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Abstract

Recent advancements in large language mod-001
els (LLMs) have achieved promising perfor-002
mances across various applications. Nonethe-003
less, the ongoing challenge of integrating004
long-tail knowledge continues to impede the005
seamless adoption of LLMs in specialized do-006
mains. In this work, we introduce DALK, a.k.a.007
Dynamic Co-Augmentation of LLMs and KG,008
to address this limitation and demonstrate its009
ability on studying Alzheimer’s Disease (AD),010
a specialized sub-field in biomedicine and a011
global health priority. With a synergized frame-012
work of LLM and KG mutually enhancing each013
other, we first leverage LLM to construct an014
evolving AD-specific knowledge graph (KG)015
sourced from AD-related scientific literature,016
and then we utilize a coarse-to-fine sampling017
method with a novel self-aware knowledge re-018
trieval approach to select appropriate knowl-019
edge from the KG to augment LLM inference020
capabilities. The experimental results, con-021
ducted on our constructed AD question answer-022
ing (ADQA) benchmark, underscore the effi-023
cacy of DALK. Additionally, we perform a se-024
ries of detailed analyses that can offer valuable025
insights and guidelines for the emerging topic026
of mutually enhancing KG and LLM.027

1 Introduction028

Alzheimer’s Disease (AD) is a neurodegenerative029

disorder characterized by progressive declines in030

cognitive and functional status over a span of031

decades (Report, 2023). However, current AD ther-032

apy developments are facing critical challenges033

due to the lack of knowledge and understanding of034

the underlying etiological mechanisms of the dis-035

ease. Although scientific literature and dedicated036

biomedical databases could supply rich sources of037

AD knowledge, manual review of relevant informa-038

tion is impossible due to the large volume.039

As large language models (LLMs) (Brown et al.,040

2020; Zhang et al., 2022; Anil et al., 2023; Touvron041

et al., 2023) with chain-of-thought (CoT)-based 042

prompting (Wei et al., 2022; Wang et al., 2022; 043

Tong et al., 2023; Yao et al., 2023; Besta et al., 044

2023) demonstrate strong language capabilities 045

across various tasks, there have been attempts to 046

leverage LLMs-based systems in general biomedi- 047

cal and AD-related applications (Mao et al., 2023; 048

Li et al., 2023c; Yan et al., 2024; Feng et al., 2023). 049

However, while the LLMs have shown promising 050

performances in many general tasks, recent studies 051

revealed LLMs’ limitations in long-tail (Kandpal 052

et al., 2023) and domain-specific (Li et al., 2023b, 053

2024) knowledge, thereby significantly impeding 054

their adaptations in vertical fields such as AD. To 055

deal with this issue, the most common strategies are 056

retrieval augmented generation (RAG) and domain- 057

specific LLMs training. 058

Nevertheless, directly applying these strategies 059

in the context like AD would still suffer from sev- 060

eral issues. First, Data Quality: Same as many 061

biomedical fields, scientific literature composes 062

the largest publicly available corpus source in AD. 063

Yet, the dense and information-overloaded nature 064

of scientific literature, when combined with raw 065

text retrieval methods, can lead to the retrieval 066

of irrelevant and noisy information. Previous re- 067

search has shown that noisy and irrelevant corpora 068

can significantly undermine the performance of 069

LLMs (Yu et al., 2023; Chen et al., 2024; Wu et al., 070

2024). Second, Efficiency & Scale Issues: Being 071

an critical field of research, the knowledge of AD 072

is rapidly evolving with scientific advancements at 073

a remarkable pace and scale. However, retraining 074

a domain-specific LLM or updating certain knowl- 075

edge in it demands substantial computational re- 076

sources (Hu et al., 2021; Ovadia et al., 2023; Zhang 077

et al., 2024). This efficiency issue would also limit 078

the sizes of domain-specific LLMs, consequently 079

affecting their performances. 080

To tackle these limitations, here we propose 081

a Dynamic Co-Augmentation of LLMs and KG 082
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(DALK) framework that facilitates mutual benefits083

