Under review as a conference paper at ICLR 2026

PROCEDURAL PRETRAINING: WARMING UP
LLANGUAGE MODELS WITH ABSTRACT DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining on rich web-scale corpora is the de facto paradigm for building lan-
guage models. We study an alternative setting where the model is initially ex-
posed to abstract structured data, as a means to ease the subsequent acquisition of
semantic knowledge, much like mastering logic and mathematics for humans can
support higher reasoning. We specifically focus on procedural data generated by
formal languages and other simple algorithms.

Method and findings. We first use small models to identify algorithmic skills that
different forms of procedural data can improve, often significantly. For example,
on a diagnostic task for context recall (NEEDLE-IN-A-HAYSTACK), the accuracy
jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets).

Second, we study how these gains transfer from abstract to semantic domains in
larger models. We find that procedural pretraining significantly improves perfor-
mance on natural language, code, and informal mathematics (C4, CODEPARROT,
and DEEPMIND-MATH datasets), using as little as 0.1% extra procedural data.
Notably, procedural pretraining also enables models to reach the same loss value
with only 55/67/86% of the original data of these datasets.

Third, we explore the mechanisms behind these effects. We find that procedural
pretraining instils non-trivial structure in both attention and MLP layers, and that
the former is particularly important for code datasets, the latter for language. We
also lay a path for combining the benefits of different forms of procedural data.

Implications. Procedural pretraining is a remarkably simple means of improving
performance and speeding up training for transformers. It ultimately suggests the
possibility of disentangling the acquisition of knowledge from reasoning in LLMs.

1 INTRODUCTION

Large language models (LLMs) simultaneously acquire multiple forms of knowledge during pre-
training. They absorb semantic factual content, but also acquire abilities for manipulating and oper-
ating on this knowledge. This entangled acquisition of knowledge and skills has been argued to be
a key limitation of current models (Han et al.l |2025; | Kumar et al.| [2025), such as their tendency to
rely on surface-level heuristics rather than systematic reasoning procedures (Nikankin et al., |[2025)).

Pretraining with procedural data. This paper builds on a line of work using abstract, structured
data to train language models. Intuitively, the procedure aims to teach elementary operations, much
like infants tackle games like stacking blocks (Smith & Gasser, [2005) before moving to sophisticated
reasoning and language. With procedural pretraining, we posit that early exposure of LLMs to
abstract data can facilitate, enhance, and complement standard pretraining on semantically-rich data.

In prior work, |[Hu et al.| (2025) showed that data generated from formal languages yields more value
per token than natural language for training LLMs. [Wu et al.[(2022) and Zhang et al.|(2024) success-
fully used data from simple algorithms and cellular automata. These findings echo the established
practice of pretraining on computer code, another structured domain thought to aid learning compo-
sitional and recursive reasoning (Petty et al.|[2024). Prior works, however, typically treat procedural
data as either imitation of linguistic properties, or as a substitute of standard pretraining. In contrast,
this paper focuses on benefits from procedural dateﬂ as a complement to standard pretraining.

Under review as a conference paper at ICLR 2026

Procedural pretraining Standard pretraining Performance by domain

Natural language

SET operation: Language Undocumented code Documented code Informal math
(C4)

“Once upon a time, there (JAVACORPUS) (CopEPARROT) (DEEPMIND-MATH)
In: ab,d|b,cd . ! o
out: ac @ lived a girl who... [os
’ 43 I
Code
e ‘
1

if _name__=="_main_" _
In: abldb main() ; 41
Out: a,b,d

=

2
3
oy

W

bl

9.0

l

UNION operation:

Perplexity
Perplexity
Perplexity

851 gk 5. [
T

8.0 - 51

Math SORT SET SET UNION

Types of procedural data

u.
Accuracy (%)

3
R

Other forms: (...) Let e(x) =x - 6. Is 2 a factor of

€(9)? Answer: False Full-model transfer = MLP-onlytransfer ® Attention-only transfer —— Standard pretraining alone

Figure 1: (Left) We pretrain language models on procedural data before exposing them to standard
datasets of language, code, or mathematics. The procedural data is generated with simple algorithms
and aims to teach elementary skills to aid the acquisition of semantic knowledge. (Right) This
lightweight initial step speeds up standard pretraining and improves performance on diverse do-
mains, with different pretrained layers (MLP vs. attention) contributing differently to each domain.

Our contributions push the use of procedural pretraining in four directions.

(1) Probing procedural pretraining with algorithmic tasks. We evaluate the effects of different
forms of procedural data and find that they each enhance specific algorithmic skills (Section [4.T)).
The pretrained information also proves to be localised in specific components (attention vs. MLPs,
Section[4.2). We also rule out simplistic explanations that could account for the observed improve-
ments, such as rescaling the initialisation or a generic attention sharpening (Section[4.3).

(2) Transfer to diverse domains. We show that the improvements on algorithmic skills transfer to
multiple semantic domains, namely natural language, code, and informal mathematics (Section
[5.2). The information provided through procedural pretraining proves to be complementary to stan-
dard pretraining datasets. For example, we consistently improve over standard pretraining with as
little as 0.1 —0.3% extra procedural tokens. Procedural data also proves to be an efficient substitute
to standard data. On the C4, CODEPARROT, and DEEPMIND-MATH datasets, it enables models to
reach the same loss with respectively 55%, 67%, and 86% of the original data.

(3) Localising transferable pretrained information. (Section[5.3). We explore in depth the lo-
calisation of useful pretrained information. We find that the attention layers are more important for
structured domains like undocumented code, while MLP layers mostly help with natural language.
These results are intriguing because MLPs are believed to store factual knowledge in LLMs (Dong
et al., 2025} |Geva et al.,[2020; Xu & Chenl 2025) which procedural data cannot directly provide. On
datasets containing both natural language and structured data such as CodeParrot (documented code,
HuggingFace|(2022)) and DeepMind-Mathematics (informal mathematic, Saxton et al.|(2019)), both
types of layers prove equally important (see Figure [T]right).

