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ABSTRACT

Generating realistic 3D human motion is crucial in the frontier applications of
embodied intelligence, such as human-computer interaction and virtual reality.
However, existing methods that rely solely on text or initial human pose inputs
struggle to capture the rich semantic understanding and interaction with the en-
vironment, and most focus on single-person motion generation, neglecting the
needs of multi-person scenarios. To address these challenges, we propose the
VL2Motion generation paradigm, which combines natural language instruction
and environmental visual inputs to generate realistic 3D human motion. The vi-
sual inputs not only provide precise analysis of spatial layouts and environmental
details but also incorporate inherent 3D spatial and world knowledge constraints to
ensure that the generated motions are natural and contextually appropriate in real-
world scenarios. Building on this, we introduce MMG-VL, a novel Multi-person
Motion Generation approach driven by Vision and Language for generating 3D
human motion in multi-room home scenarios. This approach employs a two-stage
pipeline: first, it uses Vision-Language Auxiliary Instruction (VLAI) module to
integrate multimodal input information and generate multi-human motion instruc-
tions that align with real-world constraints; second, it utilizes Scenario-Interaction
Diffusion (SID) module to accurately generate multiple human motions. Our ex-
periments demonstrate the superiority of the VL2Motion paradigm in environ-
mental perception and interaction, as well as the effectiveness of MMG-VL in
generating multi-human motions in multi-room home scenarios. Additionally, we
have released a complementary HumanVL dataset, containing 584 multi-room
household images and 35,622 human motion samples, aiming to further advance
innovation and development in this domain.

Generate human 

motions for a seven-

person household

MMG-VL

Sit down at the 

edge of the bed.

Stand up and do some 

stretching exercises.

Sit on the chair and 

watch the children.

Run to the cat on the 

ground and squat down.

Get up from the sofa and 

look at the cat on the ground.

Sit on the chair and point 

at the child to remind 

him to run slower.

Walk to the bookshelf and reach for a book.

Figure 1: VL2Motion paradigm: Given an environmental image and a natural language descrip-
tion, MMG-VL can generate coordinated multi-person motions that interacts naturally with the en-
vironment.

1 INTRODUCTION

At the forefront of Embodied Intelligence research, generating realistic and contextually appropriate
3D human motion is a key technology for achieving natural and immersive experiences, with wide
applications in fields such as Human-Computer Interaction (HCI) and Virtual Reality (VR). As the
boundaries between virtual environments and the physical world become increasingly blurred, to
produce highly realistic motions, systems need to accurately interpret the environment and use this
information to generate motions that are physically plausible and contextually appropriate. Visual