between LLMs and knowledge graphs (KG) for084

the AD domain. Initially, our framework addresses085

the data quality challenge by extracting more struc-086

tural and accurate knowledge from unstructured087

and dense scientific literature and constructing a088

domain-specific knowledge graph tailored to AD.089

We employ two widely utilized knowledge graph090

construction methods, namely pair-wise construc-091

tion (Carta et al., 2023; Wadhwa et al., 2023) and092

generative construction (Han et al., 2023; Bi et al.,093

2024), to comprehensively assess their impact on094

knowledge graph quality. Then, we adopt a coarse-095

to-fine sampling method with a novel self-aware096

knowledge retrieval approach to select appropri-097

ate knowledge from the knowledge graph and thus098

further address the data quality problem. Notably,099

the tuning-free nature of our framework signifi-100

cantly enhances efficiency and facilitates its ap-101

plication in large-scale and API-based language102

models (OpenAI, 2022). In the evaluation sec-103

tion, we derive an Alzheimer’s Disease question104

answering (ADQA) benchmark from existing gen-105

eral medical QA datasets with millions of sam-106

ples filtered by a curated keyword list and self-107

sampling of LLMs. Our extensive experiment on108

ADQA demonstrates the effectiveness of our frame-109

work in domain-specific applications compared110

with general biomedical LLMs and retrieval aug-111

mented models. Further evaluation and analysis112

provide valuable insights into constructing high-113

quality knowledge graphs and sampling accurate114

knowledge from them.115

In summary, our contribution in this work can116

be summarized as follows:117

• We identify the constraints of the current methods118

for LLMs in domain-specific areas like AD and119

introduce DALK, a co-augmentation framework120

of the LLM and KG to address these issues.121

• We build AD-specific KG and QA benchmark.122

Through extensive comparisons with other meth-123

ods, we showcase the effectiveness of DALK.124

• We delve into a comprehensive analysis of our125

proposed method and provide valuable insights126

and guidance on how to construct a high-quality127

KG and sample accurate knowledge from it.128

2 Related Work129

The interplay between LLMs and KGs130

KGs (Miller, 1995; Speer et al., 2017; Vrandečić131

and Krötzsch, 2014) serve as structured represen-132

tations of factual knowledge, typically expressed 133

as (head, relation, tail) triples. Their structured, 134

factual, and interpretable nature renders them ex- 135

cellent complements to parametric language mod- 136

els (Pan et al., 2024). Recently, with the rise of 137

large language models (LLMs), numerous studies 138

have delved into exploring the synergy between 139

LLMs and KGs for various purposes (Pan et al., 140

2024; Tan et al., 2024). There are a lot of efforts in 141

conducting knowledge graph construction (Carta 142

et al., 2023; Wadhwa et al., 2023; Han et al., 2023; 143

Bi et al., 2024; Datta et al., 2024), completion (Wei 144

et al., 2023; Zhang et al., 2023b; Li et al., 2024) 145

with the aid of LLMs. Conversely, other works aim 146

to enhance LLMs by integrating knowledge sam- 147

pled from KGs during both training (Tang et al., 148

2023; Luo et al., 2024; Dernbach et al., 2024; 149

Rangel et al., 2024) and inference (Kim et al., 2023; 150

Wen et al., 2023; Jiang et al., 2023; Sun et al., 151

2023a) times. Our work distinguishes itself by 152

proposing a co-augmentation framework for LLMs 153

and KGs, facilitating their mutual enhancement, 154

and applying it to the domain of AD. 155

LLMs and KGs for AD research LLMs and 156

KGs have both been applied to Alzheimer’s Dis- 157

ease research in previous studies. Pre-trained lan- 158

guage models are utilized to work on AD de- 159

tection and many other related tasks based on 160

speech recordings and transcripts (Balagopalan 161

et al., 2020; Agbavor and Liang, 2022), electronic 162

health records (EHRs) (Mao et al., 2023; Li et al., 163

2023c; Yan et al., 2024), and tabular data (Feng 164

et al., 2023). KGs have been widely used in 165

biomedical research, yet only a few are specifically 166

for AD research (Romano et al., 2023; Pu et al., 167

2023; Hsieh et al., 2023; Nian et al., 2022; Daluwa- 168

tumulle et al., 2023). These KGs were generally 169

constructed from a variety of information derived 170

from heterogeneous biomedical databases (e.g. for 171

genes, drugs, pathways, etc.) or scientific literature 172

related to AD. Despite the aforementioned efforts 173

for LLMs and KGs in AD research, no prior study 174

has explored using LLM to augment AD-KG, or 175

vice versa, let alone the potential for mutual en- 176

hancement between the two as we propose here. 177

3 Our Methodology 178

This section elaborates on our dynamic co- 179

augmentation framework of LLMs and KG. Sec- 180

tion 3.1 presents the details of augmenting an AD- 181

specific evolving KG with LLMs and literature 182
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Figure 1: The overview pipeline of DALK. We first extract structural knowledge from unstructured corpora and
construct a domain-specific knowledge graph tailored to AD (Section 3.1). Then, we utilize a coarse-to-fine sampling
method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the knowledge
graph (Section 3.2).

corpus in a time-slicing fashion (i.e. year by year).183

Following it, Section 3.2 describes the process of184

sampling appropriate knowledge from the evolving185

KG to enhance LLMs’ reasoning. Figure 1 illus-186

trates an overall pipeline of our method DALK.187

KGpair KGgen

#Corpus 9,764 9,764
#Nodes 13,509 20,545
#Relations 3,952 3,651
#Triples 171,431 53,585

Table 1: Detailed statistics about AD-KG.

3.1 LLMs for KG188

Corpus Collection To create an AD-specific189

knowledge graph, we follow (Pu et al., 2023) and190

use the AD corpus collected by a domain expert191

Professor Colin Masters at the University of Mel-192

bourne who discovered amyloid proteins being the193

potential cause of AD (Masters et al., 1985). The194

corpus is based on his extensive bibliography of195

representative AD-related papers and consists of196

more than 16K PMID (PubMed ID)-indexed arti-197

cles from 1977 to 2021. For our study, we focus on198

the papers since 2011 which reflect the most recent199

knowledge in the field and get 9,764 articles.200

Entity Recognition In order to identify knowl-201

edge at the proper granularity level for AD, we202

extract relevant entities from the corpus by utiliz- 203

ing the PubTator Central (PTC) (Wei et al., 2013) 204

developed and continuously maintained by NCBI. 205

PTC is a widely-used tool to provide state-of-the- 206

art annotations of biomedical concepts for PubMed 207

abstracts and full-text articles, and it supports six 208

bioconcept types including genes, diseases, chem- 209

icals, mutations, species and cell lines. We apply 210

PTC to the abstracts of all our AD papers and ob- 211

tain the relevant named entities which will serve as 212

nodes in the knowledge graph. 213

Relation Extraction To build an accurate and 214

high-quality knowledge graph on AD, we aim to as- 215

sign a specific relation type between the two related 216

entities. Through a comprehensive survey of rela- 217

tion extraction methods for knowledge graph con- 218

struction, we categorize current approaches with 219

LLMs into two main groups: (a). Pair-wised Rela- 220

tion Extraction (Carta et al., 2023; Wadhwa et al., 221

2023) aims to prompt the LLMs to describe the 222

relationship between any two entities in a segment 223

of text. (b). Generative Relation Extraction (Han 224

et al., 2023; Bi et al., 2024; Datta et al., 2024), 225

where LLMs directly output all related entity pairs 226

and their corresponding relationships. As shown 227

in Figure 2, we incorporate both of these rela- 228

tion extraction methods into our knowledge graph 229

augmentation process to provide a comprehensive 230

comparison between them. We denote the result- 231
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… Successful application of AD preventative approaches… , 

including cardiovascular disease, diabetes, and head trauma.

… Successful application of AD preventative approaches… , 

including cardiovascular disease, diabetes, and head trauma.

Step1: Entity Recongnition

Step2: Relation Extraction

Pair-wised Relation Extraction

Generative Relation Extraction
…

Reading the following abstract: [Abstract]

Question: 

What is the relationship between AD 

and cardiovascular disease?

Question: 

What is the relationship between AD 

and diabetes?

