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Abstract. We propose a trust-region stochastic sequential quadratic programming algorithm
(TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic
equality constraints. We consider a fully stochastic setting, where at each step a single sample is
generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius
and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian
matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for
constrained optimization, our algorithm must address an infeasibility issue---the linearized equality
constraints and trust-region constraints may lead to infeasible SQP subproblems. In this regard, we
propose an adaptive relaxation technique to compute the trial step, consisting of a normal step and
a tangential step. To control the lengths of these two steps while ensuring a scale-invariant property,
we adaptively decompose the trust-region radius into two segments, based on the proportions of the
rescaled feasibility and optimality residuals to the rescaled full KKT residual. The normal step has
a closed form, while the tangential step is obtained by solving a trust-region subproblem, to which a
solution ensuring the Cauchy reduction is sufficient for our study. We establish a global almost sure
convergence guarantee for TR-StoSQP and illustrate its empirical performance on both a subset of
problems in the CUTEst test set and constrained logistic regression problems using data from the
LIBSVM collection.
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1. Introduction. We consider the following constrained stochastic optimization
problem:

min
\bfitx \in \BbbR d

f(\bfitx ) =\BbbE [F (\bfitx ; \xi )] s.t. c(\bfitx ) = 0,(1.1)

where f : \BbbR d \rightarrow \BbbR is a stochastic objective with F (\cdot ; \xi ) being one of its realizations,
c :\BbbR d\rightarrow \BbbR m are deterministic equality constraints, \xi is a random variable following the
distribution \scrP , and the expectation \BbbE [\cdot ] is taken over the randomness of \xi . Problem
(1.1) appears in various applications, including constrained deep neural networks [13],

\ast Received by the editors November 29, 2022; accepted for publication (in revised form) January
29, 2024; published electronically June 11, 2024. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

https://doi.org/10.1137/22M1537862
Funding: This work was partially supported by the DOE, NSF, and ONR, as well as the

JPMorgan Chase Faculty Research Award.
\dagger Committee on Computational and Applied Mathematics, University of Chicago, Chicago, IL

60637 USA (ycfang@uchicago.edu).
\ddagger International Computer Science Institute and Department of Statistics, University of California,

Berkeley, CA 94720 USA (senna@berkeley.edu).
\S International Computer Science Institute, Lawrence Berkeley National Laboratory, and Depart-

ment of Statistics, University of California, Berkeley, CA 94720 USA (mmahoney@stat.berkeley.edu).
\P Marshall School of Business, University of Southern California, Los Angeles, CA 90089 USA

(mkolar@marshall.usc.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2007

D
ow

nl
oa

de
d 

05
/1

7/
25

 to
 1

85
.2

41
.4

1.
88

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1537862
mailto:ycfang@uchicago.edu
mailto:senna@berkeley.edu
mailto:mmahoney@stat.berkeley.edu
mailto:mkolar@marshall.usc.edu


2008 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

constrained maximum likelihood estimation [21], optimal control [7], PDE-constrained
optimization [32], and network optimization [5].

There are numerous methods for solving constrained optimization problems with
deterministic objectives. Among them, sequential quadratic programming (SQP)
methods are one of the leading approaches and are effective for both small and large
problems. When the objective is stochastic, some stochastic SQP (StoSQP) methods
have been proposed recently [2, 3, 4, 18, 25, 26]. That body of literature considers
the following two different setups for modeling the objective.

The first setup is called the random model setup [14], where samples with adap-
tive batch sizes are generated in each iteration to estimate the objective model
(e.g., objective value and gradient). The algorithms under this setup often require the
estimated objective model to satisfy certain adaptive accuracy conditions with a fixed
probability in each iteration. Under this setup, [26] proposed an StoSQP algorithm
for (1.1), which adopts a stochastic line search procedure with an exact augmented
Lagrangian merit function to select the stepsize. Subsequently, [25] further enhanced
the designs and arguments in [26] and developed an active-set StoSQP method to
enable inequality constraints; and [4] considered a finite-sum objective and acceler-
ated StoSQP by applying the SVRG technique [24], which, however, requires one to
periodically compute the full objective gradient. Also, [1] introduced a norm test
condition for StoSQP to adaptively select the batch sizes.

The second setup is called the fully stochastic setup [20], where a single sample
is generated in each iteration to estimate the objective model. Under this setup, a
prespecified sequence is often required as an input to assist with the step selection.
For example, [3] designed an StoSQP scheme that uses a random projection procedure
to select the stepsize. The projection procedure uses a prespecified sequence \{ \beta k\} , to-
gether with the estimated Lipschitz constants of the objective gradient and constraint
Jacobian, to construct a projection interval in each iteration. A random quantity is
then computed and projected into the interval to decide the stepsize, which ensures
a sufficient reduction on the \ell 1 merit function. Based on [3], some algorithmic and
theoretical improvements have been reported: [2] dealt with rank-deficient Jacobians;
[18] solved Newton systems inexactly; [16] analyzed the worst-case sample complexity;
and [28] established the local rate and performed statistical inference for the method
in [3].

The existing StoSQP algorithms converge globally either in expectation or al-
most surely, and enjoy promising empirical performance under favorable settings.
However, there are three limitations that motivate our study. First, the algorithms
are all line-search-based; that is, a search direction is first computed by solving an
SQP subproblem, and then a stepsize is selected, either by random projection or by
stochastic line search along the direction. However, it is observed that for determin-
istic problems, computing the search direction and selecting the stepsize jointly, as is
done in trust-region methods, can lead to better performance in some cases [29, Chap-
ter 4]. Second, to make SQP subproblems solvable, the existing schemes require the
approximation of the Lagrangian Hessian to be positive definite in the null space of
constraint Jacobian. Such a condition is common in the SQP literature [8, 29], while
it is often achieved by Hessian modification, which excludes promising choices of the
Hessian matrices, such as the unperturbed (stochastic) Hessian of the Lagrangian.
Third, to show global convergence, the existing literature requires the random merit
parameter to be not only stabilized but also sufficiently large (or small, depending on
the context) with an unknown threshold. To achieve the latter goal, [25, 26] imposed
an adaptive condition on the feasibility error when selecting the merit parameter,
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FULLY STOCHASTIC TRUST-REGION SQP 2009

while [2, 3, 4, 18] imposed a symmetry condition on the noise distribution. In con-
trast, deterministic SQP schemes only require the stability of the merit parameter
(see [8] and references therein).

In this paper, we consider the fully stochastic setup and design a trust-region sto-
chastic SQP (TR-StoSQP) method to address the above limitations. As a trust-region
method, TR-StoSQP computes the search direction and stepsize jointly, and, unlike
line-search-based methods, it avoids Hessian modifications in formulating SQP sub-
problems. Thus, it can explore negative curvature directions of the Hessian. Further,
our analysis only relies on the stability of the merit parameter (of the \ell 2 merit func-
tion), which is consistent with deterministic SQP schemes. The design of TR-StoSQP
is inspired by a stochastic trust-region method for solving unconstrained problems
reported in [20], which improves the authors' prior design in [19] from using a linear
model to a quadratic model to approximate the objective function. As in [20], our
method inputs a user-specified radius-related sequence \{ \beta k\} to generate the trust-
region radius at each step. Beyond this similarity, our scheme differs from [20] in
several aspects.

First, it is known that trust-region methods for constrained optimization are
bothered by the infeasibility issue---the linearized constraints and trust-region con-
straints may have an empty intersection, leading to an infeasible SQP subproblem.
While some literature on trust-region SQP has been proposed to address this issue
[10, 11, 30, 36], we develop a novel adaptive relaxation technique to compute the trial
step, which preserves a scale-invariant property and can be further adapted to our
stochastic setup. In particular, we decompose the trial step into a normal step and
a tangential step. Then, we control the lengths of the two steps by decomposing
the trust-region radius into two segments adaptively, based on the proportions of the
rescaled estimated feasibility and optimality residuals to the rescaled full KKT resid-
ual. Compared to the existing relaxation techniques, our relaxation technique does
not require any tuning parameters. See section 2 for details.

Second, in TR-StoSQP, we properly compute some control parameters using
known or estimable quantities. By the computation, we no longer need to tune the
other two input parameter sequences as in [20] (i.e., \{ \gamma 1,k, \gamma 2,k\} in their notation),
except to tune the input radius-related sequence \{ \beta k\} . Further, we use the control
parameters to adjust the input sequence \{ \beta k\} when computing the trust-region radius,
so that \{ \beta k\} \subseteq (0, \beta max] with any \beta max > 0 is sufficient for our convergence analysis.
Our design simplifies the one in [20], where there are three parameter sequences to
tune whose conditions are highly coupled (see [20, Lemma 4.5]). In addition, as the
authors stated, [20] rescaled the Hessian matrix based on the input \{ \gamma 1,k\} , which is not
ideal (because the rescaling step modifies the curvature information of the Hessian).
We have removed this step in our design.

To our knowledge, TR-StoSQP is the first trust-region SQP algorithm for solving
constrained optimization problems under a fully stochastic setup. With a stabilized
merit parameter, we establish the global convergence property of TR-StoSQP. In par-
ticular, we show that (i) when \beta k = \beta for all k \geq 0, the expectation of weighted
averaged KKT residuals converges to a neighborhood around zero; (ii) when \beta k de-
cays properly such that

\sum 
\beta k =\infty and

\sum 
\beta 2
k <\infty , the KKT residuals converge to zero

almost surely. These results are similar to the ones for unconstrained and constrained
problems established under the fully stochastic setup in [2, 3, 18, 20]. However, we
have weaker conditions on the objective gradient noise (e.g., we consider a growth
condition) and on the sequence \beta k (e.g., we only require \beta k \leq \beta max). See the dis-
cussions after Theorems 4.9 and 4.11 for more details. We also note that a recent
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2010 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

paper [35] studied a noisy trust-region method for unconstrained deterministic opti-
mization. In that method, the value and gradient of the objective are evaluated with
bounded deterministic noise. The authors showed that the trust-region iterates visit
a neighborhood of the stationarity infinitely often, with the radius proportional to the
noise magnitude. Given the significant differences between stochastic and determin-
istic problems, and between constrained and unconstrained problems, our algorithm
design and analysis are quite different from [35]. That said, when studying the sta-
bility of the merit parameter, we follow existing literature (e.g., [3, 2, 26]) and also
require the bounded gradient noise condition. We implement TR-StoSQP on a subset
of problems in the CUTEst test set and on constrained logistic regression problems
using data from the LIBSVM collection. Numerical results demonstrate the promising
performance of our method.
Notation. We use \| \cdot \| to denote the \ell 2 norm for vectors and the operator norm for
matrices. I denotes the identity matrix, and 0 denotes the zero matrix (or vector).
Their dimensions are clear from the context. We let G(\bfitx ) =\nabla T c(\bfitx ) \in \BbbR m\times d be the
Jacobian matrix of the constraints and P (\bfitx ) = I  - GT (\bfitx )[G(\bfitx )GT (\bfitx )] - 1G(\bfitx ) be the
projection matrix to the null space of G(\bfitx ). We use \=g(\bfitx ) = \nabla F (\bfitx ; \xi ) to denote an
estimate of \nabla f(\bfitx ) and use \=(\cdot ) to denote stochastic quantities.
Structure of the paper. We introduce the adaptive relaxation technique in sec-
tion 2. We propose the trust-region stochastic SQP (TR-StoSQP) algorithm in sec-
tion 3 and establish its global convergence guarantee in section 4. Numerical exper-
iments are presented in section 5, and conclusions are presented in section 6. Some
additional analyses are provided in Appendix A.

2. Adaptive relaxation for deterministic setup. The Lagrangian of prob-
lem (1.1) is \scrL (\bfitx ,\bfitlambda ) = f(\bfitx ) + \bfitlambda T c(\bfitx ), where \bfitlambda \in \BbbR m is the dual vector. Finding a
first-order stationary point of (1.1) is equivalent to finding a pair (\bfitx \ast ,\bfitlambda \ast ) such that

\nabla \scrL (\bfitx \ast ,\bfitlambda \ast ) =

\biggl( 
\nabla \bfitx \scrL (\bfitx \ast ,\bfitlambda \ast )
\nabla \bfitlambda \scrL (\bfitx \ast ,\bfitlambda \ast )

\biggr) 
=

\biggl( 
\nabla f(\bfitx \ast ) +GT (\bfitx \ast )\bfitlambda \ast 

c(\bfitx \ast )

\biggr) 
=

\biggl( 
0
0

\biggr) 
.

We call \| \nabla \bfitx \scrL (\bfitx ,\bfitlambda )\| the optimality residual, \| \nabla \bfitlambda \scrL (\bfitx ,\bfitlambda )\| (i.e., \| c(\bfitx )\| ) the feasibility
residual, and \| \nabla \scrL (\bfitx ,\bfitlambda )\| the KKT residual. Given \bfitx k in the kth iteration, we denote
\nabla fk =\nabla f(\bfitx k), ck = c(\bfitx k), Gk =G(\bfitx k), etc.

2.1. Preliminaries. Given the iterate \bfitx k and the trust-region radius \Delta k in the
kth iteration, we compute an approximation Bk of the Lagrangian Hessian \nabla 2

\bfitx \scrL k and
aim to obtain the trial step \Delta \bfitx k by solving a trust-region SQP subproblem

min
\Delta \bfitx \in \BbbR d

1

2
\Delta \bfitx TBk\Delta \bfitx +\nabla fT

k \Delta \bfitx s.t. ck +Gk\Delta \bfitx = 0, \| \Delta \bfitx \| \leq \Delta k.(2.1)

However, if \{ \Delta \bfitx \in \BbbR d : ck +Gk\Delta \bfitx = 0\} \cap \{ \Delta \bfitx \in \BbbR d : \| \Delta \bfitx \| \leq \Delta k\} = \emptyset , then (2.1)
does not have a feasible point. This infeasibility issue happens when the radius \Delta k

is too short. To resolve this issue, one should not enlarge \Delta k, which would make
the trust-region constraint useless and violate the spirit of the trust-region scheme.
Instead, one should relax the linearized constraint ck +Gk\Delta \bfitx = 0.