(4) Combining the benefits of different forms of procedural data (Section [§). We explore two
techniques and obtain promising results by either pretraining on a mixture of data types, or surgically
combining weights of several pretrained models. This lays out several directions for future work.

In summary, our results show that procedural data is a data-efficient alternative for pretraining, and
a complementary source of knowledge to standard datasets. We discuss in Section [7|how this line
of work may ultimately help disentangle the acquisition of knowledge from reasoning in LLMs.

2 RELATED WORK

The linguistic literature contains a number of results on training language models with artificial
data. These works often use formal languages to imitate properties of natural language (Chiang &
Leel [2022; |Goodale et al [2025; McCoy & Griffiths|, 2023} |Papadimitriou & Jurafskyl 2023} Ri &
Tsuruoka, [2022; Hu et al., [2025)). In contrast, we follow a more general algorithmic perspective, and
find how different types of procedural data can improve specific algorithmic skills. We also study
benefits on downstream domains beyond language, namely code and informal mathematics.

"We use procedural data to refer to the output of explicit algorithms (e.g. formal languages), in contrast to
synthetic data, which usually refers to data generated by a trained model such as another LLM.

Under review as a conference paper at ICLR 2026

Recent work considers data generated with simple algorithms and cellular automata (Lindemann
et al.,|[2024; |Wu et al., [2022; 2021}, [Zhang et al., [2024)). Their empirical results focus on procedural
data as a substitute for standard pretraining data. In contrast, we also evaluate procedural data as a
complement, and find that it can impart capabilities lacking from standard semantic data. This paper
also analyses in greater depth the mechanisms behind the empirical benefits, such as the localisation
of pretrained knowledge in MLP vs. attention layers. While most of this existing work focuses on a
single type of data, we take steps towards combining multiple types of procedural data.

3 PRELIMINARIES

We use the following terminology throughout this paper.

* Procedural pretraining: the initial exposition of a language model to procedural data, before
other stages such as standard pretraining with semantic data.

* Procedural data: data generated from a simple algorithm, for example formal languages, cellular
automata, or other simple algorithms described in Section[3.2]

* Semantic data: by opposition to procedural data, standard data used to train language models, for
example natural language, computer code, or informal mathematics.

3.1 EXPERIMENTAL SETUP

We train GPT-2-type decoder-only transformers from scratch with a standard next-token prediction
objective (Radford et al.,[2019) (see Appendices|C|&[E]|for details.). When pretraining on procedural
data that involves input/output pairs (Section[3.2)), we compute the loss only on output tokens. Apart
from Section [6] each experiment uses a single type of procedural data.

We first train each model on 77 procedural tokens, then on 75 standard tokens from the target
task. The target task is either an algorithmic diagnostic task in Section[d] or a semantic dataset in
Section[5] As a baseline, we consider the same model trained with no procedural data (77 = 0). We
adjust 737 and 75 following either of these two settings.

» Additive setting. We keep 75 fixed and vary 7} to measure the performance gain of additional
procedural tokens. This evaluates whether procedural data provides a training signal that semantic
data alone does not impart.

* Substitutive setting. We reduce 7% while increasing 77 (by a much smaller amount) to match the
baseline performance. This evaluates how procedural pretraining can be a cheaper substitute for
standard pretraining.

All the weights of the model are trained in both stages, i.e. nothing is frozen. Each experiment uses
either of the two following transfer settings between the two phases.

* Full-model transfer. The standard practice, i.e. using all procedurally-pretrained weightsE]

* Selective attention-only or MLP-only transfer. We only use the pretrained weights of selected
layers and reinitialize others to random values. This allows evaluating where useful pretrained
information is stored, motivated by the evidence that MLP and attention layers perform different
types of computations (Dong et al., 2025; Xu & Chen, [2025)).

3.2 GENERATING PROCEDURAL DATA

Each type of procedural data is defined by a data-generating algorithm. We use algorithms that
produce structurally rich data where next-token prediction requires precise symbol manipulation,
compositional reasoning, and/or long-range dependency tracking. We selected these from prior work
and we also introduce a novel one (STACK). Each takes hyperparameters detailed in Appendix [B]

* Sequence transformations. A random sequence is presented and the model must predict its trans-
formed version (Wu et al.,[2022). This includes SET (token deduplication), REVERSE (reversing
the input), IDENTITY (copying the input), UNION (ordered combination of two sequences with
duplicates removed), SORT (copy in ascending order) and DELETE (removal of a specified token).

’In Sections [5|and E] we reinitialise the token embeddings to random values since there is no correspondence
between the vocabularies of procedural and semantic data. In Section] (procedural — algorithmic transfer),
we instead initialize embeddings to the mean vector, as there is no semantic domain shift.

Under review as a conference paper at ICLR 2026

* Memory operations. STACK simulates a stack memory, tracking state over a random series of
push and pop operations. The model must predict the final memory contents from top to bottom.

* Formal languages. We use classical formal languages for balanced parentheses (Hu et al., 2025}
Papadimitriou & Jurafsky, 2023), K-DYCK (nested) and K-DYCK SHUFFLE (non-nested). The
model is trained for next-token prediction to generate sequences from the target language, and we
vary k to control the complexity of the nesting.

* Cellular automata. We use the elementary cellular automaton ECA RULE 110 following Zhang
et al.[(2024), where a binary sequence evolves via deterministic Markovian dynamics. Each se-
quence describes a random state of the ECA and the model must predict the next state.

4 PROBING PROCEDURAL PRETRAINING WITH ALGORITHMIC REASONING

We first train small transformers (two layers, four attention heads) on specific types of procedural
data, then fine-tune them on algorithmic tasks to evaluate how specific types of procedural data
improve the following skills (training and test data are i.i.d.; full details in Appendix [D).

