
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROCEDURAL PRETRAINING: WARMING UP
LANGUAGE MODELS WITH ABSTRACT DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining on rich web-scale corpora is the de facto paradigm for building lan-
guage models. We study an alternative setting where the model is initially ex-
posed to abstract structured data, as a means to ease the subsequent acquisition of
semantic knowledge, much like mastering logic and mathematics for humans can
support higher reasoning. We specifically focus on procedural data generated by
formal languages and other simple algorithms.
Method and findings. We first use small models to identify algorithmic skills that
different forms of procedural data can improve, often significantly. For example,
on a diagnostic task for context recall (NEEDLE-IN-A-HAYSTACK), the accuracy
jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets).
Second, we study how these gains transfer from abstract to semantic domains in
larger models. We find that procedural pretraining significantly improves perfor-
mance on natural language, code, and informal mathematics (C4, CODEPARROT,
and DEEPMIND-MATH datasets), using as little as 0.1% extra procedural data.
Notably, procedural pretraining also enables models to reach the same loss value
with only 55 / 67 / 86% of the original data of these datasets.
Third, we explore the mechanisms behind these effects. We find that procedural
pretraining instils non-trivial structure in both attention and MLP layers, and that
the former is particularly important for code datasets, the latter for language. We
also lay a path for combining the benefits of different forms of procedural data.
Implications. Procedural pretraining is a remarkably simple means of improving
performance and speeding up training for transformers. It ultimately suggests the
possibility of disentangling the acquisition of knowledge from reasoning in LLMs.

1 INTRODUCTION

Large language models (LLMs) simultaneously acquire multiple forms of knowledge during pre-
training. They absorb semantic factual content, but also acquire abilities for manipulating and oper-
ating on this knowledge. This entangled acquisition of knowledge and skills has been argued to be
a key limitation of current models (Han et al., 2025; Kumar et al., 2025), such as their tendency to
rely on surface-level heuristics rather than systematic reasoning procedures (Nikankin et al., 2025).

Pretraining with procedural data. This paper builds on a line of work using abstract, structured
data to train language models. Intuitively, the procedure aims to teach elementary operations, much
like infants tackle games like stacking blocks (Smith & Gasser, 2005) before moving to sophisticated
reasoning and language. With procedural pretraining, we posit that early exposure of LLMs to
abstract data can facilitate, enhance, and complement standard pretraining on semantically-rich data.

In prior work, Hu et al. (2025) showed that data generated from formal languages yields more value
per token than natural language for training LLMs. Wu et al. (2022) and Zhang et al. (2024) success-
fully used data from simple algorithms and cellular automata. These findings echo the established
practice of pretraining on computer code, another structured domain thought to aid learning compo-
sitional and recursive reasoning (Petty et al., 2024). Prior works, however, typically treat procedural
data as either imitation of linguistic properties, or as a substitute of standard pretraining. In contrast,
this paper focuses on benefits from procedural data1 as a complement to standard pretraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

SORT
56

58

60

Pe
rp

le
xi

ty

SET

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

S
5.1

5.2

5.3

5.4

Pe
rp

le
xi

ty

U

41

42

43

Procedural pretraining Standard pretraining

SET operation:

UNION operation:

Other forms: (…)

In:
Out: a, c

In:
Out: a, b, d

a, b, d | b, c, d

a, b | d, b

Performance by domain

SORT
56

58

60

Pe
rp

le
xi

ty

Language
(C4)

SET

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

Undocumented code
(JavaCorpus)

SET
5.1

5.2

5.3

5.4

Pe
rp

le
xi

ty

Documented code
(CodeParrot)

UNION

41

42

43

A
cc

ur
ac

y
(%

)

Informal math
(DeepMind-Math)

Full-model transfer MLP-only transfer Attention-only transfer Standard pretraining alone
Types of procedural data

SORT
56

58

60

Pe
rp

le
xi

ty

Language
(C4)

SET

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

Undocumented code
(JavaCorpus)

SET
5.1

5.2

5.3

5.4

Pe
rp

le
xi

ty

Documented code
(CodeParrot)

UNION

41

42

43

A
cc

ur
ac

y
(%

)

Informal math
(DeepMind-Math)

Full-model transfer MLP-only transfer Attention-only transfer Standard pretraining alone
Types of procedural data

Pe
rp

le
xi

ty

Pe
rp

le
xi

ty

Pe
rp

le
xi

ty

Ac
cu

ra
cy

 (%
)

SET SET UNIONSORT

Types of procedural data

Language
(C4)

Undocumented code
(JAVACORPUS)

Documented code
(CODEPARROT)

Informal math
(DEEPMIND-MATH)

Full-model transfer MLP-only transfer Attention-only transfer Standard pretraining alone

“Once upon a time, there
lived a girl who…”

Natural language

if __name__ == "__main__":
 main()

Code

Let e(x) = x - 6. Is 2 a factor of
e(9)? Answer: False

Math

Figure 1: (Left) We pretrain language models on procedural data before exposing them to standard
datasets of language, code, or mathematics. The procedural data is generated with simple algorithms
and aims to teach elementary skills to aid the acquisition of semantic knowledge. (Right) This
lightweight initial step speeds up standard pretraining and improves performance on diverse do-
mains, with different pretrained layers (MLP vs. attention) contributing differently to each domain.

Our contributions push the use of procedural pretraining in four directions.
(1) Probing procedural pretraining with algorithmic tasks. We evaluate the effects of different
forms of procedural data and find that they each enhance specific algorithmic skills (Section 4.1).
The pretrained information also proves to be localised in specific components (attention vs. MLPs,
Section 4.2). We also rule out simplistic explanations that could account for the observed improve-
ments, such as rescaling the initialisation or a generic attention sharpening (Section 4.3).

(2) Transfer to diverse domains. We show that the improvements on algorithmic skills transfer to
multiple semantic domains, namely natural language, code, and informal mathematics (Section 5.1–
5.2). The information provided through procedural pretraining proves to be complementary to stan-
dard pretraining datasets. For example, we consistently improve over standard pretraining with as
little as 0.1 – 0.3% extra procedural tokens. Procedural data also proves to be an efficient substitute
to standard data. On the C4, CODEPARROT, and DEEPMIND-MATH datasets, it enables models to
reach the same loss with respectively 55%, 67%, and 86% of the original data. Furthermore, we val-
idate these findings across different model sizes (up to 1.3B parameters) and data sizes (up to 10.5B
tokens), and show that the gains at standard pretraining persist after further downstream fine-tuning
(Section 5.2).

(3) Localising transferable pretrained information. (Section 5.3). We explore in depth the lo-
calisation of useful pretrained information. We find that the attention layers are more important for
structured domains like undocumented code, while MLP layers mostly help with natural language.
These results are intriguing because MLPs are believed to store factual knowledge in LLMs (Dong
et al., 2025; Geva et al., 2020; Xu & Chen, 2025) which procedural data cannot directly provide. On
datasets containing both natural language and structured data such as CodeParrot (documented code,
HuggingFace (2022)) and DeepMind-Mathematics (informal mathematic, Saxton et al. (2019)), both
types of layers prove equally important (see Figure 1 right).

(4) Combining the benefits of different forms of procedural data (Section 6). We explore two
techniques and obtain promising results by either pretraining on a mixture of data types, or surgically
combining weights of several pretrained models. This lays out several directions for future work.

In summary, our results show that procedural data is a data-efficient alternative for pretraining, and
a complementary source of knowledge to standard datasets. We discuss in Section 7 how this line
of work may ultimately help disentangle the acquisition of knowledge from reasoning in LLMs.

2 RELATED WORK

The linguistic literature contains a number of results on training language models with artificial
data. These works often use formal languages to imitate properties of natural language (Chiang &
Lee, 2022; Goodale et al., 2025; McCoy & Griffiths, 2023; Papadimitriou & Jurafsky, 2023; Ri &
Tsuruoka, 2022; Hu et al., 2025). In contrast, we follow a more general algorithmic perspective, and
1We use procedural data to refer to the output of explicit algorithms (e.g. formal languages), in contrast to
synthetic data, which usually refers to data generated by a trained model such as another LLM.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

find how different types of procedural data can improve specific algorithmic skills. We also study
benefits on domains beyond language, namely code and informal mathematics.

Recent work considers data generated with simple algorithms and cellular automata (Lindemann
et al., 2024; Wu et al., 2022; 2021; Zhang et al., 2024). Their empirical results focus on proce-
dural data as a substitute for standard pretraining data. In contrast, we also evaluate procedural
data as a complement, and find that it can impart capabilities lacking from standard semantic data
across diverse domains. Additionally, we validate empirically that the benefits of procedural pre-
training persist after fine-tuning on downstream datasets. This paper also analyses in greater depth
the mechanisms behind the empirical benefits, such as the localisation of pretrained knowledge in
MLP vs. attention layers. This reveals further empirical gains by only transferring specific layers
from procedural pretraining (see Section 3.1 for definition). Finally, while most of this existing work
focuses on a single type of data, we take steps towards combining multiple types of procedural data,
which lays out a path for important next steps for this line of work.

3 PRELIMINARIES

We use the following terminology throughout this paper.
• Procedural pretraining: the initial exposition of a language model to procedural data, before

other stages such as standard pretraining with semantic data.
• Procedural data: data generated from a simple algorithm, for example formal languages, cellular

automata, or other simple algorithms described in Section 3.2.
• Semantic data: by opposition to procedural data, standard data used to train language models, for

example natural language, computer code, or informal mathematics.

3.1 EXPERIMENTAL SETUP

We train GPT-2-type decoder-only transformers from scratch with a standard next-token prediction
objective (Radford et al., 2019) (see Appendices C & E for details.). When pretraining on procedural
data that involves input/output pairs (Section 3.2), we compute the loss only on output tokens. Apart
from Section 6, each experiment uses a single type of procedural data.

Data setup. We first train each model on T1 procedural tokens, then on T2 standard tokens from the
target task. The target task is either an algorithmic diagnostic task in Section 4, or a semantic dataset
in Section 5. As a baseline, we consider the same model trained with no procedural data (T1 = 0).
We adjust T1 and T2 following either of these two settings.
• Additive setting. We keep T2 fixed and vary T1 to measure the performance gain of additional

procedural tokens. This evaluates whether procedural data provides a training signal that semantic
data alone does not impart.

• Substitutive setting. We reduce T2 while increasing T1 (by a much smaller amount) to match the
baseline performance. This evaluates how procedural pretraining can be a cheaper substitute for
standard pretraining.

Weight setup. All the weights of the model are trained in both procedural pretraining and any
subsequent training stages, i.e. nothing is frozen. Each experiment uses either of the two following
transfer settings between the two phases.
• Full-model transfer. The standard practice, i.e. using all procedurally-pretrained weights.2

• Selective attention-only or MLP-only transfer. We only use the pretrained weights of selected
layers and reinitialize others to random values. This allows evaluating where useful pretrained
information is stored, motivated by the evidence that MLP and attention layers perform different
types of computations (Dong et al., 2025; Xu & Chen, 2025).