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

perception plays a foundational role in this process, providing the system with key information
about the spatial layout, object positions, and dynamic changes in the environment, which directly
informs the motion generation process. In multi-person scenarios, the system must also consider
the spatial relationships between individuals to ensure that the generated motions are reasonable and
coordinated in terms of position and dynamics, ultimately achieving consistency and coherence.
However, most existing human pose generation methods still rely heavily on text or initial pose in-
puts, primarily encompassing text-to-motion (Ma et al., 2022; Guo et al., 2023; Zhang et al., 2023b;
Wang et al., 2022; Athanasiou et al., 2022), action-to-motion (Petrovich et al., 2021; Xu et al., 2023),
or a combination of both (Tevet et al., 2023; Jiang et al., 2024; Sun et al., 2024). These methods
have significant limitations in dealing with complex environments and integrating multimodal in-
formation. Firstly, methods (Wang et al., 2024b; Liang et al., 2024; Chi et al., 2024; Wang et al.,
2024a; Mengyi Shan, 2024) that rely on text or initial pose inputs often fail to fully capture the
rich semantic information and dynamic changes present in complex real-world environments. Sec-
ondly, most existing studies (Tevet et al., 2023; Sun et al., 2024) primarily focus on single-person
motion generation, which is insufficient to meet the real-world demands of multi-person scenarios.
This limitation is particularly evident in scenarios involving more than two people, undermining the
realism and overall performance of motion generation and hindering real-world applications.
To address these challenges, we propose the VL2Motion paradigm for human motion generation,
as shown in Figure 1. This paradigm integrates motion descriptions with environmental visual in-
put, leveraging deep multimodal information fusion to generate highly realistic 3D human motion
that aligns with real-world semantic logic. By incorporating visual input, VL2Motion enables the
system to accurately interpret spatial layouts, environmental details, and the relationships between
multiple individuals. Additionally, through the inherent 3D spatial recognition and commonsense
constraints within the visual semantics, the generated motions are ensured to be natural and con-
textually appropriate in complex scenes. This framework utilizes a two-stage pipeline structure,
as shown in Figure 2. In the first stage, Vision-Language Auxiliary Instruction (VLAI) module
are employed to fuse multimodal input information, transforming open-world natural language in-
structions into multi-person motion descriptions that adhere to real-world constraints. In the second
stage, Scenario-Interaction Diffusion (SID) module is used to further refine and generate multiple
human motions. This two-stage design not only enhances the precision and continuity of motion
generation but also ensures the coordination and overall consistency of multi-person motion gen-
eration, enabling the system to produce realistic and plausible multi-person motions. Additionally,
we have constructed and released a complementary dataset HumanVL for VL2Motion. This dataset
includes 584 multi-room household images and 35,622 human motion samples. The release of this
dataset aims not only to advance research and innovation in the field of Embodied Intelligence but
also to lay the groundwork for more complex and diverse application scenarios in the future.
To validate the effectiveness of the MMG-VL approach based on the VL2Motion paradigm, we
conducted extensive experiments on the HumanML3D (Guo et al., 2022), InternHuman (Liang
et al., 2024), and HumanVL datasets. We performed quantitative assessments using both auto-
mated metrics and human evaluation criteria, alongside qualitative evaluations through human judg-
ment. The experimental results demonstrate that, compared to the traditional Text2Motion paradigm,
VL2Motion exhibits significant unique advantages in real-world scene perception and interaction.
Furthermore, MMG-VL is capable of generating realistic multi-person motions in multi-room home
scenarios, with the generated motions significantly outperforming state-of-the-art methods in terms
of spatial distribution, environmental interaction, and adherence to common-sense constraints.
Our contributions are summarized as follows: (1) We propose the VL2Motion paradigm for hu-
man motion generation and construct a complementary dataset: We introduce the VL2Motion
paradigm and provide a specially designed dataset HumanVL to promote in-depth research and
development in environmental understanding and perception, particularly in generating realistic
multi-person motions that align with real-world semantics. (2) We develop an end-to-end 3D
human motion generation model, MMG-VL: We design and implement an end-to-end 3D hu-
man motion generation model, MMG-VL, which can generate multi-person motions in multi-room
environments, providing an effective solution for generating realistic multi-person scenarios. (3)
We explore a simple yet effective multi-stage motion generation method: We propose an inno-
vative multi-stage generation method, first using VLAI to transform open-world natural language
instructions into multi-person motion instructions constrained by real-world contexts, followed by
the use of SID to generate coordinated multi-person motions based on the diffusion model, thereby
significantly enhancing the coherence and naturalness of the generated motions.
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Figure 2: (Left) Method overview: We propose the MMG-VL with two key parts: (1) Vision-
Language Auxiliary Instruction (VLAI). This part integrates multimodal input information and
generates multi-human motion instructions that align with real-world constraints. (2) Scenario-
Interaction Diffusion (SID). The SID accurately generates multiple human motions. (Right) Motion
generation based on diffusion models.

2 RELATED WORK
Human Motion Generation. In recent years, human motion generation has become a research
hotspot due to its broad application prospects in fields such as embodied intelligence, virtual reality,
and animation. Numerous studies have focused on generating single-person motion based on various
conditional signals, including audio (Ng et al., 2022; 2024), music (Le et al., 2023; Ma et al., 2022;
Zhao et al., 2023), action (Petrovich et al., 2021; Tevet et al., 2023; Jiang et al., 2024), and natural
language (Ma et al., 2022; Tevet et al., 2023; Guo et al., 2023; Zhang et al., 2023b; Jiang et al., 2024;
Sun et al., 2024; Wang et al., 2022; Athanasiou et al., 2022). However, it is regrettable that visual
content, a crucial and widely-used information carrier in human life, has not been fully utilized
as a conditional input for generating human poses. This omission inevitably leads to a disconnect
between the generated motions and real-world environments, significantly limiting their potential in
practical applications. Moreover, although some recent studies (Xu et al., 2023; Wang et al., 2024b;
Liang et al., 2024; Chi et al., 2024; Wang et al., 2024a; Mengyi Shan, 2024) have begun to explore
multi-person human motion generation, most of these efforts remain focused on generating motions
for two people, making it difficult to extend to scenarios involving a larger number of individuals. To
address these limitations in existing human motion generation methods, we introduce VL2motion,
a novel paradigm that extends the Text2Motion framework by incorporating both visual and natural
language inputs as conditional signals for generating multi-person human motions.
Vision Language Models-Guided Diffusion Models. Vision Language Models (VLM) (Liu et al.,
2023b; 2024; 2023a; Zhang et al., 2023c; Dong et al., 2024a;b; Zhang et al., 2024; Chen et al., 2023;
2024b; OpenGVLab, 2024; Bai et al., 2023; OpenAI, 2023b; 2024) have advanced significantly in
aligning visual and textual information, driven by breakthroughs in Large Language Models (LLM)
(Meta, 2024a;b; Chiang et al., 2023; 01AI, 2024; OpenAI, 2023a). VLMs excel in visual perception
and comprehension but still encounter challenges in generative tasks. In parallel, Diffusion Models
(Ho et al., 2020; Nichol & Dhariwal, 2021; Rombach et al., 2021) have achieved remarkable success
in generation tasks, including human motion synthesis (Zhang et al., 2023b; Tevet et al., 2023; Liang
et al., 2024; Chi et al., 2024; Sun et al., 2024), though they struggle with environmental perception
and interaction.
Recent work integrates VLMs’ perceptual strengths with diffusion models’ generative abilities. Mu-
lan (Li et al., 2024) and ConceptLab (Richardson et al., 2024) leverage VLMs to guide diffusion
models in text-to-image generation, while DreamArrangement (Chen et al., 2024a) and LVDiffusor
(Zeng et al., 2024) apply similar approaches in embodied intelligence tasks. Our research com-
bines these complementary strengths, achieving highly realistic, semantically coherent 3D human
motion generation, thus enhancing generative quality and enabling deeper integration of perception
and generation.