Before introducing our adaptive relaxation technique, we review some classical re-
laxation techniques. To start, [11] relaxed the linearized constraint by \| ck+Gk\Delta \bfitx \| \leq 
\theta k with \theta k = \| ck+Gk\Delta \bfitx CP

k \| , where \Delta \bfitx CP
k is the Cauchy point (i.e., the best steepest

descent step) of the following problem:

min
\Delta \bfitx \in \BbbR d

\| ck +Gk\Delta \bfitx \| s.t. \| \Delta \bfitx \| \leq \Delta k.(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FULLY STOCHASTIC TRUST-REGION SQP 2011

However, since after the relaxation one has to minimize a quadratic function over
the intersection of two ellipsoids \| ck + Gk\Delta \bfitx \| \leq \theta k and \| \Delta \bfitx \| \leq \Delta k, the resulting
SQP subproblem tends to be expensive to solve. See [39] for some insights into the
difficulty, and see [40, 41] for the methods for positive definite Bk. Alternatively,
[36] relaxed the linearized constraint by \gamma kck + Gk\Delta \bfitx = 0, with \gamma k \in (0,1] chosen
to make the trust-region constraint of (2.1) inactive. However, [36] only showed the
existence of an extremely small \gamma k, and it did not provide a practical way to choose
it. Subsequently, [10] refined the relaxation technique of [36] by a step decomposition.
At the kth step, [10] decomposed the trial step \Delta \bfitx k into a normal step \bfitw k \in im(GT

k )
and a tangential step \bfitt k \in ker(Gk), denoted as \Delta \bfitx k = \bfitw k + \bfitt k. By the constraint
\gamma kck +Gk\Delta \bfitx k = 0, the normal step has a closed form as (suppose Gk has full row
rank)

\bfitw k := \gamma k\bfitv k := - \gamma k \cdot GT
k [GkG

T
k ]

 - 1ck,(2.3)

and the tangential step is expressed as \bfitt k = Zk\bfitu k for a vector \bfitu k \in \BbbR d - m. Here, the
columns of Zk \in \BbbR d\times (d - m) form the bases of ker(Gk). [10] proposed to choose \gamma k such
that \theta \Delta k \leq \| \bfitw k\| \leq \Delta k for a tuning parameter \theta \in (0,1), and solve \bfitu k from

min
\bfitu \in \BbbR d - m

1

2
\bfitu TZT

k BkZk\bfitu + (\nabla fk +Bk\bfitw k)
TZk\bfitu s.t. \| \bfitu \| 2 \leq \Delta 2

k  - \| \bfitw k\| 2.(2.4)

Furthermore, [30] combined the techniques of [11, 10]; it solved the normal step \bfitw k

from problem (2.2) by replacing the constraint \| \Delta \bfitx \| \leq \Delta k with \| \Delta \bfitx \| \leq \theta \Delta k for
some \theta \in (0,1); and it solved the tangential step \bfitt k = Zk\bfitu k from problem (2.4). We
note that the solution of (2.2) is naturally a normal step (i.e., lies in im(GT

k )), because
any directions in ker(Gk) do not change the objective in (2.2).

Although the methods in [10, 30] allow one to employ Cauchy points for trust-
region subproblems, they lack guidance for selecting the user-specified parameter \theta ,
which controls the lengths of the normal and tangential steps. In fact, an inappropri-
ate parameter \theta may make either step conservative and further affect the effectiveness
of the algorithm. As we show in (2.8) and (2.9) later, the normal step relates to the
reduction of the feasibility residual, while the tangential step relates to the reduc-
tion of the optimality residual. We hope the two steps scale properly so that the
model reduction achieved by \Delta \bfitx k is large enough. To that end, we propose an adap-
tive relaxation technique, which is parameter-free in step decomposition compared to
[36, 10, 30].

2.2. Our adaptive relaxation technique. We introduce our parameter-free
relaxation procedure. The same as in [10], we relax the linearized constraint in (2.1)
by \gamma kck +Gk\Delta \bfitx = 0, with \gamma k defined later, and decompose the trial step by \Delta \bfitx k =
\bfitw k + \bfitt k. The normal step \bfitw k is given by (2.3), and the tangential step is of the form
\bfitt k =Zk\bfitu k.

To control the lengths of the two steps while ensuring a scale-invariant property
(cf. Remark 2.2), let us define the rescaled optimality vector \nabla \bfitx \scrL RS

k :=\nabla \bfitx \scrL k/\| Bk\| ,
the feasibility vector cRS

k := ck/\| Gk\| , and the KKT vector \nabla \scrL RS
k := (\nabla \bfitx \scrL RS

k , cRS
k ).

(One alternative choice of the rescaled feasibility vector can be \bfitv k =GT
k [GkG

T
k ]

 - 1ck.)
Then, we adaptively decompose the trust-region radius \Delta k into two segments, based
on the proportions of the rescaled feasibility and optimality residuals to the rescaled
full KKT residual. We let

\u \Delta k =
\| cRS

k \| 
\| \nabla \scrL RS

k \| 
\cdot \Delta k and \~\Delta k =

\| \nabla \bfitx \scrL RS
k \| 

\| \nabla \scrL RS
k \| 

\cdot \Delta k.(2.5)
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2012 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

It is implicitly assumed that \| Bk\| ,\| Gk\| ,\| \nabla \scrL k\| \not = 0, which is quite reasonable for
SQP methods. We let \u \Delta k control the length of the normal step \bfitw k and \~\Delta k control
the length of the tangential step \bfitt k. Specifically, we define \gamma k as (recall \bfitv k is defined
in (2.3))

\gamma k :=min\{ \u \Delta k/\| \bfitv k\| ,1\} (2.6)

so that \| \bfitw k\| = \gamma k\| \bfitv k\| \leq \u \Delta k, and we compute \bfitu k by solving

min
\bfitu \in \BbbR d - m

m(\bfitu ) :=
1

2
\bfitu TZT

k BkZk\bfitu + (\nabla fk +Bk\bfitw k)
TZk\bfitu s.t. \| \bfitu \| \leq \~\Delta k.(2.7)

When \bfitv k = 0 (i.e., ck = 0), there is no need to choose \gamma k and we set \Delta \bfitx k = Zk\bfitu k.
Problem (2.7) is a trust-region subproblem that appears in unconstrained optimiza-
tion. In our analysis, we only require a vector \bfitu k that reduces m(\bfitu ) by at least as
much as the Cauchy point, which takes the direction of  - ZT

k (\nabla fk+Bk\bfitw k) and mini-
mizes m(\bfitu ) within the trust region [29, Algorithm 4.2]. Such a reduction requirement
can be achieved by various methods, including finding the exact solution or applying
the dogleg or two-dimensional subspace minimization methods [29].

The following result provides a bound on the reduction in m(\bfitu ) that is different
from the standard analysis of the Cauchy point; see, e.g., [29, Lemma 4.3].

Lemma 2.1. Let \bfitu k be an approximate solution to (2.7) that reduces the objective
m(\bfitu ) by at least as much as the Cauchy point. For all k\geq 0, we have

m(\bfitu k) - m(0) =
1

2
\bfitu T
k Z

T
k BkZk\bfitu k + (\nabla fk +Bk\bfitw k)

TZk\bfitu k

\leq  - \| ZT
k (\nabla fk +Bk\bfitw k)\| \~\Delta k +

1

2
\| Bk\| \~\Delta 2

k.

Proof. Let \bfitu CP
k denote the Cauchy point. Since m(\bfitu k)\leq m(\bfitu CP

k ), it suffices to
analyze the reduction achieved by \bfitu CP

k . By the formula of \bfitu CP
k in [29, (4.12)], we

know that if \| ZT
k (\nabla fk +Bk\bfitw k)\| 3 \leq \~\Delta k(\nabla fk +Bk\bfitw k)

TZkZ
T
k BkZkZ

T
k (\nabla fk +Bk\bfitw k),

then \bfitu CP
k =  - \| ZT

k (\nabla fk + Bk\bfitw k)\| 2/(\nabla fk + Bk\bfitw k)
TZkZ

T
k BkZkZ

T
k (\nabla fk + Bk\bfitw k) \cdot 

ZT
k (\nabla fk +Bk\bfitw k). In this case, using \| Zk\| \leq 1, we have

m(\bfitu CP
k ) - m(0) =

1

2
(Zk\bfitu 

CP
k )TBkZk\bfitu 

CP
k + (\nabla fk +Bk\bfitw k)

TZk\bfitu 
CP
k

= - 1

2

\| ZT
k (\nabla fk +Bk\bfitw k)\| 4

(\nabla fk +Bk\bfitw k)TZkZT
k BkZkZT

k (\nabla fk +Bk\bfitw k)
\leq  - 1

2

\| ZT
k (\nabla fk +Bk\bfitw k)\| 2

\| Bk\| 
.

Otherwise, \bfitu CP
k = - \~\Delta k/\| ZT

k (\nabla fk+Bk\bfitw k)\| \cdot ZT
k (\nabla fk+Bk\bfitw k). In this case, we have

m(\bfitu CP
k ) - m(0) =

1

2
(Zk\bfitu 

CP
k )TBkZk\bfitu 

CP
k + (\nabla fk +Bk\bfitw k)

TZk\bfitu 
CP
k

=
(\nabla fk +Bk\bfitw k)

TZkZ
T
k BkZkZ

T
k (\nabla fk +Bk\bfitw k)

2\| ZT
k (\nabla fk +Bk\bfitw k)\| 2

\~\Delta 2
k  - \| ZT

k (\nabla fk +Bk\bfitw k)\| \~\Delta k

\leq 1

2
\| Bk\| \~\Delta 2

k  - \| ZT
k (\nabla fk +Bk\bfitw k)\| \~\Delta k.

Combining the above two cases, we have

m(\bfitu CP
k ) - m(0)\leq  - min

\Biggl\{ 
 - \| Bk\| \~\Delta 2

k

2
+\| ZT

k (\nabla fk+Bk\bfitw k)\| \~\Delta k,
\| ZT

k (\nabla fk +Bk\bfitw k)\| 2

2\| Bk\| 

\Biggr\} 
.
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FULLY STOCHASTIC TRUST-REGION SQP 2013

Using the fact that

 - 1

2
\| Bk\| \~\Delta 2

k + \| ZT
k (\nabla fk +Bk\bfitw k)\| \~\Delta k

= - \| Bk\| 
2

\biggl( 
\~\Delta k  - 

\| ZT
k (\nabla fk +Bk\bfitw k)\| 

\| Bk\| 

\biggr) 2

+
\| ZT

k (\nabla fk +Bk\bfitw k)\| 2

2\| Bk\| 

\leq \| Z
T
k (\nabla fk +Bk\bfitw k)\| 2

2\| Bk\| 
,

we complete the proof.

It is easy to see that our relaxation technique indeed results in a trial step that
lies in the trust region. We have (noting that \| Zk\| \leq 1)

\| \Delta \bfitx k\| 2 = \| \bfitw k\| 2 + \| \bfitt k\| 2 = (\gamma k\| \bfitv k\| )2 + \| \bfitu k\| 2
(2.6),(2.7)

\leq \u \Delta 2
k +

\~\Delta 2
k

(2.5)
= \Delta 2

k.

Recalling from (2.3) that \bfitw k = - \gamma kGT
k [GkG

T
k ]

 - 1ck, we know ck+Gk\bfitw k = (1 - \gamma k)ck.
Thus, we have

\| ck +Gk\Delta \bfitx k\|  - \| ck\| = \| ck +Gk\bfitw k\|  - \| ck\| = - \gamma k\| ck\| \leq 0,(2.8)

where the strict inequality holds as long as ck \not = 0. This inequality suggests that
the normal step \bfitw k helps to reduce the feasibility residual. Furthermore, when we
define the least-squares Lagrangian multiplier as \bfitlambda k =  - GT

k [GkG
T
k ]\nabla fk, we have

Pk\nabla fk =\nabla \bfitx \scrL k. Noting that ZkZ
T
k = Pk, P

2
k = Pk and ZT

k Zk = I, we obtain

\| ZT
k (\nabla fk +Bk\bfitw k)\| 2 = (\nabla fk +Bk\bfitw k)

TZkZ
T
k (\nabla fk +Bk\bfitw k)

= (\nabla fk +Bk\bfitw k)
TP 2

k (\nabla fk +Bk\bfitw k) = \| \nabla \bfitx \scrL k + PkBk\bfitw k\| 2.

Thus, the conclusion of Lemma 2.1 can be rewritten as

m(\bfitu k) - m(0)\leq  - \| \nabla \bfitx \scrL k + PkBk\bfitw k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k,(2.9)

indicating that the tangential step relates to the reduction of the optimality residual.
To end this section, we would like to link our relaxation technique with those in

[10, 30] in Remark 2.2.

Remark 2.2. In our method, we define rescaled residuals \| \nabla \bfitx \scrL RS
k \| , \| cRS

k \| ,
\| \nabla \scrL RS

k \| and adaptively decompose the radius based on the proportions of these
rescaled residuals (cf. (2.5)). We have two motivations: (i) the relation of the normal
and tangential steps to the feasibility and optimality residuals; (ii) a scale-invariant
property. We explain as follows.

Seeing from (2.8) and (2.9), the normal step relates to the reduction of the fea-
sibility residual, while the tangential step relates to the reduction of the optimality
residual. When the proportion of the feasibility residual is larger than that of the
optimality residual, decreasing the feasibility residual is more important. As a result,
we assign a larger trust-region radius to the normal step to achieve a larger reduction
in the feasibility residual. Otherwise, we assign a larger radius to the tangential step
to achieve a larger reduction in the optimality residual. In comparison, [10, 30] rely
on a fixed proportion constant \theta \in (0,1), making their approach less adaptive than
ours.
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2014 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

On the other hand, we note that [10, 30] enjoy a nice scale-invariant property:
given the radius \Delta k, the trial step \Delta \bfitx k is invariant when the constraints c and/or the
objective f are rescaled by a (positive) scalar. Note that if f (or c) is rescaled by a
positive scalar, the Lagrangian Hessian (or the constraints Jacobian) will be rescaled
by the same scalar. To preserve the invariance property, we decompose \Delta k using the
rescaled residuals, as opposed to the original residuals \| \nabla \bfitx \scrL k\| and \| ck\| ; the latter
can never be scale-invariant.

In the next section, we move to the fully stochastic setup and utilize the proposed
relaxation scheme to design an StoSQP algorithm for (1.1). We will also discuss how
to use the relaxation in [10] to design a StoSQP method.