2In Sections 5 and 6 we reinitialise the token embeddings to random values since there is no correspondence
between the vocabularies of procedural and semantic data. In Section 4 (procedural→algorithmic transfer),
we instead initialize embeddings to the mean vector, as there is no semantic domain shift.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 GENERATING PROCEDURAL DATA

Each type of procedural data is defined by a data-generating algorithm. We use algorithms that
produce structurally rich data where next-token prediction requires precise symbol manipulation,
compositional reasoning, and/or long-range dependency tracking. We selected these from prior work
and we also introduce a novel one (STACK). Each takes hyperparameters detailed in Appendix B.
• Sequence transformations. A random sequence is presented and the model must predict its trans-

formed version (Wu et al., 2022). This includes SET (token deduplication), REVERSE (reversing
the input), IDENTITY (copying the input), UNION (ordered combination of two sequences with
duplicates removed), SORT (copy in ascending order) and DELETE (removal of a specified token).

• Memory operations. STACK simulates a stack memory, tracking state over a random series of
push and pop operations. The model must predict the final memory contents from top to bottom.

• Formal languages. We use classical formal languages for balanced parentheses (Hu et al., 2025;
Papadimitriou & Jurafsky, 2023), K-DYCK (nested) and K-DYCK SHUFFLE (non-nested). The
model is trained for next-token prediction to generate sequences from the target language, and we
vary k to control the complexity of the nesting.

• Cellular automata. We use the elementary cellular automaton ECA RULE 110 following Zhang
et al. (2024), where a binary sequence evolves via deterministic Markovian dynamics. Each se-
quence describes a random state of the ECA and the model must predict the next state.

4 PROBING PROCEDURAL PRETRAINING WITH ALGORITHMIC REASONING

We first train small transformers (two layers, four attention heads) on specific types of procedural
data, then fine-tune them on algorithmic tasks to evaluate how specific types of procedural data
improve the following skills (training and test data are i.i.d.; full details in Appendix D).
• Memory recall. The needle-in-a-haystack task (HAYSTACK) tests long-context retrieval. Each

input has 30 key–value pairs ([m1, c1, . . . ,mk, ck,mu]) and a query marker mu; the model must
output the value cu associated with mu. Accuracy is measured on the retrieved token.

• Arithmetic. We use three tasks. ADDITION adds two 5-digit integers (a+b=), requiring right-to-
left carry propagation, opposite to the autoregressive order. REVERSED ADDITION uses 10-digit
numbers with inputs and outputs reversed, aligning carries with autoregression. MULTIPLICA-
TION computes the product of two 5-digit integers (a×b=), predicting only result digits. All tasks
are tokenized per digit, and the accuracy is measured over the output digits.

• Logical and relational processing. With SORTING, the model receives 10 integers from [0,99]
and a separator, and outputs the sorted sequence. The accuracy is computed on the output tokens.

4.1 WHICH ALGORITHMIC SKILLS IMPROVE WITH PROCEDURAL PRETRAINING?

Setup. We use the additive settings defined in Section 3.1: for every combination of a type of
procedural data and target algorithmic task, we train on T1 procedural tokens then T2 tokens of the
algorithmic task. The baseline model uses T1=0.

Results. Figure 2 shows that many types of procedural data significantly improve performance on
various tasks. The best type of procedural data varies across task. For example, pretraining on
K-DYCK improves context recall and HAYSTACK, while ECA RULE 110 benefits REVERSED AD-
DITION. This indicates that each type of procedural data improves different skills. We also evaluate
the best model pretrained on randomly shuffled procedural sequences. This conserves the token dis-
tribution within sequences while disrupting their structure (Best model shuffled in Figure 2). The
performance subsequently drops back to baseline. This shows that the structure in the procedural
data is essential.

Take-away. Among different types of procedural data, each improves specific algorithmic skills.

4.2 WHERE DOES THE PRETRAINED INFORMATION RESIDE?

We now use the selective transfer settings defined in Section 3.1 to understand where useful infor-
mation is encoded in the pretrained model. We repeat the experiments from Section 4.1 with either

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

HAYSTACK ADDITION REVERSED ADD. MULTIPLICATION SORTING

0

20

40

60

80

100

A
cc

ur
ac

y

HAYSTACK

60

80

ADDITION

40

60

80

100

REVERSED ADDITION

40

50

60

MULTIPLICATION

20

40

60

80

100

SORTING

16 DYCK

16 DYCK SHUFFLE

DELETE

ECA RULE 110
IDENTITY

REVERSE

SET

STACK

UNION

Best model shuffled
No procedural pretraining

Figure 2: Different types of procedural pretraining can significantly improve over standard
training (dashed line) across various algorithmic tasks. If we remove the structure within the pro-
cedural data by shuffling the sequences (Best model shuffled), the performance falls to the baseline.
Reported values are the means over 10 seeds (full results with variance in Appendix N.1).

attention-only or MLP-only transfer. We then compare the performance of these models with the
full-transfer setting to identify which component retains the most benefits.

HAYSTACK ADDITION REVERSED ADDITION SORTING

4
D

Y
C

K
16

D
Y

C
K

SH
.

ST
A

C
K

ID
EN

TI
TY SE

T
U

N
IO

N
R

EV
ER

SE
D

EL
ET

E
EC

A

0

25

50

75

100

A
cc

ur
ac

y

HAYSTACK

16
D

Y
C

K
16

D
Y

C
K

SH
.

ST
A

C
K

ID
EN

TI
TY SE

T
U

N
IO

N
R

EV
ER

SE
D

EL
ET

E
EC

A

0

25

50

75

100

ADDITION

16
D

Y
C

K
8

D
Y

C
K

SH
.

ST
A

C
K

ID
EN

TI
TY SE

T
U

N
IO

N
R

EV
ER

SE
D

EL
ET

E
EC

A

0

25

50

75

100

REVERSED ADDITION

8
D

Y
C

K
8

D
Y

C
K

SH
.

ST
A

C
K

ID
EN

TI
TY SE

T
U

N
IO

N
R

EV
ER

SE
D

EL
ET

E
EC

A

0

25

50

75

100

SORTING

Full-model transfer MLP-only transfer Attention-only transfer No procedural pretraining

Figure 3: Selective transfer of MLP or attention layers can improve over full-model transfer,
showing that procedural pretraining creates ‘modular’ structure localised in the selected model com-
ponents. Reported values are means across 10 seeds (full results with variance in Appendix N.1).

Results. Figure 3 shows surprisingly that selective transfer can be superior to full-model transfer.
For instance, with the IDENTITY / HAYSTACK pair, attention-only gives an 80-percentage point im-
provement over full-model transfer. This means that useful information is encoded in the attention
layers, and that the other pretrained components (MLPs) contain non-transferable structure. Across
the different tasks, the attention layers are the most consistent carrier of useful information, with the
exception of REVERSED ADDITION, where MLP-only and full-model are superior.

Take-away. Procedural pretraining creates localised skills in specific components of the architec-
ture. Transferring specific components can be more effective than transferring the entire model.

4.3 ARE THERE SIMPLER EXPLANATIONS FOR THE BENEFITS OF PRETRAINING?

We now test possible mechanisms that could explain how procedural pretraining produces the im-
provements observed in the preceding experiments. See Appendix F for full details and results.

Explanation 1: attention sharpening. We observe that pretrained models have sharp attention
patterns, and transferring only the sharpest attention heads preserves or even exceeds the perfor-
mance of transferring all of them. One possible explanation is thus that pretraining creates a generic
“sharpening” of the attention with no relevance to precise patterns. However, training models with
an explicit regularizer for sharper attentions does not replicate the benefits of procedural pretraining.
This shows that precise attention patterns do matter.

Explanation 2: initialisation scale. Another explanation is that pretraining simply adjusts the
magnitude of initial weights (Huang et al., 2020; Wu et al., 2022). We test this using the best
models from Section 4.1, and shuffle the weights per layer, such that the distributions of magnitudes
are preserved but their structures erased. As expected, Figure 12 in the appendix shows that the
accuracy drops dramatically. We also observe a rapid drop in accuracy with the gradual addition of
Gaussian noise to the weights. This shows that pretrained weights encode meaningful structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Take-away. The benefits of procedural pretraining are encoded in precise weight structure. They
cannot be explained by a simple rescaling of the weights or generic regularisation of the attention.

5 CAN PROCEDURAL DATA COMPLEMENT OR REPLACE STANDARD DATA?

This section investigates the practical benefits of procedural pretraining on semantic domains. In
Section 5.1, we use single-domain datasets of natural language and pure code to evaluate the transfer
of abstract algorithmic skills (Section 4) to two distinct domains. In Section 5.2, we turn to larger
pretraining datasets that contain natural language mixed with code and informal mathematics.

5.1 DOMAIN-SPECIFIC CORPORA

Setup. We use WIKITEXT (Merity et al., 2016) and Github’s JAVACORPUS (Allamanis & Sutton,
2013) as domain-specific datasets of natural language and undocumented code. We train GPT-2-
small models from scratch on these datasets after initial pretraining on procedural data (full-model
transfer). We repeat this with different amounts of procedural tokens T1 (additive setting).

Results. Figure 4 shows that procedural pretraining significantly outperforms the no-pretraining
baseline for both natural language and code. Surprisingly, the improvement is not clearly correlated
with the amount of procedural pretraining tokens (T1) and small amounts of pretraining proves
sufficient. Data generated with UNION and SET help both domains, while SORT only helps with
natural language. Additional results in Appendix G show that the sequence length and the number
of pretraining steps, both controlling T1, influence the effectiveness of different types of procedural
data. Much remains to be explained about these various effects.

0.0 4.0 8.0 12.0 16.0 20.0
Procedural pre-training tokens (millions)

50

60

70

Pe
rp

le
xi

ty

Language (WIKITEXT)

4.0 8.0 12.0 16.0 20.0
Procedural pre-training tokens (millions)

9

10

Pe
rp

le
xi

ty

Code (JAVACORPUS)

16 DYCK

16 DYCK SHUFFLE

DELETE

IDENTITY

REVERSE

SET

SORT

STACK

UNION

No procedural pretraining

Figure 4: The benefits of procedural pretraining transfer to semantic domains. Perplexity
(lower is better) on natural language (left) and pure code (right). A little of procedural data is
very effective: compare the number of procedural tokens (T1) in these plots with the amount of
tokens from the target datasets (T2) being 15M for WIKITEXT and 105M for JAVACORPUS.

Take-away. The benefits of procedural pretraining transfer from abstract algorithmic skills to
semantic domains, and they only require relatively small amounts of data.

5.2 LARGER PRETRAINING CORPORA

Setup. We expand the evaluation to more diverse datasets to evaluate whether the knowledge gained
from procedural pretraining is complementary to the information typically acquired from these.
We use several standard pretraining datasets for natural language (C4, Raffel et al. (2020)), code
(CODEPARROT, HuggingFace (2022)), and informal mathematics (DEEPMIND-MATH, Saxton
et al. (2019), the math portion of THE PILE, Gao et al. (2020)). Much of the prior work (see
Section 2) has been limited to natural language, we additionally consider informal mathematics
and code because they also constitute an important part of standard pretraining corpora. We also
hypothesize that they are well-suited for substantial gains from procedural pretraining due to their
strong structural regularities similar to procedural data.