3 METHODOLOGY
Our goal is to generate realistic multi-person human motions based on real-time captured images
(which may include multiple rooms) and natural language instructions from the user. The first
challenge lies in effectively integrating visual and textual inputs to ensure that the generated human
motions adhere to the environmental constraints and are both reasonable and natural. The second
challenge is to generate coordinated multi-person motions in one or multiple rooms, ensuring overall
consistency and synchronization. To address these challenges, we first introduce the VL2Motion
paradigm (see Sec 3.1) and our accompanying dataset, HumanVL (see Sec 3.2). We then present
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Table 1: Dataset comparisons. We compare our HumanVL dataset with existing human motion
datasets. HSI refers to Human-Scene Interaction, while Descriptions refers to the intermediate
low-level motion instructions we preserve in HumanVL.
Dataset Natural Language Image HSI Multiple Humans Multiple Rooms Descriptions Motions

KIT(Plappert et al., 2016) ✓ - - - - 6278 3911
PROX-Q(Hassan et al., 2019) - ✓ ✓ - - - 60
GTA-IM(Cao et al., 2020) - ✓ ✓ - - - 119
NTU RGB+D 120(Liu et al., 2020) - ✓ - - - - 20579
You2Me(Ng et al., 2020) - ✓ - - - - 42
BABEL(Punnakkal et al., 2021) ✓ - - - - 28055 13220
ExPI(Wen et al., 2021) - ✓ - ✓ - - 115
HUMANISE(Wang et al., 2022) ✓ - ✓ - - 19600 19600
HumanML3D(Guo et al., 2022) ✓ - - - - 44970 14616
InterHuman(Liang et al., 2024) ✓ - - ✓ - 23337 7770

HumanVL(Ours) ✓ ✓ ✓ ✓ ✓ 11874 35622

Figure 3: (Left) Samples of scenarios in the HumanVL dataset. (Middle) Number of households
by family size and corresponding motion count in HumanVL. (Right) Diverse descriptions in Hu-
manVL.
MMG-VL (see Sec 3.3), an end-to-end framework designed for multi-person, multi-room human
motion generation, aimed at producing realistic and well-coordinated human motions.

3.1 PRELIMINARY: VL2MOTION

The VL2Motion paradigm aims to generate multi-person motion sequences x1:N
p , where p represents

the number of individuals, and the motion sequence length is N . For each person, the motion at time
step t, xi

t, is a J ×D dimensional vector, where J is the number of joints, and D is the dimensional-
ity of each joint. The generation of motions is conditioned on multimodal inputs, including natural
language descriptions l and visual inputs v, which together define the semantics and environmen-
tal constraints for the motion generation. The natural language description l provides instructions
and objectives for the motion, while the visual input v supplies scene information (such as images
of multi-room environments), helping the system understand spatial layouts, object positions, and
dynamic constraints within the scene.
Based on these inputs, the system generates motion sequences for p individuals, each sequence
containing joint rotation or positional information, ensuring that the motions naturally adapt to the
physical constraints of the scene. Under the guidance of both visual and language inputs, the sys-
tem produces coherent and realistic motions. By deeply integrating natural language l and visual
information v, the VL2Motion paradigm ensures that the generated multi-person motions not only
adhere to the scene requirements but also exhibit high levels of coherence and realism, making them
adaptable to complex and dynamic environments.

3.2 HUMANVL DATASET.
To advance research in the VL2Motion domain, we present the HumanVL dataset to the academic
community, as shown in Figure 3. In contrast to existing datasets, as shown in Table 1, HumanVL
is a large-scale 3D multi-person motion dataset based on the VL2Motion paradigm, with a focus
on household environments. Each data sample includes both a top-down or bird’s-eye view of a
household scene, accompanied by text instructions and multi-person motion labels. Additionally,
we preserve the intermediate results, linking each individual’s motion to the corresponding text in-
struction, making HumanVL not only valuable for VL2Motion research but also a valuable resource
for the Text2Motion community.
To ensure diversity in the dataset, we first collected 10,000 top-down and bird’s-eye view images of
both single-room and multi-room layouts from four widely used household simulators: iGibson (Li
et al., 2021), Virtual-Home (Puig et al., 2018), Matterport3D (Chang et al., 2017), and AI2-THOR
(Kolve et al., 2022). From this collection, we meticulously selected 584 high-quality images as the
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basis of the dataset. We then designed 2,729 sets of natural language multi-person motion instruc-
tions for these images. Notably, in crafting these instructions, we placed a strong emphasis on ensur-
ing the coordination and synchronization of the motions among multiple individuals. This was done
to guarantee temporal and spatial coherence in the interactions between people. Furthermore, we
carefully considered how the individuals’ motions interact with objects and the environment within
the scene, ensuring that the instructions respect the physical constraints and logical affordances of
the scene. This attention to detail not only enhances the realism of the instructions but also provides
robust data for studying collaborative behaviors in complex environments. Each instruction set in-
volves 2 to 7 people, aligning with the typical number of family members in real-world households.
Subsequently, we used the MDM (Tevet et al., 2023) to generate 3D human motions corresponding
to each set of instructions, ensuring both the reliability and diversity of the motions. The design
of the HumanVL dataset not only achieves a high level of complexity and realism but also fills the
gap in existing datasets regarding multi-person motion, household scenes, and the generation of 3D
motions from natural language descriptions.