Reading the following abstract: [Abstract]

Here are all the biomedicine-related 

entities: [Entities]

Question: 

Please extract all the valid relationship 

between the provided entities.

Figure 2: The detailed process of AD-specific KG con-
struction.

ing knowledge graphs from these approaches as232

KGpair and KGgen respectively.233

Table 1 presents the detailed statistics about our234

augmented knowledge graph, including the num-235

ber of corpora we used, and the number of nodes,236

relations and triples in KGpair and KGgen.237

3.2 KG for LLMs238

In this section, we begin by outlining our process239

for sampling coarse-grained augmented knowledge240

from our evolving knowledge graph (Section 3.2.1).241

Subsequently, we delve into detail regarding our242

self-aware knowledge retrieval method, which aims243

to filter out noise and retrieve the most pertinent244

knowledge to provide to the LLM (Section 3.2.2).245

3.2.1 Coarse-grained Knowledge Sample246

Given a question query Q, we first construct a247

prompt and ask LLMs to extract all the domain-248

specific entities E = {e1, e2, ...} from it. Af-249

terward, we adhere to the methodology proposed250

by Wen et al. (2023) and execute a similarity-based251

entity linking process to connect all entities within252

E to the entity structure in our knowledge graph253

G. Specifically, we employ a semantic similarity254

model (Reimers and Gurevych, 2019) to encode all255

entities in G and E into dense embeddings, denoted256

as HG and HE , respectively. Subsequently, utiliz-257

ing cosine similarity, we establish links between258

each entity in E and its nearest neighbor entity in259

G. This procedure yields an initial entity set EG260

for the subsequent knowledge sampling step.261

To build an evidence sub-graph to boost262

LLMs’ reasoning process, we follow the previous263

study (Wen et al., 2023) and consider the following264

two kinds of explorations in our AD-KG:265

Path-based Exploration entails the extraction of 266

a sub-graph from G to encompass all entities within 267

EG. The process unfolds as follows: (a) Begin 268

by selecting one node from e0Q as the initial node, 269

denoted as e1, and place the remaining nodes into a 270

candidate node set, Ecand. Explore at most k hops 271

from e1 to identify the subsequent node, e2, where 272

e1 ∈ Ecand. If e2 is successfully reached within 273

k hops, update the start node to e2 and remove e2 274

from Ecand. In the event e2 cannot be found within 275

k hops, concatenate the segment paths acquired 276

thus far and store them in Gpath
Q . Subsequently, 277

choose another node e′1 from Vcand as the new start 278

node, and eliminate both the original start node e1 279

and the current node e2 from Ecand. (b) Verify if 280

Ecand is empty. If not, repeat step (a) to identify 281

the next segment of the path. If Ecand is empty, 282

combine all segments to construct a set of sub- 283

graphs and place them into Gpath
Q . 284

Neighbor-based Exploration endeavors to aug- 285

ment the evidence relevant to the query within GQ. 286

This process consists of two steps: (a) Initially, 287

expand each node e within EG by 1-hop to incor- 288

porate their neighbors e′, thus appending triples 289

(e, r, e′) to Gnei
Q . (b) Then assess whether each e′ 290

exhibits semantic relevance to the query. If affir- 291

mative, further expand the 1-hop neighbors of e′, 292

consequently adding triples (enei, r′, e′) to Gnei
Q . 293

After obtaining the two sub-graphs Gpath
Q and 294

Gnei
Q , we perform post-processing to further prune 295

redundant information in sub-graphs and prompt 296

LLMs to describe the structure of each sub-graph. 297

3.2.2 Self-aware Knowledge Retrieval 298

In our initial experiment, we noticed the coarse- 299

grained knowledge sampled with the above- 300

mentioned approaches still contained redundant 301

and irrelevant information. This issue of noise is a 302

common challenge encountered in automatically- 303

constructed knowledge graphs (Fang et al., 2021; 304

Zhang et al., 2020; Li et al., 2022; Bi et al., 2024). 305

Moreover, many recent works (Yu et al., 2023; Li 306

et al., 2023d; Chen et al., 2024; Wu et al., 2024) 307

have demonstrated LLMs can indeed be influenced 308

by such noisy information. To address this chal- 309

lenge, we borrow insights from the recent self- 310

powered LLMs (Wang et al., 2022; Pan et al., 2023; 311

Li et al., 2023a; Yuan et al., 2024; Tong et al., 312

2024) and propose a self-aware knowledge retrieval 313

method to leverage LLMs’ ranking capability (Sun 314

et al., 2023b; Ma et al., 2023) to filter out noisy 315
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information.316