We use the best configurations and types of procedural data (UNION, SORT, SET) identified in
Figure 4 of Section 5.1. We train models similar to CodeParrot-small (HuggingFace, 2022) from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2500 5000 7500 10000
Semantic pretraining steps

55

60

65

70

75

Pe
rp

le
xi

ty

Language (C4)

5000 10000 15000 20000
Semantic pretraining steps

5.0

5.5

6.0

6.5

Pe
rp

le
xi

ty

Code (CODEPARROT)

10000 30000 50000
Semantic Pretraining Steps

25.0

32.5

40.0

47.5

Pr
ob

le
m

ac
cu

ra
cy

(%
)

Math (DEEPMIND-MATH)

2.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

58

60

62

64

Pe
rp

le
xi

ty

1.0 2.1 4.2 6.2 8.3 10.4
Procedural tokens (million)

5.2

5.3

5.4

Pe
rp

le
xi

ty

1.0 2.1 4.2 6.2 8.3 10.4
Procedural tokens (million)

41.5

42.0

42.5

43.0

Pr
ob

le
m

ac
cu

ra
cy

(%
)

0 2.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

400

500

600

#
Se

m
an

tic
to

ke
ns

(m
ill

io
n)

0.0 1.0 2.1 4.2 6.2 8.3 10.4
Procedural tokens (million)

700

800

900
#

Se
m

an
tic

to
ke

ns
(m

ill
io

n)

0.0 1.0 2.1 4.2 6.2 8.3 10.4
Procedural tokens (million)

1400

1500

1600

#
Se

m
an

tic
to

ke
ns

(m
ill

io
n)

UNION SORT SET No procedural pretraining

Figure 5: Procedural pretraining is complementary to standard data & highly data-efficient.
Each column corresponds to a different semantic dataset. (Top) Training curves with different types
of procedural data (UNION, SORT, SET). (Middle) Additive setting: a small amount of procedural
data is sufficient to outperform standard pretraining. (Bottom) Substitutive setting: we plot curves
whose points (x, y) achieve equivalent performance with x procedural tokens and y standard tokens.
We can drastically reduce the total amount of data when using a small fraction of procedural data.
Full-model transfer (see Section 3.1) is used for procedural pretraining.

scratch. Each model is first pretrained on T1 procedural tokens (0–20M) then undergoes “standard”
semantic training on T2 tokens from one of the above datasets (respectively 655M, 1B, or 1.6B
tokens). We evaluate both the additive and substitutive settings. In the additive case, we measure
the absolute performance gain thanks to the additional T1 tokens. In the substitutive case, we assess
how many T2 tokens can be saved by T1 tokens without loss of performance. More formally, we
measure the savings ∆T2 such that training on (T2−∆T2) semantic tokens with T1 procedural tokens
matches the performance of the T2-only model.

Results. Figure 5 (top) shows that procedural pretraining accelerates and improves subsequent pre-
training. The additive setting (middle) demonstrates that the benefits from procedural pretraining
only require a small amount of data, and that additional data is not always beneficial. In all cases,
a small amount of additional procedural tokens (2–4M) clearly outperform the baseline. For refer-
ence, 2.1M procedural tokens correspond respectively to 0.3%, 0.2%, and 0.1% of each of the three
semantic datasets. The substitutive setting (bottom) shows that procedural tokens can efficiently sub-
stitute for large amounts of semantic tokens. For example, with C4, we can maintain the baseline
loss and save about 45% of semantic tokens (∼365M) by using only 2.1M procedural tokens.

In Appendix L, we further examine how the effects of procedural pretraining scale with both model
size (350M and 1.3B parameter models) and data size (up to 10B tokens). The larger models con-
tinue to exhibit clear and consistent improvements from procedural pretraining on a larger scale.

Do the benefits persist after downstream fine-tuning? We further evaluate whether the advan-
tages of procedural pretraining remain after downstream fine-tuning, the primary indicator of prac-
tical model utility. Following semantic pretraining, we fine-tune both the baseline and procedurally
pretrained models on representative language (WikiText-103 (Merity et al., 2016), GLUE (Wang
et al., 2019)) and code completion (PY150 (Lu et al., 2021)) datasets. As detailed in Appendix M,
the improvements from procedural pretraining consistently persist after downstream fine-tuning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Take-away. Procedural pretraining is complementary to standard pretraining on semantic
datasets in multiple domains. It is also highly data-efficient and allows one to drastically reduce
the total amount of data needed to reach a given perplexity level.

5.3 LOCALISATION OF THE TRANSFERABLE PRETRAINED INFORMATION

We now seek to better understand the mechanisms behind procedural pretraining.

Setup. We use selective weight transfer (attention-/MLP-only) as in Section 4.2 to locate where
the useful, transferable information resides in pretrained models. We consider JAVACORPUS and
CODEPARROT as different domains since they respectively contain pure and documented code (i.e.
interleaved with natural language).

Results. Figure 6 shows that on JAVACORPUS (pure code), transferring only the attention layers
yields the largest gains in both perplexity and code-completion accuracy. On WIKITEXT and C4
(natural language), the opposite holds, and transferring the MLPs is most effective. This suggests
that procedural pretraining induces distinct inductive biases in different architectural components,
and selectively transferring the right component can further improve upon the results from Figure 5.
As expected, for domains that combine natural language with structured data, i.e. documented code
and informal math (CODEPARROT and DEEPMIND-MATH), full-model transfer performs best by
combining the benefits from both MLPs for natural language, and attention for structured data.
These effects are intriguing because the MLPs are believed to act as stores of factual information in
LLMs (Dong et al., 2025; Geva et al., 2020; Xu & Chen, 2025). Thus it remains to be explained how
procedural pretraining improves the MLPs for handling natural language with only abstract data.

In Appendix N.2, we further explore the benefits of MLP-only transfer for language on syntactic
and morphological competence. We show that MLP-only transfer achieves a better downstream
accuracy on BLiMP (Warstadt et al., 2020) in the additive setting. In the substitutive setting, it
requires even fewer C4 tokens to reach the same perplexity level than full-model transfer (42% vs.
55%).

Sm
al

ld
at

as
et

s

SET UNION SORT

50

60

70

Pe
rp

le
xi

ty

Language (WIKITEXT)

SET UNION SORT

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

Undocumented code (JAVACORPUS)

L
ar

ge
r

da
ta

se
ts

UNION SORT

56

58

60

Pe
rp

le
xi

ty

Language (C4)

SET UNION

5.1

5.2

5.3

5.4

Pe
rp

le
xi

ty

Docmented Code (CODEPARROT)

SET UNION

41

42

43

Pr
ob

le
m

ac
cu

ra
cy

(%
)

Math (DEEPMIND-MATH)

Full-model transfer MLP-only transfer Attention-only transfer No Procedural Pretraining

Figure 6: Localisation of transferable pretrained information for different semantic domains.
(Top) Using selective weight transfer (see Section 3.1), we find that MLPs and attention layers are
important respectively for natural language and pure code, across different types of procedural data.
(Bottom) On larger datasets, MLP-only transfer works best for language. As expected, full transfer
is optimal for domains involving both language and structured data (documented code, informal
mathematics).

Take-away. Procedural pretraining instils useful transferable information in both MLPs and at-
tention layers. The former are more useful for natural language and the latter help with structured
domains such as code and mathematics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 COMBINING MULTIPLE TYPES OF PROCEDURAL DATA

Our experiments and most prior work on procedural data have so far used on a single type of such
data at a time. Combining them is not trivial because of their varying levels of learning difficulty.
This section explore two techniques to combine the complementary benefits of multiple types of
procedural data by building on the findings from Section 4–5.

6.1 DATA MIXTURES

A natural approach is to pretrain on mixtures of procedural data in chosen ratios.

Setup. We evaluate pairs of procedural data sources A and B that we mix using TA and TB tokens
of each, such that T1 = TA + TB is fixed. We prefix each pretraining sequence with an extra token
specifies which of A or B it belongs. We train a model on these T1 tokens then on T2 tokens from
either JAVACORPUS or WIKITEXT.

0.0
(Pure)

1.0 1.1 1.2 1.3 1.4
(Mixed)

Mixture diversity (entropy)

48.5

49.5

50.5

51.5

Pe
rp

le
xi

ty

Language (WIKITEXT)

UNION

SET

UNION baseline
SET baseline

0.0
(Pure)

1.0 1.1 1.2 1.3 1.4
(Mixed)

Mixture diversity (entropy)

7.85

8.00

8.15

8.30

Pe
rp

le
xi

ty

Code (JAVACORPUS)

UNION

SET

UNION baseline
SET baseline

Figure 7: Mixtures of two types of
procedural data. We vary the pro-
portion of SET and UNION (indicated
by the small pie charts) while keep-
ing the total number of procedural to-
ken T1 fixed. Some choices achieve a
clearly better perplexity (lower is bet-
ter) than either of the two types alone.

Results. Figure 7 shows that many mixtures, each with different mixture ratios shown by the pie
chart and entropy of ratios, outperform the best single-source baselines for attention transfer on
JAVACORPUS and full-model transfer on WIKITEXT (the best settings identified in Section 5.3).
This proof of concept shows that the benefits of multiple types of data are cumulative, and suggest
potential for further gains with optimized combinations of additional sources.

6.2 WEIGHT MIXTURES

We evaluate an alternative method that builds on the findings from Sections 4.3 & 5.3 about the
localisation of pretrained information in distinct layers (attention vs. MLPs). We propose to compose
a new model by assembling components from several pretrained models. This avoids the challenge
of balancing data mixtures.

Setup. We assemble a model with the attention layers of a pretrained SET model and the MLPs
of an ECA RULE 110 model. We chose these because they showed distinct and complementary
capabilities (see HAYSTACK and REVERSED ADDITION in Table 1). We then further train this
model on the algorithmic evaluation tasks of Section 4.

Results. The last row of Table 1 shows that the combined model yields superior performance across
the four tasks, while the single-source models have weaknesses on one or several tasks. This indi-
cates that procedurally-pretrained models can be easily combined by simply assembling their most
useful components.

Take-away. The effects of multiple types of procedural data are additive. Proof-of-concept
experiments show that they can be combined both at data- and weight-level, and suggest ample
room for further benefits with larger and more-optimized combinations.

7 DISCUSSION

This paper shows that pretraining language models on well-chosen procedural data can complement
standard pretraining on semantic data. This can speed up training and improve performance on nat-
ural language, code, and informal mathematics. Our experiments also help understand the origin of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 1: Pretrained models combined at the weight level. We combine SET-pretrained attention
layers with ECA-pretrained MLPs (last row). This yields the strong performance across all four
tasks, whereas single-source models show weaknesses in at least one task.

HAYSTACK ADDITION REVERSED ADDITION SORT

No procedural pretraining 11.3±0.4 59.1±7.0 76.4±23.2 82.7±11.6

SET (full-model transfer) 18.9±26.6 53.4±0.1 44.6±5.1 93.5±1.6

SET (attention-only transfer) 88.9±27.1 81.1±12.2 54.4±10.4 98.1±2.8

ECA (full-model transfer) 10.5±0.5 69.6±7.9 91.0±16.1 76.9±1.4

ECA (MLP-only transfer) 8.71±1.0 63.1±14.4 70.5±31.6 77.1±8.1

SET (attention) + ECA (MLP) 94.4±2.5 80.3±13.9 82.9±16.9 99.4±0.2

these improvements. We determined that useful information lies in different pretrained components
(MLP vs. attention) depending on the domain (language vs. structured domains). These findings mo-
tivate new training paradigms where primitive abstract data is exposed to LLMs before they acquire
knowledge in pretraining and undergo further downstream finetuning.

Efficient initialisation. Unlike standard data, procedural data has a small Kolmogorov complexity,
meaning that it contains information that can be summarized in a few lines of code. Generating mil-
lions of samples processed by gradient descent thus seems computationally wasteful. In principle, it
may be possible to simplify this as a deterministic or closed-form smart initialisation of LLMs.

