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ABSTRACT

Physics-Informed Neural Networks (PINNs) approximate PDE solutions by em-
bedding physical constraints into training, yet MLP-based backbones often suffer
from instability and loss of fidelity on long horizons. Recent sequence models
(e.g., Transformers) alleviate some of these issues, but their encoder–decoder de-
sign adds parameters and memory pressure with limited benefit for autoregressive
pseudo-sequences. We introduce DoPformer, a decoder-only Transformer tai-
lored to physics-informed learning. DoPformer consumes short spatio–temporal
pseudo-sequences, uses multi-head self-attention with WaveAct activations, and
applies a sequential physics loss across the window. Removing the encoder and
cross-attention yields a lighter model while preserving long-range temporal cou-
pling through self-attention. To further boost spectral accuracy, we explore two
optional modules: (i) a Fourier neural-operator branch (DoPformer+NO) that
improves oscillatory regimes and long-horizon rollouts; and (ii) a compact KAN-
based feed-forward replacement (DoPformer+KAN) that drastically reduces pa-
rameters while maintaining strong accuracy. Across convection, reaction, wave,
and 2D Navier–Stokes equations, DoPformer consistently improves PINN accu-
racy and stability; the NO and KAN variants deliver additional gains depending
on stiffness and spectral content. Our numerical results show that on these bench-
marks DoPformer attains state-of-the-art accuracy among physics-informed mod-
els while using substantially fewer parameters.

1 INTRODUCTION

Numerically solving partial differential equations (PDEs) has long been a central problem in science
and engineering. Classical numerical solvers, such as the finite element method (Bathe, 2008) or
pseudo-spectral method (Fornberg, 1996), provide accurate solutions but incur high computational
cost, particularly in high-dimensional or multiscale settings. With the rise of scientific machine
learning, Physics-Informed Neural Networks (PINNs) (Lagaris et al., 1997; Raissi et al., 2019) have
emerged as a promising alternative. PINNs approximate the solution uθ(x, t) using a neural network
trained by minimizing a physics-informed objective that combines PDE residuals with initial and
boundary conditions. This mesh-free, data-free paradigm has been successfully applied to many
forward and inverse PDE problems.

Despite their flexibility, conventional PINNs built on multilayer perceptrons (MLPs) often fail when
solutions involve oscillatory, high-frequency, or multiscale components (Raissi & Karniadakis,
2018; Fuks & Tchelepi, 2020; Krishnapriyan et al., 2021; Wang et al., 2022). Such models tend
to produce over-smoothed solutions that satisfy residuals locally but fail to propagate information
from initial conditions globally. These failure modes are especially pronounced for hyperbolic PDEs
(e.g., convection, wave), where accurate temporal coupling is critical.

Two broad routes have been explored to mitigate these issues. One leverages additional data or sam-
pling strategies (Raissi et al., 2017; Zhu et al., 2019; Faroughi et al., 2023), which may be imprac-
tical in data-scarce regimes. The other modifies optimization and training schemes (Krishnapriyan
et al., 2021), often at substantial computational cost. A complementary approach is to strengthen
architectural inductive biases. Recent work adapts sequence models to PINNs: Transformer-based
PINNs (Zhao et al., 2024) capture temporal dependencies via encoder–decoder attention, while state-
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space models (e.g., PINN-Mamba) (Xu et al., 2025) align subsequences to combat over-smoothing.
These ideas improve accuracy but introduce additional complexity and parameters.

Why decoder-only? We revisit the design of sequence models for PINNs through the lens of the
training signal and data geometry. In physics-informed learning, inputs and targets inhabit the same
spatio–temporal manifold: each token is a coordinate (x, t), and the model predicts u(x, t) at that
token. Unlike supervised sequence-to-sequence settings that map between heterogeneous domains
(e.g., translation), there is no distinct source/target stream that would necessitate cross-attention.
Thus, encoder layers and cross-attention can be redundant, yet they add parameters, memory traffic,
and extra Jacobian–vector products for automatic differentiation through the residual. By analogy
with modern language modeling where decoder-only Transformers excel at autoregressive inference
on homogeneous token streams, a decoder-style self-attention stack over short pseudo-sequences
should be sufficient (and preferable) for PINNs: self-attention propagates temporal information
across the window, while removing the encoder reduces optimization stiffness, activation memory,
and FLOPs without sacrificing capacity.

