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ABSTRACT

In the realm of Artificial Intelligence Generated Content (AIGC), flow-matching
models have emerged as a powerhouse, achieving success due to their robust theo-
retical underpinnings and solid ability for large-scale generative modeling. These
models have demonstrated state-of-the-art performance, but their brilliance comes
at a cost. The process of sampling from these models is notoriously demanding
on computational resources, as it necessitates the use of multi-step numerical or-
dinary differential equations (ODEs). Against this backdrop, this paper presents a
novel solution with theoretical guarantees in the form of Flow Generator Match-
ing (FGM), an innovative approach designed to accelerate the sampling of flow-
matching models into a one-step generation, while maintaining the original per-
formance. On the CIFAR10 unconditional generation benchmark, our one-step
FGM model achieves a new record Fréchet Inception Distance (FID) score of
3.08 among few-step flow-matching-based models, outperforming original 50-
step flow-matching models. Furthermore, we use the FGM to distill the Stable
Diffusion 3, a leading text-to-image flow-matching model based on the MM-DiT
architecture. The resulting MM-DiT-FGM one-step text-to-image model demon-
strates outstanding industry-level performance. When evaluated on the GenEval
benchmark, MM-DiT-FGM has delivered remarkable generating qualities, rival-
ing other multi-step models in light of the efficiency of a single generation step.

1 INTRODUCTIONS

Over the past decade, deep generative models have achieved remarkable advancements across var-
ious applications including data generation (Karras et al., 2020b; 2022; Nichol & Dhariwal, 2021;
Oord et al., 2016; Ho et al., 2022; Poole et al., 2022; Hoogeboom et al., 2022; Kim et al., 2022),
density estimation (Kingma & Dhariwal, 2018; Chen et al., 2019), and image editing (Meng et al.,
2021; Couairon et al., 2022). These models have notably excelled in producing high-resolution,
text-driven data such as images (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022;
2021; Luo, 2024), videos (Ho et al., 2022; Brooks et al., 2024), audios (Evans et al., 2024), and
others (Zhang et al., 2024; Xue et al., 2023; Luo & Zhang, 2024; Luo et al., 2023b; Zhang et al.,
2023; Feng et al., 2023; Deng et al., 2024; Luo et al., 2024c; Geng et al., 2024b; Wang et al., 2024;
Pokle et al., 2022), pushing the boundaries of Artificial Intelligence Generated Content (AIGC).

Among the spectrum of deep generative models, flow-matching models (FMs) have emerged as par-
ticularly potent, showcasing robust performance in applications like likelihood computation (Grath-
wohl et al., 2018; Chen et al., 2018) and text-conditional image synthesis(Esser et al., 2024; Liu
et al., 2023). Flow models utilize neural networks to parametrize a continuous-time transportation
field, establishing a bijective mapping between real data and random prior noises. They are trained
to learn conditional vector fields using flow-matching methods (Lipman et al., 2022b; Albergo &
Vanden-Eijnden, 2022; Liu et al., 2022; Neklyudov et al., 2023). The flexible parametrization and
relative ease of training make FMs versatile across various datasets and applications.

However, despite their strengths, FMs still have severe drawbacks. Primarily, sampling from FMs in-
volves multiple evaluations of the deep neural network, leading to computational inefficiencies. This
limitation restricts their broader application, especially in scenarios where efficiency is paramount.
Therefore fast sampling from flow models is important though challenging.

Step-wise distillation has emerged as a viable strategy to mitigate the computational inefficiencies
associated with iterative sampling processes in deep generative models, particularly for accelerating
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Figure 1: Qualitative Evaluation of one-step samples from MM-DiT-FGM. Prompts used in this
figure can be found in the Appendix B.2.1.

diffusion models’ sampling mechanisms into more efficient one-step models (Luo et al., 2023a;
Salimans & Ho, 2022; Song et al., 2023; Gu et al., 2023a; Fan et al., 2023; Fan & Lee, 2023; Aiello
et al., 2023; Watson et al., 2022). While distillation has proven effective in these contexts, the
application of such techniques to flow models, has not yet been thoroughly investigated. Besides,
since the flow matching does not imply marginal probability densities or score functions as diffusion
models do, how to introduce a probabilistic distillation approach for FMs remains challenging.

In this paper, we bridge this gap by presenting flow generator matching (FGM), a probabilistic
framework for the one-step distillation of flow models. FGM streamlines the sampling process
of flow models, making it computationally efficient as a one-step generator, while maintaining high
fidelity to the original model’s output. Our approach is validated against several benchmarks, such as
image generation on the CIFAR10 dataset and large-scale text-to-image generation. On both tasks,
we demonstrated very strong performance with only one-step generation. Besides, our experiment
on distilling text-to-image flow models shows remarkable performances, marking a new record for
one-step text-to-image generation of flow-based models. In conclusion, our exploration not only
expands the understanding of distillation techniques but also enhances the practical utility of flow
models, particularly in scenarios where quick and efficient sampling is crucial.
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2 RELATED WORKS

Diffusion Distillation. Diffusion distillation (Luo, 2023) is an active research line aiming to ac-
celerate diffusion model sampling using distillation techniques. There are mainly three lines of
approaches to distill pre-trained diffusion models to obtain solid few-step models. The first line is
the distribution matching method. Luo et al. (2024a) first explore diffusion distillation by minimiz-
ing the Integral KL divergence. Yin et al. (2024b) extended this concept by incorporating a data
regression loss to enhance performance. Zhou et al. (2024) investigated distillation by focusing on
minimizing the Fisher divergence, while Luo et al. (2024b) applied a general score-based divergence
to the distillation process. Many other approaches have also studied distribution matching distilla-
tion (Nguyen & Tran, 2024; Yuda Song, 2024; Heek et al., 2024; Xie et al., 2024; Xiao et al., 2021;
Xu et al., 2024). In this paper, our approach is related to distribution matching distillation. However,
how to properly apply distribution matching distillation in the regime of flow models is technically
difficult. The second line is the so-called trajectory distillation, which aims to use few-step models
to learn the diffusion model’s trajectory (Luhman & Luhman, 2021; Salimans & Ho, 2022; Geng
et al., 2024a; Meng et al., 2022). Other works use the self-consistency of the diffusion model’s tra-
jectory to learn few-step models (Song et al., 2023; Kim et al., 2023; Song & Dhariwal, 2023; Liu
et al., 2024; Gu et al., 2023b; Geng et al., 2024b; Salimans et al., 2024).