Why are specific forms of procedural data helpful? A first-principles explanation of why specific
forms of data help would be a promising future direction. Our results in Section 4.3 rule out simple
explanations, indicating deeper effects than merely a better optimisation dynamics or memorisation.
Understanding the mechanisms at play using mechanistic interpretability techniques (Conmy et al.,
2023) is a promising avenue.

Combining multiple types of procedural data. We showed that the benefits can be additive. Exist-
ing methods for data mixture optimization (Fan et al., 2023; Xie et al., 2023; 2025) could be adapted
to optimally balance multiple types of procedural data.

Knowledge vs. reasoning. Earlier work has pointed out that LLMs’ limitations may be rooted in
entangled representations of knowledge and reasoning (Han et al., 2025). Our line of work may
ultimately provide a mechanism to help disentangle the acquisition of knowledge from reasoning.

Limitations. (1) We use relatively small models compared to state-of-the-art LLMs, further ex-
tending our experiments with larger computational resources is an important future step. (2) Our
evaluation is limited to perplexity and accuracy on common benchmarks. The downstream perfor-
mance of the models has yet to be studied. (3) Our experiments on combining multiple types of
procedural data are a proof of concept. We lay out several promising directions worthy of future
validation.

REPRODUCIBILITY STATEMENT

We provide technical details in the appendix to aid with the reproducibility. See Appendix B for
the procedural data generation, Appendix D for the algorithmic reasoning tasks, Appendix C for
the architectures used, and Appendix E for the hyperparameters and training details. A documented
version of our code is also in preparation and will be released with the final version of this paper.

REFERENCES

Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
knowledge distillation. arXiv preprint arXiv:2006.00555, 2020.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using
language modeling. In 2013 10th working conference on mining software repositories (MSR).
IEEE, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
Fadaee, Ahmet Üstün, and Sara Hooker. To code, or not to code? exploring impact of code in
pre-training. arXiv preprint arXiv:2408.10914, 2024.

Randall Balestriero and Hai Huang. For perception tasks: The cost of llm pretraining by next-token
prediction outweigh its benefits. In NeurIPS Workshop: Self-Supervised Learning-Theory and
Practice, 2024.

Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to see
by looking at noise. arXiv preprint arXiv:2106.05963, 2021.

Manel Baradad, Chun-Fu Chen, Jonas Wulff, Tongzhou Wang, Rogerio Feris, Antonio Torralba,
and Phillip Isola. Procedural image programs for representation learning. arXiv preprint
arXiv:2211.16412, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 2022.

François Charton and Julia Kempe. Emergent properties with repeated examples. arXiv preprint
arXiv:2410.07041, 2024.

Cheng-Han Chiang and Hung-yi Lee. On the transferability of pre-trained language models: A study
from artificial datasets. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Yihe Dong, Lorenzo Noci, Mikhail Khodak, and Mufan Li. Attention retrieves, mlp memorizes:
Disentangling trainable components in the transformer. arXiv preprint arXiv:2506.01115, 2025.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Michael Goodale, Salvador Mascarenhas, and Yair Lakretz. Meta-learning neural mechanisms rather
than bayesian priors. arXiv preprint arXiv:2503.16048, 2025.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Grégoire Delétang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, et al. Learning uni-
versal predictors. arXiv preprint arXiv:2401.14953, 2024.

Seungwook Han, Jyothish Pari, Samuel J. Gershman, and Pulkit Agrawal. Position: General in-
telligence requires reward-based pretraining. In Proceedings of the International Conference on
Machine Learning Position Paper Track, 2025.

Zexue He, Graeme Blackwood, Rameswar Panda, Julian McAuley, and Rogerio Feris. Synthetic
pre-training tasks for neural machine translation. In Findings of the Association for Computational
Linguistics, 2023.

Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
chomsky: Pre-pretraining on formal languages imparts linguistic biases. In Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Long Papers), 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In Proceedings of the International Conference on Machine
Learning, 2020.

HuggingFace. Codeparrot dataset cleaned, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Kundan Krishna, Saurabh Garg, Jeffrey Bigham, and Zachary Lipton. Downstream datasets make
surprisingly good pretraining corpora. In Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics, 2023.

Akarsh Kumar, Jeff Clune, Joel Lehman, and Kenneth O Stanley. Questioning representational
optimism in deep learning: The fractured entangled representation hypothesis. arXiv preprint
arXiv:2505.11581, 2025.

Matthias Lindemann, Alexander Koller, and Ivan Titov. Sip: Injecting a structural inductive bias into
a seq2seq model by simulation. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics, 2024.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics,
2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

R Thomas McCoy and Thomas L Griffiths. Modeling rapid language learning by distilling bayesian
priors into artificial neural networks. arXiv preprint arXiv:2305.14701, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

Ryo Nakamura, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht,
Nakamasa Inoue, Rio Yokota, and Hirokatsu Kataoka. Scaling backwards: Minimal synthetic
pre-training? arXiv preprint arXiv:2408.00677, 2024.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
rithms: Language models solve math with a bag of heuristics. In The Thirteenth International
Conference on Learning Representations, 2025.

Isabel Papadimitriou and Dan Jurafsky. Injecting structural hints: Using language models to study
inductive biases in language learning. arXiv preprint arXiv:2304.13060, 2023.

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect language
model task performance? arXiv preprint arXiv:2409.04556, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision trees.
ACM SIGPLAN Notices, 51(10):731–747, 2016.

Ryokan Ri and Yoshimasa Tsuruoka. Pretraining with artificial language: Studying transferable
knowledge in language models. arXiv preprint arXiv:2203.10326, 2022.

Laura Ruis, Maximilian Mozes, Juhan Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, Acyr
Locatelli, Robert Kirk, Tim Rocktäschel, Edward Grefenstette, and Max Bartolo. Proce-
dural knowledge in pretraining drives reasoning in large language models. arXiv preprint
arXiv:2411.12580, 2024.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations,
2019.

Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 11(1-2):13–29, 2005.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural red-
shift: Random networks are not random functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

Damien Teney, Liangze Jiang, Florin Gogianu, and Ehsan Abbasnejad. Do we always need the
simplicity bias? looking for optimal inductive biases in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2025.

Asher Trockman and J. Zico Kolter. Mimetic initialization of self-attention layers. arXiv preprint
arXiv:2305.09828, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Yanwei Wang, Ching-Yun Ko, and Pulkit Agrawal. Visual pre-training for navigation: What can we
learn from noise? arXiv preprint arXiv:2207.00052, 2022.

Zecheng Wang, Che Wang, Zixuan Dong, and Keith Ross. Pre-training with synthetic data helps
offline reinforcement learning. arXiv preprint arXiv:2310.00771, 2023.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. Transactions
of the Association for Computational Linguistics, 2020.

Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba, Roger B Grosse, and Christian Szegedy. Lime:
Learning inductive bias for primitives of mathematical reasoning. In Proceedings of the Interna-
tional Conference on Machine Learning, 2021.

Yuhuai Wu, Felix Li, and Percy S Liang. Insights into pre-training via simpler synthetic tasks.
Advances in Neural Information Processing Systems, 2022.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 2023.

Wanyun Xie, Francesco Tonin, and Volkan Cevher. Chameleon: A flexible data-mixing framework
for language model pretraining and finetuning. In Proceedings of the International Conference
on Machine Learning, 2025.

Ruichen Xu and Kexin Chen. Filtering with self-attention and storing with mlp: One-layer trans-
formers can provably acquire and extract knowledge. arXiv preprint arXiv:2508.00901, 2025.

Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov, Yida Yin, Zhiqiang Shen, Trevor Darrell, Lingjie Liu,
and Zhuang Liu. Initializing models with larger ones. arXiv preprint arXiv:2311.18823, 2023.

13

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Enyan Zhang, Michael A Lepori, and Ellie Pavlick. Instilling inductive biases with subnetworks.
arXiv preprint arXiv:2310.10899, 2023.

Shiyang Zhang, Aakash Patel, Syed A Rizvi, Nianchen Liu, Sizhuang He, Amin Karbasi, Emanuele
Zappala, and David van Dijk. Intelligence at the edge of chaos. arXiv preprint arXiv:2410.02536,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

The appendix provides the following additional details and results:

• Appendix A: extended review of the related literature.
• Appendix B: details about procedural pretraining.
• Appendix C: details about models used in experiments.
• Appendix D: implementation details for the algorithmic downstream tasks.
• Appendix E: training details including hyperparameters for each experiment.
• Appendix F: testing simpler explanations for procedural pretraining benefits.
• Appendix G: investigates sequence length and number of steps for procedural pretraining.
• Appendix H: examines longer sequence lengths during procedural pretraining.
• Appendix I: analysis of the relationship between procedural pretraining loss and downstream

semantic performance.
• Appendix J: analyses the impact of vocabulary size during procedural pretraining.
• Appendix K: study of weight decay during procedural pretraining.
• Appendix L: study of procedural pretraining with scaling model and semantic dataset size.
• Appendix M: evaluates effects of procedural pretraining after downstream fine-tuning.
• Appendix N: additional and full results.

A EXTENDED LITERATURE REVIEW

What is learned by pretraining language models. The quantity (Kaplan et al., 2020) and qual-
ity (Longpre et al., 2024) of pretraining data are empirically critical for the performance of large
language models. But recent results also question the value of the data, showing that some benefits
of pretraining are attributable to the optimisation objective more than the actual data. Balestriero &
Huang (2024) compared models trained for text classification from random initialisation with fine-
tuning from a pretrained checkpoint. They found that pretraining provides little benefit for tasks that
do not involve text generation. Krishna et al. (2023) showed success in re-using the same data for
pretraining and fine-tuning, showing also that the pretraining objective matters more than the data
being used. The same conclusion follows from results of pretraining on synthetic data devoid of
semantic meaning, e.g. for machine translation (He et al., 2023), computer vision (Baradad et al.,
2021), visual navigation (Wang et al., 2022), and reinforcement learning (Baradad et al., 2022).
This paper examines such purely synthetic pretraining to understand the exact capabilities that can
be obtained from procedurally-generated data.

What matters in pretraining data. The selection of data to pretrain frontier models mostly relies
on experimentation (Longpre et al., 2024). However, several key distributional and structural prop-
erties of the data have also been identified, such as data repetition to foster generalisation (Charton
& Kempe, 2024) and burstiness to enable in-context learning (Chan et al., 2022). Computer code
is empirically very effective as pretraining data for LLMs, as it improves their abilities for com-
positional generalisation and math-related tasks (Aryabumi et al., 2024; Petty et al., 2024). This
presumably results from the abundant compositional and recursive patterns in computer code, but
a better understanding of the mechanisms at play is lacking to reap the full benefits of structure
in pretraining data. In this paper, we replicate the positive effects of structured pretraining data in
controlled settings, and study how such data imparts useful inductive biases to the model.

Pretraining on procedural data. Most attempts to train language models with synthetic data
follow a linguistic perspective, using formal languages to imitate properties of natural language
(Chiang & Lee, 2022; Goodale et al., 2025; McCoy & Griffiths, 2023; Papadimitriou & Jurafsky,
2023; Ri & Tsuruoka, 2022). Recent work considers increasingly simpler forms of synthetic data
such as input/outputs of simple algorithms (Lindemann et al., 2024; Wu et al., 2022). In these
papers, specific forms of synthetic pretraining data prove helpful to subsequent fine-tuning on natural
language tasks. Hu et al. (2025) provide strong empirical benefits, showing that data generated from
formal languages is more valuable token-per-token than natural language for training a 1B-parameter
language model. Zhang et al. (2024) pretrain on traces of cellular automata and show marginal
but consistent improvements on simple reasoning tasks. Our study complements this line of work
by examining more closely the pretrained models on diagnostic tasks, rather than evaluating their

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

general handling of natural language. We identify specific capabilities imparted by specific types of
procedural tasks, and locate useful structure in different parts of the architecture. We also investigate
methods to combine the benefits from multiple complementary tasks.