3.3 MMG-VL: VISION-LANGUAGE DRIVEN DULTI-PERSON MOTION GENERATION

We propose the MMG-VL, an end-to-end framework designed to generate multi-person motion
sequences. While we adopt the motion representation format from HumanML3D (Guo et al., 2022),
we introduce key extensions to adapt it for the task of motion generation in multi-person scenarios.
In MMG-VL, each complete human motion data M consists of F frames and J = 22 joints. The
motion data format for each individual includes angular velocity and linear velocity of the root joint,
local positions, rotation information, joint velocities, and contact signals. Unlike HumanML3D,
which only supports single-person motion representation, MMG-VL extends this representation to
accommodate multi-person generation. Specifically, at each time step t, we generate independent
motion sequences xi

t for each individual i. These sequences not only retain the fine-grained motion
details from the HumanML3D format, but also ensure that the motions of multiple individuals are
generated in a coordinated manner.
The framework is composed of two main components: the first is VLAI, which integrates visual
input v and textual input l to generate motion instructions for multiple individuals. The second
component is SID, which decomposes the generated instructions into independent motions for each
individual. These motions are then generated using a diffusion model to produce the complete
motion sequence for each person. This framework ensures that the generated motions are naturally
coordinated in complex dynamic scenes, ensuring that each individual’s motion adheres to physical
constraints while maintaining consistency in multi-person environments.

3.3.1 VLAI: VISION-LANGUAGE AUXILIARY INSTRUCTION

VLAI is a key component of MMG-VL, responsible for integrating visual and linguistic informa-
tion into low-level textual instructions c to guide subsequent multi-person motion generation. Unlike
models that rely solely on textual input, we incorporate visual input v to enhance the system’s un-
derstanding of the scene, allowing the generated motions to better adapt to physical environmental
constraints. The visual input v is processed by a visual encoder to extract critical information such
as the spatial layout of the scene and object positions, ensuring that the model fully understands the
environment in which the motions will be executed. With the inclusion of visual information, the
model can better recognize spatial constraints and dynamic feasibility. For instance, if the scene is
identified as a bedroom, the model will automatically avoid generating motions that are incongru-
ous with the environment (e.g., cooking). Simultaneously, the language input l is transformed into
high-level semantic representations via a language encoder, capturing the goals and motivations of
the motions. The information from these two modalities is fused through a cross-modal attention
mechanism, generating a multimodal representation that not only includes the semantic objectives
of the motions but also integrates the constraints from the visual scene. This ensures that the gener-
ated motions are both contextually appropriate and physically realistic. This fusion process can be
formalized as:

c = VLAI(vfeat, lfeat)

where vfeat and lfeat represent the features extracted by the visual and language encoders, respec-
tively. The final output, c, is passed to the subsequent multi-person motion scheduling module,
ensuring that the generated motions adhere to environmental constraints while incorporating multi-
modal information.
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3.3.2 SID: SCENARIO-INTERACTION DIFFUSION

The main task of the SID is to generate motion sequences for p individuals based on the textual
instructions c produced by the VLAI. SID utilizes a diffusion model to generate each individual’s
motion sequence, ensuring that the generated motions align with the multimodal inputs and that the
motions of different individuals are well-coordinated. First, the textual instructions c are decom-
posed into individual motion guidance signals ci for each person by the Multi-human Generation
Controller (MGC):

ci = fMGC(c, i)

where the function fsplit splits the instructions c into independent motion instructions ci for each in-
dividual. The motion generation process for each individual is based on their respective instructions
ci, producing the motion sequence xi

t. The diffusion model operates as a Markov noising process.
For each individual i, the initial motion xi

0 is drawn from a Gaussian distribution:

xi
0 ∼ N (0, I)

and progressively denoised over time. At each time step t, the model generates the motion xi
t based

on the motion from the previous step xi
t−1, following the conditional Gaussian distribution:

q(xi
t|xi

t−1) = N
(√

αtx
i
t−1, (1− αt)I

)
where αt ∈ (0, 1) are hyperparameters controlling the noise level at each step. The generated

motion sequence becomes progressively less noisy as t increases. At each step, the current motion
xi
t is computed using the diffusion model G with guidance from the instructions ci:

xi
t = G(xi

t−1, t, c
i)