Acceleration of Flow Matching Models. In recent years, there have been efforts to accelerate the
sampling process of flow-matching models, most current work focuses on straightening the trajec-
tories of ordinary differential equations (ODEs). ReFlow (Liu et al., 2022) replaces the arbitrary
coupling of noise and data originally used for training flow matching with a deterministic coupling
generated by a teacher model, enabling the model to learn a rectified flow from the data. CFM
(Yang et al., 2024) shares a similar concept with consistency models but differs by applying consis-
tency constraints to the velocity field space instead of the sample space. This approach also serves
as a form of regularization aimed at straightening the trajectories of ODEs. Though these works
have demonstrated decent accelerations, they are essentially different from our proposed FGM. The
FGM is built upon a probabilistic perspective that guarantees the generator distribution matches the
teacher FM by minimizing the flow-matching objective. Besides, as we show in Section 5.1, the
FGM outperforms the mentioned methods with significant margins.

3 BACKGROUNDS

Flow-matching Models. Let Rd represent the data space with data points x = (x1, . . . ,xd) ∈
Rd. Let q1(x1) be a simple noise distribution while q0(x0) is the data distribution. Let ut(xt|x0)
be a known conditional vector field that implies the conditional probabilistic transition qt(xt|x0).
The marginal distribution densities qt(xt) form a path that links noise distribution q1(x1) and data
distribution q0(x0), i.e. q1(x|x0) = q1(x) and q0(x|x0) = δ(x−x0). Then, one can further define
a corresponding marginal vector field (3.2) that translates particles drawn from noise distributions
to obtain samples following the data distribution,

qt(xt) =

∫
qt(xt|x0)q0(x0)dx0 (3.1)

ut(xt) =

∫
ut(xt|x0)

qt(xt|x0)q0(x0)

qt(xt)
dx0. (3.2)

Let vθ(·, ·) be a vector field parametrized by a deep neural network. The goal of flow matching is to
train vθ(·, ·) to approximate the marginal flow ut(·) by minimizing the objective (3.3):

LFM (θ) := Et,xt∼qt(xt)∥vθ(xt, t)− ut(xt)∥2. (3.3)

Although (3.3) represents the optimal target for optimization, the lack of the explicit expression
about ut(xt) renders the computation impractical. To address this challenge, Lipman et al. (2022a)
introduced flow-matching, a tractable alternative objective of (3.3). Lipman et al. (2022a) shows
that one can minimize a simpler yet equivalent objective (3.4):

E t,x0∼q0(x0),

xt∼qt(xt|x0)

||vθ(xt, t)− ut(xt|x0)||2, (3.4)

with xt is sampled from qt(xt|x0). The main insight of flow-matching is that the tractable objective
(3.4) shares the same θ gradient as (3.3).
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Practical Instance of Flow Matching Models. In this paper, we especially consider a widely
used flow matching model, the rectified flow (ReFlow) (Liu et al., 2022; Albergo & Vanden-Eijnden,
2022) as a specific instance. Our theory and algorithms for the general flow-matching model share
the same concepts as the ones based on ReFlow. The ReFlow defines the conditional vector field as

ut(xt|x0) =
xt − x0

t
(3.5)

This results in a simple training objective as

LReFlow(θ) = E t,x0∼q0(x0),x1∼N(0,I),
xt=(1−t)x0+tx1

∥vθ(xt, t)− (x1 − x0)∥22 (3.6)

The ReFlow objective (3.6) can be interpreted as using a neural network vθ(xt, t) to predict the
direction from noises to data samples. In experiment Sections 5.1, we pretrain a flow model in-
house using the ReFlow objective (3.6). In Section 5.2, the Stable Diffusion 3 model is also trained
with the ReFlow objective.

4 FLOW GENERATOR MATCHING

In this section, we introduce Flow Generator Matching (FGM), a general method tailored for the one-
step distillation of flow-matching models. We begin by defining problem setup and notations. Then
we introduce our matching objective function and how FGM minimizes this objective. Finally, we
compare FGM with existing flow distillation approaches, highlighting the empirical and theoretical
advantages of our methods.

4.1 PROBLEM SETUPS

Problem Formulation. Our framework is built upon a pre-trained flow-matching model that ac-
curately approximates the marginal vector field ut(xt). The flow ut(xt) bridges the noise and data
distribution. We also know the conditional transition qt(xt|x0) which implies ut(xt|x0). Assume
the pre-trained flow matching model provides a sufficiently good approximation of data distribution,
i.e., q0 is the ground truth data distribution.

Our goal is to train a one-step generator model gθ, which directly transports a random noise z ∼ pz
to obtain a sample x0 = gθ(z). Let pθ,0 denote the distribution of the student model over the
generated sample x, and pθ,t denote the marginal probability path transitioned with qt(xt|x0), i.e.,

pθ,t(xt) =

∫
qt(xt|x0)pθ,0(x0)dx0

This student marginal probability path implicitly induces a flow vector field vθ,t(xt) generating the
path, which is unknown yet intractable.

Intractable Objective. One-step flow generator matching aims to let the student distribution pθ,0
match the data distribution q0. For this, we consider matching the marginal vector field vθ,t with the
pre-trained one ut such that the distributions pθ,0 and q0 can match with one another.

In this section, we define the objective for flow generator matching. Based on previous discussions,
our goal is to minimize the expected L2 distance between the implicit vector field vθ,t and the
pre-trained flow model’s vector field ut, which writes

LFM (θ) := Et,xt∼pθ,t∥vθ,t(xt)− ut(xt)∥2 (4.1)

= E t,z∼pz(z),x0=gθ(z),

xt∼qt(xt|x0)

∥vθ,t(xt)− ut(xt)∥2 (4.2)

Notice that the sample xt is dependent on the parameter θ. We may use xt(θ) to emphasize such a
parameter reliance if necessary.