Procedural data in vision and RL. Vision transformers (ViTs) have been trained on synthetic
data of increasingly simple nature (Baradad et al., 2021). Nakamura et al. (2024) pretrained ViTs
on a single fractal image with augmentations that remarkably match the performance of ImageNet-
pretrained models after fine-tuning. This indicates that structural properties of the data matter more
than its semantic contents. Similar results exist in reinforcement learning with models pretrained on
data generated from random Markov chains (Wang et al., 2023) and noise-based images (Baradad
et al., 2022).

Partial transfer from pretrained transformers. Zhang et al. (2023) and (Xu et al., 2023) showed
that copying subsets of pretrained weights could transfer specific capabilities. Abnar et al. (2020)
used knowledge distillation to transfer the inductive biases of one architecture into another. The
“mimetic initialisation” of self-attention (Trockman & Kolter, 2023) is a procedure handcrafted to
imitate the locality bias of pretrained models. We also evaluate the partial transfer of pretrained
weights, which reveals that different pretraining tasks create useful structure in different parts of the
architecture.

Pretraining as an inductive bias. Pretraining transformers on synthetic data has been used to
mimic the inductive biases of Bayesian inference (Müller et al., 2021) and Solomonoff Induction
(Grau-Moya et al., 2024). Goodale et al. (2025) showed that well-chosen formal languages can
teach complex mechanisms (e.g. counters) to a sequence model. Pretraining can generally be seen
as a soft inductive bias for subsequent fine-tuning. But there is a large gap in our understanding of its
effects compared to those of hard inductive biases of neural architectures (Teney et al., 2024; 2025).
Han et al. (2025) argue that the difficulties of LLMs to reason robustly is due to their entangled
representation of knowledge and reasoning. Much remains to be understood about how both are
learned from the same data (Ruis et al., 2024). Our results suggest that procedural data could be one
way to acquire reasoning mechanisms independently from specific pieces of knowledge.

B PROCEDURAL PRETRAINING

Pretraining task Example sequence

k-DYCK ([{ }])
k-DYCK SHUFFLE ([{]) }
STACK 1 2 3 P | 2 1
IDENTITY 1 2 3 | 1 2 3
SET 1 2 2 | 1 2
SORT 3 1 2 | 1 2 3
REVERSE 1 2 3 | 3 2 1
UNION 1 2 | 2 3 | 1 2 3
DELETE 1 2 3 | 2 | 1 3

Figure 8: We pretrain transformers on various forms of procedural data generated from simple
algorithms, such as formal languages (left) or elementary cellular automata (right). In k-DYCK
examples, matching brackets are color-coded. For STACK, ‘P’ denotes the pop operation. The
symbol ‘|’ acts as a delimiter between the input and the expected output, on which the loss is
computed (bold tokens). For UNION and DELETE, the first delimiter separates the two sequences
to which the transformation is applied, and the second delimiter separates the entire input from the
target output.

Sequence Transformations and Memory Operations Input Sequence Lengths.

For the sequence transformation and memory operation tasks in Section 4, procedural pretraining
follows a curriculum learning scheme: models begin with input sequences of length 2 or 4 (depend-
ing on the task), and the length is increased by 2 once 99% accuracy is achieved, continuing until a
maximum length of 20.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In Section 5, larger transformers are instead pretrained on procedural tasks with fixed input lengths
of 8, 16, 32, and 64. Appendix G analyses the effect of sequence length, while Appendix H examines
the impact of extending lengths further.

For consistency in token counts, we assume the output sequence is at most twice the length of the
input, and thus estimate and report the total number of procedural tokens as 2× the input length.

Sequence Transformation Descriptions.

IDENTITY. The input is a sequence of tokens followed by a separator. The target is an exact copy
of the input sequence. The vocabulary has 102 tokens: 100 valid elements, one separator, and one
padding token.

SET. The input is a sequence of tokens followed by a separator. The target is the same sequence
with duplicates removed, preserving the order of first appearance. The vocabulary has 102 tokens:
100 valid elements, one separator, and one padding token.

UNION. The input consists of two token sequences separated by a delimiter. The target is the union
of both sequences, preserving the order of first appearance. The vocabulary has 103 tokens: 100
valid elements, one separator, one padding token, and one union delimiter.

DELETE. The input is a sequence of tokens followed by a separator and a designated token. The
target is the sequence with all instances of the designated token removed. The vocabulary has 103
tokens: 100 valid elements, one separator, one padding token, and one delete marker.

SORT. The input is a random sequence of tokens followed by a separator. The target is the same
sequence sorted in ascending numerical order. The vocabulary has 102 tokens: 100 valid elements,
one separator, and one padding token.

REVERSE. The input is a sequence of tokens followed by a separator. The target is the same
sequence in reverse order. The vocabulary has 102 tokens: 100 valid elements, one separator, and
one padding token.

Memory Operation Descriptions.

STACK. The input encodes a sequence of push and pop operations, followed by a separator. The
target is the final stack contents, listed top-to-bottom. Tokens are pushed with 75% probability in
the first two thirds of the input and popped with 75% probability in the final third. Each push inserts
a unique token, pops remove the top element, and only one copy of a token may exist on the stack
at any time. The vocabulary has 103 tokens: 100 pushable elements, one pop token, one separator,
and one padding token.

Other Procedural Data Source Descriptions.

k-DYCK. We generate sequences of correctly nested parentheses using k distinct bracket pairs (vo-
cabulary size 2k), with k ∈ {4, 8, 16}. All training sequences are fixed to length 128 and constructed
incrementally via a stack-based procedure ensuring syntactic validity. At each step, the generator
samples an opening or closing bracket with probability popen = 0.49 (Papadimitriou & Jurafsky,
2023), forcing closure when the remaining token budget matches the number of open brackets.

k-DYCK SHUFFLE. This variant retains the same 2k-token vocabulary of bracket pairs but removes
the requirement of proper nesting. Sequences are sampled with a 50% probability of opening brack-
ets and fixed to length 128, with k ∈ {4, 8, 16}. While every opening bracket is eventually closed,
truncation can yield ill-formed strings (Hu et al., 2025), though we did not observe adverse effects
in practice.

ECA RULE 110. We follow the setup of Zhang et al. (2024), generating data from Elementary
Cellular Automata under Rule 110, a Class IV system with Turing-complete dynamics. To model
binary state sequences with GPT-2, the embedding layer is replaced by a linear projection from
binary vectors, and the output softmax is replaced by a projection back to binary space, preserving
determinism. For transfer, we average the learned input embeddings across the ECA data and use
this representation to initialize the embedding layers of downstream transformers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C MODEL DETAILS

We use a GPT-2-type architecture (Radford et al., 2019) throughout our experiments. In Section 4,
we employ a minimal configuration with 2 layers, 4 attention heads, and a hidden size of 16 for
HAYSTACK, ADDITION, REVERSED ADDITION and SORTING. For MULTIPLICATION, we use a
model size of 4 layers, 8 attention heads and a hidden size of 512. In Section 5 and 6, we use the
small GPT-2 variant with 12 layers, 12 attention heads, and a hidden dimension of 768.

D ALGORITHMIC TASK DESCRIPTIONS

Memory Recall.

HAYSTACK. This task tests a model’s ability to retrieve information from long sequences. Each
input consists of a sequence of key–value pairs of the form [m1, c1,m2, c2, . . . ,mk, ck,mu], where
each mi is a unique marker and ci its associated value. The sequence terminates with a query marker
mu, and the model must locate its earlier occurrence in the context and output the corresponding
value cu. We fix k = 30 in all experiments and report accuracy based on whether the predicted value
matches cu.

Arithmetic.

ADDITION. This task probes a model’s ability to learn the compositional structure of arithmetic
addition when expressed in forward (non-reversed) notation. In this setting, the least significant
digits, crucial for carry operations, appear at the end of the sequence. As a result, transformers
must propagate carry information backward through the context, a dependency pattern misaligned
with the autoregressive training objective. Each input takes the form a+b=, where a and b are
randomly sampled n-digit integers. Inputs and outputs are digit-tokenized, with operator symbols
(+, =) assigned unique tokens. The model is trained to predict only the result digits, and cross-
entropy loss is computed solely on these positions. For all experiments we fix n = 5, and report
token-level accuracy on the predicted sum.

REVERSED ADDITION. This variant evaluates the same underlying arithmetic skill as ADDITION,
but aligns the sequence structure with the autoregression of the transformer. Both input and output
sequences are reversed, so carry propagation proceeds left-to-right in the same direction as genera-
tion. For example, the sum ab + cd = efg is represented as input b a d c with output g f e.
The task reduces long-range dependencies while preserving the need for multi-step reasoning. We
set n = 10 and evaluate using token-level accuracy.

MULTIPLICATION. This task evaluates a model’s ability to perform multi-digit multiplication. Each
input takes the form a× b =, where a and b are randomly sampled n-digit integers. The model must
generate the digit sequence corresponding to their product. Inputs and outputs are tokenized at the
digit level, with the multiplication operator (×) and equals sign (=) assigned special tokens. For all
experiments we fix n = 5. Cross-entropy loss and token-level accuracy are computed only on the
output positions corresponding to the product digits.

Logical and relational processing.

SORTING. This task assesses a model’s ability to perform algorithmic reasoning by sorting a se-
quence of integers. Each input consists of a list of n integers sampled uniformly from the range
[0, P − 1], where P denotes the vocabulary size. We fix n = 10 and P = 100. The input sequence
is followed by a separator token, after which the model must output the sorted version of the se-
quence. For example, the input 6 3 5 | requires the output 3 5 6. Training is autoregressive,
and evaluation is performed only on the output positions following the separator, with token-level
accuracy as the metric.

E EXPERIMENTAL DETAILS

E.1 PROCEDURAL PRETRAINING

Details for Section 4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The hyperparameters used for procedural pretraining are summarised in Table 2, with the exception
of ECA RULE 110, whose configuration is reported separately below.

Task SEQ. LENGTH LEARNING RATE VOCAB. SIZE

IDENTITY 4–20 5× 10−4 102
SET 2–20 5× 10−4 102
STACK 4–20 5× 10−4 103

k-DYCK 128 5× 10−5 2× k
k-DYCK SHUFFLE 128 5× 10−5 2× k

Table 2: Pretraining hyperparameters for each procedural task. All models use AdamW with weight
decay 0.01, batch size 256, and run for 1,000,000 steps. Early stopping (100 validation checks) is
applied for the algorithmic tasks.

ECA RULE 110. Following Zhang et al. (2024), we pretrain models on data procedurally generated
from Elementary Cellular Automata under Rule 110. Each epoch begins from a new random initial
state, ensuring continual access to fresh samples and effectively unlimited training data. Models
are trained for up to 10,000 epochs with early stopping on validation loss. We use Adam with a
learning rate of 2 × 10−6, weight decay 0.01, and gradient clipping at norm 1.0, with batch size
64 (60 time steps, 100 spatial dimensions). The learning rate schedule consists of a 10% warm-up
phase followed by cosine decay.

Detail for Section 5.