* Memory recall. The needle-in-a-haystack task (HAYSTACK) tests long-context retrieval. Each
input has 30 key—value pairs ([m1,c1, ..., mg, ¢k, M,]) and a query marker m,,; the model must
output the value c¢,, associated with m,,. Accuracy is measured on the retrieved token.

* Arithmetic. We use three tasks. ADDITION adds two 5-digit integers (a+b=), requiring right-to-
left carry propagation, opposite to the autoregressive order. REVERSED ADDITION uses 10-digit
numbers with inputs and outputs reversed, aligning carries with autoregression. MULTIPLICA-
TION computes the product of two 5-digit integers (a xb=), predicting only result digits. All tasks
are tokenized per digit, and the accuracy is measured over the output digits.

* Logical and relational processing. With SORTING, the model receives 10 integers from [0,99]
and a separator, and outputs the sorted sequence. The accuracy is computed on the output tokens.

4.1 WHICH ALGORITHMIC SKILLS IMPROVE WITH PROCEDURAL PRETRAINING?

Setup. We use the additive settings defined in Section for every combination of a type of
procedural data and target algorithmic task, we train on 7} procedural tokens then 75 tokens of the
algorithmic task. The baseline model uses 77 =0.

Results. Figure 2] shows that many types of procedural data significantly improve performance on
various tasks. The best type of procedural data varies across task. For example, pretraining on
K-DYCK improves context recall and HAYSTACK, while ECA RULE 110 benefits REVERSED AD-
DITION. This indicates that each type of procedural data improves different skills. We also evaluate
the best model pretrained on randomly shuffled procedural sequences. This conserves the token dis-
tribution within sequences while disrupting their structure (Best model shuffled in Figure [2). The
performance subsequently drops back to baseline. This shows that the structure in the procedural
data is essential.

HAYSTACK ADDITION REVERSED ADD. MULTIPLICATION SORTING
100 100 100
80
80
% 0 80 80 60
£ 60
3
8 40 60 50
< 60 40
20
40 40
o 20
16 DYCK DELETE IDENTITY SET UNION No procedural pretraining
16 DYCK SHUFFLE ECA RULE 110 REVERSE STACK Best model shuffled

Figure 2: Different types of procedural pretraining can significantly improve over standard
training (dashed line) across various algorithmic tasks. If we remove the structure within the pro-
cedural data by shuffling the sequences (Best model shuffled), the performance falls to the baseline.
Reported values are the means over 10 seeds (full results with variance in Appendix .

Take-away. Among different types of procedural data, each improves specific algorithmic skills.

Under review as a conference paper at ICLR 2026

4.2 WHERE DOES THE PRETRAINED INFORMATION RESIDE?

We now use the selective transfer settings defined in Section to understand where useful infor-
mation is encoded in the pretrained model. We repeat the experiments from Section [d.1| with either
attention-only or MLP-only transfer. We then compare the performance of these models with the
full-transfer setting to identify which component retains the most benefits.

HAYSTACK ADDITION REVERSED ADDITION SORTING
100 100 100 100
A 75 PARR B | 75
g
5 50 50 50 50
<
25 25 25 25
0 - 0 [. . 0 A o <
SIEES$Ess SIELSSESS SIEE8s$ss SIELSSESS
SFSE §e S8 s s FEFE § L SEFSE S
S &9 RS &9 v o8 & ° RS &9
° © * ©
Full-model transfer MLP-only transfer Attention-only transfer No procedural pretraining

Figure 3: Selective transfer of MLP or attention layers can improve over full-model transfer,
showing that procedural pretraining creates ‘modular’ structure localised in the selected model com-
ponents. Reported values are means across 10 seeds (full results with variance in Appendix .

Results. Figure [3] shows surprisingly that selective transfer can be superior to full-model transfer.
For instance, with the IDENTITY / HAYSTACK pair, attention-only gives an 80-percentage point im-
provement over full-model transfer. This means that useful information is encoded in the attention
layers, and that the other pretrained components (MLPs) contain non-transferable structure. Across
the different tasks, the attention layers are the most consistent carrier of useful information, with the
exception of REVERSED ADDITION, where MLP-only and full-model are superior.

Take-away. Procedural pretraining creates localised skills in specific components of the architec-
ture. Transferring specific components can be more effective than transferring the entire model.

4.3 ARE THERE SIMPLER EXPLANATIONS FOR THE BENEFITS OF PRETRAINING?

We now test possible mechanisms that could explain how procedural pretraining produces the im-
provements observed in the preceding experiments. See Appendix [Ffor full details and results.

Explanation 1: attention sharpening. We observe that pretrained models have sharp attention
patterns, and transferring only the sharpest attention heads preserves or even exceeds the perfor-
mance of transferring all of them. One possible explanation is thus that pretraining creates a generic
“sharpening” of the attention with no relevance to precise patterns. However, training models with
an explicit regularizer for sharper attentions does not replicate the benefits of procedural pretraining.
This shows that precise attention patterns do matter.

Explanation 2: initialisation scale. Another explanation is that pretraining simply adjusts the
magnitude of initial weights (Huang et al., 2020; Wu et al., 2022). We test this using the best
models from Section[4.T] and shuffle the weights per layer, such that the distributions of magnitudes
are preserved but their structures erased. As expected, Figure [12]in the appendix shows that the
accuracy drops dramatically. We also observe a rapid drop in accuracy with the gradual addition of
Gaussian noise to the weights. This shows that pretrained weights encode meaningful structure.

Take-away. The benefits of procedural pretraining are encoded in precise weight structure. They
cannot be explained by a simple rescaling of the weights or generic regularisation of the attention.

5 CAN PROCEDURAL DATA COMPLEMENT OR REPLACE STANDARD DATA?

This section investigates the practical benefits of procedural pretraining on semantic domains. In
Section[5.1] we use single-domain datasets of natural language and pure code to evaluate the transfer
of abstract algorithmic skills (Section [to two distinct domains. In Section[5.2] we turn to larger
pretraining datasets that contain natural language mixed with code and informal mathematics.