Our work. We propose DoPformer, a streamlined decoder-only Transformer tailored for physics-
informed PDE solving. DoPformer consumes short spatio–temporal pseudo-sequences, uses multi-
head self-attention with WaveAct activations, and applies a sequential physics loss across the win-
dow. The architecture is simple yet effective: by removing the encoder and cross-attention, it
achieves higher accuracy with significantly fewer parameters. To further improve spectral fidelity,
we augment the backbone with a Fourier operator branch (DoPformer+NO) that captures high-
frequency modes and stabilizes long-horizon rollouts, and we explore a compact KAN-based feed-
forward replacement (DoPformer+KAN) that injects spline/symbolic inductive bias with only a few
thousand parameters.

Contributions.

• We introduce DoPformer, a decoder-only Transformer for PINNs that avoids encoder–
decoder redundancy and delivers stronger accuracy with fewer parameters.

• We develop spectral augmentation via a lightweight Fourier (neural-operator) branch,
improving oscillatory/high-frequency regimes and long-horizon stability.

• We propose a KAN feed-forward variant that achieves extreme parameter efficiency (∼3K
params) while maintaining high accuracy on smooth problems.

• Through comprehensive experiments on reaction, convection, wave, and 2D Navier–
Stokes, we show that DoPformer matches or surpasses strong sequence baselines (including
PINN-Mamba) while being the most lightweight competitive model; ablations quantify the
complementary roles of the streamlined backbone, Fourier augmentation, and KAN feed-
forward.

In summary, DoPformer establishes a simple, accurate, and efficient recipe for physics-informed
PDE learning: a decoder-style attention backbone for temporal coupling, optional spectral aug-
mentation for high-frequency content, and a compact feed-forward alternative for parameter-critical
regimes.

2 PRELIMINARIES

Physics–informed learning. Let u : Ω× [0, T ]→Rdout be the solution of a PDE with operatorN ,
boundary operator B, and initial data u0:

N [u](x, t) = 0, (x, t) ∈ Ω× (0, T ], (1)
B[u](x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

PINNs parameterize u by a neural network uθ(x, t) and optimize a physics loss that penalizes
residuals of equation 1–equation 3. With distributions over interior, boundary, and initial points,
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DΩ×[0,T ], D∂Ω×[0,T ], and DΩ, the population objective is

L(θ) = λr E(x,t)∼DΩ×[0,T ]

[
∥N [uθ](x, t)∥22

]
(4)

+ λb E(x,t)∼D∂Ω×[0,T ]

[
∥B[uθ](x, t)∥22

]
(5)

+ λ0 Ex∼DΩ

[
∥uθ(x, 0)− u0(x)∥22

]
. (6)

In practice we use Monte Carlo estimates on finite sets Dr = {(xi, ti)}Nr
i=1, Db = {(xj , tj)}Nb

j=1,
D0 = {xℓ}N0

ℓ=1:

L̂(θ) = λr
1

Nr

Nr∑
i=1

∥∥N [uθ](xi, ti)
∥∥2
2

(7)

+ λb
1

Nb

Nb∑
j=1

∥∥B[uθ](xj , tj)
∥∥2
2

(8)

+ λ0
1

N0

N0∑
ℓ=1

∥∥uθ(xℓ, 0)− u0(xℓ)
∥∥2
2
. (9)

All derivatives in N and B (e.g., ∂tuθ, ∇xuθ, ∆uθ) are obtained by automatic differentiation. We
follow the common PINN convention of non-dimensionalizing variables and using fixed weights
λr, λb, λ0 unless noted; task-specific operators and domains are given in Sec. 4.

Limitations of MLP-based PINNs. Most PINNs employ point-wise multilayer perceptrons
(MLPs) that map (x, t) 7→ u(x, t) independently across coordinates. Despite universal approx-
imation, such models frequently underperform on oscillatory or multiscale PDEs, yielding over-
smoothed solutions that appear to satisfy residuals at sampled collocation points but fail globally
Krishnapriyan et al. (2021); Fuks & Tchelepi (2020). Two factors recur in analyses: (i) lack of
temporal inductive bias—point-wise predictors do not explicitly propagate information from initial
conditions across time, which is critical for transport- and wave-dominated regimes; (ii) optimization
bias toward simple hypotheses—training can settle on overly smooth or trivial patterns that minimize
discrete residuals yet violate the true dynamics between samples Wang et al. (2022). These limita-
tions motivate sequence-aware PINNs that encode temporal coupling within each training window.