3. A trust-region stochastic SQP algorithm. From now on, we replace the
deterministic gradient \nabla f(\bfitx ) by its stochastic estimate \=g(\bfitx ) =\nabla F (\bfitx ; \xi ). Similar to
section 2, we denote \=gk = \=g(\bfitx k) and define the estimated KKT residual as \| \=\nabla \scrL k\| =
\| ( \=\nabla \bfitx \scrL k, ck)\| with \=\nabla \bfitx \scrL k = \=gk +GT

k \bfitlambda k.

We summarize the proposed TR-StoSQP algorithm in Algorithm 3.1 and intro-
duce the algorithm details as follows. In the kth iteration, we are given the iterate \bfitx k,
two fixed scalars \zeta > 0 and \delta \geq 0, and the parameters (\beta k,L\nabla f,k,LG,k, \=\mu k - 1). Here,
\beta k \in (0, \beta max] with upper bound \beta max > 0 being the input radius-related parameter;
L\nabla f,k and LG,k are the (estimated) Lipschitz constants of \nabla f(\bfitx ) and G(\bfitx ) (in prac-
tice, they can be estimated by standard procedures in [17, 3]); and \=\mu k - 1 is the merit
parameter of the \ell 2 merit function obtained after the (k - 1)th iteration. With these
parameters, we proceed with the following three steps.
Step 1: Compute control parameters. We compute a matrix Bk to approximate
the Hessian of the Lagrangian \nabla 2

\bfitx \scrL k and require it to be deterministic conditioning
on \bfitx k. With \bfitv k defined in (2.3), we then compute several control parameters:

\eta 1,k = \zeta \cdot \| \bfitv k\| /\| ck\| , \tau k =L\nabla f,k +LG,k\=\mu k - 1 + \| Bk\| ,

\alpha k =
\beta k

4(\eta 1,k\tau k + \zeta )\beta max
, \eta 2,k = \eta 1,k  - 

1

2
\zeta \eta 1,k\alpha k.

(3.1)

We should emphasize that, compared to the existing line-search-based StoSQP meth-
ods [2, 3, 4, 25, 26, 28], we do not require Bk to be positive definite in the null
space ker(Gk). This benefit adheres to the trust-region methods, more precisely the

Algorithm 3.1. A Trust Region Stochastic SQP (TR-StoSQP) Algorithm.
1: Input: Initial iterate \bfitx 0, radius-related sequence \{ \beta k\} \subset (0, \beta max], parameters

\rho > 1, \=\mu  - 1, \zeta > 0, \delta \geq 0, (estimated) Lipschitz constants \{ L\nabla f,k\} ,\{ LG,k\} .
2: for k= 0,1, . . . , do
3: Compute an approximation Bk and control parameters \eta 1,k, \tau k, \alpha k, \eta 2,k as (3.1);
4: Sample \xi kg and compute \=gk, \=\bfitlambda k, \=\nabla \scrL k, and the trust-region radius \Delta k as (3.2);
5: Decompose \Delta k as (2.5) and compute \=\gamma trial

k as (2.6) and \=\gamma k as (3.3);
6: Compute \Delta \bfitx k =\bfitw k + \bfitt k, where \bfitw k = \=\gamma k\bfitv k and \bfitt k =Zk\bfitu k is from (2.7);
7: Update \bfitx k+1 =\bfitx k +\Delta \bfitx k, set \=\mu k = \=\mu k - 1, and compute Predk as (3.5);
8: while (3.6) does not hold do
9: Set \=\mu k = \rho \=\mu k;
10: end while
11: end for
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FULLY STOCHASTIC TRUST-REGION SQP 2015

existence of the trust-region constraint. Due to this benefit, we can construct differ-
ent Bk to formulate the StoSQP subproblems. In our experiments in section 5, we
will construct Bk by the identity matrix, the symmetric rank-one (SR1) update, the
estimated Hessian without modification, and the average of the estimated Hessians.

The control parameters in (3.1) play a critical role in adjusting the input \{ \beta k\} 
and generating the trust-region radius. Compared to [20], \{ \eta 1,k, \eta 2,k\} (i.e., \{ \gamma 1,k, \gamma 2,k\} 
in their notation) are no longer inputs and Bk is not rescaled by the parameters.
Step 2: Compute the trust-region radius. We sample a realization \xi kg and
compute an estimate \=gk = \nabla F (\bfitx k; \xi 

k
g ) of \nabla fk. We then compute the least-squares

Lagrangian multiplier as \=\bfitlambda k = - [GkG
T
k ]

 - 1Gk\=gk and the KKT vector \=\nabla \scrL k. Further-
more, we define the trust-region radius as

\Delta k =

\left\{     
\eta 1,k\alpha k\| \=\nabla \scrL k\| if \| \=\nabla \scrL k\| \in (0,1/\eta 1,k),
\alpha k if \| \=\nabla \scrL k\| \in [1/\eta 1,k,1/\eta 2,k],
\eta 2,k\alpha k\| \=\nabla \scrL k\| if \| \=\nabla \scrL k\| \in (1/\eta 2,k,\infty ).

(3.2)

We provide the following remark to compare (3.2) with the line search scheme in [3].

Remark 3.1. It is interesting to see that the scheme (3.2) enjoys the same flavor
as the random-projection-based line search procedure in [3]. In particular, [3] updates
\bfitx k by \alpha k

\~\Delta \bfitx k each step, where \~\Delta \bfitx k is solved from problem (2.1) (without trust-region
constraint) and the stepsize \alpha k is selected by projecting a random quantity into an
interval like [\beta k, \beta k + \beta 2

k] (see (3.3) below). By the facts that \| \~\Delta \bfitx k\| = \scrO (\| \=\nabla \scrL k\| )
(i.e., \~\Delta \bfitx k and \=\nabla \scrL k have the same order of magnitude) and \alpha k = \scrO (\beta k), we know
\| \bfitx k+1  - \bfitx k\| = \| \alpha k

\~\Delta \bfitx k\| = \scrO (\beta k\| \=\nabla \scrL k\| ). This order is preserved by our trust-
region scheme, since, seeing from (3.1) and (3.2), we have \| \bfitx k+1  - \bfitx k\| = \| \Delta \bfitx k\| =
\scrO (\beta k\| \=\nabla \scrL k\| ). Furthermore, the projection in [3] brings some sort of adaptivity to the
scheme, as the stepsize \alpha k has a variability of \scrO (\beta 2

k). This merit is also preserved by
(3.2), noting that (\eta 1,k  - \eta 2,k)\alpha k =\scrO (\beta 2

k).
We emphasize that (3.2) offers adaptivity to selecting the radius \Delta k based on

\alpha k(=\scrO (\beta k)). When \| \=\nabla \scrL k\| is large, the iterate \bfitx k is likely to be far from the KKT
point. Thus, we set \Delta k >\alpha k to be more aggressive than \alpha k. Otherwise, when \| \=\nabla \scrL k\| 
is small, the iterate \bfitx k is likely to be near the KKT point. Thus, we set \Delta k < \alpha k to
be more conservative than \alpha k.

Step 3: Compute the trial step and update the merit parameter. With \Delta k

from Step 2, we adapt the relaxation technique in section 2.2 to compute the trial step
\Delta \bfitx k = \bfitw k + \bfitt k. In particular, we apply (2.5) to decompose \Delta k, with deterministic
residuals replaced by their stochastic estimates. Then, we apply (2.6) to compute the
stochastic counterpart of \gamma k, denoted as \=\gamma trial

k . Then, we set \=\gamma k as

\=\gamma k\leftarrow Proj
\bigl( 
\=\gamma trial
k

\bigm| \bigm| \bigl[ 0.5\zeta \phi k\alpha k,0.5\zeta \phi k\alpha k + \delta \alpha 2
k

\bigr] \bigr) 
,(3.3)

where \phi k =min\{ \| Bk\| /\| Gk\| ,1\} and Proj(a| [b, c]) is the projection function. It equals
a if a \in [b, c], b if a < b, and c if a > c. The normal step is \bfitw k = \=\gamma k\bfitv k, and the
tangential step \bfitt k = Zk\bfitu k is solved from (2.7), achieving an reduction at least as
much as Cauchy reduction. Finally, we update the iterate as \bfitx k+1 = \bfitx k +\Delta \bfitx k, and
update the merit parameter \=\mu k - 1 of the \ell 2 merit function, defined as

\scrL \=\mu (\bfitx ) = f(\bfitx ) + \=\mu \| c(\bfitx )\| .(3.4)
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2016 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

Specifically, we let \=\mu k = \=\mu k - 1 and compute the predicted reduction of \scrL k
\=\mu k

as

Predk = \=gTk \Delta \bfitx k +
1

2
\Delta \bfitx T

kBk\Delta \bfitx k + \=\mu k(\| ck +Gk\Delta \bfitx k\|  - \| ck\| ).(3.5)

The parameter \=\mu k is then iteratively updated as \=\mu k\leftarrow \rho \=\mu k with some \rho > 1 until

Predk \leq  - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k.(3.6)

We now explain some components of Step 3 in the following remarks.

Remark 3.2. The update rule for the merit parameter in (3.6) is well-posed and ter-
minates in a finite number of steps. By (2.8), \=\mu k(\| ck+Gk\Delta \bfitx k\|  - \| ck\| ) = - \=\gamma k\=\mu k\| ck\| .
Thus, when \| ck\| \not = 0, Predk decreases as \=\mu k increases and (3.6) is satisfied for a suffi-
ciently large \=\mu k. When \| ck\| = 0, both \bfitw k and \u \Delta k vanish, and Predk =m(\bfitu k) - m(0).
Then, (3.6) is satisfied solely by the tangential step, without selecting the merit pa-
rameter, as can be seen from (2.9). The choice of the right-hand-side threshold of
(3.6) ensures that the trial step achieves a sufficient reduction on the merit function
(3.4). In particular, it is known for SQP methods that the predicted reduction of
the merit function is characterized by the directional derivative of the merit function
along the trial step, which is proportional to  - \| \=\nabla \scrL k\| 2 when the merit parameter \=\mu k

is selected properly (see [3, 26]). This motivates the first term of the threshold. Fur-
ther, to control the quadratic term \Delta \bfitx T

kBk\Delta \bfitx k/2 in (3.5), we offset the threshold by
the second term \| Bk\| \Delta 2

k/2, which stems from the positive term in Cauchy reduction
(see Lemma 2.1). Overall, as shown in Lemma 4.6, the right-hand side of (3.6) is
always negative, meaning that the trial steps leads to a sufficient reduction.

The iterative update \=\mu k \leftarrow \rho \=\mu k is not essential, since the threshold of \=\mu k can be
obtained by directly solving (3.6). Then, \=\mu k can be updated by taking the maximum
between \rho \=\mu k and the threshold. The maximum operation ensures that \=\mu k is increased
by at least a fixed amount, \rho \=\mu  - 1, whenever it is updated. This is important for the
stability result of \=\mu k (see Lemma 4.13).

Remark 3.3. We utilize a projection step (3.3) in the selection of \=\gamma k. The interval
with a length of \delta \alpha 2

k provides some sort of flexibility in the selection, similar to
[3, 2] and references therein. The motivation behind the projection is to regulate
\=\gamma k using control parameters computed in (3.1). To gain insight into the interval
boundary, we consider a small \alpha k. Combining (2.5), (2.6), and (3.2), we obtain that
\=\gamma trial
k = \u \Delta k/\| \bfitv k\| =\scrO (\Delta k/\| \=\nabla \scrL RS

k \| ) =\scrO (\alpha k). As a result, the boundary should scale
proportionally with \alpha k. However, \scrO (\cdot ) hides the ratios between unscaled and scaled
residuals, such as \| \=\nabla \scrL k\| /\| \=\nabla \scrL RS

k \| . The control parameters are utilized to offer a
deterministic lower bound for these ratios. In the end, we can show that (see (4.10))

\zeta \phi k\alpha k/2\leq min\{ \u \Delta k/\| \bfitv k\| ,1\} =: \=\gamma trial
k ,

which implies \=\gamma k \leq \=\gamma trial
k and, consequently, the normal step \| \bfitw k\| = \=\gamma k\| \bfitv k\| \leq \u \Delta k.

Remark 3.4. In addition to our adaptive relaxation technique, we consider two
alternative relaxation approaches for designing StoSQP methods. These approaches
only affect the computation of \Delta \bfitx k, while the remaining parts of the algorithm remain
the same. Thus, these approaches enjoy the same global convergence analysis. The
proof of the stability result of the merit parameter \=\mu k may differ slightly. In this
regard, the detailed analysis is provided in Appendix A for the sake of completeness.
We empirically investigate the performance of the following methods in section 5.
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(i) We compute the same normal step \bfitw k, but instead of using (2.7) to compute
the tangential step \bfitt k, we follow the approach of [10, 30] and use (2.4). In other
words, we do not decompose \Delta k as in (2.5) but define \~\Delta k :=

\sqrt{} 
\Delta 2

k  - \| \bfitw k\| 2.
(ii) We follow the approach in [10]. In particular, we decompose \Delta k as \u \Delta k :=

\theta \Delta k and \~\Delta k :=
\sqrt{} 

\Delta 2
k  - \| \bfitw k\| 2 for a prespecified constant \theta \in (0,1]; and we apply

Algorithm 3.1 to derive the normal and tangential steps with \phi k in (3.3) replaced by \theta .

We end this section by introducing the randomness in TR-StoSQP. We let \scrF 0 \subseteq 
\scrF 1 \subseteq \scrF 2 \cdot \cdot \cdot be a filtration of \sigma -algebras with \scrF k - 1 generated by \{ \xi jg\} k - 1

j=0 ; thus, \scrF k - 1

contains all the randomness before the kth iteration. Let \scrF  - 1 = \sigma (\bfitx 0) be the trivial
\sigma -algebra for consistency. It is easy to see that for all k\geq 0, we have

\sigma (\bfitx k, \eta 1,k, \tau k, \alpha k, \eta 2,k)\subseteq \scrF k - 1 and \sigma (\Delta \bfitx k, \=\bfitlambda k, \=\mu k)\subseteq \scrF k.

In the next section, we conduct the global analysis of the proposed algorithm.

4. Convergence analysis. We study the convergence of Algorithm 3.1 by mea-
suring the decrease of the \ell 2 merit function at each step, that is,

\scrL k+1
\=\mu k
 - \scrL k

\=\mu k
= fk+1  - fk + \=\mu k(\| ck+1\|  - \| ck\| ).