In particular, we directly prompt the LLM to317

rerank the sampled knowledge and only retrieve318

top k triples to provide for itself in the final-round319

inference. Given the question Q and either the path-320

based or neighbor-based sub-graph GQ, we create321

prompt pself by filling the pre-defined template:322

pself = Templateself(Q,GQ, k). (1)323

Then, we use pself as the input to prompt the LLM324

to obtain the self-retrieved knowledge:325

Gself
Q = LLM(pself ), (2)326

Finally, we provide the question Q and fine-grained327

knowledge Gself
Q to the LLM for reasoning and get328

the predicted answer a in two steps:329

pinference = Templateinference(Q,Gself
Q ), (3)330

331
a = LLM(pinference). (4)332

We provide detailed examples in Appendix B and C333

to demonstrate the input and output in our DALK.334

4 Main Experiment335

4.1 ADQA Benchmark336

For performance evaluation, we consider four337

widely-used medical QA datasets spanning diverse338

biomedical topics (Jin et al., 2021; Pal et al., 2022;339

Hendrycks et al., 2021; Peñas et al., 2013) and de-340

rive an AD-specific QA dataset from them. The341

four medical QA datasets are all multiple-choice342

based and include: 1) MedQA (Jin et al., 2021)343

consisting of US Medical Licensing Examina-344

tion (USMLE)-style questions, 2) MedMCQA (Pal345

et al., 2022) containing medical school entrance346

exam questions from India, 3) MMLU (Hendrycks347

et al., 2021) consisting of diverse biomedical348

and clinical questions from various sources, 4)349

QA4MRE (Peñas et al., 2013) containing a sub-350

set of questions for AD derived from PubMed351

and Medline. In order to extract from the med-352

ical QA datasets a subset of samples related to353

AD for our evaluation, we referred to NIH’s Com-354

mon Alzheimer’s and Related Dementias Research355

Ontology (CADRO) 1. Jointly developed by the356

National Institute on Aging and the Alzheimer’s357

Association, CADRO is a three-tiered classifica-358

tion system with eight main categories and a dozen359

sub-categories for AD and related dementia, and it360

1https://iadrp.nia.nih.gov/about/cadro

contains common terminologies or keywords used 361

in the field. We derived from the CADRO a list of 362

AD-related keywords most relevant to the medical 363

QA datasets: <Aging, Alzheimer, Amyloid beta, 364

APOE, Dementia, Lipoprotein, Microglia>. Then, 365

we searched against each medical QA dataset for 366

matches with these keywords to find putative QA 367

samples, then further asked GPT-3.5-turbo to judge 368

for each putative sample whether the question is 369

indeed related to AD or not. Finally, we filtered out 370

a subset of such samples that are considered highly 371

relevant to AD to conduct our evaluation (number 372

of samples in each dataset is shown in Table 2). 373

More details can be found in Appendix D. 374

4.2 Experiment Settings 375

We apply our framework with OpenAI GPT-3.5- 376

turbo models (OpenAI, 2022). We also include the 377

following baseline methods for comparison: 378

Biomedical LLMs Both ChatDoctor (Yunxiang 379

et al., 2023) and Med-Alpaca (Shu et al., 2023) 380

are fine-tuned versions of LLaMA (Touvron et al.) 381

on biomedical corpora. Compared with them, 382

Meditron (Chen et al., 2023) is built on LLaMA- 383

2 (Touvron et al., 2023) and extends its pretrain- 384

ing on a comprehensively curated medical corpus. 385

BiomedGPT (Zhang et al., 2023a) is also based on 386

LLaMA-2 and pioneer as the first open-source and 387

generalist visual language AI for diverse biomed- 388

ical tasks. Biomistral (Labrak et al., 2024) is an 389

LLM crafted specifically for the biomedical do- 390

main, optimized for efficiency through quantization 391

and model merging techniques. 392

Retrieval-Augmented LLMs Furthermore, we 393

also compare our method with several represen- 394

tative retrieval-augmented LLMs in the biomed- 395

ical domain. Almanac (Zakka et al., 2024) is a 396

novel approach utilizing OpenAI’s GPT model in- 397

tegrated with a Qdrant vector database to hold ex- 398

ternal sources of knowledge retrieved from local 399

corpus, web search, and calculators, designed to 400

answer open-domain clinical questions. Like Al- 401

manac, Lozano et al. (2023) introduced Clinfo.ai, 402

which is an open-source, end-to-end retrieval- 403

augmented LLM (GPT) to answer medical queries 404

using scientific literature summarizations derived 405

from PubMed search engine. We adopt both Al- 406

manac and Clinfo.ai with the same prompt as ours 407

to answer multiple-choice questions to suit the 408

ADQA benchmark. Lastly, we implement a sim- 409

ple retrieval-augmented GPT baseline with CoT 410
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MedQA MedMCQA MMLU QA4MRE AVG
Biomedical LLMs
ChatDoctor-7B (Yunxiang et al., 2023) 25.7 36.4 46.9 51.4 40.1
Med-Alpaca-7B (Shu et al., 2023) 41.4 42.8 44.9 57.1 46.5
BiomedGPT-7B (Zhang et al., 2023a) 38.8 41.9 48.9 42.6 43.1
Meditron-7B (Chen et al., 2023) 27.6 31.4 36.7 25.7 30.4
Biomistral-7B (Labrak et al., 2024) 44.7 49.5 53.1 68.6 54.0
Meditron-70B 50.0 44.8 79.6 51.4 56.4
ClinicalCamel-70B (Toma et al., 2023) 50.0 64.3 83.7 68.6 66.7
Retrieval-augmented LLMs
GPT-3.5-turbo w/ Ada (OpenAI, 2024) 57.2 65.7 83.7 62.9 67.4
Almanac (Zakka et al., 2024) 48.0 69.5 71.4 60.0 62.2
Clinfo.ai (Lozano et al., 2023) 54.3 77.0 81.3 67.7 70.1
Clinfo.ai w/o PubMed API 49.3 68.6 79.6 74.3 67.9
GPT-3.5-turbo 50.0 71.9 83.6 62.9 67.1
DALK 57.9 75.2 85.4 71.4 72.6

Table 2: Experiment results on our constructed ADQA benchmark. The best results of each metric are in bold
and the second-best results are underlined. The “AVG” column represents the average accuracy score on the four
sub-dataset.