Pseudo-sequences and Transformers (PINNsFormer). To inject temporal inductive bias,
PINNsFormer maps a single query (x, t) to a short pseudo-sequence

Sk(x, t; ∆t) = {[x, t], [x, t+∆t], . . . , [x, t+ (k − 1)∆t]} ∈ Rk×dmodel ,

where [·] concatenates spatial and temporal coordinates, k is the window length, ∆t is the stride,
and dmodel is the embedding width Zhang et al. (2024). Each token in Sk is linearly embedded
(“spatio–temporal mixer”), then the window is processed by a Transformer with an encoder–decoder
stack. The encoder applies self-attention and feed-forward layers; the decoder, unlike the vanilla
Transformer, omits decoder self-attention and keeps only encoder–decoder attention plus an FFN,
reusing the same embedded tokens as queries/keys/values (no separate target sequence). A small
output head predicts the field for all tokens. Inside FFNs, PINNsFormer uses a learnable wavelet-
style activation ω1 sin(·) + ω2 cos(·) to enhance spectral expressivity Zhang et al. (2024).

Sequential physics loss. The objective is switched from point-wise to sequence-wise: residual and
boundary terms are averaged across the k tokens, while the initial-condition penalty is applied only
to the first token (the earliest time in the window),

Lseq = λr
1

k

k−1∑
j=0

E
[∥∥N [uθ](x, t+ j∆t)

∥∥2
2

]
(10)

+ λb
1

k

k−1∑
j=0

E
[∥∥B[uθ](x, t+ j∆t)

∥∥2
2

]
(11)

+ λ0 E
[∥∥uθ(x, t)− u0(x)

∥∥2
2

]
. (12)

This encourages temporal propagation of constraints within each window and empirically improves
generalization on convection, reaction, and wave problems Zhang et al. (2024).
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Kolmogorov–Arnold networks (KAN). KANs Liu et al. (2025) replace fixed-node activations
in MLPs by learnable univariate edge functions with linear aggregation at nodes, motivated by
the Kolmogorov–Arnold representation. For a layer with nℓ inputs and nℓ+1 outputs, collect edge
functions in Φ(ℓ) = {ϕ(ℓ)

j,i }
nℓ+1, nℓ

j=1,i=1 and define

z
(ℓ+1)
j =

nℓ∑
i=1

ϕ
(ℓ)
j,i

(
z
(ℓ)
i

)
, j = 1, . . . , nℓ+1, (13)

so a depth-L KAN is f(x) = (Φ(L−1)◦ · · · ◦ Φ(0))(x). Each edge function is parameterized as a
residual–spline

ϕ(x) = wb b(x) + ws

G+k∑
r=1

cr B
(k)
r (x), (14)

where b(x) is a fixed base nonlinearity (e.g., SiLU), {B(k)
r } are B–spline bases of order k on a grid

with G intervals, and {wb, ws, {cr}} are trainable coefficients. This construction yields compact,
spectrally expressive univariate transforms on each edge while retaining simple additive aggregation
at nodes. All operations are differentiable, hence compatible with automatic differentiation required
by the physics residuals. Empirically, the learnable edge activations provide rich local function
classes (e.g., sinusoidal/decay profiles) that are frequently encountered in PDE solutions, making
KAN a convenient drop-in alternative to standard pointwise activations in PINN backbones .

Fourier neural operators (FNO). Neural operators learn maps between functions rather than
fixed-size vectors. A Fourier neural operator layer updates a feature field by (i) transforming to the
Fourier domain, (ii) applying learnable complex multipliers on the lowest modes, and (iii) trans-
forming back:

v̂′(k) = Rϕ(k) v̂(k) for |k| ≤ kmax, v+ = σ
(
F−1(v̂′) +Wv

)
, (15)

where v̂ = F(v) is the FFT of the field along the relevant axis (spatial or the short pseudo-sequence),
Rϕ(k) are learnable spectral weights on a truncated band of modes, W is a pointwise linear map,
and σ is a nonlinearity. This provides global mixing via a few Fourier modes and local refinement
via W , yielding strong accuracy on oscillatory or multiscale PDEs and good resolution transfer Li
et al. (2021); Kovachki et al. (2021).