It is clear to see that the LFM (θ) = 0 if and only if all induced vector fields meet, i.e. vθ,t(xt) =
ut(xt) a.s. pθ,t. Therefore it induces that pθ,t(xt) = qt(xt), a.s. pθ,t , which shows that the
two distributions pθ,0(x0) = q0(x0), a.s. pθ,0 that match with one another. Unfortunately, though
minimizing objective (4.1) leads to a one-step generator, it is intractable because we do not know the
relation between vθ,t(xt) and the generator parameter θ. In the next paragraph, we will bring our
main contribution: a tractable yet equivalent training objective as (4.1) with theoretical guarantees.
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4.2 TRACTABLE OBJECTIVE

Our goal is to optimize the parameter θ to minimize the objective (4.1). However, the implicit vector
field vθ,t is unknown yet intractable. Therefore it is impossible to directly minimize the objective.
However, by taking the gradient of the loss function (4.1) over θ, we have

∂

∂θ
LFM (θ) =

∂

∂θ
Et,xt∼pθ,t∥ut(xt)− vθ,t(xt)∥22

= Et,xt∼pθ,t

{
∂

∂xt

{
∥ut(xt)− vθ,t(xt)∥22

}∂xt(θ)
∂θ

− 2
{
ut(xt)− vθ,t(xt)

}T ∂

∂θ
vθ,t(xt)

}
= Grad1(θ) + Grad1(θ). (4.3)

Where Grad1(θ) and Grad2(θ) are defined with

Grad1(θ) = Et,xt∼pθ,t

{
∂

∂xt

{
∥ut(xt)− vθ,t(xt)∥22

}∂xt(θ)
∂θ

}
, (4.4)

Grad2(θ) = Et,xt∼pθ,t

{
− 2

{
ut(xt)− vθ,t(xt)

}T ∂

∂θ
vθ,t(xt)

}
. (4.5)

The gradients in (4.3) consider all derivatives concerning the parameter θ. We put the detailed
derivation in Appendix A.1.

Notice that the first gradient Grad1(θ) can be obtained if we stop the θ-gradient for vθ,t(·), i.e.
vsg[θ],t(·), This means that we are preventing the gradient of the parameter θ from propagating
through the vector field vθ,t, However, it is important to note that the gradient with respect to θ can
still propagate through xt(θ). This results in an alternative loss function whose gradient coincides
with Grad1(θ),

L1(θ) = Et,xt∼pθ,t

{
∥ut(xt)− vsg[θ],t(xt)∥22

}
= E t,z∼pz,x0=gθ(z),

xt∼qt(xt|x0)

{
∥ut(xt)− vsg[θ],t(xt)∥22

}
(4.6)

However, the second gradient (4.5) involves an intractable term ∂
∂θvθ,t(·). For the student generator,

we only have efficient samples from the conditional probability path, but the vector field vθ,t(·)
along with its θ gradient is unknown. Fortunately, in this paper we have the following Theorem 4.2,
allowing for a more tractable θ-gradient of the student vector field. Before that, we need to first
introduce a novel Flow Product Identity in Theorem 4.1, which is one of our contributions.
Theorem 4.1 (Flow Product Identity). Let f(·, θ) be a vector-valued function, using the notations
in Section 4.1, under mild conditions, the identity holds:

Ext∼pθ,tf(xt, θ)
Tvθ,t(xt) = E x0∼pθ,0,

xt|x0∼qt(xt|x0)

f(xt, θ)
Tut(xt|x0) (4.7)

We put the proof of Flow Product Identity 4.1 in Appendix A.2.

Next, we show that we can introduce an equivalent tractable loss function that has the same param-
eter gradient as the intractable loss (4.1) in Theorem 4.2.
Theorem 4.2. If distribution pθ,t satisfies some wild regularity conditions, then we have for all
θ-parameter free vector-valued function ut(·), the equation holds for all parameter θ:

Ext∼pθ,t

{
− 2

{
ut(xt)− vθ,t(xt)

}T ∂

∂θ
vθ,t(xt)

}
=

∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
2
{
ut(xt)− vsg[θ],t(xt)

}T{
vsg[θ],t(xt)− ut(xt|x0)

}}
(4.8)

We put the detailed proof in Appendix A.3. The identity (4.8) shows that the expectation of the
intractable gradient ∂

∂θvθ,t can be traded with a tractable expectation with differentiable samples
from the student model.
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Algorithm 1: Flow Generator Matching Algorithm for training one-step Generators.
Input: pre-trained flow matching model ut(·), one-step generator gθ, prior distribution pz ,

online flow model vψ(·), time t ∈ U [0, 1], and conditional transition qt(xt|x0).
while not converge do

freeze θ, update ψ using SGD by minimizing the flow matching loss

LFM (ψ) = E t,z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

∥vψ(xt, t)− ut(xt|x0)∥22.

freeze ψ, update θ using SGD with by minimizing the FGM loss (4.10):

LFGM (θ) = L1(θ) + L2(θ)

L1(θ) = E t,z∼pz,x0=gθ(z),

xt∼qt(xt|x0)

{
∥ut(xt)− vψ(xt, t)∥22

}
(4.11)

L2(θ) = E t,z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

{
2
{
ut(xt)− vψ(xt, t)

}T{
vψ(xt, t)− ut(xt|x0)

}}
(4.12)

end
return θ, ψ.

It is a direct result of the identity (4.8) that the gradient Grad2(θ) coincides with the following
tractable loss function (4.9) with a stop-graident operation sg imposed on θ in the generator vector,

L2(θ) = E t,z∼pz,x0=gθ(z),

xt|x0∼qt(xt|x0)

{
2
{
ut(xt)− vsg[θ],t(xt)

}T{
vsg[θ],t(xt)− ut(xt|x0)

}}
. (4.9)

Putting together (4.6) and (4.9) in terms of (4.3), we have an equivalent loss to minimize the original
objective, that is

LFGM (θ) = L1(θ) + L2(θ), (4.10)

with L1(θ) and L2(θ) defined in (4.6) and (4.9). This gives rise to the proposed Flow Generator
Matching (FGM) objective by minimizing the loss function (4.10). Algorithm 1 summarizes the
pseudo algorithm of the flow generator matching by distilling the pre-trained flow matching model
into a one-step student generator. It is important to note that the implicit vector field vθ,t generated
by our one-step model still remains intractable. However, since the optimization of LFGM (θ) no
longer requires the gradient ∂

∂θvθ,t(xt), we can effectively utilize an alternative online flow model
vψ(xt, t) to take the place of vsg[θ],t(xt), which is inspired by previous works(Luo et al., 2024a;
Zhou et al., 2024; Luo et al., 2024b). After our one-step generator gθ converged, the online flow
model vψ is no longer needed.