Under review as a conference paper at ICLR 2026

5.1 DOMAIN-SPECIFIC CORPORA

Setup. We use WIKITEXT (Merity et al., 2016) and Github’s JAVACORPUS (Allamanis & Sutton,
2013)) as domain-specific datasets of natural language and undocumented code. We train GPT-2-
small models from scratch on these datasets after initial pretraining on procedural data (full-model
transfer). We repeat this with different amounts of procedural tokens 7} (additive setting).

Results. Figure [shows that procedural pretraining significantly outperforms the no-pretraining
baseline for both natural language and code. Surprisingly, the improvement is not clearly correlated
with the amount of procedural pretraining tokens (77) and small amounts of pretraining proves
sufficient. Data generated with UNION and SET help both domains, while SORT only helps with
natural language. Additional results in Appendix |G|show that the sequence length and the number
of pretraining steps, both controlling 7}, influence the effectiveness of different types of procedural
data. Much remains to be explained about these various effects.

Language (WIKITEXT) Code (JAVACORPUS)
70
= 210
G G
e 60 I
L L
oy a9
50
0.0 4.0 8.0 12.0 16.0 20.0 4.0 8.0 12.0 16.0 20.0
Procedural pre-training tokens (millions) # Procedural pre-training tokens (millions)
16 DYckK DELETE REVERSE SORT UNION
16 DYCK SHUFFLE IDENTITY SET STACK No procedural pretraining

Figure 4: The benefits of procedural pretraining transfer to semantic domains. Perplexity
(lower is better) on natural language (left) and pure code (right). A little of procedural data is
very effective: compare the number of procedural tokens (77) in these plots with the amount of
tokens from the target datasets (73) being 15M for WIKITEXT and 105M for JAVACORPUS.

Take-away. The benefits of procedural pretraining transfer from abstract algorithmic skills to
semantic domains, and they only require relatively small amounts of data.

5.2 LARGER PRETRAINING CORPORA

Setup. We expand the evaluation to more diverse datasets to evaluate whether the knowledge gained
from procedural pretraining is complementary to the information typically acquired from these.
We use several standard pretraining datasets for natural language (C4, Raffel et al.[(2020)), code
(CODEPARROT, HuggingFace| (2022)), and informal mathematics (DEEPMIND-MATH, |Saxton
et al.|(2019), the math portion of THE PILE, |Gao et al.| (2020)).

We train models similar to CodeParrot-small (HuggingFace, [2022) from scratch. Each model is
first pretrained on T} procedural tokens (0—20M) then undergoes “standard” semantic training on 75
tokens from one of the above datasets (respectively 655M, 1B, or 1.6B tokens). We evaluate both the
additive and substitutive settings. In the additive case, we measure the absolute performance gain
thanks to the additional 7 tokens. In the substitutive case, we assess how many 75 tokens can be
saved by T} tokens without loss of performance. More formally, we measure the savings AT5 such
that training on (75 — AT5) semantic tokens with 77 procedural tokens matches the performance
of the T5-only model. We use the best configurations and types of procedural data (UNION, SORT,
SET) identified in Section[5.1]

Results. Figure 5] (top) shows that procedural pretraining accelerates and improves subsequent pre-
training. The additive setting (middle) demonstrates that the benefits from procedural pretraining
only require a small amount of data, and that additional data is not always beneficial. In all cases,
a small amount of additional procedural tokens (2—4M) clearly outperform the baseline. For refer-
ence, 2.1M procedural tokens correspond respectively to 0.3%, 0.2%, and 0.1% of each of the three
semantic datasets. The substitutive setting (bottom) shows that procedural tokens can efficiently
substitute for large amounts of semantic tokens. For example with C4, we can maintain the baseline
loss and save about 45% of semantic tokens (~365M) by using only 2.1M procedural tokens.

Under review as a conference paper at ICLR 2026

Language (C4) Code (CODEPARROT) Math (DEEPMIND-MATH)
75 1 6.5 q @ 47.5 q
70 [y
z 260 2 40,0
5 ¢s | b 3
£ £ g
L L 55 £ 325
& 60 4 A 3
=
2
55 T T T T 5.0 T T T T A~ 25.0 T T T
2500 5000 7500 10000 5000 10000 15000 20000 10000 30000 50000
Semantic pretraining steps Semantic pretraining steps Semantic Pretraining Steps
64] § 43.0
> = 3 as
£ e £,
B B g 420
S 60 g, £
- % 415
58 4
2.04.1 8.2 12.3 164 205 1.0 2.1 42 6.2 8.3 10.4 1.0 2.1 42 6.2 8.3 10.4
Procedural tokens (million) # Procedural tokens (million) # Procedural tokens (million)
)))
2 2 2
E 600 E E 1600
- — 900 -
= = =
£ £ £
$ 500 2 800 1 < 1500
2 2 2
] s]
= E =1 4 =
g 400 g 700 g
A —— + - - T A —— T - - — & 1400 L—— - - T T
* 0 2.04.1 82 123 164 205 * 0.01.0 2.1 42 62 83 104 * 0.01.02.1 4.2 6.2 83 104
Procedural tokens (million) # Procedural tokens (million) # Procedural tokens (million)
UNION SORT SET No procedural pretraining

Figure 5: Procedural pretraining is complementary to standard data & highly data-efficient.
Each column corresponds to a different semantic dataset. (Top) Training curves with different types
of procedural data (UNION, SORT, SET). (Middle) Additive setting: a small amount of procedural
data is sufficient to outperform standard pretraining. (Bottom) Substitutive setting: we plot curves
whose points (z, y) achieve equivalent performance with x procedural tokens and y standard tokens.
We can drastically reduce the total amount of data when using a small fraction of procedural data.

Take-away. Procedural pretraining is complementary to standard pretraining on semantic
datasets in multiple domains. It is also highly data-efficient and allows one to drastically reduce
the total amount of data needed to reach a given perplexity level.