3 DOPFORMER

3.1 DESIGN MOTIVATION

Sequence-aware PINNs (Sec. 2) suggest that temporal coupling inside a short window is the key
inductive bias to prevent over-smoothing and to propagate initial conditions. However, the encoder–
decoder layout of PINNsFormer duplicates computation on the same token window and pays extra
for cross-attention Zhang et al. (2024); Vaswani et al. (2017). DoPformer removes this redundancy:
we keep only self-attention over the pseudo-sequence and a strong pointwise nonlinearity, and we
add optional spectral modules that target the remaining failure modes (high-frequency drift). This
leads to higher accuracy per parameter and simpler optimization, while preserving the sequential
physics loss from Sec. 2.

3.2 ARCHITECTURE

Overview. Given a batch of pseudo-sequences {Sk(x, t; ∆t)} (Sec. 2), we concatenate spatial and
temporal scalars per token and apply a linear embedding to obtain X(0)∈RB×k×dmodel . DoPformer
stacks N decoder-only Transformer blocks that operate along the k-token window: each block per-
forms multi-head self-attention (MHSA) over tokens followed by a position-wise feed-forward net-
work (FFN); both sublayers use pre-activation WaveAct. A lightweight head maps tokens to field
values. There is no encoder and no cross-attention.
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Figure 1: DoPformer overview. The Pseudo-Sequence Builder expands a single query (x, t)
into a k-token window Sk(x, t; ∆t). The Spatio-Temporal Embedding applies a shared per-token
linear map R2→Rdmodel . A stack of N Decoder Blocks then processes this representation. In each
block, the top section Window Mixer mixes along the k-token window using either multi-head
self-attention (MHSA) or a spectral Fourier operator. The bottom section Pointwise Transform
applies per-token either a standard FFN (Linear→ WaveAct→ Linear) or a compact KAN (two
KAN layers with B-spline bases and LayerNorm). Both sections use pre-activation WaveAct and
residual connections. The Prediction Head is a small MLP with WaveAct that projects B×k×dmodel
to B × k × dout; at inference we read the token corresponding to the query time. Configurations:
BASE = MHSA + FFN; +NO = Fourier + FFN; +KAN = MHSA + KAN; +NO+KAN = Fourier
+ KAN.

Windowing and tokens. A token is the concatenation [x, t]. For a query (x, t) we form a short
window Sk(x, t; ∆t) = {[x, t + i∆t]}k−1

i=0 . Batches comprise many such windows sampled over
Ω × [0, T ]. We do not add extra positional encodings: the absolute time t + i∆t inside each token
and the short window length are sufficient in practice.

Wavelet activation. We adopt the wavelet-style nonlinearity Zhang et al. (2024)

WaveAct(z) = ω1 ⊙ sin(z) + ω2 ⊙ cos(z), (16)

with trainable ω1,ω2, which improves spectral expressivity and stabilizes multiscale training.

Core decoder-only block. Let X ∈ RB×k×dmodel be the block input. One DoPformer block up-
dates X as

X ← X +MHSA
(
WaveAct(X)

)
, (17)

X ← X + FFN
(
WaveAct(X)

)
. (18)

We use no causal mask (the window is local in time) and no cross-attention. This decoder-only stack
mixes information across the k tokens and avoids the encoder–decoder duplication in Zhang et al.
(2024).

Neural-Operator block (exact spec). In DoPformer+NO we replace MHSA by a spectral oper-
ator acting along the k-token window:

X ← X +NO
(
WaveAct(X)

)
, X ← X + FFN

(
WaveAct(X)

)
.

We use no normalization and no gating. The implementation treats the window as a (latitude =
k, longitude = 1) grid, applies spectral mixing, and projects back to [B, k,D]. Hyperparameters
(used in our experiments): embedding D=32, heads= 2, window k=7 (Reaction), bias enabled;
fusion is by replacement (NO instead of MHSA), no concatenation. For other PDEs we keep the
same recipe and only adjust k with the pseudo-sequence schedule.