This iterative process ensures that the generated motion aligns with the individual’s guidance while
reducing noise over time. Importantly, a noise control mechanism ensures that the generated motions
maintain scene consistency and diversity. The final motion sequence is generated by recursively
removing noise from the initial random motion. The complete motion sequence xi

t at each step is a
result of the following iterative process:

xi
t =

√
αtx

i
0 +

√
1− αtϵ

where ϵ ∼ N (0, I) represents the Gaussian noise introduced at each step, ensuring the transition
from noisy initial motion to the final refined sequence. This continues until the complete motion
sequence is generated.
During the generation process, each individual’s motion xi

t is not only guided by their own instruc-
tions but is also adjusted to meet the global scene constraints. Ultimately, all individual motions are
combined into the final multi-person motion sequence x1:N

p , where the motions of each individual
adhere to the physical constraints of the scene while remaining coordinated with the motions of
others.
4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Datasets. The existing human motion datasets lack visual images as inputs and do not include tex-
tual task descriptions adapted to daily activities in home environments. Therefore, we contribute a
new dataset, HumanVL (see Sec 3.2), which provides a rich set of images depicting home environ-
ments and detailed descriptions of everyday tasks in household contexts. It covers daily activities
involving multiple individuals and multiple rooms in domestic settings. Additionally, we conduct
quantitative comparisons between MMG-VL and existing models on the HumanML3D dataset (Guo
et al., 2022) and InterHuman dataset (Liang et al., 2024). HumanML3D is the most widely used
text-to-motion dataset, comprising 14,616 single-person motions. InterHuman is the first dataset to
feature text annotations for two-person motions. This dataset includes 6,022 motions spanning var-
ious categories of human motions and is labeled with 16,756 unique descriptions made up of 5,656
distinct words.
Evaluation metrics. We adopt the mainstream quantitative evaluation metrics for human motion
generation in the community as Guo et al. (2022), which are as follows: (1) Frechet Inception
Distance (FID): measures the latent distribution distance between the generated dataset and the real
dataset. (2) R-Precision: assesses text-motion matching, indicating the probability that the real text
appears in the Topk (k=3 in our paper) after sorting. (3) Diversity: measures motion diversity in the
generated motion dataset. (4) Multimodality: gauges diversity within the same text. (5) Multi-modal
distance: measures the distance between motions and text features.

6
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Table 2: Quantitative results for single human motion generation on the HumanML3D test set.
All methods use the real motion length from the ground truth. We run all the evaluation 20 times
(except MultiModality runs 5 times). Bold indicates best result.
Model R Precision (Top 3)↑ FID↓ Multimodal Dist↓ Diversity↑ Multimodality↑
Real 0.797 0.002 2.974 9.503 -

Text2Gesture (Bhattacharya et al., 2021) 0.345 7.664 6.030 6.409 -
T2M (Guo et al., 2022) 0.740 1.067 3.340 9.188 2.090
MDM (Tevet et al., 2023) 0.611 0.544 5.566 9.559 2.799
MotionDiffuse (Zhang et al., 2022) 0.782 0.630 3.113 9.410 1.553
T2M-GPT (Zhang et al., 2023a) 0.775 0.116 3.118 9.761 1.856
ReMoDiffuse (Zhang et al., 2023b) 0.795 0.103 2.974 9.018 1.795
MotionGPT-13B (Jiang et al., 2024) - 0.567 3.775 9.006 -
MoMask (Guo et al., 2023) 0.807 0.045 2.958 - 1.241
M2D2M (Chi et al., 2024) 0.796 0.115 3.036 9.680 2.193

MMG-VL (Ours) 0.653 0.521 4.988 9.790 2.967

Table 3: Quantitative results for human-human motion generation on the InterHuman test set.
All methods use the real motion length from the ground truth. We run all the evaluation 20 times
(except MultiModality runs 5 times). Bold indicates best result.
Model R Precision (Top 3)↑ FID↓ Multimodal Dist↓ Diversity↑ Multimodality↑
Real 0.701 0.273 3.755 7.948 -

TEMOS (Petrovich et al., 2022) 0.450 17.375 6.342 6.939 0.535
T2M (Guo et al., 2022) 0.464 13.769 5.731 7.046 1.387
MDM (Tevet et al., 2023) 0.339 9.167 7.125 7.602 2.355
ComMDM (Shafir et al., 2023) 0.466 7.069 6.212 7.244 1.822
RIG (Tanaka & Fujiwara, 2023) 0.521 6.775 5.876 7.311 2.096
InterGen (Liang et al., 2024) 0.624 5.918 5.108 7.387 2.141
TIM (Wang et al., 2024b) 0.734 4.702 3.769 7.943 1.005