We use \=\mu k to denote the merit parameter obtained after the while loop in line 10 of
Algorithm 3.1, so that \=\mu k satisfies (3.6). Following the analysis of [3, 2, 4, 18], we
will first assume \=\mu k stabilizes (but not necessarily at a large enough value) after a few
iterations, and then we will validate the stability of \=\mu k in section 4.3.

We now state the assumptions for the analysis.

Assumption 4.1. Let \Omega \subseteq \BbbR d be an open convex set containing the iterates \{ \bfitx k\} .
The function f(\bfitx ) is continuously differentiable and is bounded below by finf over
\Omega . The gradient \nabla f(\bfitx ) is Lipschitz continuous over \Omega with constant L\nabla f > 0, so
that the (estimated) Lipschitz constant L\nabla f,k at \bfitx k satisfies L\nabla f,k \leq L\nabla f for allk\geq 0.
Similarly, the constraint c(\bfitx ) is continuously differentiable over \Omega ; its Jacobian G(\bfitx )
is Lipschitz continuous over \Omega with constant LG > 0; and LG,k \leq LGfor allk \geq 0. We
also assume there exist positive constants \kappa B , \kappa c, \kappa \nabla f , \kappa 1,G, \kappa 2,G > 0 such that

\| Bk\| \leq \kappa B , \| ck\| \leq \kappa c, \| \nabla fk\| \leq \kappa \nabla f , \kappa 1,G \cdot I \preceq GkG
T
k \preceq \kappa 2,G \cdot I \forall k\geq 0.

Assumption 4.1 is standard in the literature on both deterministic and stochastic
SQP methods; see, e.g., [10, 22, 31, 3, 2, 4, 18]. In fact, when one uses a while loop
to adaptively increase L\nabla f,k and LG,k to enforce the Lipschitz conditions (as done
in [3, 17]), one has L\nabla f,k \leq L\nabla f

\prime := \rho L\nabla f for a factor \rho > 1 (same for LG,k; see [3,
Lemma 8]). We unify the Lipschitz constant and upper bound of L\nabla f,k as L\nabla f just
for simplicity. In addition, the condition \kappa 1,G \cdot I \preceq GkG

T
k \preceq \kappa 2,G \cdot I implies Gk has full

row rank; thus, the least-squares dual iterate \=\bfitlambda k = - [GkG
T
k ]

 - 1Gk\=gk is well defined.
Next, we assume the stability of \=\mu k. Compared to existing StoSQP literature

[3, 2, 4, 18], we do not require the stabilized value to be large enough. We will revisit
this assumption in section 4.3.

Assumption 4.2. There exist an (possibly random) iteration threshold \=K < \infty 
and a deterministic constant \^\mu > 0, such that for all k > \=K, \=\mu k = \=\mu \=K \leq \^\mu .

Since \=\mu k is nondecreasing in TR-StoSQP, we have \=\mu k \leq \^\mu for allk\geq 0. The global
analysis only needs to study the convergence behavior of the algorithm after k\geq \=K+1
iterations. Next, we impose a condition on the gradient estimate.
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Assumption 4.3. There exist constants Mg \geq 1,Mg,1 \geq 0 such that the stochastic
gradient estimate \=gk satisfies \BbbE k[\=gk] =\nabla fk and \BbbE k[\| \=gk - \nabla fk\| 2]\leq Mg+Mg,1(fk - finf)
for allk\geq 0, where \BbbE k[\cdot ] denotes \BbbE [\cdot | \scrF k - 1].

We assume that the variance of the gradient estimate satisfies a growth condi-
tion. This condition is weaker than the usual bounded variance condition assumed
in the StoSQP literature [2, 3, 20, 25, 26], which corresponds to Mg,1 = 0. The
growth condition is more realistic and was recently investigated for stochastic first-
order methods on unconstrained problems [9, 15, 34, 37], while it is less explored for
StoSQP methods.

4.1. Fundamental lemmas. The following result establishes the reduction of
the \ell 2 merit function achieved by the trial step.

Lemma 4.4. Suppose Assumptions 4.1 and 4.2 hold. For all k\geq \=K + 1, we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
\leq  - \| \=\nabla \scrL k\| \Delta k +

1

2
\| Bk\| \Delta 2

k(4.1)

+ \=\gamma k(\nabla fk  - \=gk)
T\bfitv k + \| Pk(\nabla fk  - \=gk)\| \Delta k +

1

2
\tau k\Delta 

2
k.

Proof. By the definitions of \scrL \=\mu \=K
(\bfitx ) and Predk in (3.4) and (3.5), we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
 - Predk

= fk+1  - fk  - \=gTk \Delta \bfitx k  - 
1

2
\Delta \bfitx T

kBk\Delta \bfitx k + \=\mu \=K(\| ck+1\|  - \| ck +Gk\Delta \bfitx k\| ).

By the Lipschitz continuity of \nabla f(\bfitx ) and G(\bfitx ), we further have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
 - Predk \leq (\nabla fk  - \=gk)

T\Delta \bfitx k +
1

2
(L\nabla f,k + \| Bk\| +LG,k\=\mu \=K)\| \Delta \bfitx k\| 2

(3.1)
= (\nabla fk  - \=gk)

T\Delta \bfitx k +
1

2
\tau k\| \Delta \bfitx k\| 2

= \=\gamma k(\nabla fk  - \=gk)
T\bfitv k + (\nabla fk  - \=gk)

TZk\bfitu k +
1

2
\tau k\| \Delta \bfitx k\| 2 (\Delta \bfitx k = \=\gamma k\bfitv k +Zk\bfitu k)

\leq \=\gamma k(\nabla fk  - \=gk)
T\bfitv k + \| Pk(\nabla fk  - \=gk)\| \| \bfitu k\| +

1

2
\tau k\| \Delta \bfitx k\| 2,

where the last inequality uses ZkZ
T
k = Pk. Combining the above result with the

reduction condition in (3.6), and noting that \| \bfitu k\| \leq \| \Delta \bfitx k\| \leq \Delta k, we complete the
proof.

Now, we further analyze the right-hand side of (4.1). By taking the expectation
conditional on \bfitx k, we can show that the term \=\gamma k(\nabla fk  - \=gk)

T\bfitv k is upper bounded by
a quantity proportional to the expected error of the gradient estimate.

Lemma 4.5. Suppose Assumptions 4.1 and 4.3 hold. For all k\geq 0, we have

\BbbE k[\=\gamma k(\nabla fk  - \=gk)
T\bfitv k]\leq 

\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k \cdot \BbbE k[\| \nabla fk  - \=gk\| ].

Proof. When \bfitv k = 0, the result holds trivially. We consider \bfitv k \not = 0. By the design
of the projection in (3.3), we know

\gamma k,min :=
1

2
\zeta \phi k\alpha k \leq \=\gamma k \leq 

1

2
\zeta \phi k\alpha k + \delta \alpha 2

k =: \gamma k,max.(4.2)
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Note that \sigma (\gamma k,min, \gamma k,max)\subseteq \scrF k - 1. Let Ek be the event that (\nabla fk  - \=gk)
T\bfitv k \geq 0, let

Ec
k be its complement, and let \BbbP k[\cdot ] denote the probability conditional on \scrF k - 1. By

the law of total expectation, one finds

\BbbE k[\=\gamma k(\nabla fk  - \=gk)
T\bfitv k]

=\BbbE k[\=\gamma k(\nabla fk  - \=gk)
T\bfitv k | Ek]\BbbP k[Ek] +\BbbE k[\=\gamma k(\nabla fk  - \=gk)

T\bfitv k | Ec
k]\BbbP k[E

c
k]

(4.2)

\leq \gamma k,max\BbbE k[(\nabla fk  - \=gk)
T\bfitv k | Ek]\BbbP k[Ek] + \gamma k,min\BbbE k[(\nabla fk  - \=gk)

T\bfitv k | Ec
k]\BbbP k[E

c
k]

= (\gamma k,max  - \gamma k,min)\BbbE k[(\nabla fk  - \=gk)
T\bfitv k | Ek]\BbbP k[Ek] (by Assumption 4.3)

\leq (\gamma k,max  - \gamma k,min)\BbbE k[\| \nabla fk  - \=gk\| \| \bfitv k\| | Ek]\BbbP k[Ek]

\leq (\gamma k,max  - \gamma k,min)\| \bfitv k\| \BbbE k[\| \nabla fk  - \=gk\| ]
(4.2)
= \delta \alpha 2

k\| \bfitv k\| \BbbE k[\| \nabla fk  - \=gk\| ]
(3.1)

\leq \delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ].

Here, the last inequality follows from \bfitv k =GT
k [GkG

T
k ]

 - 1ck and Assumption 4.1.

We further simplify the result of (4.1) using the trust-region scheme in (3.2).

Lemma 4.6. Suppose Assumptions 4.1, 4.2, and 4.3 hold and \{ \beta k\} \subseteq (0, \beta max].
For all k\geq \=K + 1, we have

\BbbE k[\scrL k+1
\=\mu \=K

]\leq \scrL k
\=\mu \=K
 - 1

4
\eta 2,k\alpha k\| \nabla \scrL k\| 2 +

\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ]

+ (\zeta + \eta 1,k\tau k)\eta 1,k\alpha 
2
k\BbbE k[\| \nabla fk  - \=gk\| 2].

Proof. According to the definition in (3.2), we separate the proof into the following
three cases: \| \=\nabla \scrL k\| \in (0,1/\eta 1,k), \| \=\nabla \scrL k\| \in [1/\eta 1,k,1/\eta 2,k], and \| \=\nabla \scrL k\| \in (1/\eta 2,k,\infty ).

Case 1: \| \=\nabla \scrL k\| \in (0,1/\eta 1,k). We have \Delta k = \eta 1,k\alpha k\| \=\nabla \scrL k\| , and therefore

 - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k = - \eta 1,k\alpha k\| \=\nabla \scrL k\| 2 +
1

2
\eta 21,k\alpha 

2
k\| Bk\| \| \=\nabla \scrL k\| 2

= - 
\biggl( 
1 - 1

2
\eta 1,k\alpha k\| Bk\| 

\biggr) 
\eta 1,k\alpha k\| \=\nabla \scrL k\| 2.

Plugging the above expression into (4.1) and applying (3.2), we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
\leq  - 

\biggl( 
1 - 1

2
\eta 1,k\alpha k\| Bk\| 

\biggr) 
\eta 1,k\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

(4.3)

+ \eta 1,k\alpha k\| Pk(\nabla fk  - \=gk)\| \| \=\nabla \scrL k\| +
1

2
\eta 21,k\alpha 

2
k\tau k\| \=\nabla \scrL k\| 2

\leq  - 1

2
(1 - \eta 1,k\alpha k\| Bk\|  - \eta 1,k\alpha k\tau k)\eta 1,k\alpha k\| \=\nabla \scrL k\| 2

+ \=\gamma k(\nabla fk  - \=gk)
T\bfitv k +

1

2
\eta 1,k\alpha k\| Pk(\nabla fk - \=gk)\| 2 (by Young's inequality)

\leq  - 
\biggl( 
1

2
 - \eta 1,k\alpha k\tau k

\biggr) 
\eta 1,k\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

+
1

2
\eta 1,k\alpha k\| Pk(\nabla fk  - \=gk)\| 2 (since by (3.1), \| Bk\| \leq \tau k).
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Case 2: \| \=\nabla \scrL k\| \in [1/\eta 1,k,1/\eta 2,k]. We have \Delta k = \alpha k, and thus

 - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k = - \| \=\nabla \scrL k\| \alpha k +
1

2
\| Bk\| \alpha 2

k

\leq  - \eta 2,k\alpha k\| \=\nabla \scrL k\| 2 +
1

2
\eta 21,k\alpha 

2
k\| Bk\| \| \=\nabla \scrL k\| 2,

where the inequality is due to \eta 1,k\| \=\nabla \scrL k\| \geq 1 \geq \eta 2,k\| \=\nabla \scrL k\| . Plugging the above
expression into (4.1), using the relation \eta 1,k\| \=\nabla \scrL k\| \geq 1 again, we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
\leq  - 

\biggl( 
\eta 2,k  - 

1

2
\eta 21,k\alpha k\| Bk\| 

\biggr) 
\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

+ \eta 1,k\alpha k\| Pk(\nabla fk  - \=gk)\| \| \=\nabla \scrL k\| +
1

2
\eta 21,k\alpha 

2
k\tau k\| \=\nabla \scrL k\| 2

\leq  - 
\biggl( 
\eta 2,k  - 

1

2
\eta 21,k\alpha k\| Bk\|  - 

1

2
\eta 1,k  - 

1

2
\eta 21,k\alpha k\tau k

\biggr) 
\alpha k\| \=\nabla \scrL k\| 2

+ \=\gamma k(\nabla fk  - \=gk)
T\bfitv k +

1

2
\eta 1,k\alpha k\| Pk(\nabla fk - \=gk)\| 2 (by Young's inequality)

\leq  - 
\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

+
1

2
\eta 1,k\alpha k\| Pk(\nabla fk  - \=gk)\| 2 (since by (3.1), \| Bk\| \leq \tau k).(4.4)

Case 3: \| \=\nabla \scrL k\| \in (1/\eta 2,k,\infty ). We have \Delta k = \eta 2,k\alpha k\| \=\nabla \scrL k\| , and thus

 - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k = - \eta 2,k\alpha k\| \=\nabla \scrL k\| 2 +
1

2
\eta 22,k\alpha 

2
k\| Bk\| \| \=\nabla \scrL k\| 2

= - 
\biggl( 
1 - 1

2
\eta 2,k\alpha k\| Bk\| 

\biggr) 
\eta 2,k\alpha k\| \=\nabla \scrL k\| 2.