For all algorithmic procedural tasks used in this section (IDENTITY, SET, UNION, DELETE, SORT,
REVERSE, and STACK), we train using AdamW with a batch size of 64 and no warmup steps.
Following Hu et al. (2025), we pretrain models on procedural data with a weight decay of 0.1 for
WIKITEXT and C4, and use 0.01 for JAVACORPUS, CODEPARROT, and DEEPMIND-MATH. The
pretrained models are subsequently fine-tuned on their respective downstream datasets. An ablation
study in Appendix K confirms that this choice of weight decay during pretraining does not affect
our conclusions. We sweep sequence lengths over {8, 16, 32, 64} and vary the number of procedural
pretraining steps between 100 and 2500. No warmup or learning rate decay is applied; instead, we
train with a fixed learning rate throughout. For consistency, the learning rate during pretraining is
matched to that of the downstream semantic objective, as preliminary experiments indicated this
setting to be most effective.

E.2 ALGORITHMIC TASKS

HAYSTACK, FORWARD ADDITION, REVERSED ADDITION, and SORTING. We trained models
for 104 steps with a batch size of 1,000. The training data is generated dynamically. We used
the AdamW optimizer with a learning rate of 10−3 and weight decay of 10−3. We always use an
architecture consisting of 2 layers, 4 attention heads, and 16-dimensional embeddings. We report
mean and standard deviation over 10 seeds in Appendix N.

MULTIPLICATION. These experiments employed a larger model with 4 layers, 8 attention heads,
and 512-dimensional embeddings. Thus, we use a smaller training batch size (64 vs. 1,000), result-
ing in approximately 156k update steps compared to 10k steps for the afforementioned reasoning
tasks, despite using the same number of training examples. We optimize with AdamW using a learn-
ing rate of 10−3, weight decay of 10−3, and 500 warmup steps. We run this over 3 seeds, and report
standard deviations in Appendix N.

E.3 SEMANTIC DATA

WIKITEXT. We train our models on Wikitext-2 (Merity et al., 2016) using next-token prediction
with AdamW. Training runs for ∼7 epochs (5,000 steps) with an effective batch size of 32. We use
a learning rate of 5 × 10−4 with cosine decay and no warmup steps. Sequences are tokenized with
the GPT-2 tokenizer, truncated to 1,024 tokens. We evaluate the model on the validation split, using
1,024 samples. Our primary metric is validation perplexity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

JAVACORPUS: We train our models on Github’s JavaCorpus (Allamanis & Sutton, 2013) using next-
token prediction with AdamW. Training runs for 5 epochs with an effective batch size of 8. We use
a learning rate of 8 × 10−5 and no warmup steps. The hyperparameters follow those in (Lu et al.,
2021). Sequences are tokenized with the CodeGPT (Lu et al., 2021) tokenizer, with block size 1,024
tokens. We report validation perplexity and test accuracy for code completion.

C4: We pretrain our models on the C4 dataset (Raffel et al., 2020) using next-token prediction with
AdamW. Training runs for 10,000 steps with an effective batch size of 32. We use a learning rate
of 5 × 10−4 with cosine decay and no warmup steps. Sequences are tokenized with the GPT-2
tokenizer and truncated to 2,048 tokens. We evaluate models on the C4 validation split using 1,024
samples, reporting validation perplexity. To assess linguistic generalization, we also report accuracy
on the BLiMP grammaticality judgment benchmark (Warstadt et al., 2020), which tests whether
models prefer grammatical over ungrammatical sentence pairs.

CODEPARROT: We pretrain our models on the CodeParrot dataset3 using next-token prediction with
AdamW. Training runs for 20,000 steps with an effective batch size of 48. We use a learning rate of
5 × 10−4 with cosine decay, no warmup steps, and weight decay of 0.1. Sequences are tokenized
with the CodeParrot’s tokenizer and with length 1,024 tokens. We evaluate models on the validation
split with 1,000 evaluation steps and a batch size of 48, reporting validation loss and perplexity.

DEEPMIND-MATH: We pretrain our models on the Deepmind-Mathematics dataset (Saxton et al.,
2019) using next-token prediction with AdamW. Training runs for 50,000 steps with an effective
batch size of 64. We use a constant learning rate of 8 × 10−5 (as is done in the original paper), no
warmup steps, and weight decay of 0.1. Sequences are tokenized at the character-level (including
digits, alphabet in upper and lower case, punctuation and whitespace, a total of 95 different tokens)
and have a length 512 tokens. We evaluate models on the in-distribution validation split with 100
evaluation steps and a batch size of 64, reporting the accuracy on the validation problems. This
ensures evaluating around 38,000 questions in each validation session. A problem is considered
correct if and only if the prediction exactly matches the groundtruth answer.

E.4 DOWNSTREAM FINETUNING

WIKITEXT-103: We finetune our language models on the WIKITEXT-103 dataset (Merity et al.,
2016). Finetuning runs for ∼37 million tokens (10,000 steps) with an effective batch size of 32. We
use a learning rate of 1 × 10−4 with cosine decay and no warmup steps. Sequences are tokenized
with the GPT-2 tokenizer, truncated to 2,048 tokens.

GLUE: We finetune our language models on the GLUE benchmark (Wang et al., 2019). For all
evalautions, fine-tuning is run for one epoch with a batch size of 16 and learning rate of 5 × 10−5

with a linear decay.

PY150: We finetune our models on PY150 (Raychev et al., 2016), which is an influential task
evaluating code completion capability (Lu et al., 2021). It contains 150,000 Python source files
collected from GitHub. We first follow Lu et al. (2021) for the preprocessing and then finetune
the models using next-token prediction with AdamW. Training runs for 2 epochs with an effective
batch size of 8, a learning rate of 8× 10−5, and a 0.01 weight decay. Sequences are tokenized with
the CodeGPT (Lu et al., 2021) tokenizer, with block size 1,024 tokens. We report test accuracy
(token-level accuracy) on this task.

F TESTING SIMPLER EXPLANATIONS

F.1 ATTENTION SHARPENING

This appendix analyses whether the benefits of procedural pretraining arise from generic attention
sharpening. First, we find that a small subset of sharpened attention heads contain the useful induc-
tive bias for downstream tasks. Then, we attempt to reproduce the behaviour of these heads through
regularisation. We find this does not provide the same benefits, demonstrating that procedural pre-
training fosters specific inductive biases beyond generic attention sharpening.

3https://huggingface.co/datasets/codeparrot/codeparrot-clean

20

https://huggingface.co/datasets/codeparrot/codeparrot-clean

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.1.1 ATTENTION ENTROPY ANALYSIS

We first examine the attention patterns of the procedurally pretrained models after fine-tuning on the
downstream tasks.

Setup. We measure the sharpness of each attention head using entropy,

H = −
∑
i

pi log pi,

where pi denotes the normalized attention weight assigned to token i. Low entropy corresponds to
selective attention, while high entropy reflects diffuse, uniform distributions. We compute head-wise
entropy after fine-tuning, averaging over 100 downstream evaluation examples.

Results. Figure 9 shows that procedural pretraining leads models, after downstream fine-tuning, to
consistently develop a subset of low-entropy heads. For example, a STACK-pretrained model fine-
tuned on HAYSTACK exhibits five of eight heads with entropy close to H ≈ 0.8, while the remaining
three have substantially higher entropy around H ≈ 3.0.

Head 0 Head 1 Head 2 Head 3
Attention head

Layer 1

Layer 2

L
ay

er

3.02 0.75 2.87 2.85

0.85 0.82 0.84 0.86

STACK Attention-only transfer to HAYSTACK

Head 0 Head 1 Head 2 Head 3
Attention head

Layer 1

Layer 2

2.40 0.90 2.62 1.52

0.81 0.83 0.68 0.82

SET Attention-only transfer to HAYSTACK

Head 0 Head 1 Head 2 Head 3
Attention head

Layer 1

Layer 2

0.51 1.46 0.47 0.92

0.63 0.78 0.68 1.64

SET Attention-only transfer to ADDITION

Head 0 Head 1 Head 2 Head 3
Attention head

Layer 1

Layer 2

1.14 1.68 0.69 1.57

0.37 0.32 1.01 0.62

SET Attention-only transfer to SORTING

0.5

1.0

1.5

2.0

2.5

3.0

A
tte

nt
io

n
en

tr
op

y

Figure 9: Head-wise attention entropy after fine-tuning. Procedural pretraining yields a subset of
low-entropy heads (blue).

F.1.2 SELECTIVE TRANSFER OF LOW-ENTROPY HEADS

We hypothesise that the useful inductive biases introduced by procedural pretraining are concen-
trated in the subset of low-entropy attention heads.

Setup. To test our hypothesis, we fine-tune on the downstream task while transferring either the
three lowest-entropy heads that emerge from the procedurally pretrained model (identified post hoc
after finetuning) or, for comparison, the three highest-entropy heads.

Results. Figure 10 shows that transferring only the three lowest-entropy heads preserves, and in
some cases even surpases the performance of full attention transfer. In contrast, transferring the
three highest-entropy heads results in performance comparable to the baseline without procedurally
pretrained attention. These results demonstrate that the benefits of procedural pretraining can be
concentrated in a small subset of sharp, low-entropy attention heads.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0

25

50

75

100

A
cc

ur
ac

y
(%

)

STACK→
HAYSTACK

SET→
HAYSTACK

SET→
ADDITION

SET→
SORTING

Attention-only trans. 3 low ent. 3 high ent. No P.P.T.

Figure 10: Validation accuracy after downstream fine-tuning when transferring subsets of proce-
durally pretrained attention heads. The three lowest-entropy heads preserve or even surpass full
transfer, while the three highest-entropy heads perform comparably to a baseline without procedural
pretraining. Results are over 10 random seeds.

F.1.3 ENTROPY REGULARISATION TO SELECTED ATTENTION HEADS

We now investigate whether the benefits of procedural
pretraining can be reproduced by explicitly enforcing
low-entropy attention.

Setup. We attempt to replicate the behaviour of the
beneficial attention heads through regularisation. An
entropy regularization term is introduced during fine-
tuning on HAYSTACK to a model that did not undergo
procedural pretraining. This is applied to three se-
lected heads, and drives them toward a target entropy
of τ = 0.8, matching the average observed in the
three heads shown to carry useful inductive biases from
STACK pretraining (Figure 9 and 10).

Results. As shown in Figure 11, this approach is in-
effective: the regularized heads perform substantially
worse than the STACK-pretrained heads when evalu-
ated on the HAYSTACK task.
In summary, these findings indicate that simply enforc-
ing sharper attention is insufficient to reproduce the
benefits of procedural pretraining. We demonstrate that
low entropy is merely a side effect of the benefits pro-
vided through procedural pretraining, not the cause.

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Regularized Procedural

Figure 11: Validation accuracy on
HAYSTACK with entropy regularisation.
Models trained from scratch with ex-
plicitly enforced low-entropy heads (or-
ange) underperform those with proce-
durally pretrained heads (blue), indicat-
ing that sharper attention alone is in-
sufficient. Results are over 10 random
seeds.

F.2 WEIGHT SCALING

We test whether the benefits of procedural pretraining arise solely from weight distribution adjust-
ments, as opposed to precise weight structures and values. Our results show that the gains depend
critically on the latter.

Weight Shuffling. We apply layer-wise shuffling of the pretrained weights to the best-performing
models from Section 4.2 and evaluate downstream accuracy after fine-tuning. This setup explicitly
preserves weight distributions while erasing structure. Figure 12 demonstrates that weight distribu-
tions alone are insufficient: performance collapses to the no procedural pretraining baseline, except
for SORTING, which retains partial benefits. We use 10 seeds and report mean results, with variance
data in Appendix N.

