space update inspired approach to computing the natural
language criticism A’
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Dataset GPT-4 Text GPT-4 Visual Only GPT-3.5 Expert
Eight schools  -30.17 -30.40 -30.44 -30.70
Dugongs 22.61 23.76 21.01 22.52
Surgical -37.36 -38.54 -42.2 -40.29
Peregrine -164.69 -143.45 -161.14  -142.19

Table 3. Vision interface and model type ablations. Comparison of GPT-4 with textual representation of data and model criticism
statistics in prompt, GPT-4 with only visual representations (GPT-4 Visual Only) of data and model criticism statistics (e.g., only plots),
and GPT 3.5 Turbo against expert programs. The visual-only variation (GPT-4 Visual-Only) performs comparably to the textual variation
(GPT-4 Text )and outperforms the textual variation on the Peregrine dataset. GPT-3.5 performs slightly worse on some datasets but
comparably on most. We report the expected predictive log density (LOO).

Dataset BoxLM+ State Space BoxLM State Space  Periodic =~ AS SM N-BEATS

Air 0.04 0.34 0.15 0.19 0.06 0.22
Beer 0.07 0.41 0.15 0.06 0.05 0.02
Heart 0.20 0.25 020 0.21 0.21 0.07
Milk 0.06 0.11 0.10 0.11 0.09 0.04
Wine 0.17 0.17 021 013 0.18 0.17
Wool 0.24 0.15 0.19 0.23 0.13 0.18

Figure 9. Test set performance of BoxLM with state-space updated on time series datasets. Performance of BoxLM system with state
space update for model criticism. Comparison of BoxLM test mean absolute error (MAE) against Automatic Statistician using greedy
search (AS), spectral mixture kernel (SM), periodic kernel (Periodic), and N-BEATS. BoxLM+ searches over an augmented kernel
space. We bold the best and underline the second best among the GP methods.
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Figure 10. Correcting misspecified Lotka-Volterra dynamics (BoxLM with state-space updates). BoxLM can introduce corrections to
standard Lotka-Volterra dynamics (no warm-start) and a hybrid neural ODE approach (warm-start) that outperform several baselines. Test
MAE of LM models (No-WS, WS-Constraint, and WS-No Constraint) compared to the standard Lotka-Volterra model LV, a
Neural ODE, and a hybrid Neural ODE model with a multiplicative correction to the prey-predator dynamics (Hybrid).
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Dataset Expert LM
Eight schools -30.70  -30.17
Eight schools sim -18.09  -18.39
Eight schools sim no metadata -18.09  -18.90
Dugongs 252 2261
Dugongs sim 50.04 574
Dugongs sim no metadata 50.04 26.68
Surgical -40.29  -37.36
Surgical sim -39.80  -38.45
Surgical sim no metadata -39.80  -58.72
Peregrine -142.19  -164.69
Peregrine sim -130.48 -177.15
Peregrine sim no meta -130.48 -127.32

Table 4. Comparison of BoxLLM with state-space update programs against expert programs We perform this comparison across four
different datasets and two different ablations that replace observations with synthetic observations and remove all metadata. We report the
expected predictive log density estimated via leave-one-out cross validation. We bold statistically significant differences and underline
non-significant differences.
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