Plugging into (4.1) and applying (3.2), we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
\leq  - 

\biggl( 
1 - 1

2
\eta 2,k\alpha k\| Bk\| 

\biggr) 
\eta 2,k\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

+ \eta 2,k\alpha k\| Pk(\nabla fk  - \=gk)\| \| \=\nabla \scrL k\| +
1

2
\eta 22,k\alpha 

2
k\tau k\| \=\nabla \scrL k\| 2

\leq  - 1

2
(1 - \eta 2,k\alpha k\| Bk\|  - \eta 2,k\alpha k\tau k)\eta 2,k\alpha k\| \=\nabla \scrL k\| 2

+ \=\gamma k(\nabla fk  - \=gk)
T\bfitv k +

1

2
\eta 2,k\alpha k\| Pk(\nabla fk - \=gk)\| 2 (by Young's inequality)

\leq  - 
\biggl( 
1

2
 - \eta 2,k\alpha k\tau k

\biggr) 
\eta 2,k\alpha k\| \=\nabla \scrL k\| 2 + \=\gamma k(\nabla fk  - \=gk)

T\bfitv k

+
1

2
\eta 2,k\alpha k\| Pk(\nabla fk  - \=gk)\| 2 (since by (3.1), \| Bk\| \leq \tau k).(4.5)

Using \eta 2,k \leq \eta 1,k and taking an upper for the results of the three cases in (4.3), (4.4),
and (4.5), we have

\scrL k+1
\=\mu \=K
 - \scrL k

\=\mu \=K
\leq  - 

\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\| \=\nabla \scrL k\| 2

+ \=\gamma k(\nabla fk  - \=gk)
T\bfitv k +

1

2
\eta 1,k\alpha k\| Pk(\nabla fk  - \=gk)\| 2.
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Taking expectation conditional on \bfitx k, applying Lemma 4.5, and noting that
\BbbE k[\| \=\nabla \scrL k\| 2] = \| \nabla \scrL k\| 2 +\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2], we have

\BbbE k[\scrL k+1
\=\mu \=K

] - \scrL k
\=\mu \=K
\leq  - 

\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\BbbE k[\| \=\nabla \scrL k\| 2]

+
\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ] +

1

2
\eta 1,k\alpha k\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2]

= - 
\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\| \nabla \scrL k\| 2

 - 
\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2]

+
\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ] +

1

2
\eta 1,k\alpha k\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2]

= - 
\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\alpha k\| \nabla \scrL k\| 2 +

\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ]

+
\bigl( 
\eta 1,k  - \eta 2,k + \eta 21,k\alpha k\tau k

\bigr) 
\alpha k\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2].

Furthermore, we note that

\alpha k

(3.1)

\leq 2

8\eta 1,k\tau k + 3\zeta 
=\Rightarrow 3\zeta \alpha k + 8\eta 1,k\alpha k\tau k \leq 2

=\Rightarrow 1

2
+ \eta 1,k\alpha k\tau k \leq 

3

4
 - 3

8
\zeta \alpha k

=\Rightarrow 1

2
\eta 1,k + \eta 21,k\alpha k\tau k \leq 

3

4
\eta 1,k

\biggl( 
1 - 1

2
\zeta \alpha k

\biggr) 
(3.1)
=

3

4
\eta 2,k

=\Rightarrow  - 
\biggl( 
\eta 2,k  - 

1

2
\eta 1,k  - \eta 21,k\alpha k\tau k

\biggr) 
\leq  - 1

4
\eta 2,k.

Combining the above two results and using (3.1), we have

\BbbE k[\scrL k+1
\=\mu \=K

] - \scrL k
\=\mu \=K
\leq  - 1

4
\eta 2,k\alpha k\| \nabla \scrL k\| 2 +

\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k\BbbE k[\| \nabla fk  - \=gk\| ]

+ (\zeta + \eta 1,k\tau k)\eta 1,k\alpha 
2
k\BbbE k[\| Pk(\nabla fk  - \=gk)\| 2].

The conclusion follows by noting that \BbbE k[\| Pk(\nabla fk  - \=gk)\| 2]\leq \BbbE k[\| \nabla fk  - \=gk\| 2].
Finally, we present some properties of the control parameters generated in Step

1 of Algorithm 3.1.

Lemma 4.7. Let Assumptions 4.1, 4.2 hold, and let \{ \beta k\} \subseteq (0, \beta max]. For all
k\geq 0, the following hold:

(a) there exist constants \eta min, \eta max > 0 such that \eta min \leq \eta 2,k \leq \eta 1,k \leq \eta max;
(b) there exists a constant \tau max > 0 such that \tau k \leq \tau max;
(c) there exist constants \alpha l, \alpha u > 0 such that \alpha k \in [\alpha l\beta k, \alpha u\beta k].

Proof. (a) By (3.1), we see that \eta 2,k \leq \eta 1,k. Further, by Assumption 4.1, we have

\eta 1,k
(3.1)
= \zeta \cdot \| \bfitv k\| /\| ck\| \leq \zeta \cdot \| GT

k [GkG
T
k ]

 - 1\| \leq \zeta /
\surd 
\kappa 1,G =: \eta max,

\eta 2,k
(3.1)
= \eta 1,k

\biggl( 
1 - \zeta \alpha k

2

\biggr) 
(3.1)

\geq \eta 1,k

\biggl( 
1 - \zeta 

2
\cdot 1
4\zeta 

\biggr) 
(3.1)

\geq 7\zeta \| \bfitv k\| 
8\| ck\| 

\geq 7\zeta 

8
\surd 
\kappa 2,G

=: \eta min.
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(b) By Assumptions 4.1 and 4.2, we have L\nabla f,k \leq L\nabla f ,LG,k \leq LG, \| Bk\| \leq \kappa B ,
and \=\mu k \leq \^\mu . Thus, we let \tau max :=L\nabla f +LG\^\mu + \kappa B and the result holds.

(c) We let \alpha l := 1/(4\eta max\tau max\beta max + 4\zeta \beta max) and \alpha u := 1/(4\zeta \beta max), and the
result holds.

In the next subsection, we use Lemmas 4.6 and 4.7 to show the global convergence
of TR-StoSQP. We consider both constant and decaying \beta k sequences.

4.2. Global convergence. We first consider constant \beta k, i.e., \beta k = \beta \in (0, \beta max]
for all k \geq 0. We show that the expectation of weighted averaged KKT residuals
converges to a neighborhood around zero with a radius of the order \scrO (\beta ). When
the growth condition parameter Mg,1 = 0 (cf. Assumption 4.3), the weighted average
reduces to the uniform average.

Lemma 4.8. Suppose Assumptions 4.1, 4.2, and 4.3 hold and \beta k = \beta \in (0, \beta max]
for allk \geq 0. For any positive integer K > 0, we define wk = (1 + \Upsilon Mg,1\beta 

2)
\=K+K - k,

\=K \leq k\leq \=K+K, with \Upsilon := (\zeta \eta max+\eta 2max\tau max+\delta \kappa c/
\surd 
\kappa 1,G)\alpha 

2
u. We have (cf. \BbbE \=K+1[\cdot ] =

\BbbE [\cdot | \scrF \=K ])

\BbbE \=K+1

\Biggl[ \sum \=K+K
k= \=K+1wk\| \nabla \scrL k\| 2\sum \=K+K

k= \=K+1wk

\Biggr] 
\leq 4

\eta min\alpha l\beta 
\cdot 
w \=K(\scrL \=K+1

\=\mu \=K
 - finf)\sum \=K+K

k= \=K+1wk

+
4\Upsilon Mg

\eta min\alpha l
\beta .

Proof. From Lemma 4.6 and Assumption 4.3, we have for any k\geq \=K + 1,

\BbbE k[\scrL k+1
\=\mu \=K

]\leq \scrL k
\=\mu \=K
 - 1

4
\eta 2,k\alpha k\| \nabla \scrL k\| 2 + (\zeta + \eta 1,k\tau k)\eta 1,k\alpha 

2
k[Mg +Mg,1(fk  - finf)]

+
\delta \kappa c\surd 
\kappa 1,G

\alpha 2
k

\sqrt{} 
Mg +Mg,1(fk  - finf)

Lemma 4.7
\leq \scrL k

\=\mu \=K
 - 1

4
\eta min\alpha l\beta \| \nabla \scrL k\| 2 +\Upsilon \beta 2[Mg +Mg,1(fk  - finf)] (by Mg \geq 1).

Using the fact that fk  - finf \leq fk  - finf + \=\mu \=K\| ck\| =\scrL k
\=\mu \=K
 - finf , we obtain

\BbbE k[\scrL k+1
\=\mu \=K
 - finf ]\leq 

\bigl( 
1 +\Upsilon Mg,1\beta 

2
\bigr) 
(\scrL k

\=\mu \=K
 - finf) - 

1

4
\eta min\alpha l\beta \| \nabla \scrL k\| 2 +\Upsilon Mg\beta 

2.

Taking the expectation conditional on \scrF \=K and rearranging the terms, we have

\BbbE \=K+1[\| \nabla \scrL k\| 2]\leq 
4(1 +\Upsilon Mg,1\beta 

2)

\eta min\alpha l\beta 
\BbbE \=K+1[\scrL k

\=\mu \=K
 - finf ]

 - 4

\eta min\alpha l\beta 
\BbbE \=K+1[\scrL k+1

\=\mu \=K
 - finf ] +

4\Upsilon Mg

\eta min\alpha l
\beta .

Multiplying wk on both sides and summing over k= \=K + 1, . . . , \=K +K, we have

\BbbE \=K+1

\Biggl[ \sum \=K+K
k= \=K+1wk\| \nabla \scrL k\| 2\sum \=K+K

k= \=K+1wk

\Biggr] 
=

\sum \=K+K
k= \=K+1wk\BbbE \=K+1[\| \nabla \scrL k\| 2]\sum \=K+K

k= \=K+1wk

\leq 4

\eta min\alpha l\beta 
\cdot 
w \=K(\scrL \=K+1

\=\mu \=K
 - finf) - \BbbE \=K+1[\scrL 

\=K+K+1
\=\mu \=K

 - finf ]\sum \=K+K
k= \=K+1wk

+
4\Upsilon Mg

\eta min\alpha l
\beta ,

where the first equality uses the fact that \=K is fixed in the conditional expectation.
Noting that \BbbE \=K+1[\scrL 

\=K+K+1
\=\mu \=K

 - finf ]\geq 0, we complete the proof.

The following theorem follows from Lemma 4.8.
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Theorem 4.9 (global convergence with constant \beta k). Suppose Assumptions 4.1,
4.2, and 4.3 hold and \beta k = \beta \in (0, \beta max] for all k \geq 0. Let us define wk and \Upsilon as in
Lemma 4.8. We have the following:

(a) when Mg,1 = 0,

lim
K\rightarrow \infty 

\BbbE 

\left[  1

K

\=K+K\sum 
k= \=K+1

\| \nabla \scrL k\| 2
\right]  \leq 4\Upsilon Mg

\eta min\alpha l
\beta ;

(b) when Mg,1 > 0,

lim
K\rightarrow \infty 

\BbbE 

\left[  1\sum \=K+K
k= \=K+1wk

\=K+K\sum 
k= \=K+1

wk\| \nabla \scrL k\| 2
\right]  \leq 4\Upsilon \{ Mg,1\BbbE [\scrL 

\=K+1
\=\mu \=K
 - finf ] +Mg\} 

\eta min\alpha l
\beta .

Proof. (a) When Mg,1 = 0, we have wk = 1 for \=K + 1 \leq k \leq \=K + K. From
Lemma 4.8, we have

\BbbE \=K+1

\left[  1

K

\=K+K\sum 
k= \=K+1

\| \nabla \scrL k\| 2
\right]  \leq 4

\eta min\alpha l\beta 
\cdot 
\scrL \=K+1

\=\mu \=K
 - finf

K
+

4\Upsilon Mg

\eta min\alpha l
\beta .

Letting K\rightarrow \infty and using the fact that \| \nabla \scrL k\| 2 \leq \kappa 2
\nabla f + \kappa 2

c (cf. Assumption 4.1), we
apply Fatou's lemma and have (the lim on the left can be strengthened to limsup)

lim
K\rightarrow \infty 

\BbbE 

\left[  1

K

\=K+K\sum 
k= \=K+1

\| \nabla \scrL k\| 2
\right]  \leq \BbbE 

\left[  limsup
K\rightarrow \infty 

\BbbE \=K+1

\left[  1

K

\=K+K\sum 
k= \=K+1

\| \nabla \scrL k\| 2
\right]  \right]  \leq 4\Upsilon Mg

\eta min\alpha l
\beta .

(b) When Mg,1 > 0, we apply Lemma 4.8 and the fact that
\sum \=K+K

k= \=K+1wk = (w \=K  - 
1)/(\Upsilon Mg,1\beta 

2) and obtain

\BbbE \=K+1

\Biggl[ \sum \=K+K
k= \=K+1wk\| \nabla \scrL k\| 2\sum \=K+K

k= \=K+1wk

\Biggr] 
\leq 4\Upsilon Mg,1\beta 

\eta min\alpha l
\cdot 
w \=K(\scrL \=K+1

\=\mu \=K
 - finf)

w \=K  - 1
+

4\Upsilon Mg

\eta min\alpha l
\beta .

Since w \=K/(w \=K  - 1) = (1 + \Upsilon Mg,1\beta 
2)K/\{ (1 + \Upsilon Mg,1\beta 

2)K  - 1\} \rightarrow 1 as K \rightarrow \infty , we
apply Fatou's lemma and have (the lim on the left can be strengthened to limsup)

lim
K\rightarrow \infty 

\BbbE 

\Biggl[ \sum \=K+K
k= \=K+1wk\| \nabla \scrL k\| 2\sum \=K+K

k= \=K+1wk

\Biggr] 
\leq \BbbE 

\Biggl[ 
limsup
K\rightarrow \infty 

\BbbE \=K+1

\Biggl[ \sum \=K+K
k= \=K+1wk\| \nabla \scrL k\| 2\sum \=K+K

k= \=K+1wk

\Biggr] \Biggr] 

\leq 
4\Upsilon \{ Mg,1\BbbE [\scrL 

\=K+1
\=\mu \=K
 - finf ] +Mg\} 

\eta min\alpha l
\beta .

This completes the proof.

From Theorem 4.9, we note that the radius of the local neighborhood is propor-
tional to \beta . Thus, to decrease the radius, one should choose a smaller \beta . However,
the trust-region radius is also proportional to \beta (cf. (3.2)); thus, a smaller \beta may
result in a slow convergence. This suggests the existence of a trade-off between the
convergence speed and convergence precision.

For constant \{ \beta k\} , [2, 3, 18, 20] established global results similar to Theorem 4.9.
However, our analysis has two major differences. (i) That line of literature required
\beta to be upper bounded by some complex quantities that may be less than 1, while we
do not need such a condition. (ii) Compared to the stochastic trust-region method
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2024 Y. FANG, S. NA, M. W. MAHONEY, AND M. KOLAR

for unconstrained optimization [20], our local neighborhood radius is proportional to
the input \beta (i.e., we can control the radius by the input), while the one in [20] is
independent of \beta .