KAN feed-forward (exact spec). In DoPformer+KAN we replace FFN by a two-layer KAN
block with pre-activation WaveAct and a residual connection, without normalization. Each edge
uses a quadratic B-spline basis with G=6 intervals (G+k=8 bases) plus a SiLU base:

ϕ(x) = wb SiLU(x) + ws

8∑
r=1

cr B
(2)
r (x), Φ(z)j =

nin∑
i=1

ϕj,i(zi).
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KAN-FFN stacks two such layers Φ(1) : Rdmodel → Rγdmodel and Φ(2) : Rγdmodel → Rdmodel , with
dmodel=8, γ=2 (hidden= 16) in the parameter-efficient Reaction setup, yielding≈ 3.16k parameters
for the whole model. In DoPformer+NO+KAN both replacements are applied (NO for MHSA,
KAN for FFN).

Block update

Y ← X +NO/MHSA
(
WaveAct(X)

)
Z ← Y + FFN/KAN

(
WaveAct(Y )

)
return Z

// Internals of NO (shape transforms)
q4 = query.permute(0,2,1).unsqueeze(-1) % [B,D,k,1]
o4 = attention(q4, k4, v4) % spectral mixing
out = o4.squeeze(-1).permute(0,2,1) % back to [B,k,D]

Head and outputs. A small MLP with WaveAct projects X ∈ RB×k×dmodel to Û ∈ RB×k×dout ,
producing predictions at all tokens. During training we use the sequential physics loss (Sec. 2); at
inference for a single (x∗, t∗) we form Sk(x∗, t∗; ∆t) and read the prediction at the corresponding
token.

3.3 SEQUENTIAL PHYSICS LOSS

We train with the sequence objective from Sec. 2: residual and boundary terms are averaged across
the k tokens of each window, and the initial condition is enforced only at the earliest token Zhang
et al. (2024). This couples local temporal neighborhoods and propagates constraints without requir-
ing an encoder or cross-attention.

4 EXPERIMENTS

Training details. For each PDE we sample interior, boundary, and initial collocation sets as in
Sec. 2, resampling interior points every fixed number of iterations. All models are trained with L-
BFGS to convergence under the same stopping rule; learning-rate and line-search settings are shared.
For sequence models we use the sequential loss. The pseudo-sequence hyperparameters (k,∆t) are
aligned with prior work Zhang et al. (2024); Xu et al. (2025) on each benchmark. Inputs (x, t)
are non-dimensionalized and standardized per task. Unless noted, we do not use dropout or causal
masks; gradients are clipped only on divergence.

Configurations (our methods). We evaluate four DoPformer variants: (i) DoPformer: decoder-
only Transformer with MHSA+FFN and WaveAct; (ii) DoPformer+NO: same backbone but replac-
ing MHSA with a Fourier neural-operator layer acting along the k-token window (spectral attention);
(iii) DoPformer+KAN: FFN replaced by a compact KAN block per token (two KAN layers with
cubic B-splines on a coarse grid); (iv) DoPformer+NO+KAN: combination of spectral attention
and KAN FFN. Model widths/depths/heads are chosen to match the parameter ranges reported in
the result tables.

Benchmarks (equations and settings). We assess our methods on the standord set of benchmark
equations, namely:
Convection (1D advection).

∂tu+ β ∂xu = 0, x ∈ [0, 2π], t ∈ [0, 1],

with periodic boundaries and u(x, 0) = sinx; larger β increases transport dominance.

Reaction (1D logistic).

∂tu− ρ u(1− u) = 0, x ∈ [0, 2π], t ∈ [0, 1],

with periodic boundaries and a localized initial bump u(x, 0); stiffness grows with ρ.

6
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Figure 2: Qualitative comparison on a 1D spatio–temporal benchmark. Top: predicted fields
u(x, t). Bottom: pointwise absolute-error maps |û − u|; the value above each panel is the mean
absolute error over the space–time grid. Columns: PINNsFormer, PINNMamba, DoPformer,
DoPformer + NO (Fourier neural-operator mixing along the short pseudo-sequence), and DoP-
former + KAN (compact KAN feed-forward head). The decoder-only backbone reduces diffusion
artifacts; the spectral branch (+NO) recovers high-frequency content, while the KAN variant attains
the lowest pointwise error in this example. Experimental settings are in Sec. 4; quantitative results
are in Tabs. 1

Wave (1D).
∂ttu− c2 ∂xxu = 0, x ∈ [0, 1], t ∈ [0, 1],

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx) + 1
2 sin(βπx), ∂tu(x, 0) = 0,

stressing spectral fidelity due to multi-frequency superposition.