5.3 LOCALISATION OF THE TRANSFERABLE PRETRAINED INFORMATION

We now seek to better understand the mechanisms behind procedural pretraining.

Setup. We use selective weight transfer (attention-/MLP-only) as in Section to locate where
the useful, transferable information resides in pretrained models. We consider JAVACORPUS and
CODEPARROT as different domains since they respectively contain pure and documented code (i.e.
interleaved with natural language).

Results. Figure [6] shows that on JAVACORPUS (pure code), transferring only the attention layers
yields the largest gains in both perplexity and code-completion accuracy. On WIKITEXT and C4
(natural language), the opposite holds, and transferring the MLPs is most effective. This suggests
that procedural pretraining induces distinct inductive biases in different architectural components.
As expected, for domains that combine natural language with structured data, i.e. documented code
and informal math (CODEPARROT and DEEPMIND-MATH), full-model transfer performs best by
combining the benefits from both MLPs for natural language, and attention for structured data.
These effects are intriguing because the MLPs are believed to act as stores of factual information in
LLMs (Dong et al., 2025} Geva et al.,[2020; | Xu & Chen,[2025). Thus it remains to be explained how
procedural pretraining improves the MLPs for handling natural language with only abstract data.

In Appendix [L.2] we further explore the benefits of MLP-only transfer for language. We show that
this achieves a better downstream accuracy on BLiIMP (Warstadt et al.,|2020)) in the additive setting,
and requires even fewer C4 tokens to reach the same perplexity level than full-model transfer (42%
vs. 55%) in the substitutive setting.

Under review as a conference paper at ICLR 2026

Language (WIKITEXT) Undocumented code (JAVACORPUS)
70
9.5
I I 1 1
z [£ 90 I
2 60 I I
2 3 1
e e
5 I 5854 gl I
50 = Em I I
< 8.0 -
T T
SET UNION SORT SET UNION SORT
Language (C4) Docmented Code (CODEPARROT) Math (DEEPMIND-MATH)
I 54 g I
60 2
z I Zs3 I g 2
i 3 e :
£ I e 3
558 - 552 =
a a 51
£ 2
I = = 1 I
I 5.1 £
56 == ===
T T T T
UNION SORT SET UNION SET UNION
Full-model transfer MLP-only transfer Attention-only transfer No Procedural Pretraining

Figure 6: Localisation of transferable pretrained information for different semantic domains.
(Top) Using selective weight transfer, we find that MLPs and attention layers are important respec-
tively for natural language and pure code, across different types of procedural data. (Bottom) On
larger datasets, MLP-only transfer works best for language. As expected, full transfer is optimal for
domains involving both language and structured data (documented code, informal mathematics).

Take-away. Procedural pretraining instils useful transferable information in both MLPs and at-
tention layers. The former are more useful for natural language and the latter help with structured
domains such as code and mathematics.

6 COMBINING MULTIPLE TYPES OF PROCEDURAL DATA

Our experiments and most prior work on procedural data have so far used on a single type of such
data at a time. Combining them is not trivial because of their varying levels of learning difficulty.
This section explore two techniques to combine the complementary benefits of multiple types of
procedural data by building on the findings from Section B#H5]

6.1 DATA MIXTURES

A natural approach is to pretrain on mixtures of procedural data in chosen ratios.

Setup. We evaluate pairs of procedural data sources A and B that we mix using 74 and Tz tokens
of each, such that 77 = Ty + T’ is fixed. We prefix each pretraining sequence with an extra token
specifies which of A or B it belongs. We train a model on these 7} tokens then on 75 tokens from
either JAVACORPUS or WIKITEXT.

Language (WIKITEXT) Code (JAVACORPUS) . .
030 Figure 7. Mixtures of two types of
313 procedural data. We vary the pro-
£ s0s g1 portion of SET and UNION (indicated
' & - by the small pie charts) while keep-
A~ A ol .
495 ing the total number of procedural to-
185 7.85 ken T3 fixed. Some choices achieve a
00 10 L1 12 13 14 00 10 L1 12 13 14 clear]y lower perp]exity than either of
(Pure) (Mixed) (Pure) (Mixed)
Mixture diversity (entropy) Mixture diversity (entropy) thC two types alone.
UNION UNION baseline UNION UNION baseline
SET SET baseline SET SET baseline

Results. Figure|/| shows that many mixtures outperform the best single-source baselines for atten-
tion transfer on JAVACORPUS and full-model transfer on WIKITEXT (the best settings identified in
Section[5.3)). This proof of concept shows that the benefits of multiple types of data are cumulative,
and suggest potential for further gains with optimized combinations of additional sources.

Under review as a conference paper at ICLR 2026

6.2 WEIGHT MIXTURES

We evaluate an alternative method that builds on the findings from Sections 4.3|& about the
localisation of pretrained information in distinct layers (attention vs. MLPs). We propose to compose
a new model by assembling components from several pretrained models. This avoids the challenge
of balancing data mixtures.

Setup. We assemble a model with the attention layers of a pretrained SET model and the MLPs
of an ECA RULE 110 model. We chose these because they showed distinct and complementary
capabilities (see HAYSTACK and REVERSED ADDITION in Table [I). We then further train this
model on the algorithmic evaluation tasks of Section 4}

Results. The last row of Table[I|shows that the combined model yields superior performance across
the four tasks, while the single-source models have weaknesses on one or several tasks. This indi-
cates that procedurally-pretrained models can be easily combined by simply assembling their most
useful components.

Table 1: Pretrained models combined at the weight level. We combine SET-pretrained attention
layers with ECA-pretrained MLPs (last row). This yields the strong performance across all four
tasks, whereas single-source models show weaknesses in at least one task.