Next, we consider decaying \beta k. We show in the next lemma that, when
\sum 

\beta k =\infty 
and

\sum 
\beta 2
k <\infty , the infimum of KKT residuals converges to zero almost surely. Based

on this result, we further show that the KKT residuals converge to zero almost surely.

Lemma 4.10. Suppose Assumptions 4.1, 4.2, and 4.3 hold, \{ \beta k\} \subseteq (0, \beta max], and\sum \infty 
k=0 \beta k =\infty and

\sum \infty 
k=0 \beta 

2
k <\infty . We have

lim inf
k\rightarrow \infty 

\| \nabla \scrL k\| = 0 almost surely.

Proof. From the proof of Lemma 4.8, we have for any k\geq \=K + 1 that

\BbbE k[\scrL k+1
\=\mu \=K
 - finf ]\leq 

\bigl( 
1 +\Upsilon Mg,1\beta 

2
k

\bigr) 
(\scrL k

\=\mu \=K
 - finf) - 

1

4
\eta min\alpha l\beta k\| \nabla \scrL k\| 2 +\Upsilon Mg\beta 

2
k.

Since \scrL \=\mu (\bfitx ) - finf is bounded below by zero, \eta min\alpha l\beta k\| \nabla \scrL k\| 2 > 0, and
\sum \infty 

k= \=K+1 \beta 
2
k <

\infty , it immediately follows from the Robbins--Siegmund theorem [33] that

sup
k\geq \=K+1

\BbbE \=K+1[\scrL k
\=\mu \=K
 - finf ] :=M \=K <\infty ,

\infty \sum 
k= \=K+1

\beta k\BbbE \=K+1[\| \nabla \scrL k\| 2]<\infty .(4.6)

The latter part suggests that P [
\sum \infty 

k= \=K+1 \beta k\| \nabla \scrL k\| 2 <\infty | \scrF \=K ] = 1. Since the result
holds for any \scrF \=K , we have P [

\sum \infty 
k= \=K+1 \beta k\| \nabla \scrL k\| 2 <\infty ] = 1. Noting that

\sum \infty 
k= \=K+1 \beta k

=\infty for any run of the algorithm, we complete the proof.

Finally, we establish the global convergence theorem for decaying \beta k sequence.

Theorem 4.11 (global convergence with decaying \beta k). Suppose Assumptions 4.1,
4.2, and 4.3 hold, \{ \beta k\} \subseteq (0, \beta max], and

\sum \infty 
k=0 \beta k =\infty and

\sum \infty 
k=0 \beta 

2
k <\infty . We have

lim
k\rightarrow \infty 

\| \nabla \scrL k\| = 0 almost surely.

Proof. For any run of the algorithm, suppose the statement does not hold; then
we have limsupk\rightarrow \infty \| \nabla \scrL k\| \geq 2\epsilon for some \epsilon > 0. For such a run, let us define the set
\scrK \epsilon := \{ k \geq \=K + 1 : \| \nabla \scrL k\| \geq \epsilon \} . By Lemma 4.10, there exist two infinite index sets
\{ mi\} , \{ ni\} with \=K <mi <ni for all i\geq 0, such that

\| \nabla \scrL mi
\| \geq 2\epsilon , \| \nabla \scrL ni

\| < \epsilon , \| \nabla \scrL k\| \geq \epsilon for k \in \{ mi + 1, . . . , ni  - 1\} .(4.7)

By Assumption 4.1 and the definition \nabla \scrL k = (Pk\nabla fk, ck), there exists L\nabla \scrL > 0 such
that \| \nabla \scrL k+1  - \nabla \scrL k\| \leq L\nabla \scrL \{ \| \bfitx k+1  - \bfitx k\| + \| \bfitx k+1  - \bfitx k\| 2\} . Thus, (4.7) implies

\epsilon \leq \| \nabla \scrL mi
\|  - \| \nabla \scrL ni

\| \leq \| \nabla \scrL ni
 - \nabla \scrL mi

\| \leq 
ni - 1\sum 
k=mi

\| \nabla \scrL k+1  - \nabla \scrL k\| 

\leq L\nabla \scrL 

ni - 1\sum 
k=mi

\{ \| \bfitx k+1  - \bfitx k\| + \| \bfitx k+1  - \bfitx k\| 2\} \leq L\nabla \scrL 

ni - 1\sum 
k=mi

(\Delta k +\Delta 2
k)

(3.2)

\leq L\nabla \scrL 

ni - 1\sum 
k=mi

(\eta max\alpha u\beta k\| \=\nabla \scrL k\| + \eta 2max\alpha 
2
u\beta 

2
k\| \=\nabla \scrL k\| 2) (also by Lemma 4.7).

Since \| \=\nabla \scrL k\| \leq \| \nabla \scrL k\| + \| \=gk  - \nabla fk\| , \| \=\nabla \scrL k\| 2 \leq 2(\| \nabla \scrL k\| 2 + \| \=gk  - \nabla fk\| 2) and \beta k \leq 
\beta max, we have
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\epsilon \leq L\nabla \scrL \eta max\alpha u

ni - 1\sum 
k=mi

\beta k\| \nabla \scrL k\| + 2L\nabla \scrL \eta 
2
max\alpha 

2
u\beta max

ni - 1\sum 
k=mi

\beta k\| \nabla \scrL k\| 2

+L\nabla \scrL \eta max\alpha u

ni - 1\sum 
k=mi

\beta k\| \=gk  - \nabla fk\| + 2L\nabla \scrL \eta 
2
max\alpha 

2
u\beta max

ni - 1\sum 
k=mi

\beta k\| \=gk  - \nabla fk\| 2.

Multiplying \epsilon on both sides and using \| \nabla \scrL k\| \geq \epsilon for k \in \{ mi, . . . , ni  - 1\} , we have

\epsilon 2 \leq \{ L\nabla \scrL \eta max\alpha u + 2\epsilon L\nabla \scrL \eta 
2
max\alpha 

2
u\beta max\} 

ni - 1\sum 
k=mi

\beta k\| \nabla \scrL k\| 2

(4.8)

+
\bigl\{ 
\epsilon L\nabla \scrL \eta max\alpha u + 2\epsilon L\nabla \scrL \eta 

2
max\alpha 

2
u\beta max

\bigr\} ni - 1\sum 
k=mi

\beta k

\bigl( 
\| \=gk  - \nabla fk\| + \| \=gk  - \nabla fk\| 2

\bigr) 
.

For the sake of contradiction, we will show that the right-hand side of the above expres-
sion converges to zero as i\rightarrow \infty . By (4.6), we know that \infty >

\sum \infty 
k= \=K+1 \beta k\| \nabla \scrL k\| 2 \geq \sum \infty 

i=0

\sum ni - 1
k=mi

\beta k\| \nabla \scrL k\| 2. Thus,
\sum ni - 1

k=mi
\beta k\| \nabla \scrL k\| 2 \rightarrow 0 as i \rightarrow \infty . For the second

term, we note that

\infty \sum 
i=0

\BbbE \=K+1

\Biggl[ 
ni - 1\sum 
k=mi

\beta k(\| \=gk  - \nabla fk\| + \| \=gk  - \nabla fk\| 2)

\Biggr] 

=

\infty \sum 
i=0

ni - 1\sum 
k=mi

\beta k\BbbE \=K+1[\| \=gk  - \nabla fk\| + \| \=gk  - \nabla fk\| 2]

\leq 2

\infty \sum 
i=0

ni - 1\sum 
k=mi

\beta k(Mg +Mg,1\BbbE \=K+1[fk  - finf ])
(4.6)

\leq 2(Mg +Mg,1M \=K)

\infty \sum 
i=0

ni - 1\sum 
k=mi

\beta k.

By the definition of \scrK \epsilon and (4.6), we have
\sum \infty 

i=0

\sum ni - 1
k=mi

\beta k \leq 
\sum 

k\in \scrK \epsilon 
\beta k < \infty . We

apply the Borel--Cantelli lemma, integrate out the randomness of \scrF \=K , and have\sum ni - 1
k=mi

\beta k(\| \=gk  - \nabla fk\| + \| \=gk  - \nabla fk\| 2)\rightarrow 0 as i\rightarrow \infty almost surely. Thus, the right-
hand side of (4.8) converges to zero, which leads to the contradiction and completes
the proof.

Our almost sure convergence result matches the ones in [26, 25] established for
stochastic line search methods in constrained optimization and matches the one in
[20] established for stochastic trust-region methods in unconstrained optimization.
Compared to [20] (cf. Assumption 4.4 there), we do not assume the variance of the
gradient estimates decays as \beta k. Such an assumption violates the flavor of fully sto-
chastic methods, since a batch of samples is required per iteration with the batch size
going to infinity. On the contrary, we assume a growth condition (cf. Assumption 4.3),
which is weaker than the usual bounded variance condition. We should also mention
that if one applies the result of [20, Lemma 4.5], one may be able to show almost sure
convergence for decaying \beta k without requiring decaying variance as in the context of
[20]. However, a new concern arises---one needs to rescale the Hessian matrix at each
step, which modifies the curvature information and affects the convergence speed.

4.3. Merit parameter behavior. In this subsection, we study the behavior of
the merit parameter. We revisit Assumption 4.2 and show that it is satisfied, provided
\=gk is upper bounded and \| Bk\| is bounded away from zero. The condition on \=gk can be
satisfied if the gradient noise has a bounded support (e.g., sampling from an empirical
distribution). Such an assumption is standard to ensure a stabilized merit parameter
for both deterministic and stochastic SQP methods [2, 3, 4, 6, 18, 25, 26]. We should
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mention that this line of literature only assumed the existence of an upper bound on
the gradient noise, which can be unknown. In other words, the bound is not involved
in the algorithm design. In comparison, [35] explored a bounded noise condition and
incorporated the bound into the design of a trust-region algorithm. Certainly, our
almost sure convergence result also differs from the one in [35], which showed the
iterates visited a neighborhood of stationarity infinitely often.

Furthermore, a nonvanishing \| Bk\| is a fairly mild condition, naturally satis-
fied by all the reasonable construction methods that one uses in SQP algorithms
(e.g., set Bk as identity, estimated Hessian, averaged Hessian, or quasi-Newton up-
date). However, a nonvanishing spectrum of Bk is technically necessary, due to our
radius decomposition with the rescaled residuals (cf. (2.5)). We note that a vanishing
spectrum leads to \u \Delta k\rightarrow 0, leading to a diminishing normal step \bfitw k even if we have
a large feasibility residual. The lower bound on \| Bk\| is removable if we use origi-
nal unscaled residuals to decompose the radius or use the alternative decomposition
technique in Remark 3.4(ii); however, an additional tuning parameter \theta to balance
the feasibility and optimality residuals is introduced there. We provide the analysis
in Appendix A for the sake of completeness.

Assumption 4.12. For all k \geq 0, (i) there is a constant M1 > 0 such that \| \=gk  - 
\nabla fk\| \leq M1; and (ii) there is a constant \kappa B > 0 such that 1/\kappa B \leq \| Bk\| \leq \kappa B .

Lemma 4.13. Suppose Assumptions 4.1 and 4.12 hold. There exist a (potentially
random) \=K <\infty and a deterministic constant \^\mu , such that \=\mu k = \=\mu \=K \leq \^\mu , for all k > \=K.

Proof. It suffices to show that there exists a deterministic threshold \~\mu > 0 inde-
pendent of k such that (3.6) is satisfied as long as \=\mu k \geq \~\mu . We have

Predk
(3.5)
= \=gTk \Delta \bfitx k +

1

2
\Delta \bfitx T

kBk\Delta \bfitx k + \=\mu k(\| ck +Gk\Delta \bfitx k\|  - \| ck\| )
(2.8)
= \=gTk Zk\bfitu k+\=\gamma k(\=gk - \nabla fk)T\bfitv k+\=\gamma k\nabla fT

k \bfitv k+
1

2
\bfitu T
k Z

T
k BkZk\bfitu k+\=\gamma k\bfitv 

T
kBkZk\bfitu k

+
1

2
\=\gamma 2
k\bfitv 

T
kBk\bfitv k  - \=\mu k\=\gamma k\| ck\| (also use \Delta \bfitx k = \=\gamma k\bfitv k +Zk\bfitu k)

\leq (\=gk + \=\gamma kBk\bfitv k)
TZk\bfitu k +

1

2
\bfitu T
k Z

T
k BkZk\bfitu k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| 

+
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| (by Assumptions 4.1, 4.12 and \=\gamma k \leq 1).

From (2.9), and replacing \nabla \scrL k by its stochastic estimate, we have

Predk \leq  - \| \=\nabla \bfitx \scrL k + \=\gamma kPkBk\bfitv k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| 

+
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| 

\leq  - \| \=\nabla \bfitx \scrL k\| \~\Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| 

+
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| (by triangular inequality and \| Pk\| \leq 1)

\leq  - \| \=\nabla \bfitx \scrL k\| \Delta k + \| \=\nabla \bfitx \scrL k\| \u \Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k

+ \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| (since \~\Delta k \geq \Delta k  - \u \Delta k)

= - \| \=\nabla \bfitx \scrL k\| \Delta k  - \| ck\| \Delta k + \| ck\| \Delta k + \| \=\nabla \bfitx \scrL k\| \u \Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k

+
1

2
\| Bk\| \~\Delta 2

k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| 
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\leq  - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k + \| ck\| \Delta k + \| \=\nabla \bfitx \scrL k\| \u \Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \Delta k

+ \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| ,

since \| \=\nabla \bfitx \scrL k\| + \| ck\| \geq \| \=\nabla \scrL k\| and \~\Delta k \leq \Delta k. Thus, (3.6) holds as long as

\=\mu k\=\gamma k\| ck\| \geq \| ck\| \Delta k + \| \=\nabla \bfitx \scrL k\| \u \Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \Delta k

+ \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
\=\gamma k
2
\| Bk\| \| \bfitv k\| 2.