prompting similar to our proposed DALK. All the411

GPT models used are set to GPT-3.5-turbo as de-412

tailed in the next paragraph, to be consistent.413

Implementation Details We use the knowledge414

graph constructed with the generative approach415

(KGgen) in our main experiment and conduct an416

ablation study on the knowledge graph with RE417

method (KGpair) in Section 4.5. We use GPT-3.5-418

turbo with the version “gpt-3.5-turbo-0301” and419

set the sampling temperature to 0.7. We utilize 7B420

versions of all the biomedical LLMs baselines. For421

RAG methods, we split each document with a max422

length of 128 and retrieve the top 3 most relevant423

documents as the support evidence for LLMs to424

do inference. We set the parameter k in our self-425

aware knowledge retrieval to 5 and conduct further426

analysis on it in Section 5.2.427

4.3 Main Result428

Table 2 shows the experimental results on our429

ADQA benchmark. We note that upon applying our430

dynamic co-augmentation framework, DALK’s per-431

formance surpasses that of other biomedical LLMs432

and RAG methods overall. It consistently achieves433

either the best or the second-best accuracy score434

across all sub-datasets and attains the highest AVG435

score. Furthermore, the substantial improvement436

over vanilla GPT-3.5-turbo underscores the efficacy437

of our approach in domain-specific ADQA.438

Furthermore, we observe that the performance439

of biomedical-specific LLMs generally lags be-440

hind that of GPT-3.5-turbo. We attribute this dis-441

crepancy to the smaller size of these biomedical442

LLMs. While they may perform adequately in gen-443

eral medical contexts, they fall short in the AD 444

scenario, which demands more domain-specific 445

knowledge. In the case of GPT-3.5-turbo combined 446

with various RAG methods, it is evident that most 447

RAG methods enhance the models’ performance. 448

Among them, GPT-3.5-turbo with Clinfo.ai yields 449

the most significant improvement, boosting the ac- 450

curacy score from 67.1 to 70.1 compared to vanilla 451

GPT-3.5-turbo. However, it is important to note 452

that the original Clinfo.ai necessitates access to 453

the PubMed API, constituting an external resource. 454

When we disable this access and solely utilize the 455

same corpora as in DALK within the Clinfo.ai re- 456

trieval system, the improvement it brings becomes 457

marginal and incomparable to our method. Due to 458

the space limitation, we put more RAG results with 459

different hyper-parameters in Appendix E. 460

4.4 Ablation Study on Self-aware Knowledge 461

Retrieval 462

MedQA MedMCQA MMLU QA4MRE AVG
AVG Length 107.4 23.8 342.9 17.6 122.9
GPT-3.5-turbo 50.0 71.9 83.6 62.9 67.1
DALK 57.9 75.2 85.4 71.4 72.6
DALK
w/o self-aware
knowledge retrieval

56.5 71.0 77.6 77.1 70.6

Table 3: Ablation study results with and without our
proposed self-aware knowledge retrieval.

In this section, we evaluate the efficacy of our 463

proposed self-aware knowledge retrieval method 464

through an ablation study. As depicted in Ta- 465

ble 3, we observe that while the dynamic co- 466

augmentation framework without the self-aware 467

knowledge retrieval module still enhances the 468

model’s performance, the overall improvement is 469
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less pronounced. Furthermore, we observe that the470

efficacy of self-aware knowledge retrieval corre-471

lates with the length of queries within a given con-472

text. For instance, a notable enhancement in per-473

formance is evident within the MMLU sub-dataset474

upon the implementation of self-aware knowledge475

retrieval. We attribute this to the fact that questions476

in the MMLU dataset typically contain longer con-477

texts compared to other medical QA datasets inte-478

grated into ADQA. Consequently, irrelevant knowl-479

edge sourced from the context may exacerbate the480

issue of information noise thus underscoring the ne-481

cessity for self-aware retrieval. Conversely, within482

QA4MRE, characterized by shorter query lengths,483

the application of self-aware knowledge retrieval484

can even lead to a decline in performance.485

4.5 Ablation Study on KG Construction486

AVG #Triples
GPT-3.5-turbo 67.1 -
DALK
w/ Generative KG 72.6 53,585

DALK
w/ RE KG 66.3 171,431

Table 4: Ablation study results with generative construc-
tion and RE construction.

Table 4 illustrates the results of the ablation study487

conducted using generatively constructed KG and488

RE-constructed KG. Surprisingly, despite the RE489

method yielding a KG with a larger scale and more490

triples, knowledge sampled from it has unexpect-491

edly resulted in a non-trivial drop in performance492

within ADQA. After a manual examination of the493

two constructed knowledge graphs, we find LLMs494

with the RE construction method have a strong in-495

clination to wrongly assign a relationship to two496

unrelated entities, which has been exposed by the497

previous studies (Wan et al., 2023). In contrast, the498

generative construction approach exclusively out-499

puts triples that LLMs confidently endorse, yield-500

ing a smaller yet more precise knowledge graph.501

This trade-off between coverage and accuracy un-502

derscores the critical importance of denoising in503

the construction of KGs by LLMs.504

5 Further Analysis505

5.1 Co-augmentation Analysis506

To comprehensively understand how the perfor-507

mance of LLMs evolves in response to increasing508

KG sizes, we undertake a detailed co-augmentation509

Figure 3: The size of the knowledge graph (triplet num-
ber) and the KG-augmented GPT-3.5-turbo’s perfor-
mance (accuracy) over time.

analysis. Illustrated in Figure 3, our experiments 510

aim to discern the changing performance trends of 511

LLMs as the knowledge triples accumulate annu- 512

ally. Our findings reveal that our framework effec- 513

tively fosters the co-evolution of LLMs and KG, 514

with the performance of KG-augmented LLMs ex- 515

hibiting a generally upward trajectory as the KG 516

expands. Notably, when we remove the self-aware 517

knowledge retrieval module, this upward trend be- 518

comes less significant. This further implies the 519

importance of sampling and selecting appropriate 520

knowledge for LLMs when the KG’s size increases. 521

5.2 Hyper-parameter Analysis 522

Figure 4: Different self-aware knowledge retrieval set-
tings in MedQA, MedMCQA, QA4MRE and the aver-
age score (AVG).

In this section, we do a hyper-parameter anal- 523

ysis on the retrieval number k of our self-aware 524

retrieval module. We select a group of value for 525

k ([1,3,5,10,20,30]) and present the experiment re- 526
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Path-based Sub-graph Answer
Baseline - C%

DALK
-w/o self-aware
knowledge retrieval

neurofibrillary tangles->FORM BY->microtubule-associated protein tau...
...
entorhinal cortex->is a part of->brain->ASSOCIATES->mouse with
Alzheimer’s disease->brain region->temporal lobe

C%

DALK
Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

D!

Table 5: An example for the case study. The question is: “The area of the brain resistant to Neurofibrillary tangles of
Alzheimer’s disease is: A. Visual association areas B. Entorhinal coex C. Temporal lobe D.Lateral geniculate body”

sults in Figure 4. We show the accuracy score on527

MedQA, MedMCQA, QA4MRE and AVG with528

different k. We find when k is small, an increment529

to it can lead to a performance enhancement. After530

the best performance shows up, continually increas-531

ing the value of k will cause a smooth decrease in532

the model accuracy score. This result indicates the533

knowledge ranked in the top positions is more help-534

ful while the knowledge ranked behind is not very535

useful, thus successfully validating the capability536

of LLMs to do fine-grained knowledge reranking.537

Moreover, we find the best k value is correlated538

with the averaged query length. For example, the539

best performance in MedQA (average query length540

is 107.4) appears when k = 10 while the best541

performance in MedMCQA and QA4MRE appears542

when k = 5 and 3 respectively. This aligns with our543

previous finding that a longer query corresponds to544

a larger and noisier sub-knowledge graph.545

5.3 Sensitivity Analysis on ADQA Benchmark546

Benchmark DALK
DALK
w/o self-aware
knowledge retrieval

ADQA 72.6 70.6
w/o “Alzheimer” 72.1 70.4
w/o “Dementia” 72.4 71.3
w/o “APOE” 73.2 71.2
w/o “Amyloid beta” 73.5 70.7
w/o “Aging” 72.9 71.4
w/o “Lipoprotein” 73.1 71.0
w/o “Microglia” 72.8 70.9

Table 6: Sensitivity analysis for ADQA benchmark with
a leave-one-out evaluation on AD-related keywords.