Noise Injection. We introduce additive Gaussian noise to the procedurally pretrained weights of
the best models from Section 4.2 and evaluate performance after fine-tuning. We report a relative

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

improvement score, where 1.0 corresponds to unperturbed pretrained weights and 0.0 corresponds
to a baseline without procedural pretraining (random initialisation). Figure 13 shows that gradually
increasing Gaussian noise consistently degrades performance, confirming that precise weight values
are crucial. We use 10 seeds and report mean results, with variance data in Appendix N.

0

100

A
cc

ur
ac

y
(%

)

HAYSTACK

0

100

ADDITION

0

100

SORTING

Pretrained model Shuffled weights No P.P.T.

Figure 12: Layer-wise weight shuffling largely
eliminates the benefits of procedural pretrain-
ing, despite preserving the overall distribution
of weight values. This indicates that the advan-
tages arise from precise structural organisation
of the weights, rather than from their distribu-
tion alone.

0 0.01 0.05 0.1
Noise level (σ)

−1.0

−0.5

0.0

0.5

1.0

R
el

at
iv

e
im

pr
ov

.

HAYSTACK ADDITION SORTING No procedural pretraining

Figure 13: Injecting Gaussian noise into pre-
trained weights progressively erodes the ben-
efits of procedural pretraining. This demon-
strates that precise weight values are essential,
and coarse statistics such as weight magnitudes
alone cannot account for the performance bene-
fits.

G PROCEDURAL DATA HYPERPARAMETER GRID SEARCH

We study the influence of both pretraining steps and input sequence length on the effectiveness of
procedural pretraining for downstream semantic tasks.

Setup. We conduct a grid search over sequence length and number of pretraining steps to deter-
mine which configurations of procedural pretraining yield the lowest semantic validation perplexity.
Each model is first pretrained on a single procedural task for T1 tokens, followed by T2 tokens of se-
mantic data (WIKITEXT for natural language and JAVACORPUS for code), with full-model transfer.
The value of T1 is varied by adjusting the sequence length and number of pretraining steps, while
T2 remains fixed.

Results. Figure 14 and 15 report validation perplexity across all configurations, showing that both
sequence length and pretraining steps strongly influence performance, with optimal settings differing
by domain and task.

8 16 32 64

500

1000

2500

Pr
et

ra
in

in
g

st
ep

s

DELETE

8 16 32 64

IDENTITY

8 16 32 64

REVERSE

8 16 32 64
Sequence length

SET

8 16 32 64

SORT

8 16 32 64

STACK

8 16 32 64

UNION

50

55

60

65

70

Pe
rp

le
xi

ty

8 16 32 64

1000

2500

Pr
et

ra
in

in
g

st
ep

s DELETE

8 16 32 64

IDENTITY

8 16 32 64

REVERSE

8 16 32 64
Sequence length

SET

8 16 32 64

SORT

8 16 32 64

STACK

8 16 32 64

UNION

8.5

9.0

9.5

10.0

10.5

Pe
rp

le
xi

ty

Figure 14: Validation perplexity for different configurations of procedural pretraining when fine-
tuned on WIKITEXT (top) and JAVACORPUS (bottom), sweeping over sequence length and number
of pretraining steps. Each panel corresponds to a distinct procedural task, with colours indicating
perplexity (lower is better). The best-performing configuration for each task is marked in green.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

16 32 64 128

500

1000

2500

Pr
et

ra
in

in
g

st
ep

s

16 DYCK

16 32 64 128

16 DYCK SHUFFLE

50

55

60

65

70

Pe
rp

le
xi

ty

Sequence length

16 32 64 128

1000

2500

Pr
et

ra
in

in
g

st
ep

s 16 DYCK

16 32 64 128

16 DYCK SHUFFLE

8.5

9.0

9.5

10.0

10.5

Pe
rp

le
xi

ty

Sequence length

Figure 15: Validation perplexity for DYCK and DYCK SHUFFLE procedural pretraining when fine-
tuned on WIKITEXT (left) and JAVACORPUS (right), sweeping over sequence length and number of
pretraining steps. Setup matches Figure 14. Colours indicate perplexity (lower is better), with the
best-performing configuration marked in green.

H LONGER SEQUENCES FOR PROCEDURAL PRETRAINING

We extend the sequence length search on WIKITEXT from 8–64 tokens (Appendix G) to 128 tokens
using full-model transfer for the best perfoming procedural tasks. Results are mixed: SET benefits
from longer sequences, while SORT and UNION do not. Thus, the utility of longer procedural
sequences is task-dependent.

8 16 32 64 128

500

1000

2500

Pr
et

ra
in

in
g

st
ep

s

SET

8 16 32 64 128

SORT

8 16 32 64 128

UNION

50

55

60

65

70

Pe
rp

le
xi

ty

Sequence length

Figure 16: Effect of extending sequence length during procedural pretraining on WIKITEXT. Longer
sequences improve subsequent language modelling for SET but not SORT or UNION, showing that
the benefit of extended contexts is task-dependent.

I TRANSFERABILITY ANALYSIS

We analyse the correlation between procedural pretraining loss and downstream loss on C4. For SET
and UNION, transfer performance deteriorates when procedural loss is either too high or too low,
suggesting that both underfitting and overfitting impair generalization. Consequently, the strongest
transfer is observed at intermediate levels of procedural optimization. In contrast, for SORT, transfer
performance contintues to improve steadily as procedural loss decreases, demonstrating that the
transferability of procedural pretraining is task dependent.

0 2 4
Procedural loss

4.075

4.100

4.125

4.150

Se
m

an
tic

lo
ss

Language (C4)

SET SORT UNION

Figure 17: Transferability of procedural pretraining. Relationship between procedural validation
loss and downstream loss on C4. For SET and UNION, transfer is strongest at intermediate proce-
dural losses, with both underfitting and overfitting harming generalization. For SORT, continually
decreasing procedural loss consistently improves transfer.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J THE EFFECT OF VOCABULARY SIZE

We investigate the effect of vocabulary size during procedural pretraining.

Setup. Models are pretrained on SET, SORT, and UNION with vocabularies from 25 to 500 sym-
bols (the main results use 100 by default), then transferred to WIKITEXT using full-model transfer.
Evaluation perplexity is reported after fine-tuning.

25 50 100 200 500
Vocabulary size during procedural pretraining

3.9

4.0

4.1

4.2

Pe
rp

le
xi

ty

Language (WIKITEXT)

SET SORT UNION

Figure 18: Effect of vocabulary size during procedural pretraining on WIKITEXT. Small vocabular-
ies (25–50) degrade transfer performance, while moderate sizes (∼100-200) are sufficient. Larger
vocabularies offer no further improvement.

Results. As shown in Figure 18, very small vocabularies (25–50) harm transfer, leading to higher
perplexity. For SET and UNION, performance stabilizes once the vocabulary reaches a moderate
size (∼100), with larger sizes offering no further gains. SORT benefits modestly at 200 but declines
at 500. Overall, procedural pretraining is most effective within a moderate vocabulary range, too
small harms transfer, while too large brings no improvement or negative return.

K WEIGHT DECAY ABLATION

In the main paper, natural language experiments use a weight decay of 0.1 during procedural pre-
training, following Hu et al. (2025). To test this choice, we reduce the weight decay to 0.01 (the
value used for code and math) and evaluate performance on C4 semantic pretraining. The takeaway
that MLP-only transfer is best for natural language remains unchanged, showing that our findings
are robust to this hyperparameter.

57

58

59

60

Pe
rp

le
xi

ty

Weight decay = 0.1 Weight decay = 0.01

Language (C4)

Full-model transfer
MLP-only transfer

Attention-only transfer
No procedural pretraining

Figure 19: Effect of weight decay during procedural pretraining on C4. Changing weight decay
from 0.1 to 0.01 does not alter the outcome: MLP-only transfer remains the best configuration for
natural language.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

L SCALING PROCEDURAL PRETRAINING

Extending the findings of Section 5.2, we scale both model size and semantic pretraining data size.
We increase the architecture to 350M parameters, and further to a 1.3B-parameter model (architec-
tural hyperparameters follow Biderman et al. (2023)), while scaling natural-language pretraining to
1.6B / 6.6B C4 tokens and 4.8B / 10.5B CODEPARROT tokens respectively.

For 350M models and 1.3B models, we use a learning rate of 3× 10−4 and 2× 10−4, following Bi-
derman et al. (2023). We also use larger batch sizes and/or training steps for the semantic pretraining
to increase the semantic tokens. Other hyperparameters follow Appendix E. We utilise UNION for
procedural pretraining on both C4 and CODEPARROT.

Additive setting. We find procedurally pretrained models continue to substantially outperform their
non-procedural counterparts across all scales (Table 3). This shows that the benefits of procedural
pretraining persist at substantially larger scales in both model capacity and dataset size.

Model C4 (Perplexity ↓) CODEPARROT (Perplexity ↓)

350M parameters

NO PROCEDURAL PRETRAINING 40.3 4.97
OURS (UNION) 39.0 4.62

1.3B parameters

NO PROCEDURAL PRETRAINING 28.8 3.45
OURS (UNION) 27.3 3.36

Table 3: Perplexity of language models with and without procedural pretraining at increased scale.
350M-parameter models are pretrained on 1.6B C4 tokens and 4.8B CODEPARROT tokens. 1.3B-
parameter models are pretrained on 6.6B C4 tokens and 10.5B CODEPARROT tokens. Procedural
pretraining consistently improves perplexity across both scale regimes.

We additionally report BLiMP evaluation for the larger C4-trained models. These show that pro-
cedural pretraining imparts lasting gains in syntactic and morphological generalization at a larger
scale (Table 4).

Model BLiMP (Accuracy ↑)

350M parameters

NO PROCEDURAL PRETRAINING 71.5
OURS (UNION) 72.9

1.3B parameters

NO PROCEDURAL PRETRAINING 73.2
OURS (UNION) 75.5

Table 4: BLiMP accuracy for language models with and without procedural pretraining at increased
scale. Procedural pretraining consistently improves grammatical acceptability across both
scales.

Substitutive setting. We further evaluate the substitutive setting at the 1.3B-parameter scale. Specif-
ically, we use only 82M procedural tokens. Despite this minimal additional data, procedural pre-
training enables the model to match baseline performance using just 66% of the C4 data and 75% of
the CODEPARROT data. This corresponds to a reduction of 2.1B C4 tokens and 2.5B CODEPARROT
tokens in semantic pretraining.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

M DOWNSTREAM FINE-TUNING

This section provides the extended downstream fine-tuning results referenced in Section 5.2. See
Appendix E.4 for additional experimental details.

Setup. To investigate whether the benefits of procedural pretraining persist after downstream fine-
tuning, we conduct an additional fine-tuning step. Specifically, we finetune the language models
(pretrained on C4) on both WIKITEXT-103 and GLUE tasks independently. The code models
(pretrained on CODEPARROT) are finetuned and evaluated on PY150. For WikiText-103, we use
the SORT model, as it obtains the lowest perplexity on C4. For GLUE and PY150, we instead use
the UNION model as it has demonstrated consistently strong performance across a broad range of
downstream tasks.

Results. Consistent with the main findings of enhancing semantic pretraining, the procedurally
pretrained models continue to outperform the baseline across these downstream tasks (Table 5 and
Table 6). This shows that the benefits of procedural data persist after fine-tuning on downstream
tasks, suggesting the potential of using procedural pretraining to enhance the practical utility of
models.