Since \| \bfitv k\| \leq \| ck\| /
\surd 
\kappa 1,G and \Delta k \leq \Delta max := \eta max\alpha u\beta max(\kappa c +M1 + \kappa \nabla f ) (cf. As-

sumption 4.1 and Lemma 4.7), it is sufficient to show

\=\mu k\=\gamma k\| ck\| \geq \| ck\| \Delta k + \| \=\nabla \bfitx \scrL k\| \u \Delta k + \=\gamma k\| ck\| 
\biggl( 
\kappa B\Delta max +M1 + \kappa \nabla f\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.(4.9)

Equivalently,

\=\mu k \geq 
\Delta k

\=\gamma k
+
\| \=\nabla \bfitx \scrL k\| \u \Delta k

\=\gamma k\| ck\| 
+

\biggl( 
\kappa B\Delta max +M1 + \kappa \nabla f\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

We only consider \| ck\| > 0, since (4.9) holds when \| ck\| = 0. By (3.2), we find that

\Delta k

\=\gamma k
+
\| \=\nabla \bfitx \scrL k\| \u \Delta k

\=\gamma k\| ck\| 
\leq \eta 1,k\alpha k\| \=\nabla \scrL k\| 

\=\gamma k

\biggl( 
1 +
\| \=\nabla \bfitx \scrL k\| \| Gk\|  - 1

\| \=\nabla \scrL RS
k \| 

\biggr) 
.

Noticing that \| \=\nabla \scrL RS
k \| \geq min\{ \| Bk\|  - 1,\| Gk\|  - 1\} \| \=\nabla \scrL k\| , we find

\Delta k

\=\gamma k
+
\| \=\nabla \bfitx \scrL k\| \u \Delta k

\=\gamma k\| ck\| 
\leq \eta 1,k\alpha k\| \=\nabla \scrL k\| 

\=\gamma k

\biggl( 
1 +

\| \=\nabla \bfitx \scrL k\| \| Gk\|  - 1

min\{ \| Bk\|  - 1,\| Gk\|  - 1\} \| \=\nabla \scrL k\| 

\biggr) 
=

\eta 1,k\alpha k\| \=\nabla \scrL k\| 
\=\gamma k

\biggl( 
1 +max

\biggl\{ 
\| Bk\| 
\| Gk\| 

,1

\biggr\} 
\| \=\nabla \bfitx \scrL k\| 
\| \=\nabla \scrL k\| 

\biggr) 
\leq 2\eta 1,k\alpha k\| \=\nabla \scrL k\| 

\=\gamma k
max

\biggl\{ 
\| Bk\| 
\| Gk\| 

,1

\biggr\} 
.

To analyze \=\gamma k, we notice that \| \=\nabla \scrL RS
k \| \leq max\{ \| Bk\|  - 1,\| Gk\|  - 1\} \| \=\nabla \scrL k\| . Therefore,

\u \Delta k

\| \bfitv k\| 
(2.5)
=

\| cRS
k \| \Delta k

\| \=\nabla \scrL RS
k \| \| \bfitv k\| 

(3.2)

\geq \eta 2,k\alpha k\| Gk\|  - 1\| ck\| 
max\{ \| Bk\|  - 1,\| Gk\|  - 1\} \| \bfitv k\| 

\geq \eta 1,k\alpha k\| ck\| 
2\| \bfitv k\| 

min

\biggl\{ 
\| Bk\| 
\| Gk\| 

,1

\biggr\} 
(3.1)
= \zeta \alpha k\phi k/2,

where the last inequality is due to the fact that (3.1) implies \zeta \alpha k \leq 1, implying
\eta 2,k \geq \eta 1,k/2. We therefore have

1

2
\zeta \alpha k\phi k \leq min

\Bigl\{ 
\u \Delta k/\| \bfitv k\| ,1

\Bigr\} 
=: \=\gamma trial

k .(4.10)

The above display suggests that we only need to consider \=\gamma k =
1
2\zeta \alpha k\phi k. Noting that

max\{ \| Bk\| /\| Gk\| ,1\} \leq max\{ \kappa B/
\surd 
\kappa 1,G,1\} , min\{ \| Bk\| /\| Gk\| ,1\} \geq min\{ 1/(\kappa B

\surd 
\kappa 2,G),

1\} , and \| \=\nabla \scrL k\| \leq \kappa c +M1 + \kappa \nabla f , we obtain that

\Delta k

\=\gamma k
+
\| \=\nabla \bfitx \scrL k\| \u \Delta k

\=\gamma k\| ck\| 
\leq 
\biggl[ 
4\eta max

\zeta 
(\kappa c + \kappa \nabla f +M1)max

\biggl\{ 
\kappa B\surd 
\kappa 1,G

,1

\biggr\} \biggr] 
\cdot max\{ \kappa B

\surd 
\kappa 2,G,1\} .
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Therefore, (3.6) holds as long as

\=\mu k \geq \~\mu :=

\biggl[ 
4\eta max

\zeta 
(\kappa c + \kappa \nabla f +M1)max

\biggl\{ 
\kappa B\surd 
\kappa 1,G

,1

\biggr\} \biggr] 
\cdot max\{ \kappa B

\surd 
\kappa 2,G,1\} 

+

\biggl( 
\kappa B\Delta max +M1 + \kappa \nabla f\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

Since \=\mu k is increased by at least a factor of \rho for each update, we define \^\mu := \rho \~\mu and
complete the proof.

Compared to existing StoSQP methods, we do not require the stabilized merit
parameter to be large enough. The additional requirement of having a large enough
stabilized value is critical for existing StoSQP methods. To satisfy this requirement,
[26, 25] imposed an adaptive condition on the feasibility error to be satisfied when
selecting the merit parameter; and [2, 3, 4, 18] imposed a symmetry condition on
the noise distribution. Intuitively, the reduction of the merit function in StoSQP
methods should be related to the true KKT residual. In the aforementioned methods,
the reduction of the stochastic merit function model is first related to the reduction
of the deterministic merit function model and then related to the true KKT residual.
However, the relation between the reduction in stochastic and deterministic models is
only valid when the merit parameter stabilizes at a sufficiently large value [3, Lemma
3.12]. In contrast, our approach relates the reduction of stochastic model to the
squared estimated KKT residual \| \=\nabla \scrL k\| 2 (i.e., (3.6)). After taking the conditional
expectation and carefully analyzing the error terms, we can further use the true KKT
residual to characterize the improvement of the merit function in each step. In the
end, we suppress the condition on a sufficiently large merit parameter.

5. Numerical experiments. We demonstrate the empirical performance of Al-
gorithm 3.1 and compare it to the line-search \ell 1-StoSQP method designed in [3,
Algorithm 3] under the same fully stochastic setup. We describe the algorithmic set-
tings in section 5.1; then we show numerical results on a subset of CUTEst problems
[23] in section 5.2; and then we show numerical results on constrained logistic re-
gression problems in section 5.3. The implementation of TR-StoSQP is available at
https://github.com/ychenfang/TR-StoSQP.

5.1. Algorithm setups. For both our method and \ell 1-StoSQP, we try two con-
stant sequences, \beta k \in \{ 0.5,1\} , and two decaying sequences, \beta k \in \{ k - 0.6, k - 0.8\} . The
sequence \{ \beta k\} is used to select the stepsize in \ell 1-StoSQP. We use the same input,
since, as discussed in Remark 3.1, \beta k in two methods shares the same order. For both
methods, the Lipschitz constants of the objective gradients and constraint Jacobians
are estimated around the initialization and kept constant for subsequent iterations.

We follow [3] to set up the \ell 1-StoSQP method, where we set Bk = I and solve the
SQP subproblems exactly. We set the parameters of TR-StoSQP as \zeta = 10, \delta = 10,
\=\mu  - 1 = 1, and \rho = 1.5. We use the IPOPT solver [38] to solve (2.7) and apply four
different Hessian approximations Bk as follows:

(a) Identity (Id). We setBk = I, which is widely used in the literature [2, 3, 25, 26].
(b) Symmetric rank-one (SR1) update. We set H - 1 =H0 = I and update Hk as

Hk =Hk - 1 +
(\bfity k - 1  - Hk - 1\Delta \bfitx k - 1)(\bfity k - 1  - Hk - 1\Delta \bfitx k - 1)

T

(\bfity k - 1  - Hk - 1\Delta \bfitx k - 1)T\Delta \bfitx k - 1
\forall k\geq 1,

where \bfity k - 1 = \=\nabla \bfitx \scrL k  - \=\nabla \bfitx \scrL k - 1 and \Delta \bfitx k - 1 = \bfitx k  - \bfitx k - 1. Since Hk depends
on \=gk, we set Bk =Hk - 1 (B0 =H - 1 = I) to ensure that \sigma (Bk)\subseteq \scrF k - 1.
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(c) Estimated Hessian (EstH). We set B0 = I and Bk = \=\nabla 2
\bfitx \scrL k - 1 for allk \geq 1,

where \=\nabla 2
\bfitx \scrL k - 1 is estimated using the same sample used to estimate \=gk - 1.

(d) Averaged Hessian (AveH). We set B0 = I, set Bk =
\sum k - 1

i=k - 100
\=\nabla 2
\bfitx \scrL i/100

for k \geq 100, and set Bk =
\sum k - 1

i=0
\=\nabla 2
\bfitx \scrL i/k for 0 < k < 100. This Hessian

approximation is inspired by [27], where the authors showed that the Hessian
averaging is helpful for denoising the noise in the stochastic Hessian estimates.

5.2. CUTEst. We select problems from the CUTEst set that have a noncon-
stant objective with only equality constraints, satisfy d < 1000, and do not report
singularity on GkG

T
k during the iteration process, resulting in 47 problems in total.

The initial iterate is provided by the CUTEst package. At each step, the estimate \=gk
is drawn from \scrN (\nabla fk, \sigma 2(I+11T )), where 1 denotes the d-dimensional all one vector
and \sigma 2 denotes the noise level varying within \{ 10 - 8,10 - 4,10 - 2,10 - 1\} . When the ap-
proximation EstH or AveH is used, the estimate ( \=\nabla 2fk)i,j (same for the (j, i) entry)
is drawn from \scrN ((\nabla 2fk)i,j , \sigma 

2) with the same \sigma 2 used for estimating the gradient.
We set the iteration budget to 105 and, for each setup of \beta k and \sigma 2, average the KKT
residuals over five runs. We stop the iteration of both methods if \| \nabla \scrL k\| \leq 10 - 4 or
k\geq 105.

We report the KKT residuals of \ell 1-StoSQP and TR-StoSQP with different Hes-
sian approximations in Figure 1. We observe that for both constant \beta k and decaying
\beta k with a high noise level, TR-StoSQP consistently outperforms \ell 1-StoSQP. We note
that \ell 1-StoSQP performs better than TR-StoSQP for decaying \beta k with a low noise

(a) βk = 0.5 (b) βk = 1.0

(c) βk = k−0.6 (d) βk = k−0.8

Fig. 1. KKT residual boxplots for CUTEst problems. For each \sigma 2, there are five boxes. The
first four boxes correspond to the proposed TR-StoSQP method with four different choices of Bk,
while the last box corresponds to the \ell 1-StoSQP method.
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level (e.g., \sigma 2 = 10 - 8). However, in that case, TR-StoSQP is not sensitive to the noise
level \sigma 2, while the performance of \ell 1-StoSQP deteriorates rapidly as \sigma 2 increases.
We think that the robustness against noise is a benefit brought by the trust-region
constraint, which properly regularizes the SQP subproblem when \sigma 2 is large. Fur-
thermore, among the four choices of Hessian approximations, TR-StoSQP generally
performs the best with the averaged Hessian and the second best with the estimated
Hessian. Compared to the identity and SR1 update, the estimated Hessian provides a
better approximation to the true Hessian (especially when \sigma 2 is small); the averaged
Hessian further reduces the noise that leads to a better performance (especially when
\sigma 2 is large).

We observe that when \sigma 2 is large, or \sigma 2 is small but \beta k is constant, TR-StoSQP
outperforms \ell 1-StoSQP, even when the identity Hessian is used. However, for de-
caying \beta k and small \sigma 2, the performance of TR-StoSQP is less competitive. This
disparity in performance could arise from the difference in trial step computation.
In line-search methods, even though the search direction is determined by solving
a Newton system, it can still be decomposed orthogonally into a normal direction
\bfitw k \in im(GT

k ) and a tangential direction \bfitt k \in ker(Gk) (see [3] for details). The direc-
tion of \bfitw k is consistent between trust-region and line-search methods, represented as
\bfitv k :=  - GT

k [GkG
T
k ]

 - 1ck. However, the directions of the tangential step are different.
In trust-region methods, the tangential step is determined by (2.7) using \bfitw k = \=\gamma k\bfitv k

with \=\gamma k chosen based on (2.6) and (3.3). In contrast, in line-search methods, the tan-
gential direction effectively comes from (2.7) using \bfitw k = \bfitv k without the trust-region
constraint. In stochastic optimization, most iterations satisfy \=\gamma k < 1. Therefore, the
directions of the tangential step might differ in trust-region methods and line-search
methods, even if the identity Hessians are used and the iterates are near an optimal
point. Also, the trust-region constraint serves as a regularization that is potentially
helpful for large noise scenarios (\sigma 2 is large or \beta k is constant). We should emphasize
that the difference in trial step direction is due to different mechanisms of trust-region
methods and line-search methods (trust-region methods compute the search direction
and stepsize simultaneously, while line-search methods compute them separately) and
the fully stochastic setup (the noise does not gradually vanish), but not due to our
algorithm design.

We then investigate the adaptivity of the radius selection scheme in (3.2). As
explained in Remark 3.1, the radius \Delta k can be set larger or smaller than \alpha k =\scrO (\beta k),
depending on the magnitude of the estimated KKT residual. In Table 1, we report
the proportions of the three cases in (3.2): \Delta k < \alpha k, \Delta k = \alpha k, and \Delta k > \alpha k. We
average the proportions over five runs of all 47 problems in each setup. From Table 1,
we have the following three observations. (i) Case 2 has a near zero proportion for
all setups. This phenomenon is due to the fact that \eta 1,k - \eta 2,k =\scrO (\beta k). For constant
\beta k, this value is small, and thus a few iterations are in Case 2. For decaying \beta k, this
value even converges to zero, and thus almost no iterations are in Case 2. (ii) Case
3 is triggered quite frequently if \beta k decays rapidly. This phenomenon suggests that
the adaptive scheme can generate aggressive steps, even if we input a conservative
radius-related sequence \beta k. (iii) The proportion of Case 1 dominates the other two
cases in most of the setups. This is reasonable, since Case 1 is always triggered when
the iterates are near a KKT point.