In this section, we conduct a sensitivity analysis547

for our constructed ADQA by conducting a leave-548

one-out evaluation on AD-related keywords. We549

do it by removing the samples with each keyword550

in our keyword list and calculating the AVG score551

of the remaining samples. As the result shown552

in Table 6, we find not all of the keywords are553

incorporated in our ADQA benchmark. Notably,554

the keywords “CSF Biomarkers”, “Neurogenesis”, 555

“PET Amyloid”, “PET Tau”, “Tau Phosphorylation” 556

lack corresponding samples in ADQA. We believe 557

one critical work in the future for benchmarking 558

AD-related knowledge is to collect QA samples 559

to cover these missing keywords. Moreover, ana- 560

lyzing the performance variation upon removing 561

samples linked to each keyword offers insight into 562

determining the relevance of the keyword to AD. 563

5.4 Case Study 564

We put an example in Table 5 to showcase the effi- 565

cacy of DALK. We notice while the path-based sub- 566

graph contains the relevant knowledge to exclude 567

option C, it still involves other irrelevant informa- 568

tion and finally fails to prompt the LLMs to pro- 569

duce the correct answer. In contrast, our self-aware 570

knowledge retrieval method successfully chooses 571

the top 3 most relevant triples for the given problem 572

and results in the correct answer D. 573

6 Conclusion 574

In this research, we begin by analyzing the main 575

limitations of adopting the existing LLMs-based 576

methods in AD-specific areas. To address these 577

issues, we propose a novel approach in the merging 578

of large language models and knowledge graphs in 579

the context of Alzheimer’s Disease. We provide an 580

innovative dynamic co-augmentation framework 581

for the refinement of large language models and 582

knowledge graphs. Initially, our approach extracts 583

structural insights from the unstructured scientific 584

literature, crafting a specialized knowledge graph 585

for AD. Subsequently, we employ a coarse-to-fine 586

sampling technique coupled with a unique self- 587

aware knowledge retrieval strategy to pinpoint rele- 588

vant information from the knowledge graph. The 589

extensive evaluation conducted in our constructed 590

ADQA benchmark shows the effectiveness of our 591

method and provides further hints into the synergy 592

of LLMs and KG in the context of AD. 593
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7 Limitations and Future Work594

In the development of our AD-KG, our primary595

focus lies in the exploration of two distinct meth-596

ods for extracting relationships between associated597

entities. For entity recognition, we employ a strong598

PubTator annotator directly, without delving into599

the utilization of LLMs in this context. However,600

we have observed that LLMs also exhibit promis-601

ing entity extraction capabilities in Section 3.2.1.602

We defer the refinement of methods for extract-603

ing entities for KG construction with LLMs to fu-604

ture works. Furthermore, a significant contribution605

of our work is the establishment of the ADQA606

benchmark. Nonetheless, the datasets utilized in607

constructing ADQA primarily consist of medical608

school exam questions, potentially exhibiting a do-609

main gap from the scientific literature informing610

AD-KG. One potential remedy is leveraging Pub-611

medQA (Jin et al., 2019); however, it is hindered612

by limited data amount. In the future, we will keep613

gathering AD-related QA samples and expanding614

the size of our ADQA benchmark. In the future,615

we will do more exploration in adopting and bench-616

marking LLMs in the AD areas.617

8 Ethics Statement618

We have familiarized ourselves with and honour619

the ethical code set out in the ACL Code of Ethics2.620

The knowledge graphs constructed in the paper621

are based on published scientific literature from622

PubMed. The ADQA dataset used in the study is623

also derived from publicly available medical QA624

datasets that are properly cited. We strive to ensure625

our study upholds ethical principles and not cause626

any kind of safety or privacy concerns. Although627

not observed in our multiple-choice QA analysis,628

we recognize the possibility of factual errors and629

hallucinations when using pre-trained LLMs for630

medical QA tasks in general, and we do not recom-631

mend these models be applied in a practical setting632

at present.633
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A AD-KG Evaluation1036

We conduct a manual evaluation of our AD-KG to guarantee its quality. We randomly sample 100 triples1037

from AD-KG constructed with generative and RE methods and ask the annotator to check whether the1038

fact in each triple is valid. The annotator is encouraged to find evidence from the original abstract corpus1039

or by searching the web. The results are presented in Table 7. We found that while both AD-KGs achieve1040

acceptable accuracy, the RE construction method produces an AD-KG of higher quality. This further1041

validates our conclusion in Section 4.5 regarding the trade-off between coverage and accuracy.1042

Accuracy
AD-KG w/ Generative Construction 91%
AD-KG w/ RE Construction 83%

Table 7: Manual evaluation result on AD-KG.