MMG-VL (Ours) 0.382 8.729 6.869 7.983 2.540

However, the aforementioned metrics do not fully capture the generative model’s ability to perceive
and interact with the environment under the VL2Motion paradigm, nor do they assess the coordina-
tion and rationality of multi-person motions. To address these gaps, we propose a manual evaluation
system that comprehensively measures the rationality, diversity, and real-world applicability of gen-
erated motions from a human cognitive perspective. The system includes: (1) Single-person Quality
(SQ): evaluates the coherence, naturalness, and physical plausibility of individual motions. (2) Spa-
tial Distribution (SD): assesses the spatial arrangement and movement range of multiple subjects,
ensuring reasonable positioning and avoiding overcrowding. (3) Commonsense Constraints (CC):
ensures motions align with physical reality and common-sense behavior, such as accounting for
object weight. (4) Environmental Interaction (EI): focuses on meaningful interactions with the en-
vironment, ensuring motions adapt to specific surroundings. (5) Multi-person Coordination (MPC):
measures the synchronization and coordination of motions among multiple subjects, ensuring pre-
cise cooperation and avoiding conflicts. (6) Multi-room Coverage (MRC): measures the proportion
of rooms engaged by generated motions, indicating effective use of the environment.
Implementation Details. In our implementation, MMG-VL consists of two main modules: VLAI
and SID, with detailed descriptions provided in Sec 3.3. Specifically, we utilize InternLM-
XComposer2.5-7B (Zhang et al., 2024) as the base model for VLAI and MDM (Tevet et al., 2023)
as the base model for SID. The training of these two modules is conducted separately. First, we
freeze the parameters of the ViT encoder in the VLM and fine-tune the LLM and the projector us-
ing the LoRA method (Hu et al., 2022). This stage of training is performed on an Nvidia A100
GPU. Next, we conduct full fine-tuning of the MDM on an Nvidia 2060 Ti GPU using samples from
the HumanML3D dataset with lengths exceeding 150 frames, aiming to enhance MDM’s ability to
generate motion sequences based on long textual descriptions.
4.2 QUANTITATIVE RESULTS

Results on HumanML3D dataset. In our single human motion generation experiments, we con-
ducted a comprehensive evaluation using the widely recognized HumanML3D dataset. To ensure the
fairness and breadth of the evaluation, we systematically compared MMG-VL with 9 state-of-the-art
models that have shown strong performance in recent motion generation tasks. The experimental
results are detailed in the accompanying Table 2. Although MMG-VL exhibits some performance
gaps compared to the current leading model in the key metrics of R Precision (Top 3), FID, and
Multimodal Dist, it still demonstrates competitive performance. Notably, MMG-VL slightly out-
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Table 4: Quantitative results for multi-person motion generation on the HumanVL dataset.
We run all the evaluation 20 times. The evaluation was carried out by five PhD candidates, who
rated each sample across six dimensions: Single-person Quality, Spatial Distribution, Common-
sense Constraints, Environmental Interaction, Multi-person Coordination, and Multi-room Cover-
age. Each dimension was scored on a scale from 0 to 10, with the final score being the average of
all ratings. Bold indicates the best result among groups of the same number of people.

Model Nums of
Human

Single-person
Quality↑

Spatial
Distribution↑

Commonsense
Constraints↑

Environmental
Interaction↑

Multi-person
Coordination↑

Multi-room
Coverage↑

MDM
1

4.748 - 6.498 1.884 - -
MoMask 6.834 - 7.576 2.746 - -
MMG-VL (Ours) 5.383 - 7.625 8.202 - -

InterGen 2 5.820 4.865 7.660 2.253 7.847 2.410
MMG-VL (Ours) 5.429 7.462 8.873 9.220 6.452 4.197

MMG-VL (Ours)

3 5.218 7.658 7.848 8.300 6.913 4.799
4 5.413 8.432 7.283 8.264 6.390 4.820
5 5.281 8.040 6.643 7.653 7.015 5.726
6 5.108 8.219 5.390 7.209 6.583 5.819
7 5.027 8.835 5.092 7.392 6.720 6.932