In Remark 3.4, we provide two alternative relaxation techniques to compute the
trial step. Figure 2 reports the KKT residuals for these methods. We use Adap1

to denote TR-StoSQP with our adaptive relaxation technique; Adap2 to denote TR-
StoSQP with the technique in Remark 3.4(i), where the radius of the tangential
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Table 1
Proportions of the three cases in (3.2) (\%). We highlight the proportion of Case 3 if the value

is higher than 25\%.

\sigma 2 = 10 - 8 \sigma 2 = 10 - 4 \sigma 2 = 10 - 2 \sigma 2 = 10 - 1

\beta k Bk Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Id 90.3 0.1 9.6 91.3 0.2 8.5 95.0 0.1 4.9 54.7 0.9 44.4

SR1 93.8 0.1 6.1 92.7 0.1 7.2 94.6 0.1 5.7 56.2 1.1 42.7
0.5

EstH 92.2 0.1 7.7 94.8 0.1 5.1 84.8 0.2 15.0 71.1 0.5 28.4
AveH 92.5 0.1 7.4 94.1 0.1 5.8 88.2 0.2 11.6 64.2 0.4 35.4

Id 92.0 0.1 7.9 93.7 0.1 6.2 95.4 0.2 4.4 57.1 1.2 41.7
SR1 94.0 0.2 5.8 96.1 0.1 3.8 97.7 0.2 2.1 64.2 1.2 34.6

1.0
EstH 92.4 0.1 7.5 93.8 0.1 6.1 87.5 0.4 12.1 72.8 0.5 26.7

AveH 92.4 0.2 7.4 93.9 0.3 5.8 85.5 0.3 14.2 67.1 0.6 32.3

Id 97.2 0.0 2.8 96.8 0.0 3.2 93.4 0.0 6.6 51.8 0.0 48.2
SR1 98.3 0.0 1.7 97.1 0.0 2.9 93.2 0.0 6.8 51.5 0.0 48.5

k - 0.6

EstH 97.9 0.0 2.1 95.8 0.0 4.2 86.6 0.0 13.4 69.1 0.0 30.9

AveH 97.4 0.0 2.6 96.1 0.0 3.9 86.8 0.0 13.2 65.5 0.0 34.8

Id 70.6 0.0 29.4 68.1 0.0 31.9 66.4 0.0 33.6 45.8 0.0 54.2

SR1 56.1 0.0 43.9 65.7 0.0 34.3 66.6 0.0 33.4 39.9 0.0 60.1
k - 0.8

EstH 67.5 0.0 32.5 65.2 0.0 34.8 62.0 0.0 38.0 54.7 0.0 45.3

AveH 67.9 0.0 32.1 66.7 0.0 33.3 65.9 0.0 34.1 51.4 0.0 48.6

(a) βk = 0.5 (b) βk = 1.0

(c) βk = k−0.6 (d)βk = k−0.8

Fig. 2. KKT residual boxplots for CUTEst problems with different relaxation techniques. The
Hessian approximation Bk is set as identity matrix. For each \sigma 2, there are three boxes. The first
box corresponds to the proposed adaptive relaxation technique. The second box corresponds to the
adaptive technique in Remark 3.4(i). The last box corresponds to the nonadaptive technique in
Remark 3.4(ii).
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(a) Constant βk (b) Decaying βk = k−s

Fig. 3. KKT residual boxplots for constrained logistic regression problems. For each setup of
\beta k, there are five boxes. The first four boxes correspond to the proposed TR-StoSQP method with
four different choices of Bk, while the last box corresponds to the \ell 1-StoSQP method.

step is controlled by \~\Delta k :=
\sqrt{} 

\Delta 2
k  - \| \bfitw k\| 2; and NonAdap to denote TR-StoSQP with

the technique in Remark 3.4(ii), where the prespecified parameter is set as \theta = 0.8.
The remaining algorithm setups follow from TR-StoSQP and Bk = I. We observe
that the three techniques have comparable performance for most combinations of \beta k

and \sigma 2, while Adap1 is slightly better than the other two techniques in some cases.
The results suggest that our adaptive relaxation technique, as well as its variant
in Remark 3.4(i), is at least as good as the conventional technique (the nonadaptive
technique in Remark 3.4(ii)) in practice, but it requires no effort in tuning parameters.

5.3. Constrained logistic regression. We consider equality-constrained logis-
tic regression of the form

min
\bfitx \in \BbbR d

f(\bfitx ) =
1

N

N\sum 
i=1

log \{ 1 + exp( - yi \cdot \langle \bfitz i,\bfitx \rangle )\} s.t. A\bfitx = \bfitb ,

where \bfitz i \in \BbbR d is the sample point, yi \in \{  - 1,1\} is the label, and A\in \BbbR m\times d and \bfitb \in \BbbR m

form the deterministic constraints. We implement eight datasets from LIBSVM [12]:
austrilian, breast-cancer, diabetes, heart, ionosphere, sonar, splice, and
svmguide3. For each dataset, we set m= 5 and generate random A and \bfitb by drawing
each element from a standard normal distribution. We ensure that A has full row
rank in all problems. For both algorithms and all problems, the initial iterate is set
to be all one vector of appropriate dimension. In each iteration, we select one sample
at random to estimate the objective gradient (and Hessian if EstH or AveH is used).
A budget of 20 epochs---the number of passes over the dataset---is used for both
algorithms and all problems. We stop the iteration if \| \nabla \scrL k\| \leq 10 - 4 or the epoch
budget is consumed.

We report the average of the KKT residuals over five runs in Figure 3. From
the figure, we observe that TR-StoSQP with all four choices of Bk consistently out-
performs \ell 1-StoSQP when \beta k = 0.5, 1.0, and k - 0.6. When \beta k = k - 0.8, TR-StoSQP
enjoys a better performance by using the estimated Hessian or averaged Hessian. This
experiment further illustrates the promising performance of our method.

6. Conclusion. We designed a trust-region stochastic SQP (TR-StoSQP) al-
gorithm to solve nonlinear optimization problems with stochastic objective and de-
terministic equality constraints. We developed an adaptive relaxation technique to
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address the infeasibility issue that arises when trust-region methods are applied to
constrained problems. With a stabilized merit parameter, TR-StoSQP converges in
two regimes. (i) When \beta k = \beta for all k\geq 0, the expectation of weighted averaged KKT
residuals converges to a neighborhood around zero. (ii) When \beta k satisfies

\sum 
\beta k =\infty 

and
\sum 

\beta 2
k <\infty , the KKT residuals converge to zero almost surely. We also showed

that the merit parameter is ensured to stabilize, provided the gradient estimates are
bounded. Our numerical experiments on a subset of problems of the CUTEst set
and constrained logistic regression problems showed promising performance of the
proposed method.

There are still several interesting future directions. First, it is of interest to
design trust-region StoSQP algorithms when the Jacobians of constraints are rank-
deficient. Second, how to establish global convergence without the assumption of
bounded noise remains an open question. Removing that assumption may require a
deeper understanding of the merit function and randomness in estimation. Finally,
it is of interest to devise a method that uses second-order information efficiently. To
fully exploit second-order derivatives, the method should move the trial steps along
the negative curvature appropriately.

Appendix A. Additional analysis of the behavior of the merit parame-
ter. In this appendix, we further investigate the stability behavior of the merit pa-
rameter when using the alternative two approaches in Remark 3.4 to decompose the
radius. As mentioned, for both approaches, the global convergence analysis directly
follows from section 4.2.

We first show that for the method in Remark 3.4(i), the merit parameter will
stabilize under Assumption 4.12.

Lemma A.1. Suppose Assumptions 4.1 and 4.12 hold and the relaxation technique
in Remark 3.4(i) is employed. Then, there exist a (potentially random) \=K <\infty and a
deterministic constant \^\mu , such that \=\mu k = \=\mu \=K \leq \^\mu for all k > \=K.

Proof. Similar to Lemma 4.13, we only show that there exists a deterministic
threshold \~\mu > 0 independent of k such that (3.6) is satisfied as long as \=\mu k \geq \~\mu . Using
the same derivation as Lemma 4.13, we have

Predk \leq  - \| \=\nabla \bfitx \scrL k\| \~\Delta k + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| 

+
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| 

\leq  - \| \=\nabla \bfitx \scrL k\| \Delta k + \=\gamma k\| \bfitv k\| \| \=\nabla \bfitx \scrL k\| + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k +
1

2
\| Bk\| \~\Delta 2

k

+ \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2

 - \=\mu k\=\gamma k\| ck\| (since \~\Delta k \geq \Delta k  - \=\gamma k\| \bfitv k\| )
= - \| \=\nabla \bfitx \scrL k\| \Delta k  - \| ck\| \Delta k + \| ck\| \Delta k + \=\gamma k\| \bfitv k\| \| \=\nabla \bfitx \scrL k\| + \=\gamma k\| Bk\| \| \bfitv k\| \~\Delta k

+
1

2
\| Bk\| \~\Delta 2

k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| 

\leq  - \| \=\nabla \scrL k\| \Delta k +
1

2
\| Bk\| \Delta 2

k + \| ck\| \Delta k + \=\gamma k\| \bfitv k\| \| \=\nabla \bfitx \scrL k\| + \=\gamma k\| Bk\| \| \bfitv k\| \Delta k

+ \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
1

2
\=\gamma k\| Bk\| \| \bfitv k\| 2  - \=\mu k\=\gamma k\| ck\| ,
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since \| \=\nabla \bfitx \scrL k\| + \| ck\| \geq \| \=\nabla \scrL k\| and \~\Delta k \leq \Delta k. Thus, (3.6) holds as long as

\=\mu k\=\gamma k\| ck\| \geq \| ck\| \Delta k + \=\gamma k\| \bfitv k\| \| \=\nabla \bfitx \scrL k\| 

+ \=\gamma k\| Bk\| \| \bfitv k\| \Delta k + \=\gamma k(M1 + \kappa \nabla f )\| \bfitv k\| +
\=\gamma k
2
\| Bk\| \| \bfitv k\| 2.

Since \| \bfitv k\| \leq \| ck\| /
\surd 
\kappa 1,G, \| \=\nabla \bfitx \scrL k\| \leq \| \nabla \bfitx \scrL k\| + \| \nabla fk  - \=gk\| \leq \kappa \nabla f +M1, and \Delta k \leq 

\Delta max, it is sufficient to show

\=\mu k\=\gamma k\| ck\| \geq \| ck\| \Delta k + \=\gamma k\| ck\| 
\biggl( 
\kappa B\Delta max + 2(M1 + \kappa \nabla f )\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

Equivalently,

\=\mu k \geq 
\Delta k

\=\gamma k
+

\biggl( 
\kappa B\Delta max + 2(M1 + \kappa \nabla f )\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

Here, we only consider \| ck\| \not = 0, since the result trivially holds when \| ck\| = 0. From
(3.2), we find that

\Delta k

\=\gamma k
\leq \eta 1,k\alpha k\| \=\nabla \scrL k\| 

\=\gamma k
.

By (4.10), \=\gamma k \geq 1
2\zeta \phi k\alpha k =

1
2\zeta min\{ \| Bk\| /\| Gk\| ,1\} \alpha k. Noting that min\{ \| Bk\| /\| Gk\| ,1\} 

\geq min\{ 1/(\kappa B
\surd 
\kappa 2,G),1\} and \| \=\nabla \scrL k\| \leq \kappa c +M1 + \kappa \nabla f , we obtain

\Delta k

\=\gamma k
\leq 2\eta max

\zeta 
(\kappa c + \kappa \nabla f +M1) \cdot max\{ \kappa B

\surd 
\kappa 2,G,1\} .

Therefore, (3.6) holds as long as

\=\mu k \geq \~\mu :=
2\eta max

\zeta 
(\kappa c + \kappa \nabla f +M1) \cdot max\{ \kappa B

\surd 
\kappa 2,G,1\} 

+

\biggl( 
\kappa B\Delta max + 2(M1 + \kappa \nabla f )\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

Since \=\mu k is increased by at least a factor of \rho for each update, we define \^\mu := \rho \~\mu and
complete the proof.

We then show that for the method in Remark 3.4(ii), the merit parameter will
stabilize just under Assumption 4.12(i). However, a tuning parameter \theta \in (0,1) is
involved to control the length of the normal step.

Lemma A.2. Suppose Assumptions 4.1 and 4.12(i) hold and the relaxation tech-
nique in Remark 3.4(ii) is employed. Then, there exist a (potentially random) \=K <\infty 
and a deterministic constant \^\mu , such that \=\mu k = \=\mu \=K \leq \^\mu for all k > \=K.

Proof. Similar to Lemma 4.13, we only show that there exists a deterministic
threshold \~\mu > 0 independent of k such that (3.6) is satisfied as long as \=\mu k \geq \~\mu . Using
the same derivation as Lemma A.1, we only need to show

\=\mu k \geq 
\Delta k

\=\gamma k
+

\biggl( 
\kappa B\Delta max + 2(M1 + \kappa \nabla f )\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
holds for \=\mu k larger than a deterministic threshold for \| ck\| \not = 0. Since all k\geq 0,

\Delta k

\=\gamma k
\leq \eta 1,k\alpha k\| \=\nabla \scrL k\| 

\=\gamma k
.
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By the projection technique of choosing \=\gamma k and the fact that \eta 2,k \geq \eta 1,k/2, we have

\u \Delta k

\| \bfitv k\| 
=

\theta \Delta k

\| \bfitv k\| 
(3.2)

\geq \theta \eta 2,k\alpha k\| \=\nabla \scrL k\| 
\| \bfitv k\| 

\geq \theta \eta 1,k\alpha k\| ck\| 
2\| \bfitv k\| 

(3.1)
=

\theta \zeta \alpha k

2
.

Further, since \theta \zeta \alpha k/2\leq 1, we know \theta \zeta \alpha k/2\leq \=\gamma trial
k , implying \=\gamma k \geq \theta \zeta \alpha k/2. Thus,

\Delta k

\=\gamma k
\leq 2\eta max

\zeta \theta 
(\kappa c + \kappa \nabla f +M1).

Therefore, (3.6) holds as long as

\=\mu k \geq \~\mu :=
2\eta max

\zeta \theta 
(\kappa c + \kappa \nabla f +M1) +

\biggl( 
\kappa B\Delta max + 2(M1 + \kappa \nabla f )\surd 

\kappa 1,G
+

\kappa B\kappa c

2\kappa 1,G

\biggr) 
.

Since \=\mu k is increased by at least a factor of \rho for each update, we define \^\mu := \rho \~\mu and
complete the proof.
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