Differences From Diffusion Distillations The FGM gets inspiration from one-step diffusion dis-
tillation by minimizing the distribution divergences (Luo et al., 2024a; Zhou et al., 2024; Luo et al.,
2024b), however, the resulting theory is essentially different from those of one-step diffusion distil-
lation. The most significant difference between FGM and one-step diffusion distillation is that the
flow matching does not imply explicit modeling of either the probability density as the diffusion
models do. Therefore, the definitions of distribution divergences can not be applied to flow models
as well as its distillation. However, the FGM overcomes such an issue by directly working with the
flow-matching objective instead of distribution divergence. The main insight is that our proposed
explicit-implicit gradient equivalent theory bypasses the intractable flow-matching objective, result-
ing in strong practical algorithms with theoretical guarantees. We think Theorem 4.2 may also bring
novel contributions to other future studies on flow-matching models.

Comparison with Other Flow Distillation Methods There are few existing works that try to
accelerate flow models to single-step or few-step generative models. The consistency flow matching
(CFM) (Yang et al., 2024) is a most recent work that distills pre-trained flow models into one or
two-step models. Though CFM has shown decent results, it is different from our FGM in both
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theoretical and practical aspects. First, the theory behind CFM is built on the trajectory consistency
of flow models, which is directly generalized from consistency models(Song et al., 2023; Song
& Dhariwal, 2023; Geng et al., 2024b). On the contrary, our FGM is motivated by starting from
flow-matching objectives, trying to train the one-step generator’s implicit flow with the ground truth
teacher flow, with theoretical guarantees. On the practical aspects, on CIFAR10 generation, we show
that our trained one-step FGM models archive a new SoTA FID of 3.08 among flow-based models,
outperforming CFM’s best 2-step generation result with an FID of 5.34. Such strong empirical
performance marks the FGM as a solid solution for accelerating flow-matching models on standard
benchmarks. Besides the toyish CIFAR10 generation, in Section 5.2 we also use FGM to distill
leading large-scale text-to-image flow models, obtaining a very robust one-step text-to-image model
with almost no performance declines.

5 EXPERIMENTS

We conducted experiments to evaluate the effectiveness and flexibility of FGM. Our experiments
cover the standard evaluation benchmark, unconditional CIFAR10 image generation, and large-scale
text-to-image generation using Stable Diffusion 3 (SD3) (Esser et al., 2024). These experiments
demonstrate the FGM’s capability to build efficient one-step generators while maintaining high-
quality samples.

5.1 ONE-STEP CIFAR10 GENERATION

Experiment Settings. We first evaluated the effectiveness of FGM on the CIFAR10 dataset
(Krizhevsky et al., 2014), the standard testbed for generative model performances. We pre-train
flow matching models on CIFAR10 conditional and unconditional generation using ReFlow objec-
tive (3.6). We refer to the neural network architecture used for EDM model(Karras et al., 2022).
We train both conditional and unconditional models with a batch size of 512 for 20000k images,
the resulting in-house-trained flow model shows a CIFAR10 unconditional FID of 2.52 with 300
generation steps, which is slightly worse than the original ReFlow model (Liu et al., 2022) which
has an FID of 2.58 using 127 generation steps. However, in Table 1, we find such a slightly worse
model does not influence the distillation of a strong one-step generator.

These flow models serve as the teacher models for flow generator matching (FGM). Then we apply
FGM to distill one-step generators from flow models. We assess the quality of generated images via
Frechet Inception Distance (FID) (Heusel et al., 2017). Lower FID scores indicate higher sample
quality and diversity.

Notice that loss (4.11) and loss (4.12) together composite a full parameter gradient of the FGM loss.
We find two losses works great for toyish 2D dataset generations using only Multi-layer percep-
tions. In practice, we find that using loss (4.11) on CIFAR10 models leads to instability, which is
a similar observation as Poole et al. (2022) that the condition number of its Jacobian term might be
ill-posed. Therefore we do not use loss (4.11) when training and observing good performances. The
experiments conducted w and w/o regression loss (4.11) can be found in the Appendix C.2. Training
details and hyperparameters are shown in Appendix B.1.

Initialize Generator with Pretrained Flow Models Inspired by techniques in diffusion distilla-
tion, we initialize the one-step generator with the pre-trained flow models. Recall the flow model’s
training objective (3.6), the pre-trained flow model vθ(xt, t) approximately predict the direction
from random noise to data. Therefore, we use the pre-trained flow to construct our one-step genera-
tor. Particularly, we construct the one-step generator with

x0 = (1− t∗)z + t∗vθ(t
∗z, t∗), z ∼ N (0, I). (5.1)

The θ is the learnable parameter of the generator, while the t∗ is a pre-determined optimal timestep.

Quantitative Evaluations. We evaluate each model with the Fretchet Inception Distance (FID)
(Heusel et al., 2017), which is a golden standard for evaluating image generation results on the
CIFAR10 dataset. Table 1 and Table 2 summarize the FIDs of generative models on CIFAR10
datasets. On unconditional generation, our teacher flow model has an FID of 3.67 and 2.93 with 50
and 100 generation steps respectively. However, our one-step FGM model achieves an FID of 3.08
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Table 1: Unconditional sample quality on
CIFAR-10. † means method we reproduced.

FAMILY METHOD NFE (↓) FID (↓)

DIFFUSION

DDPM (HO ET AL., 2020) 1000 3.17

& GAN

DD-GAN(T=2) (XIAO ET AL., 2021) 2 4.08
KD LUHMAN & LUHMAN (2021) 1 9.36
TDPM (ZHENG ET AL., 2023) 1 8.91
DFNO (ZHENG ET AL., 2022) 1 4.12
STYLEGAN2-ADA (KARRAS ET AL., 2020A) 1 2.92
STYLEGAN2-ADA+DI (LUO ET AL., 2023A) 1 2.71
EDM (KARRAS ET AL., 2022) 35 1.97
EDM (KARRAS ET AL., 2022) 15 5.62
PD (SALIMANS & HO, 2022) 2 5.13
CD (SONG ET AL., 2023) 2 2.93
GET (GENG ET AL., 2024A) 1 6.91
CT (SONG ET AL., 2023) 1 8.70
ICT-DEEP (SONG & DHARIWAL, 2023) 2 2.24
DIFF-INSTRUCT (LUO ET AL., 2023A) 1 4.53
DMD (YIN ET AL., 2024B) 1 3.77
CTM (KIM ET AL., 2023) 1 1.98
CTM(KIM ET AL., 2023) 2 1.87
SID (α = 1.0) (ZHOU ET AL., 2024) 1 1.92
SID (α = 1.2)(ZHOU ET AL., 2024) 1 2.02
DI† 1 3.70

1-REFLOW (+DISTILL) (LIU ET AL., 2022) 1 6.18
2-REFLOW (+DISTILL) (LIU ET AL., 2022) 1 4.85

FLOW-BASED

3-REFLOW (+DISTILL) (LIU ET AL., 2022) 1 5.21
CFM(YANG ET AL., 2024) 2 5.34
FLOW 100 2.93
FLOW 50 3.67
FGM (OURS) 1 3.08

Table 2: Class-conditional sample quality on CI-
FAR10 dataset. † means method we reproduced.