performs our base model, MDM, across all three metrics, suggesting potential inherent limitations
in the MDM architecture. This indicates that future improvements might be achievable by adopting
more advanced generative models, potentially narrowing or even surpassing the current performance
gap. Moreover, MMG-VL excels in the evaluation of motion diversity and multimodality, achieving
the best results to date. This highlights MMG-VL’s significant advantages in these crucial dimen-
sions and underscores its considerable potential in enhancing diversity and multimodality in human
motion generation.
Results on InterHuman dataset. We compared MMG-VL with several state-of-the-art approaches
on the InterHuman dataset for human-human motion generation tasks, with the results detailed in the
accompanying Table 3. Similar to the findings on the HumanML3D dataset, MMG-VL achieved the
best performance in both the Diversity and Multimodality metrics, further validating its significant
advantages in generating diversity and multimodal outputs. These results reinforce MMG-VL’s
leading position in diversity generation and multimodal performance.
Results on HumanVL dataset. We conducted an evaluation of multi-person, multi-room human
motion generation in domestic scenes using the HumanVL dataset, as shown in Table 4. Due to the
unique characteristics of the VL2Motion paradigm, existing human motion generation frameworks
do not support visual inputs. Therefore, we compared our approach with models operating under
the Text2Motion paradigm. Given that the original textual instructions in HumanVL are abstract di-
rectives for generating multi-person motions rather than specific motion descriptions, we employed
GPT-4o (OpenAI, 2024) to translate these original instructions into concrete motion descriptions
to ensure a fair comparison. These translated descriptions were used as input for the Text2Motion
models, while MMG-VL received both the original instructions and corresponding domestic scene
images. In the context of single-person motion generation, MMG-VL’s output quality was compa-
rable to that of the most advanced models. However, in dual-person motion generation, MMG-VL
outperformed the current state-of-the-art model, InterGen, across multiple metrics, including spatial
distribution, commonsense constraints, environmental interaction, and multi-room coverage. No-
tably, in the environmental interaction metric, MMG-VL achieved a score of 9.220, while InterGen
scored only 2.253. This stark difference underscores the importance of visual input for environmen-
tal awareness and highlights the significant potential of the VL2Motion paradigm in understanding
and interacting with realistic environments. Further analysis of MMG-VL’s performance in gen-
erating motions for three to seven people revealed that as the number of individuals increased,
MMG-VL demonstrated increasingly superior performance in spatial distribution and multi-room
coverage, while maintaining stable coordination among multiple individuals. This suggests that,
thanks to the robust design of the MMG-VL framework, the model can effectively handle the com-
plexity of generating motions for a large number of individuals (more than three) and achieve logical
spatial distribution across multiple rooms. However, as the number of individuals increased, MMG-
VL’s performance in commonsense constraints and environmental interaction showed some decline.
We hypothesize that this decline may be due to the increased number of motions generated, which,
given the environmental limitations (restricted to the few rooms depicted in the input images), leads
to a finite set of interactive objects and feasible motions. Additionally, with a greater number of
motions generated, the likelihood of errors increases, which may contribute to the observed decline
in commonsense constraint performance.
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4.3 QUALITATIVE RESULTS

Ours (SID)

MoMask Intergen

Single human motion generation Human human motion generation

Generate a single human motion instruction.

Generate a single human motion 

instruction based on input 

household scenario images.

GPT-4o

Ours (VLAI)

A person walks around and 

then sits down.

A person is continuously 

jumping forward.

A person is walking down 

the stairs.

A person walks forward, turns 

left to go around the kitchen 

island, and then turns left again.

Generate double human motion instructions 

based on input household scenario images.

Generate double human motion instructions.

GPT-4o
One person is spinning forward, while 

the other person is stepping backward.

One person extends a hand to thrust forward, 

while the other person dodges backward.

Ours (SID)

Ours (VLAI)

A person moves from lying down to 

sitting up on the sofa;  A person walks 

forward, then turns left and continues 

walking, and finally sits down on the sofa.

A person is washing their hands at the 

sink; A person is resting one hand on 

the kitchen island, looking to the side.

Figure 4: Qualitative comparison with the state-of-the-art single human motion generation method
MoMask and the human human motion generation method Intergen.

Figure 5: Qualitative results of multi-person motions generated by our MMG-VL in multi-room
household scenes.

To validate the effectiveness of MMG-VL, we first conducted a qualitative comparison with the most
advanced open-source models in the Text2Motion community: the single-human motion generation
model MoMask and the dual-human motion generation model Intergen. Both MoMask and Intergen
leverage GPT-4o to generate motion instructions, with the results shown in Figure 4. In the context
of single-human motion generation, while MoMask is capable of producing highly realistic and
complex movements, it is notably constrained by the limitations of the Text2Motion paradigm, as
the LLM-generated motion instructions exhibit significant shortcomings in terms of interaction with
the environment. This results in motions that lack authenticity in real-world scenarios. Similarly,
in dual-human motion generation, although Intergen is capable of generating motions with strong
interactivity between two individuals, the motions tend to be overly generic, making it difficult to
demonstrate effective interaction with the surrounding environment. In contrast, MMG-VL excels
in both single and dual-human motion generation, demonstrating a high degree of vividness and
exhibiting strong environmental interactivity. Furthermore, we present the results of MMG-VL
generating multiple human motions within a multi-room environment. As shown in Figure 5, the
motions produced by MMG-VL not only display favorable spatial distribution but also closely align
with realistic human motions in household scenarios, effectively facilitating interaction with the
environment.
4.4 ABLATION STUDY

In this section, we investigate the interplay between visual input and natural language input
within VL2Motion. As shown in Figure 6, we conducted a qualitative evaluation of MMG-VL
using three different input combinations: (A) full text prompts, (B) simple text prompts com-
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A:Text2Motion (Full prompt) B: VL2Motion (Simple prompt + Image) C:VL2Motion (Full prompt + Image)
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Generate n human motion 

instructions based on 

the input image.

Please analyze the input 

image of a household 

scene…generate low-level 

motion instructions for n 

different individuals…(more 

details can be found in 

supplementary materials)

A person sits down cross-legged on the ground. A person sits down on a chair by the kitchen island. A person sits down on a chair by the kitchen island.

A person is lying on the bed;

A person walks to the bedside

and extends their hand.

A person is sitting on a chair;

A person walks over and reaches out 

to pat the person's back.