Model WIKITEXT-103 (Perplexity ↓) PY150 (Accuracy ↑)

NO PROCEDURAL PRETRAINING 33.0 60.5
OURS 32.3 62.1

Table 5: Downstream fine-tuning results on WIKITEXT-103 (perplexity; after C4 pretraining) and
PY150 (accuracy; after CODEPARROT pretraining), comparing models with and without procedural
pretraining.

COLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI Avg

NO PROC. P.T. 69.1 85.3 70.8 84.3 55.1 72.1 79.9 57.4 42.3 68.5
OURS 68.9 87.6 69.6 84.8 68.8 72.7 81.3 55.6 52.1 71.3

Table 6: GLUE scores after C4 pretraining, comparing the baseline without procedural pretraining
to our model with procedural pretraining.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

N ADDITIONAL RESULTS

N.1 ALGORITHMIC REASONING TASKS

Pretraining task HAYSTACK ADDITION REVERSED ADDITION MULTIPLICATION SORTING

RAND INIT. 11.3± 0.4 59.1± 7.0 76.4± 23.2 42.7± 5.3 82.7± 11.6

4-DYCK 98.3± 1.1 52.7± 0.3 35.7± 2.5 46.7± 4.6 56.3± 19.2
8-DYCK 93.6± 1.3 53.4± 0.3 48.9± 4.9 44.5± 0.9 98.7± 0.3
16-DYCK 96.9± 1.0 87.8± 4.2 83.5± 0.6 39.4± 3.3 95.5± 1.0

4-DYCK SHUFFLE 7.3± 0.6 54.5± 0.2 87.8± 12.9 41.8± 3.7 61.0± 1.4
8-DYCK SHUFFLE 9.6± 0.3 67.7± 0.8 90.1± 5.9 37.4± 0.1 84.1± 5.7
16-DYCK SHUFFLE 18.6± 26.3 70.8± 5.5 87.0± 12.8 44.0± 0.1 71.1± 5.4

STACK 55.2± 39.3 62.3± 5.3 34.9± 0.2 46.6± 2.0 21.3± 0.6

IDENTITY 18.8± 14.3 54.7± 0.2 42.7± 0.9 46.6± 2.7 19.9± 0.5

SET 18.9± 26.6 53.4± 0.1 44.6± 5.1 43.5± 8.4 93.5± 1.6

UNION 9.8± 1.1 48.6± 0.7 50.8± 0.2 63.5± 2.3 16.9± 0.5

REVERSE 33.3± 22.4 46.1± 2.3 46.8± 1.33 54.4± 3.2 16.7± 0.5

DELETE 52.6± 22.4 60.7± 4.19 40.0± 1.8 61.9± 1.4 20.1± 0.6

ECA RULE 110 10.5± 0.5 69.6± 7.9 91.1± 16.1 — 76.9± 1.4

BEST MODEL SHUFFLED 10.3± 0.5 52.0± 0.3 65.0± 21.4 48.4± 4.4 69.9± 2.2

Table 7: Full results across all pretraining tasks and algorithmic reasoning tasks. Each cell reports
the mean accuracy ± standard deviation over 10 random seeds, except for MULTIPLICATION, which
is over 3 seeds. The means of these results are visualised in Figure 2.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

4-DYCK 98.3± 1.1 8.7± 0.5 11.6± 0.5
16-DYCK SHUFFLE 18.6± 26.3 8.9± 0.9 16.5± 10.6
STACK 55.2± 39.3 7.1± 0.6 98.9± 0.8
IDENTITY 18.8± 14.3 7.0± 0.9 99.0± 1.7
SET 18.9± 26.6 8.3± 0.7 88.9± 27.1
UNION 9.8± 1.1 8.2± 0.7 11.7± 0.4
REVERSE 33.3± 22.4 7.3± 1.2 98.6± 0.8
DELETE 52.6± 22.4 8.4± 0.8 91.8± 3.5
ECA 10.5± 0.5 8.7± 1.0 11.6± 1.0

Table 8: HAYSTACK task accuracy (mean ± standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

16-DYCK 87.8± 4.2 60.0± 6.6 59.2± 10.4
16-DYCK SHUFFLE 70.8± 5.5 61.7± 6.9 55.3± 4.9
STACK 62.3± 5.3 61.1± 9.4 56.2± 5.0
IDENTITY 54.7± 0.2 58.3± 7.2 69.7± 13.1
SET 53.4± 0.1 59.6± 6.4 81.1± 12.2
UNION 48.6± 0.7 65.0± 12.2 59.8± 9.0
REVERSE 46.1± 2.3 57.8± 7.0 60.9± 7.9
DELETE 60.7± 4.2 59.2± 8.1 63.3± 14.0
ECA 69.6± 7.9 63.1± 14.4 65.8± 12.8

Table 9: ADDITION task accuracy (mean ± standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

16-DYCK 83.5± 0.6 64.0± 26.4 49.1± 20.3
8-DYCK SHUFFLE 90.1± 5.9 65.8± 24.8 63.3± 18.1
STACK 34.9± 0.2 74.4± 24.7 42.1± 8.1
IDENTITY 42.7± 0.9 71.7± 29.2 45.2± 3.7
SET 44.6± 5.1 71.2± 23.7 54.4± 10.4
UNION 50.8± 0.2 72.3± 29.6 50.3± 16.5
REVERSE 46.8± 1.3 75.8± 27.1 44.6± 3.4
DELETE 40.0± 1.8 55.2± 23.0 44.6± 9.2
ECA 91.1± 16.1 70.5± 31.6 75.5± 27.2

Table 10: REVERSED ADDITION task accuracy (mean ± standard deviation over 10 seeds) for
models initialized with weights from different pretraining tasks. We report results for full model
transfer, MLP-transfer, and attention-transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

8-DYCK 98.7±0.3 72.8±3.1 71.4±5.7
8-DYCK SHUFFLE 84.1±5.7 78.2±8.6 62.9±6.7
STACK 21.3±0.6 71.0±2.2 77.5±12.2
IDENTITY 19.9±0.5 74.5±8.1 91.3±10.1
SET 93.5±1.6 73.5±1.5 98.1±2.8
UNION 16.9± 0.5 72.3± 1.9 76.4± 16.4
REVERSE 16.7± 0.5 71.2± 2.6 82.1± 15.1
DELETE 20.1± 0.6 78.0± 10.9 81.3± 24.3
ECA 76.9± 1.4 77.1±8.1 73.9±3.2

Table 11: SORTING task accuracy (mean ± standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Perturbation HAYSTACK ADDITION REVERSED ADDITION SORTING

Pretrained 98.9± 0.8 87.8± 4.2 90.1± 5.9 98.7± 0.3
Shuffled 17.2± 12.7 61.0± 9.1 82.9± 23.5 94.2± 4.2
0.01 noise 98.6± 1.7 77.6± 20.1 74.0± 21.0 96.0± 7.6
0.05 noise 50.8± 30.5 62.1± 13.3 91.0± 15.7 71.9± 26.1
0.10 noise 32.9± 6.1 56.4± 7.4 83.6± 21.5 37.9± 5.8
Random init 11.3± 0.4 59.1± 7.0 76.4± 23.2 82.7± 11.6

Table 12: Mean accuracy (± standard deviation over 10 seeds) across five algorithmic tasks under
different perturbation conditions. Pretrained models were selected based on best individual perfor-
mance per task: STACK (attention-transfer) for HAYSTACK, 16-DYCK for ADDITION (full-transfer),
8-DYCK SHUFFLE for REVERSED ADDITION (full-transfer), 8-DYCK for SORTING (full-transfer).

N.2 SEMANTIC DATA

SET UNION SORT

0.68

0.70

C
od

e
co

m
pl

et
io

n
ac

cu
ra

cy
(%

)

Code (JAVACORPUS)

Full-model transfer
MLP-only transfer

Attention-only transfer
No procedural pretraining

Figure 20: Token level code completion accuracy on JAVACORPUS from (Lu et al., 2021). We
compare partial transfer of pretrained weights with full-model transfer. This extends the partial
transfer analysis from Figure 6 in the main paper, showing Attention-only transfer is superior for
code in isolation.

SET UNION SORT

0.68

0.70

B
L

iM
P

ac
cu

ra
cy

(%
)

Language (C4)

Full-model transfer
MLP-only transfer

Attention-only transfer
No procedural pretraining

Figure 21: BLiMP accuracy (Warstadt et al., 2020) after training on C4. We compare partial transfer
of pretrained weights with full-model transfer. Consistent with Figure 6, MLP-only transfer achieves
the best performance on grammatical understanding.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2500 5000 7500 10000
Semantic pretraining steps

55

60

65

70

75

Pe
rp

le
xi

ty

2500 5000 7500 10000
Semantic pretraining steps

55

60

65

70

75

Pe
rp

le
xi

ty

2500 5000 7500 10000
Semantic pretraining steps

55

60

65

70

75

Pe
rp

le
xi

ty

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

57.5

60.0

62.5

Pe
rp

le
xi

ty

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

58

60

62

Pe
rp

le
xi

ty

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

58

60

62

Pe
rp

le
xi

ty

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

300

400

500

600

#
Se

m
an

tic
to

ke
ns

(m
ill

io
n)

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

300

400

500

600

#
Se

m
an

tic
to

ke
ns

(m
ill

io
n)

0.0 4.1 8.2 12.3 16.4 20.5
Procedural tokens (million)

300

400

500

600

#
Se

m
an

tic
to

ke
ns

(m
ill

io
n)

Language (C4)

UNION (Full-model transfer)
UNION (MLP-only transfer)

SORT (Full-model transfer)
SORT (MLP-only transfer)

SET (Full-model transfer)
SET (MLP-only transfer)

No procedural pretraining

Figure 22: Comparison of MLP-only transfer and full-model transfer on C4 for UNION, SORT
and SET. (Top) Perplexity curves during semantic pretraining. (Middle) Additive setting results.
(Bottom) Substitutive setting results. Across all views, MLP-only transfer outperforms full transfer,
confirming that procedurally pretrained MLP layers are especially effective for natural language.

31

	Introduction
	Related Work
	Preliminaries
	Experimental Setup
	Generating Procedural Data

	Probing Procedural Pretraining with Algorithmic Reasoning
	Which Algorithmic Skills Improve with Procedural Pretraining?
	Where does the Pretrained Information Reside?
	Are There Simpler Explanations for the Benefits of Pretraining?

	Can Procedural Data Complement or Replace Standard Data?
	Domain-Specific Corpora
	Larger Pretraining Corpora
	Localisation of the Transferable Pretrained Information

	Combining Multiple Types of Procedural Data
	Data Mixtures
	Weight Mixtures

	Discussion
	Extended Literature Review
	Procedural Pretraining
	Model details
	Algorithmic Task Descriptions
	Experimental Details
	Procedural Pretraining
	Algorithmic Tasks
	Semantic Data
	Downstream Finetuning

	Testing Simpler Explanations
	Attention Sharpening
	Attention Entropy Analysis
	Selective Transfer of Low-Entropy Heads
	Entropy Regularisation to Selected Attention Heads

	Weight Scaling

	Procedural Data Hyperparameter Grid Search
	Longer Sequences for Procedural Pretraining
	Transferability Analysis
	The Effect of Vocabulary Size
	Weight Decay Ablation
	Scaling Procedural Pretraining
	Downstream Fine-Tuning
	Additional Results
	Algorithmic Reasoning Tasks
	Semantic Data