FAMILY METHOD NFE (↓) FID (↓)

DIFFUSION

BIGGAN (BROCK ET AL., 2019) 1 14.73

& GAN

BIGGAN+TUNE(BROCK ET AL., 2019) 1 8.47
STYLEGAN2 (KARRAS ET AL., 2020B) 1 6.96
MULTIHINGE (KAVALEROV ET AL., 2021) 1 6.40
FQ-GAN (ZHAO ET AL., 2020) 1 5.59
STYLEGAN2-ADA (KARRAS ET AL., 2020A) 1 2.42
STYLEGAN2-ADA+DI (LUO ET AL., 2023A) 1 2.27
STYLEGAN2 + SMART (XIA ET AL., 2023) 1 2.06
STYLEGAN-XL (SAUER ET AL., 2022) 1 1.85
STYLESAN-XL (TAKIDA ET AL., 2023) 1 1.36
EDM (KARRAS ET AL., 2022) 35 1.82
EDM (KARRAS ET AL., 2022) 20 2.54
EDM (KARRAS ET AL., 2022) 10 15.56
EDM (KARRAS ET AL., 2022) 1 314.81
GET (GENG ET AL., 2024A) 1 6.25
DIFF-INSTRUCT (LUO ET AL., 2023A) 1 4.19
DMD (W.O. REG) (YIN ET AL., 2024B) 1 5.58
DMD (W.O. KL) (YIN ET AL., 2024B) 1 3.82
DMD (YIN ET AL., 2024B) 1 2.66
CTM (KIM ET AL., 2023) 1 1.73
CTM(KIM ET AL., 2023) 2 1.63
GDD (ZHENG & YANG, 2024) 1 1.58
GDD-I (ZHENG & YANG, 2024) 1 1.44
SID (α = 1.0) (ZHOU ET AL., 2024) 1 1.93
SID (α = 1.2)(ZHOU ET AL., 2024) 1 1.71

FLOW-BASED

FLOW 100 2.87
FLOW 50 3.66
FGM (OURS) 1 2.58

using only one generation step, outperforming the teacher model with 50 generation steps with a
significant margin of 16%. On CIFAR10 conditional generation, our one-step FGM model has an
FID of 2.58, outperforming the teacher flow with 100 generation steps which have an FID of 2.87. In
conclusion, our results on CIFAR10 generation benchmarks demonstrate the superior performance
of FGM in that it can outperform the multi-step teacher flow model with significant margins.

Besides the strong performances, the training efficiency of FGM is also appealing. In practice, our
best one-step FGM model on CIFAR10 unconditional generation is trained with 8 Nvidia A100
GPUs with a batch size of 256. The 1-step FGM reaches an FID of 5.09 (an FID better than con-
verged 2-step CFM) with only 40K images and roughly 7 hours. However, the CFM takes at least
120K images with an even worse FID value of 5.34 with 2 generation steps. On the contrary, the
converged FGM shows an FID of 3.08, marking the SoTA among all flow-based few-step models.

The CIFAR-10 generation tasks are much toyish. In Section 5.2, we perform experiments to train
large-scale one-step text-to-image generators by distilling from top-performing transformer-based
flow models for text-to-image generation. In the next section, we show that the one-step T2I gener-
ator distilled by FGM demonstrates state-of-the-art results over other industry-level models.

5.2 TEXT-TO-IMAGE GENERATION

Experiments Settings. Our goal in this section is to use FGM to train strong one-step text-to-
image generators by distillation from leading flow-matching models. For our text-to-image exper-
iments, we selected Stable Diffusion 3 Medium as our teacher model. This model adopts a novel
architecture called MMDiT, which enhances performance in image quality, typography, complex
prompt understanding, and resource efficiency. For the dataset, we utilized the Aesthetics 6.25+
prompts dataset along with its recaption prompts and sam-recaption data from Chen et al. (2023) for
training, comprising approximately 2 million entries. This extensive dataset significantly improves
our model’s ability to generate high-quality images. Similar to our observation in CIFAR10 gen-
eration, we find loss (4.11) leads to unstable training dynamic, therefore we also abandon it when
training text-to-image models. For more training details, please refer to Appendix B.2.

Quantitative Evaluations. We followed the evaluation metrics used for Stable Diffusion 3 tech-
nical report (Esser et al., 2024), and we referenced GenEval metrics to more comprehensively assess
the model’s response to complex input texts. For the evaluations we conduct, we utilize the configu-
ration recommended by the authors. Our distilled model demonstrates promising results, remaining
competitive with other models that require multiple generation steps, even when using only a single
generation step.
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SD3 (28 steps) Hyper-SD3 (4 steps) Flash-SD3 (4 steps) Ours (1 step)

Figure 2: The visual comparison between our MM-DiT-FGM and other methods. From left to
right, the first column is 28-step SD3 model(Esser et al., 2024), the second column is the 4-step
Hyper-SD3 model(Ren et al., 2024), the third column is the 4-step Flash-SD3 model(Chadebec
et al., 2024). The prompts for these images are provided in B.2.1

Qualitative Evaluations. In this study, we conducted qualitative evaluations of our proposed dis-
tillation approach to analyze its performance. Figure 2 showcases several sample outputs, comparing
our teacher model, Hyper-SD3(Ren et al., 2024), and Flash-SD3(Chadebec et al., 2024) methods.
The results demonstrate high visual quality, particularly in detail and color reproduction, even with
only a single generation step. Especially, the one-step MM-DiT-FGM shows aesthetic lightning on
each generated image. Compared to existing distillation methods, our model achieves comparable
generation quality at a significantly lower cost. Such an advantage makes the FGM plausible in
applications when real-time interactions are strictly needed.

Integration of GAN Loss. It is clear that the pure FGM algorithm 1 does not rely on any image
data when training. In recent years, many studies have shown that incorporating GAN loss into
distillation is beneficial for improving high-frequency details on generated images (Yin et al., 2024a;
Sauer et al., 2023; 2024). Therefore, we also incorporate a GAN loss with FGM for training one-step
text-to-image models and find benefits.
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Figure 3: Visualizations of generated samples from FGM-1step models and 50-step teacher flow
models on CIFAR10 datasets. On both conditional and unconditional generation, FGM-1step mod-
els outperform 50-step teacher flow models.