A person is sitting on a chair;

A person walks over and 

extends a hand to hip height.

A person is sitting on the floor;

A person is jumping forward;

A person is walking to the door, 

extending their hand to open it.

A person gets up from the bed;

A person is sitting on a chair;

A person walks to the door to open it.

A person is pushing themselves up from the 

bed with one hand; A person is sitting on a 

chair looking toward the door; A person walks

to the door and then reaches out to open it.

Image

Simple 

prompt 

Full 

prompt 

Figure 6: Ablation study: we conducted a qualitative evaluation of MMG-VL using three different
input combinations: full text prompts, simple text prompts combined with environmental visual
input, and full text prompts combined with environmental visual input.

bined with environmental visual input, and (C) full text prompts combined with environmen-
tal visual input. When only the text prompt was provided, the human motions generated by
MMG-VL failed to effectively interpret environmental information and constraints, resulting in
implausible scenarios such as sitting directly on the floor or lying in a room without a bed.

Table 5: For each group size (2 to 7 in-
dividuals) in the HumanVL dataset, we
selected 3 demos, evaluated using man-
ual metrics, and calculated the average
rounded to two decimal places.

SQ SD CC EI MPC MRC

A 5.23 8.16 4.48 3.59 6.24 4.81
B 5.18 7.89 6.14 7.47 5.22 4.39
C 5.66 8.35 6.88 8.03 6.62 5.70

However, with the combination of a simple text prompt
and environmental images, the generated human motions
demonstrated some degree of interaction with the envi-
ronment, though they still lacked in detail, such as the
naturalness of hand movements. In contrast, when full
text prompts were used alongside environmental images,
the generated motions were not only realistic and coher-
ent but also adhered to the reasonable constraints of the
displayed environment. This highlights the significant ad-
vantages of VL2Motion over Text2Motion in terms of un-
derstanding and interacting with real-world environments, and underscores that detailed text prompts
can substantially enhance the realism of the generated human motions. We also present the quanti-
tative evaluation results of the three combinations in Table 5.

5 CONCLUSION AND LIMITATIONS

Conclusion. In this paper, we introduce the VL2Motion paradigm for the first time, aimed at gener-
ating realistic 3D human motion that aligns with real-world scenarios by combining environmental
visual input and natural language instructions. Additionally, we provide the accompanying 3D hu-
man motion dataset, HumanVL. Building on this foundation, we propose MMG-VL, an end-to-end
multi-person 3D motion generation method that achieves the generation of multiple human motions
interacting naturally with the environment in various rooms of a home setting, while adhering to
common-sense principles and maintaining good spatial distribution. We hope our research will offer
new insights and inspiration for generating 3D motion in multi-person and complex scenarios.
Limitations. Our MMG-VL serves as the first VL2Motion paradigm model in the field, achieving
significant advancements in generating human motion for multiple individuals across various rooms,
thereby facilitating realistic motion generation and natural interaction with real environments. How-
ever, this model still has several limitations. Firstly, despite harnessing the powerful capabilities of
VLMs, we have not yet realized scalable multi-human motion generation in the context of generative
modeling, which limits the potential for deeper interactions among generated multiple individuals.
Secondly, our approach is restricted to generating combinations of two to three human motions, fail-
ing to support more complex motion sequences, which affects the model’s adaptability in intricate
scenarios.
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A APPENDIX

We show our full textual prompt in MMG-VL in Figure 7.

[Full Prompt]
Please analyze the input image of a household scene, which may be an overhead view of a single room, multiple rooms, or a high-angle shot. Based on the image

content, generate low-level motion instructions for 2-7 different individuals in English. Each motion instruction should be a clear sequence of motions without any

descriptive statements.

Requirements:

Each person should have no more than two motions.

The motion instructions must be brief and concise, specifying body movements, positions, and interactions with objects (e.g., "A man walk forward and use the

right hand to pull open the curtain." "A woman sit down and hold the cup with both hands"). Each complete motion sequence should be short and clear.

Ensure that the motions are feasible within the scene and that the individuals' motions do not conflict with each other.

While individuals can perform separate tasks, there should also be some motions that appear interactive (e.g., one person is sitting on a chair, using the right hand to

hold chopsticks and eat; another person steps forward to the table and uses the right hand to place the food in his hand onto the table).

The semantic information in the motions must strictly match the image content, with no reference to scenes or objects not present in the image, and must align with

common activities in the scene.

Use clear subject identifiers in the motion instructions, such as "a man", "a woman", "a child", "a person" or other specific identities, to clearly indicate each

person’s motions. Make sure each motion sequence is brief, simple, and feasible for 3D human motion generation.

The output must strictly follow the specified format and include no additional information.

Output Format Requirements:

Please output all the motion sequences in English as a single string, with the sequences for different people separated by semicolons.

Within each motion sequence, motions should be separated by commas.

The output must contain only the motion sequences for the exact number of people specified in the task.

Do not include any extra information, labels, or text outside the specified motion sequences.

Figure 7: Full textual prompt in MMG-VL.
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