Navier–Stokes (2D, incompressible).

∂tv + (v·∇)v = −∇p+ ν∆v, ∇·v = 0, (x, y) ∈ Ω, t ∈ [0, 1],

with standard no-slip/inflow boundary conditions; we report errors for (u, v, p) on dense test grids
under the same setup as sequence-PINN baselines.

Metrics. We report total physics loss at convergence and relative errors on dense test grids of the

original resolution: rMAE =
∑

n |ûn−un|∑
n |un| and rRMSE =

√∑
n∥ûn−un∥2

2∑
n∥un∥2

2
. We also list trainable

parameter counts to assess efficiency.

Results: Convection & Reaction. On convection, DoPformer achieves the lowest rMAE/rRMSE
among all methods while using markedly fewer parameters than sequence baselines. This supports
the hypothesis that, for transport-dominated regimes, decoder-only self-attention over short windows
suffices to propagate ICs without encoder–decoder overhead. On reaction, DoPformer+KAN yields
the best errors overall, indicating that stronger token-wise nonlinearity (via KAN) is advantageous
when dynamics are locally stiff but less oscillatory; the spectral branch (+NO) is robust yet not
essential here.

Results: Wave & 2D Navier–Stokes. For the wave equation, attention-only DoPformer under-
fits high-frequency content as expected; adding the Fourier branch (DoPformer+NO) substantially
reduces error, validating spectral augmentation along the window. On 2D Navier–Stokes, the com-
bined DoPformer+NO+KAN variant attains the strongest accuracy among our models while re-
maining extremely compact, demonstrating that low-rank spectral mixing and expressive token non-
linearities complement each other in multi-field, higher-dimensional flows.

7
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Table 1: Results for solving convection and reaction equations.
Convection Reaction

Model #Params Loss rMAE rRMSE Loss rMAE rRMSE
PINN 527361 0.0239 0.8514 0.8989 0.1991 0.9803 0.9785
QRes 396545 0.0798 0.9035 0.9245 0.1991 0.9826 0.9830
PINNsFormer 453561 0.0068 0.4527 0.5217 3e-6 0.0434 0.0686
KAN 891 0.0250 0.6049 0.6587 7e-6 0.0166 0.0343
PINN-Mamba 285763 4.1e-5 0.0188 0.0201 1e-6 0.0105 0.0248
DoPformer 161295 0.0001 0.0145 0.0165 2e-6 0.0097 0.0169
DoPformer+NO 161295 0.0002 0.0243 0.0381 3e-6 0.0191 0.0209
DoPformer+KAN 3159 0.0001 0.0796 0.0932 1e-6 0.0043 0.0090
DoPformer+NO+KAN 3159 0.0001 0.0436 0.0932 9.8e-6 0.0564 0.0746

Table 2: Results for solving wave and 2D Navier–Stokes equations.
Wave Navier–Stokes (2D)

Model #Params Loss rMAE rRMSE Loss rMAE rRMSE
PINN 527361 0.0320 0.4101 0.4141 7.31e-5 14.42 10.02
QRes 396545 0.0987 0.5349 0.5265 2.24e-4 6.41 4.45
PINNsFormer 453561 0.0216 0.3559 0.3632 6.49e-6 0.375 0.274
KAN 891 0.0067 0.1433 0.1458 3.43e-4 8.74 7.02
PINN-Mamba 285763 0.0002 0.0197 0.0199 1.26e-5 2.128 1.074
DoPformer 161295 0.0002 0.0173 0.0178 5.63e-6 0.278 0.222
DoPformer+NO 161295 0.0002 0.0201 0.0207 5.53e-6 0.285 0.213
DoPformer+KAN 3159 0.0003 0.0351 0.0407 3.11e-5 2.453 1.642
DoPformer+NO+KAN 3159 0.0002 0.0202 0.0211 3.76e-6 0.176 0.104

Efficiency. The decoder-only design eliminates encoder self-attention and cross-attention, cutting
parameters and FLOPs versus encoder–decoder Transformers and lowering activation memory (ben-
eficial for L-BFGS). In our settings, DoPformer uses ∼40% fewer weights than PINN-Mamba and
∼3× fewer than PINNsFormer, yet matches or surpasses their accuracy. The NO branch adds only a
small spectral module (FFT and a few complex weights) and an optional gating projection; the KAN
swap keeps the FFN budget tiny (few thousand parameters) while boosting per-token expressivity.