Model Overall

Objects

Counting Colors Position
Color

NFEsSingle Two Attribution

minDALL-E(Zeqiang et al., 2023) 0.23 0.73 0.11 0.12 0.37 0.02 0.01 -
SD v1.5(Rombach et al., 2022) 0.43 0.97 0.38 0.35 0.76 0.04 0.06 50
PixArt-alpha(Chen et al., 2023) 0.48 0.98 0.50 0.44 0.80 0.08 0.07 40
SD v2.1(Rombach et al., 2022) 0.50 0.98 0.51 0.44 0.85 0.07 0.17 50
DALL-E 2 0.52 0.94 0.66 0.49 0.77 0.10 0.19 -
SDXL(Podell et al., 2023) 0.55 0.98 0.74 0.39 0.85 0.15 0.23 50
SDXL Turbo (Sauer et al., 2023) 0.55 1.00 0.72 0.49 0.80 0.10 0.18 1
IF-XL 0.61 0.97 0.74 0.66 0.81 0.13 0.35 100
DALL-E 3(James Betker et al., 2023) 0.67 0.96 0.87 0.47 0.83 0.43 0.45 -
SD3†(Esser et al., 2024), 0.70 0.99 0.88 0.60 0.85 0.30 0.59 28
Hyper-SD3†(Ren et al., 2024) 0.63 1.00 0.74 0.56 0.84 0.22 0.42 4
Flash-SD3†(Chadebec et al., 2024) 0.67 0.99 0.77 0.59 0.86 0.28 0.54 4

Ours 0.65 1.00 0.82 0.58 0.83 0.20 0.46 1

Table 3: GenEval metrics. Our distilled model closely matches the performance of the teacher
model SD3 (depth=24) on GenEval (Ghosh et al., 2024). Same as Esser et al. (2024) we highlight
the best, second best, and third best entries. (†indicates that the metrics were evaluated by us.)

During the training process, we observed that in certain intervals of noise schedules where FGM
is inefficient, the GAN loss can provide effective gradients to improve the quality of the model’s
outputs. Therefore, we believe that a significant advantage of GAN loss is its ability to compensate
for the inefficiencies of FGM training in certain noise schedules, thereby complementing our loss.

6 CONCLUSION

In this paper, we introduce flow-generator matching (FGM), a strong probabilistic one-step distil-
lation approach for flow-matching models. We establish the theoretical foundations of FGM. We
also validate the strong empirical performances of FGM on both one-step CIFAR10 generation and
large-scale one-step text-to-image generation.

Though FGM has a solid theoretical foundation as well as strong empirical performances, it still has
limitations. The first limitation is that currently the FGM still requires an additional flow model that
is used for approximating the generator-induced flow vectors. This requirement asks for additional
memory costs for distillation and potentially brings challenges when pre-trained flow models and the
generators are of large model sizes. Secondly, the FGM is a purely image-data-free approach, which
means that it does not need real image data when distilling. However, as a well-known argument,
consistently incorporating high-quality image data is important to improve the performances of text-
to-image generative models. We hope that future works will explore how to integrate data into the
distillation process.
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A THEORIES

A.1 PROOF OF EQUATION 4.3

Proof. We prove the equation (4.3) of our loss gradient:
∂

∂θ
LFM (θ) =

∂

∂θ
Et,xt∼pθ,t∥ut(xt)− vθ,t(xt)∥22

= Et,xt∼pθ,t

{
∂

∂θ
∥ut(xt)− vθ,t(xt)∥22

}
= Et,xt∼pθ,t

{
2{ut(xt)− vθ,t(xt)}T {

∂ut(xt)

∂xt
· ∂xt
∂θ

− (
∂

∂θ
vθ,t(xt) +

∂vθ,t(xt)

xt
· ∂xt
∂θ

)}
}

= Et,xt∼pθ,t

{
2{ut(xt)− vθ,t(xt)}T {

∂ut(xt)

∂xt
· ∂xt
∂θ

− ∂vθ,t(xt)

∂xt
· ∂xt
∂θ

} − 2{ut(xt)− vθ,t(xt)}T
∂

∂θ
vθ,t(xt)

}
= Et,xt∼pθ,t

{
2{ut(xt)− vθ,t(xt)}T

∂

∂xt
{ut(xt)− vθ,t(xt)} ·

∂xt
∂θ

− 2{ut(xt)− vθ,t(xt)}T
∂

∂θ
vθ,t(xt)

}
= Et,xt∼pθ,t

{
∂

∂xt

{
∥ut(xt)− vθ,t(xt)∥22

}∂xt
∂θ

− 2
{
ut(xt)− vθ,t(xt)

}T ∂

∂θ
vθ,t(xt)

}
(A.1)

A.2 PROOF OF THEOREM 4.1

Recall the definition of pθ,t and vθ,t:

pθ,t(xt) =

∫
qt(xt|x0)pθ,0(x0)dx0 (A.2)

vθ,t(xt) =

∫
ut(xt|x0)

qt(xt|x0)pθ,0(x0)

pθ,t(xt)
dx0. (A.3)

We may use f for short. We have

Ext∼pθ,tf
Tvθ,t(xt) = Ext∼pθ,tf

T

∫
ut(xt|x0)

qt(xt|x0)pθ,0(x0)

pθ,t(xt)
dx0 (A.4)

=

∫
pθ,t(xt)f

T

∫
ut(xt|x0)

qt(xt|x0)pθ,0(x0)

pθ,t(xt)
dx0dxt (A.5)

=

∫ ∫
fTut(xt|x0)qt(xt|x0)pθ,0(x0)dx0dxt (A.6)

= E x0∼pθ,0,

xt|x0∼qt(xt|x0)

fTut(xt|x0) (A.7)

A.3 PROOF OF THEOREM 4.2

Proof. Let us take θ gradient on both sides of (4.7), and then we have

Ext∼pθ,t

{
∂

∂θ
f(xt, θ)

Tvθ,t(xt) + f(xt, θ)
T ∂

∂θ
vθ,t(xt)

}
+ Ext∼pθ,t

∂

∂xt

{
f(xt, θ)

Tvθ,t(xt)

}
∂xt
∂θ

(A.8)

= E x0∼pθ,0,

xt|x0∼qt(xt|x0)

∂

∂θ
f(xt, θ)

Tut(xt|x0) + E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
∂

∂xt

[
f(xt, θ)

Tut(xt|x0)

]
∂xt
∂θ

+ f(xt, θ)
T ∂

∂x0
ut(xt|x0)

∂x0

∂θ

}
Notice that one can have

Ext∼pθ,t

{
∂

∂θ
f(xt, θ)

T

}
vθ,t(xt) = E x0∼pθ,0,

xt|x0∼qt(xt|x0)

∂

∂θ
f(xt, θ)

Tut(xt|x0)
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by substituting f(xt, θ) with ∂
∂θ f(xt, θ) in equation (4.7).