B Details of LLMs for KG1043

Table 8 and 9 present examples of our two KG construction methods respectively. For both methods, we1044

adopt a select-or-generate prompt to instruct the LLM whether to choose a relation from hetionet (Him-1045

melstein et al., 2017), a well-built general medical KG, or generate a new one to describe the relationship1046

between two entities. In the RE construction method, we also conduct a type matching (Table 10) for each1047

entity from type name of PubTator to that of Hetionet and ask the LLM to choose from the relation set1048

that corresponds to the two entities’ types (Table 11).1049
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Input Read the following abstract, extract the relationships between each entity.You can
choose the relation from: (covaries, interacts, regulates, resembles, downregulates,
upregulates, associates, binds, treats, palliates), or generate a new predicate to
describe the relationship between the two entities. Output all the extract triples in
the format of "head | relation | tail". For example: "Alzheimer’s disease | associates
| memory deficits" Abstract: Thiamine pyrophosphate (TPP) and the activities of
thiamine-dependent enzymes are reduced in Alzheimer’s disease (AD) patients.
In this study, we analyzed the relationship between thiamine deficiency (TD) and
amyloid precursor protein (APP) processing in both cellular and animal models of
TD. In SH-SY5Y neuroblastoma cells overexpressing APP, TD promoted maturation
of beta-site APP cleaving enzyme 1 (BACE1) and increased beta-secretase activity
which resulted in elevated levels of beta-amyloid (Abeta) as well as beta-secretase
cleaved C-terminal fragment (beta-CTF). An inhibitor of beta-secretase efficiently
reduced TD-induced up-regulation of Abeta and beta-CTF. Importantly, thiamine
supplementation reversed the TD-induced alterations. Furthermore, TD treatment
caused a significant accumulation of reactive oxygen species (ROS); antioxidants
suppressed ROS production and maturation of BACE1, as well as TD-induced
Abeta accumulation. On the other hand, exogenous Abeta(1-40) enhanced TD-
induced production of ROS. A study on mice indicated that TD also caused Abeta
accumulation in the brain, which was reversed by thiamine supplementation. Taken
together, our study suggests that TD could enhance Abeta generation by promoting
beta-secretase activity, and the accumulation of Abeta subsequently exacerbated
TD-induced oxidative stress.Entity: Thiamine (thiamine), deficiency increases beta-
secretase, TPP (Thiamine pyrophosphate), Alzheimer’s disease (AD), patients,
amyloid precursor protein (beta-amyloid (Abeta)), neuroblastoma, BACE1 (beta-site
APP cleaving enzyme 1), Abeta, ROS (reactive oxygen species), Abeta accumulation,
mice. Output:

Output Thiamine deficiency | downregulates | TPP, Thiamine deficiency | regulates |
Alzheimer’s disease, Alzheimer’s disease | involves | beta-secretase, Amyloid precur-
sor protein | produces | beta-amyloid, Amyloid precursor protein | in | neuroblastoma,
BACE1 | is | beta-secretase, BACE1 | regulates | beta-amyloid, Abeta | is | beta-
amyloid, Abeta | in | mice, Abeta | causes | reactive oxygen species, Abeta | regulates
| ROS

Table 8: An example to extract knowledge triples using generative construction method.

C Details of KG for LLMs 1050

In this section, we provide detailed input and output for adopting KG to augment LLMs, including 1051

path-based and neighbor-based sub-graph sampling results (Table 12), self-aware knowledge retrieval 1052

(Table 13), describing sub-graphs with LLMs (Table 14) and inference with sampled knowledge (Table 15). 1053

The question we showcase here is “The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s 1054

disease is: A. Visual association areas B. Entorhinal coex C. Temporal lobe D.Lateral geniculate body”, 1055

which is the same as the one we use in Section 5.4. 1056
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Input Read the following abstract, answer the following question. Abstract: Thiamine
pyrophosphate (TPP) and the activities of thiamine-dependent enzymes are reduced
in Alzheimer’s disease (AD) patients. In this study, we analyzed the relationship
between thiamine deficiency (TD) and amyloid precursor protein (APP) process-
ing in both cellular and animal models of TD. In SH-SY5Y neuroblastoma cells
overexpressing APP, TD promoted maturation of beta-site APP cleaving enzyme 1
(BACE1) and increased beta-secretase activity which resulted in elevated levels of
beta-amyloid (Abeta) as well as beta-secretase cleaved C-terminal fragment (beta-
CTF). An inhibitor of beta-secretase efficiently reduced TD-induced up-regulation
of Abeta and beta-CTF. Importantly, thiamine supplementation reversed the TD-
induced alterations. Furthermore, TD treatment caused a significant accumulation
of reactive oxygen species (ROS); antioxidants suppressed ROS production and
maturation of BACE1, as well as TD-induced Abeta accumulation. On the other
hand, exogenous Abeta(1-40) enhanced TD-induced production of ROS. A study
on mice indicated that TD also caused Abeta accumulation in the brain, which
was reversed by thiamine supplementation. Taken together, our study suggests that
TD could enhance Abeta generation by promoting beta-secretase activity, and the
accumulation of Abeta subsequently exacerbated TD-induced oxidative stress.Entity:
Thiamine (thiamine), deficiency increases beta-secretase, TPP (Thiamine pyrophos-
phate), Alzheimer’s disease (AD), patients, amyloid precursor protein (beta-amyloid
(Abeta)), neuroblastoma, BACE1 (beta-site APP cleaving enzyme 1), Abeta, ROS
(reactive oxygen species), Abeta accumulation, mice. Question: predict the relation-
ship between Disease entity "sclerosis" and Disease entity "multiple sclerosis", first
choose from the following options: A. resembles B. no-relation C. others, please
specify by generating a short predicate in 5 words. Answer: Let’s think step by step:

Output 1. Sclerosis is a disease of the central nervous system. 2. Multiple sclerosis is
the most common form of sclerosis. 3. So the relationship between sclerosis and
multiple sclerosis should be "sclerosis is a kind of multiple sclerosis". So the answer
is: A. resembles. So the answer is: A. resembles

Table 9: An example to extract the relationship between “sclerosis” and “multiple sclerosis” using RE construction
method.

PubTator Type Hetionet Type
Gene genes
Chemical compounds
Disease diseases

Table 10: Entity type match from PubTator to Hetionet.