HAYSTACK ADDITION REVERSED ADDITION SORT

No procedural pretraining 11.340.4 59.1470 76.4423.2 82.74+11.6
SET (full-model transfer) 18.9426.6 53.440.1 44.645.1 93.54+1.6
SET (attention-only transfer) 88.9427.1 81l.14122 54.4410.4 98.1492.8
ECA (full-model transfer) 10.5+0.5 69.617.9 91.0+16.1 76.941.4
ECA (MLP-only transfer) 871410 63.1t14.4 70.54+31.6 771481
SET (attention) + ECA (MLP) 944455 803,45, 82.9 160 99.4..5

Take-away. The effects of multiple types of procedural data are additive. Proof-of-concept
experiments show that they can be combined both at data- and weight-level, and suggest ample
room for further benefits with larger and more-optimized combinations.

7 DISCUSSION

This paper shows that pretraining language models on well-chosen procedural data can complement
standard pretraining on semantic data. This can speed-up training and improve performance on nat-
ural language, code, and informal mathematics. Our experiments also help understand the origin of
these improvements. We determined that useful information lies in different pretrained components
(MLP vs. attention) depending on the domain (language vs. structured domains). Explaining the
variety of benefits from different types of procedural data is an important question for future work.

Efficient initialisation. Unlike standard data, procedural data has a small Kolmogorov complexity,
meaning that it contains information that can be summarized in a few lines of code. Generating mil-
lions of samples processed by gradient descent thus seems computationally wasteful. In principle, it
may be possible to simplify this as a deterministic or closed-form smart initialisation of LLMs.

Combining multiple types of procedural data. We showed that the benefits can be additive. Exist-
ing methods for data mixture optimization (Fan et al.,[2023} Xie et al.,2023;|2025) could be adapted
to optimally balance multiple types of procedural data.

Knowledge vs. reasoning. Earlier work has pointed out that LLMs’ limitations may be rooted in
entangled representations of knowledge and reasoning (Han et al.l 2025). Our line of work may
ultimately provide a mechanism to help disentangle the acquisition of knowledge from reasoning.

Limitations. (1) We use relatively small models compared to state-of-the-art LLMs. (2) Our evalu-
ation is limited to perplexity and accuracy on generalist benchmarks. The downstream performance
of the models has yet to be studied. Extending our experiments with larger computational resources
is an important future step. (3) Our experiments on combining multiple types of procedural data are
a proof of concept. We lay out several promising directions worthy of future validation.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide technical details in the appendix to aid with the reproducibility. See Appendix [B| for
the procedural data generation, Appendix [D] for the algorithmic reasoning tasks, Appendix |C| for
the architectures used, and Appendix [E] for the hyperparameters and training details. A documented
version of our code is also in preparation and will be released with the final version of this paper.

REFERENCES

Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
knowledge distillation. arXiv preprint arXiv:2006.00555, 2020.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using
language modeling. In 2013 10th working conference on mining software repositories (MSR).
IEEE, 2013.

Viraat Aryabumi, Y.ixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
Fadaee, Ahmet Ustiin, and Sara Hooker. To code, or not to code? exploring impact of code in
pre-training. arXiv preprint arXiv:2408.10914, 2024.

Randall Balestriero and Hai Huang. For perception tasks: The cost of 1lm pretraining by next-token
prediction outweigh its benefits. In NeurlPS Workshop: Self-Supervised Learning-Theory and
Practice, 2024.

Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to see
by looking at noise. arXiv preprint arXiv:2106.05963, 2021.

Manel Baradad, Chun-Fu Chen, Jonas Wulff, Tongzhou Wang, Rogerio Feris, Antonio Torralba,
and Phillip Isola. Procedural image programs for representation learning. arXiv preprint
arXiv:2211.16412, 2022.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 2022.

Frangois Charton and Julia Kempe. Emergent properties with repeated examples. arXiv preprint
arXiv:2410.07041, 2024.

Cheng-Han Chiang and Hung-yi Lee. On the transferability of pre-trained language models: A study
from artificial datasets. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Yihe Dong, Lorenzo Noci, Mikhail Khodak, and Mufan Li. Attention retrieves, mlp memorizes:
Disentangling trainable components in the transformer. arXiv preprint arXiv:2506.01115, 2025.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Michael Goodale, Salvador Mascarenhas, and Yair Lakretz. Meta-learning neural mechanisms rather
than bayesian priors. arXiv preprint arXiv:2503.16048, 2025.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Grégoire Delétang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, et al. Learning uni-
versal predictors. arXiv preprint arXiv:2401.14953, 2024.

Seungwook Han, Jyothish Pari, Samuel J. Gershman, and Pulkit Agrawal. Position: General in-
telligence requires reward-based pretraining. In Proceedings of the International Conference on
Machine Learning Position Paper Track, 2025.

10

Under review as a conference paper at ICLR 2026

Zexue He, Graeme Blackwood, Rameswar Panda, Julian McAuley, and Rogerio Feris. Synthetic
pre-training tasks for neural machine translation. In Findings of the Association for Computational
Linguistics, 2023.

Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
chomsky: Pre-pretraining on formal languages imparts linguistic biases. In Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Long Papers), 2025.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In Proceedings of the International Conference on Machine
Learning, 2020.

HuggingFace. Codeparrot dataset cleaned, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Kundan Krishna, Saurabh Garg, Jeffrey Bigham, and Zachary Lipton. Downstream datasets make
surprisingly good pretraining corpora. In Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics, 2023.

Akarsh Kumar, Jeff Clune, Joel Lehman, and Kenneth O Stanley. Questioning representational
optimism in deep learning: The fractured entangled representation hypothesis. arXiv preprint
arXiv:2505.11581, 2025.

Matthias Lindemann, Alexander Koller, and Ivan Titov. Sip: Injecting a structural inductive bias into
a seq2seq model by simulation. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics, 2024.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics,
2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

R Thomas McCoy and Thomas L Griffiths. Modeling rapid language learning by distilling bayesian
priors into artificial neural networks. arXiv preprint arXiv:2305.14701, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Samuel Miiller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

Ryo Nakamura, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht,
Nakamasa Inoue, Rio Yokota, and Hirokatsu Kataoka. Scaling backwards: Minimal synthetic
pre-training? arXiv preprint arXiv:2408.00677, 2024.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
rithms: Language models solve math with a bag of heuristics. In The Thirteenth International
Conference on Learning Representations, 2025.