Discussion. KAN brings the most benefit on reaction-type dynamics: its learnable univariate
edge functions provide strong token-wise nonlinearity that captures sharp local responses and helps
with stiffness, without adding sequence-mixing complexity. For wave-like problems, a Fourier
neural-operator layer along the short window supplies the missing spectral mixing, reducing the
low-frequency bias of attention-only backbones and stabilizing long-horizon rollouts. Because
pseudo-sequences are formed around a single spatio–temporal query, encoder and decoder in an en-
coder–decoder stack effectively process the same tokens; a decoder-only design removes duplicated
projections yet keeps the crucial inductive bias of temporal coupling within the window. Finally,
the compact DoPformer+NO+KAN configuration scales well to 2D multi-field systems, offering a
practical route to higher-dimensional PDEs without the complexity typically associated with heavy
sequence encoders.

5 RELATED WORK

PINNs solve PDEs by enforcing physics residuals at collocation points Raissi et al. (2019), yet train-
ing can fail on multiscale/oscillatory regimes or exhibit imbalance among loss terms Krishnapriyan
et al. (2021). Remedies include domain decomposition (XPINNs) for scalability and discontinu-
ities Jagtap & Karniadakis (2020) and causal curricula to stabilize long-horizon transients Wang
et al. (2024). Sequence-aware models introduce temporal inductive bias: PINNsFormer builds short
pseudo-sequences with Transformer attention and spectral activations Zhang et al. (2024), while
PINN-Mamba leverages state-space sub-sequences to mitigate continuous–discrete mismatch and
simplicity bias Xu et al. (2025). Compact backbones reduce parameters and sharpen local re-
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sponse, e.g., KAN-based designs such as KINN and AL-PKAN Wang et al. (2025); Zhang et al.
(2025). Frequency-aware approaches curb spectral bias by operating in the Fourier domain or en-
riching high-frequency bases Yu et al. (2024). Finally, physics-informed operator learning (e.g.,
FNO/PINO) targets generalization across PDE families via spectral convolutions with residual-
based constraints Li et al. (2021; 2024).

6 CONCLUSION

We introduced DoPformer, a streamlined decoder-only Transformer for physics-informed learn-
ing of PDEs. By coupling short pseudo-sequences with lightweight multi-head self-attention
and WaveAct-enhanced token updates, DoPformer retains the temporal inductive bias needed for
transport- and wave-dominated dynamics while discarding the encoder–decoder redundancy of prior
sequence PINNs. We further showed that two orthogonal augmentations—(i) a Fourier neural-
operator layer for spectral mixing along the window and (ii) a compact KAN-based feed-forward
module for expressive token-wise nonlinearities—can be plugged in without disrupting the physics
loss or automatic differentiation.

Across four standard benchmarks (1D convection, reaction, wave; 2D Navier–Stokes), DoPformer
variants match or surpass strong baselines, including recent state-of-the-art sequence models, while
using far fewer parameters. Ablations indicate clear regimes of benefit: KAN excels on locally stiff
reaction dynamics; the Fourier branch is essential for oscillatory wave problems; and their combi-
nation scales favorably to multi-field 2D flows. Together, these results support a simple message:
for pseudo-sequence PINNs, decoder-only temporal mixing is sufficient and often preferable when
paired with targeted spectral and nonlinearity enhancements.

Limitations and future work. Our study focuses on compact windows and fixed (k,∆t) sched-
ules; adaptive windowing, causal masks for extrapolative rollouts, and multi-resolution spectral mix-
ing are natural extensions. Scaling to 3D and multi-physics systems, incorporating hard boundary
constraints and geometry encoders, and integrating uncertainty quantification or data assimilation
are promising directions. Finally, unifying neural-operator layers with KAN-style token nonlinear-
ities inside a single block may further improve accuracy–efficiency trade-offs for challenging PDE
regimes.
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