This allows us to cancel out the corresponding terms from equation (A.8), and we have

Ext∼pθ,t

{
f(xt, θ)

T ∂

∂θ
vθ,t(xt)

}
+ Ext∼pθ,t

∂

∂xt

{
f(xt, θ)

Tvθ,t(xt)

}
∂xt
∂θ

(A.9)

= E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
∂

∂xt

[
f(xt, θ)

Tut(xt|x0)

]
∂xt
∂θ

+ f(xt, θ)
T ∂

∂x0
ut(xt|x0)

∂x0

∂θ

}
This gives rise to

Ext∼pθ,t

{
f(xt, θ)

T ∂

∂θ
vθ,t(xt)

}
(A.10)

= E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
∂

∂xt

[
f(xt, θ)

T
{
ut(xt|x0)− vθ(xt, t)

}]∂xt
∂θ

+ f(xt, θ)
T ∂ut(xt|x0)

∂x0

∂x0

∂θ

}
We now define the following loss function

L2(θ) = E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
f(xt, sg[θ])

T
{
ut(xt|x0)− vsg[θ],t(xt)

}}
(A.11)

with f(xt, θ) = −2
{
ut(xt)− vθ,t(xt)

}
. Its gradient becomes

Ext∼pθ,t

{
− 2

{
ut(xt)− vθ,t(xt)

}T ∂

∂θ
vθ,t(xt)

}
=

∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
f(xt, sg[θ])

T
{
ut(xt|x0)− vsg[θ](xt, t)

}}
(A.12)

by applying the above result in (A.10). This completes the proof of Theorem 4.1, and shows the
gradient of L2(θ) coincides with Grad2(θ).

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 CIFAR-10

Hyper-parameters Please note that prior to distilling our one-step flow matching models, we
first pre-trained multi-step flow matching models on CIFAR-10 using the ReFlow objective. All
experimental details can be found in Table 4.

When distilling our one-step model, we use a logit-normal distribution π(0, 2). Larger variance
allows the training to cover a wider range of noise levels, which provides better stability for the
training process. Excessively high noise level can lead to a decline in the quality of the generated
images, while excessively low noise can easily result in mode collapse issues.

Table 4: Experimental details on CIFAR-10.

Training Details CIFAR-10 Uncond CIFAR-10 Cond CIFAR-10 Uncond (1 Step) CIFAR-10 Cond (1 Step)
Training Kimg 20000 20000 20000 20000
Batch size 512 512 512 512
Optimizer (vψ) Adam Adam Adam Adam
Optimizer (gθ) Adam Adam Adam Adam
Learning rate (vψ) 2e-5 2e-5 2e-5 2e-5
Learning rate (gθ) 2e-5 2e-5 2e-5 2e-5
betas (vψ) (0, 0.999) (0, 0.999) (0, 0.999) (0, 0.999)
betas (gθ) (0, 0.999) (0, 0.999) (0, 0.999) (0, 0.999)
EMA decay rate 0.999 0.999 0.999 0.999
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B.2 TEXT-TO-IMAGE

Hyper-parameters We detail the hyperparameters used in the distillation of our text-to-image
models, specifically for both the one-step generator and the online flow model. Both models are
trained in BF16 precision using the Adam optimizer with the following settings: β1 = 0, β2 =
0.999, ϵ = 1.0 × 10−6, and a learning rate of 5.0 × 10−6. For both the FGM loss and the flow
matching loss, we sample timestep t ∈ [0, 1], following the Esser et al. (2024) using a logit-normal
distribution as the timestep density function. The FGM loss employs π(2.4, 1.0), while the flow
matching loss uses π(−1.0, 2.0). During the generator training phase, the GAN loss weight is set to
1× 10−2, whereas for the discriminator training, it is set to 5× 10−2. Additionally, we apply a loss
scaling factor of 100 for the generator, and the entire model is trained with a batch size of 192.

Training Details During the training of the generator, we employed classifier-free guidance for
inference on the teacher model when calculating L2(θ). To prevent artifacts in the output caused by
an excessively high guidance scale, we opted for a more stable guidance scale of 4.0. To further re-
duce memory consumption, we pre-encoded the prompts dataset into embeddings. For the negative
prompts used in classifier-free guidance, we used empty text for encoding and storage. Additionally,
by applying Fully Sharded Data Parallel (FSDP) across the teacher model, online flow model, and
generator, we achieved a batch size of 4 with a gradient accumulation of 6, ultimately allowing us
to reach a batch size of 192 on 8xH800-80G.

Discriminator Design For the design of the discriminator’s network architecture, we drew on pre-
vious work (Yin et al., 2024a), using the online flow model itself as a feature extractor for images,
supplemented by a lightweight convolutional network as the classification head to differentiate be-
tween the distributions of noisy real data and generated data. However, unlike Yin et al. (2024a), the
teacher model we chose does not have an explicit encoder structure. As a result, we output the hidden
states from different layers of the transformer and found that the shallow features, specifically those
from layer 2, better reflect the content of the image compared to deeper layers. Thus, we empirically
selected this layer’s features as the input for the subsequent classification head. Additionally, as
mentioned earlier, we discovered that GAN can perform well in certain noise ranges where FGM
is inefficient. Therefore, another distinction from Yin et al. (2024a) is our different design for the
noise schedules used for FGM and GAN loss. The former primarily samples in high-noise ranges,
while the latter focuses on sampling in lower-noise ranges. GAN training is conducted on a syn-
thetic dataset containing approximately 500K high-quality images at a resolution of 1024px. Texts
and images have also been pre-encoded and stored to reduce computational load during training.

Model Parameterization The standard flow-matching model for generating data from noise can
be represented in EDM formulation as follows:

x0 = cskip · z − cout · vθ(cin · z, t), z ∼ N (0, I) (B.1)
Generally, the conventional choices for one-step generator are t = t∗ = 1, cskip = 1, cout = t∗, cin =
1. However, in practice, we identified two empirical modifications to these parameters that can
further enhance the model’s generation performance.