Isabel Papadimitriou and Dan Jurafsky. Injecting structural hints: Using language models to study
inductive biases in language learning. arXiv preprint arXiv:2304.13060, 2023.

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect language
model task performance? arXiv preprint arXiv:2409.04556, 2024.

11

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Ryokan Ri and Yoshimasa Tsuruoka. Pretraining with artificial language: Studying transferable
knowledge in language models. arXiv preprint arXiv:2203.10326, 2022.

Laura Ruis, Maximilian Mozes, Juhan Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, Acyr
Locatelli, Robert Kirk, Tim Rocktidschel, Edward Grefenstette, and Max Bartolo. Proce-
dural knowledge in pretraining drives reasoning in large language models. arXiv preprint
arXiv:2411.12580, 2024.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations,
2019.

Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 11(1-2):13-29, 2005.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural red-
shift: Random networks are not random functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

Damien Teney, Liangze Jiang, Florin Gogianu, and Ehsan Abbasnejad. Do we always need the
simplicity bias? looking for optimal inductive biases in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2025.

Asher Trockman and J. Zico Kolter. Mimetic initialization of self-attention layers. arXiv preprint
arXiv:2305.09828, 2023.

Yanwei Wang, Ching-Yun Ko, and Pulkit Agrawal. Visual pre-training for navigation: What can we
learn from noise? arXiv preprint arXiv:2207.00052, 2022.

Zecheng Wang, Che Wang, Zixuan Dong, and Keith Ross. Pre-training with synthetic data helps
offline reinforcement learning. arXiv preprint arXiv:2310.00771, 2023.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. Transactions
of the Association for Computational Linguistics, 2020.

Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba, Roger B Grosse, and Christian Szegedy. Lime:
Learning inductive bias for primitives of mathematical reasoning. In Proceedings of the Interna-
tional Conference on Machine Learning, 2021.

Yuhuai Wu, Felix Li, and Percy S Liang. Insights into pre-training via simpler synthetic tasks.
Advances in Neural Information Processing Systems, 2022.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 2023.

Wanyun Xie, Francesco Tonin, and Volkan Cevher. Chameleon: A flexible data-mixing framework
for language model pretraining and finetuning. In Proceedings of the International Conference
on Machine Learning, 2025.

Ruichen Xu and Kexin Chen. Filtering with self-attention and storing with mlp: One-layer trans-
formers can provably acquire and extract knowledge. arXiv preprint arXiv:2508.00901, 2025.

Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov, Yida Yin, Zhigiang Shen, Trevor Darrell, Lingjie Liu,
and Zhuang Liu. Initializing models with larger ones. arXiv preprint arXiv:2311.18823, 2023.

12

Under review as a conference paper at ICLR 2026

Enyan Zhang, Michael A Lepori, and Ellie Pavlick. Instilling inductive biases with subnetworks.
arXiv preprint arXiv:2310.10899, 2023.

Shiyang Zhang, Aakash Patel, Syed A Rizvi, Nianchen Liu, Sizhuang He, Amin Karbasi, Emanuele
Zappala, and David van Dijk. Intelligence at the edge of chaos. arXiv preprint arXiv:2410.02536,
2024.

13

Under review as a conference paper at ICLR 2026

APPENDIX

The appendix provides the following additional details and results:

Appendix [A} extended review of the related literature.

Appendix B} details about procedural pretraining.

Appendix |C} details about models used in experiments.

Appendix [D} implementation details for the algorithmic downstream tasks.

Appendix [E} training details including hyperparameters for each experiment.

Appendix |F testing simpler explanations for procedural pretraining benefits.

Appendix |G} investigates sequence length and number of steps for procedural pretraining.
Appendix [Hf examines longer sequence lengths during procedural pretraining.

Appendix [I} analysis of the relationship between procedural pretraining loss and downstream
semantic performance.

* Appendix |J} analyses the impact of vocabulary size during procedural pretraining.

* Appendix K} study of weight decay during procedural pretraining.

* Appendix|L} additional and full results.

A EXTENDED LITERATURE REVIEW

What is learned by pretraining language models. The quantity (Kaplan et al., [2020) and qual-
ity (Longpre et al.| [2024) of pretraining data are empirically critical for the performance of large
language models. But recent results also question the value of the data, showing that some benefits
of pretraining are attributable to the optimisation objective more than the actual data. Balestriero &
Huang| (2024) compared models trained for text classification from random initialisation with fine-
tuning from a pretrained checkpoint. They found that pretraining provides little benefit for tasks that
do not involve text generation. [Krishna et al.| (2023) showed success in re-using the same data for
pretraining and fine-tuning, showing also that the pretraining objective matters more than the data
being used. The same conclusion follows from results of pretraining on synthetic data devoid of
semantic meaning, e.g. for machine translation (He et al., 2023)), computer vision (Baradad et al.,
2021)), visual navigation (Wang et al) [2022)), and reinforcement learning (Baradad et al., [2022).
This paper examines such purely synthetic pretraining to understand the exact capabilities that can
be obtained from procedurally-generated data.

What matters in pretraining data. The selection of data to pretrain frontier models mostly relies
on experimentation (Longpre et al. [2024). However, several key distributional and structural prop-
erties of the data have also been identified, such as data repetition to foster generalisation (Charton
& Kempe, 2024) and burstiness to enable in-context learning (Chan et al., [2022)). Computer code
is empirically very effective as pretraining data for LLMs, as it improves their abilities for com-
positional generalisation and math-related tasks (Aryabumi et al., 2024} [Petty et al., [2024)). This
presumably results from the abundant compositional and recursive patterns in computer code, but
a better understanding of the mechanisms at play is lacking to reap the full benefits of structure
in pretraining data. In this paper, we replicate the positive effects of structured pretraining data in
controlled settings, and study how such data imparts useful inductive biases to the model.