Type-Type Relations
genes-genes ["covaries", "interacts", "regulates"]
disease-disease ["resembles"]
compounds-compounds ["resembles"]
genes-diseases ["downregulates","associates","upregulates"]
genes-compounds ["binds", "upregulates", "downregulates"]
compounds-diseases ["treats", "palliates"]

Table 11: Type-type to relation match in Hetionet.
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Path-based Sub-graph

neurofibrillary tangles->FORM BY->microtubule-associated protein tau->BINDS->
(18)F-THK-5117->ADMINISTERED TO->rats->has->Alzheimer’s disease ->
Alzheimer’s disease ->affects->human->has->AD->DISEASE OF->Brain
entorhinal cortex->is a part of->brain->ASSOCIATES->
mouse with Alzheimer’s disease->brain region->temporal lobe

Neighbor-based Sub-graph

neurofibrillary tangles->FORM BY->microtubule-associated protein tau
Alzheimer’s disease ->causes->neuronal death
Alzheimer’s disease ->associates->cognitive decline
Alzheimer’s disease ->affects->human
Alzheimer’s disease ->has subtype->neurodegenerative diseases

Table 12: An example of path-based and neighbor-based sub-graph for the question.

Input

There is a question and some knowledge graph. The knowledge graphs follow entity->relationship
->entity list format.
Graph:
neurofibrillary tangles->FORM BY->microtubule-associated protein tau->BINDS->
(18)F-THK-5117->ADMINISTERED TO->rats->has->Alzheimer’s disease ->Alzheimer’s disease ->
affects->human->has->AD->DISEASE OF->Brain
entorhinal cortex->is a part of->brain->ASSOCIATES->
mouse with Alzheimer’s disease->brain region->temporal lobe}

Question:

The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s disease is:
A. Visual association areas
B. Entorhinal coex
C. Temporal lobe
D.Lateral geniculate body

Please rerank the knowledge graph and output at most 5 important and relevant triples for
solving the given question. Output the reranked knowledge in the following format:
Reranked Triple1: xxx ——>xxx
Reranked Triple2: xxx ——>xxx
Reranked Triple3: xxx ——>xxx
Reranked Triple4: xxx ——>xxx
Reranked Triple5: xxx ——>xxx

Answer:

Output
Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

Table 13: An example of our self-aware knowledge retrieval in path-based sub-graph.

Input

There are some knowledge graph paths. They follow entity->relationship->entity format.

Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

Use the knowledge graph information. Try to convert them to natural language, respectively.
Use single quotation marks for entity name and relation name.
And name them as Path-based Evidence 1, Path-based Evidence 2,...

Output:

Output
Path-based Evidence 1: ’Entorhinal cortex’ is a part of ’brain’.
Path-based Evidence 2: ’Entorhinal cortex’ associates ’mouse’ with ’Alzheimer’s disease’.
Path-based Evidence 3: ’Temporal lobe’ is affected by ’Alzheimer’s disease’.

Table 14: An example to describe the self-retrieved path-based sub-graph with the LLM.

D ADQA Benchmark 1057

Table 16 shows the detailed prompt of our self-sample method to construct ADQA benchmark. Table 17 1058

gives the statistics of our ADQA benchmark. 1059
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Input

Question: The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s disease is:
A.Visual association areas
B.Entorhinal coex
C.Temporal lobe
D.Lateral geniculate body

You have some medical knowledge information in the following:
###Path-based Evidence 1: ’Entorhinal cortex’ is a part of ’brain’.
Path-based Evidence 2: ’Entorhinal cortex’ associates ’mouse’ with ’Alzheimer’s disease’.
Path-based Evidence 3: ’Temporal lobe’ is affected by ’Alzheimer’s disease’.
###Neighbor-based Evidence 1: ’neurofibrillary tangles’ are ’FORMED BY’ ’
microtubule-associated protein tau’.
Neighbor-based Evidence 2: ’Alzheimer’s disease’ ’CAUSES’ ’neuronal death’.
Neighbor-based Evidence 3: ’Alzheimer’s disease’ ’ASSOCIATES’ with ’cognitive decline’.
Neighbor-based Evidence 4: ’Alzheimer’s disease’ ’AFFECTS’ ’human’.
Neighbor-based Evidence 5: ’Alzheimer’s disease’ ’HAS SUBTYPE’ ’neurodegenerative diseases’."

Answer: Let’s think step by step:

Output

In Alzheimer’s disease, neurofibrillary tangles are composed of
abnormal aggregations of tau protein within neurons, leading to
neuronal dysfunction and eventual cell death. The lateral geniculate
body is a relay center in the thalamus that processes visual
information from the retina to the visual cortex. Since the lateral
geniculate body is not directly involved in memory and cognitive
function, it is less likely to be affected by neurofibrillary tangles in
Alzheimer’s disease compared to other brain regions such as the
entorhinal cortex and temporal lobe which play crucial roles in memory
and cognitive processing. Therefore, the area of the brain resistant to
neurofibrillary tangles of Alzheimer’s disease is the lateral geniculate
body (option D)

Table 15: An example of inference with selected knowledge

Input

Judge whether the question below is related to Alzheimer’s Disease. Please answer yes or no.
Question: Treatable causes of dementia are ___.
a).AD b).Hypothyroidism c).Multi-infarct dementia d).SDH e).Hydrocephalus
Is the question related to Alzheimer’s Disease? Answer:

Output Yes

Table 16: An example from MedMCQA to self-sample AD-related QA sample with LLMs.

Dataset MedQA MedMCQA MMLU QA4MRE Total
Number 152 210 49 35 446

Table 17: Statistics of our ADQA benchmark.

E Further Experiment for RAG1060

MedQA MedMCQA NMMLU QA4MRE AVG
Almanac w/ 256 chunk size 50.0 69.0 67.3 62.9 62.3
Almanac w/ top 10 document 48.7 68.6 65.3 62.9 61.4
Almanac w/ CoT 50.0 65.7 77.6 65.7 64.7
Clinfo.ai w/ 256 chunk size 48.6 66.7 81.6 65.7 65.7
Clinfo.ai w/ top 5 document 43.4 68.1 77.6 68.6 64.4
Clinfo.ai w/ CoT 48.7 68.6 79.6 68.6 65.0

Table 18: Further experiment in RAG methods with different hyper-parameter settings.

F Time Cost for Subgraphs Extraction1061
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MedQA MedMCQA NMMLU QA4MRE AVG
AVG Length 107.4 23.8 342.9 17.6 122.9
Time Cost (s) 2.25 0.89 2.25 1.09 1.62

Table 19: Average lengths of questions and time costs to construct the two subgraphs (path-based subgraph and
neighbor-based subgraph) for each dataset.
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