First, regarding the choice of t∗, since we need to inherit weights from the teacher model, selecting
t∗ effectively means choosing a specific vθ,t∗ from a family of models with shared parameters vθ,t.
To optimize our initialization weights, we can select the model that performs best for one-step
generation within this family. Given a simple hyperparameter search, we noticed that t∗ = 0.97
is a good choice.

Second, we examined the input scaling factor cin. While the standard choice is cin = 1, we noticed
during our training that the generated results consistently contained some small noise and blurriness
that were difficult to eliminate. After multiple tuning attempts, we suspected that the variance of the
model input was too large. We decided to slightly reduce the input variance and chose cin = 0.8.
Consequently, we derived our final model parameterization:

x0 = z − 0.97 · vθ(0.8 · z, 0.97)), z ∼ N (0, I) (B.2)

Our Evaluation Settings In our evaluation, we evaluated several other models on GenEval(Ghosh
et al., 2024), including SD3-Medium(Esser et al., 2024), Hyper-SD3(Ren et al., 2024), and Flash-
SD3Chadebec et al. (2024). All evaluations were conducted at a resolution of 1024px, generating
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four samples for each prompt from the original GenEval paper. We utilized the inference parameters
recommended by the authors for these models. Specifically, for SD3, we use a guidance scale of 7.0,
generating images in 28 steps.For Hyper-SD3, we applied a guidance scale of 3.0 and a LoRA scale
of 0.125, performing 4 steps of inference to generate the evaluation images. For Flash-SD3, we set
the guidance scale to 0.0 and also used 4 sampling steps. Finally, we automatically calculated the
corresponding metrics using the scripts provided by GenEval.

B.2.1 EVALUATION PROMPTS

Prompts used in Figure 1

• blurred landscape, close-up photo of man, 1800s, dressed in t-shirt.

• Seasoned fisherman portrait, weathered skin etched with deep wrinkles, white beard, pierc-
ing gaze beneath a fisherman’s hat, softly blurred dock background accentuating rugged
features, captured under natural light, ultra-realistic, high dynamic range photo.

• Portrait of a Young Woman.

• an old woman, Eyes Wide Open, Siena International Photo Awards.

• View of Perth City skyline at dusk.

• Chinese landschap aquarel.

• Wood Print featuring the photograph Gold Temple, by Rikk Flohr

• The Ruins at Philae Egypt

• Arequipa and an Ascent of Volcan Chachani, Highlux Photography

• This was one of the most striking alpine sunrises that I have witnessed and despite cold and
wind...

• Lets stay a while longer, rough ocean at sunset

• Gorge Light - Oregon

• Airbrushed Animals by Eyan Higgins Jones

• Staande foto Uil Bird, Owl, Three Spotted owlet (Athene brama) in tree hollow, Bird of
Thailand

• A fluffy rabbit sitting upright in a field of tall grass, ears perked up and alert, with a bright
blue sky above.

• The lion was shot dead after the person was killed.

Prompts used in Figure 2

• Luminous Beings Are We painting by Stephen Andrade Gallery1988 Star Wars Art Awakens
Yoda

• Delightful Fall Landscape Wallpapers

• Russian Blue cat exploring a garden, surrounded by vibrant flowers.

• A young girl walks across a field, head down, wearing a communion gown.

B.2.2 MORE SAMPLES

C ABLATION STUDY

C.1 GENERATOR INITIALIZATION

In our practical experience, we have discovered that the initialization of the generator has a substan-
tial impact on the convergence of model training. Previous studies(Luo et al., 2024a; Chen et al.,
2024; Zhou et al., 2024; Yin et al., 2024a) on diffusion models indicated that the initialization of
t∗ should be situated near the beginning and middle segments of the scheduler. In contrast, our ex-
periments with flow-matching reveal that the most suitable range for t∗ is located towards the latter
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Figure 4: Unconditional samplers from 1-step FGM model on CIFAR10.
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Figure 5: Conditional samplers from 1-step FGM model on CIFAR10.
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part of the process. In our experiments, we choose several t∗ = [0.00, 0.25, 0.50, 0.75, 1.00] to train
from scratch on 512-px, and the qualitative results are presented in Fig 6. Notes that our model
parameterization for the ablation can be simplified as

x̂0 = z − vθ(z, t
∗), z ∼ N (0, I) (C.1)

The visual results indicate that a suitable range for t∗ should be [0.75, 1.00]. However, the cost of
further determining the optimal choice for t∗ is likely to be high and may not yield significant value.
A key observation is that as t∗ decreases, the structural integrity of the images tends to deteriorate.
This phenomenon can be attributed to the property of pre-trained flow matching model. When noise
intensity is high, the model primarily focuses on generating the overarching structure of the image.
Conversely, at lower noise intensity, the model leans toward creating finer details based on the pre-
existing structure. However, in our one-step model, this foundational structure is absent, resulting
in divergence.

C.2 TRAINING WITH REGRESSION LOSS

In our training, we excluded regression loss L1 based on experience. To further illustrate its impact
on the training process, we conduct two experiments on an early checkpoints, one training with
both loss L1 + L2, another training with only L2, our results in Fig 7 show that simply apply the
extra regression loss L1 quickly degrade the performance. From the visual results we can tell that
the model trained with L1 resulting noisy images and quickly corrupted. So the regression term is
omitted in our training.

D IMAGE QUALITY IMPROVEMENT BY FURTHER TRAINING
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Figure 6: We choose several t∗ = [0.00, 0.25, 0.50, 0.75, 1.00] to train from scratch on 512-px. As
t∗ decreases, the structural integrity of the images tends to deteriorate.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025
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Figure 7: We conduct two experiments on an early checkpoints, one training with both loss L1+L2,
another training with only L2, our results show that simply apply the extra regression loss L1 quickly
degrade the performance.
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Figure 8: This suggests the checkerboard artifacts can be substantially mitigated, and the overall
image quality can also be enhanced with more extensive training.

26


	Introductions
	Related Works
	Backgrounds
	Flow Generator Matching
	Problem Setups
	Tractable Objective

	Experiments
	One-step CIFAR10 Generation
	Text-to-image Generation

	Conclusion
	Theories
	Proof of Equation 4.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Additional Experimental Details
	CIFAR-10
	Text-to-Image
	Evaluation Prompts
	More Samples


	Ablation Study
	Generator Initialization
	Training with Regression Loss

	Image quality improvement by further training