Pretraining on procedural data. Most attempts to train language models with synthetic data
follow a linguistic perspective, using formal languages to imitate properties of natural language
(Chiang & Lee, 2022; Goodale et al., [2025; McCoy & Griffiths), 2023; |Papadimitriou & Jurafsky,
2023} Ri & Tsuruokal [2022). Recent work considers increasingly simpler forms of synthetic data
such as input/outputs of simple algorithms (Lindemann et al., 2024; [Wu et al., [2022)). In these
papers, specific forms of synthetic pretraining data prove helpful to subsequent fine-tuning on natural
language tasks. |Hu et al.| (2025)) provide strong empirical benefits, showing that data generated from
formal languages is more valuable token-per-token than natural language for training a 1B-parameter
language model. [Zhang et al.| (2024) pretrain on traces of cellular automata and show marginal
but consistent improvements on simple reasoning tasks. Our study complements this line of work
by examining more closely the pretrained models on diagnostic tasks, rather than evaluating their
general handling of natural language. We identify specific capabilities imparted by specific types of
procedural tasks, and locate useful structure in different parts of the architecture. We also investigate
methods to combine the benefits from multiple complementary tasks.

14

Under review as a conference paper at ICLR 2026

Procedural data in vision and RL. Vision transformers (ViTs) have been trained on synthetic
data of increasingly simple nature (Baradad et al., 2021). [Nakamura et al.| (2024)) pretrained ViTs
on a single fractal image with augmentations that remarkably match the performance of ImageNet-
pretrained models after fine-tuning. This indicates that structural properties of the data matter more
than its semantic contents. Similar results exist in reinforcement learning with models pretrained on
data generated from random Markov chains (Wang et al.| |2023) and noise-based images (Baradad
et al.l [2022).

Partial transfer from pretrained transformers. Zhang et al.[(2023) and (Xu et al.,[2023)) showed
that copying subsets of pretrained weights could transfer specific capabilities. |Abnar et al.| (2020)
used knowledge distillation to transfer the inductive biases of one architecture into another. The
“mimetic initialisation” of self-attention (Trockman & Kolter, 2023)) is a procedure handcrafted to
imitate the locality bias of pretrained models. We also evaluate the partial transfer of pretrained
weights, which reveals that different pretraining tasks create useful structure in different parts of the
architecture.

Pretraining as an inductive bias. Pretraining transformers on synthetic data has been used to
mimic the inductive biases of Bayesian inference (Miiller et al., [2021)) and Solomonoff Induction
(Grau-Moya et al., 2024). (Goodale et al.| (2025) showed that well-chosen formal languages can
teach complex mechanisms (e.g. counters) to a sequence model. Pretraining can generally be seen
as a soft inductive bias for subsequent fine-tuning. But there is a large gap in our understanding of its
effects compared to those of hard inductive biases of neural architectures (Teney et al.| [2024;[2025).
Han et al.| (2025) argue that the difficulties of LLMs to reason robustly is due to their entangled
representation of knowledge and reasoning. Much remains to be understood about how both are
learned from the same data (Ruis et al., 2024). Our results suggest that procedural data could be one
way to acquire reasoning mechanisms independently from specific pieces of knowledge.

B PROCEDURAL PRETRAINING

Pretraining task Example sequence
k-DYCK (G 1)
k-DYCK SHUFFLE ()

STACK 123p |21
IDENTITY 1231123
SET 122112
SORT 3121123
REVERSE 1231321
UNION 121231123
DELETE 12312113

Figure 8: We pretrain transformers on various forms of procedural data generated from simple
algorithms, such as formal languages (left) or elementary cellular automata (right). In £-DYCK
examples, matching brackets are color-coded. For STACK, ‘P’ denotes the pop operation. The
symbol ‘|’ acts as a delimiter between the input and the expected output, on which the loss is
computed (bold tokens). For UNION and DELETE, the first delimiter separates the two sequences
to which the transformation is applied, and the second delimiter separates the entire input from the
target output.

Sequence Transformations and Memory Operations Input Sequence Lengths.

For the sequence transformation and memory operation tasks in Section [4] procedural pretraining
follows a curriculum learning scheme: models begin with input sequences of length 2 or 4 (depend-
ing on the task), and the length is increased by 2 once 99% accuracy is achieved, continuing until a
maximum length of 20.

In Section [3] larger transformers are instead pretrained on procedural tasks with fixed input lengths
of 8, 16, 32, and 64. Appendix [Glanalyses the effect of sequence length, while Appendix[H|examines
the impact of extending lengths further.

For consistency in token counts, we assume the output sequence is at most twice the length of the
input, and thus estimate and report the total number of procedural tokens as 2x the input length.

15

Under review as a conference paper at ICLR 2026

Sequence Transformation Descriptions.

IDENTITY. The input is a sequence of tokens followed by a separator. The target is an exact copy
of the input sequence. The vocabulary has 102 tokens: 100 valid elements, one separator, and one
padding token.

SET. The input is a sequence of tokens followed by a separator. The target is the same sequence
with duplicates removed, preserving the order of first appearance. The vocabulary has 102 tokens:
100 valid elements, one separator, and one padding token.

UNION. The input consists of two token sequences separated by a delimiter. The target is the union
of both sequences, preserving the order of first appearance. The vocabulary has 103 tokens: 100
valid elements, one separator, one padding token, and one union delimiter.

DELETE. The input is a sequence of tokens followed by a separator and a designated token. The
target is the sequence with all instances of the designated token removed. The vocabulary has 103
tokens: 100 valid elements, one separator, one padding token, and one delete marker.

SORT. The input is a random sequence of tokens followed by a separator. The target is the same
sequence sorted in ascending numerical order. The vocabulary has 102 tokens: 100 valid elements,
one separator, and one padding token.

REVERSE. The input is a sequence of tokens followed by a separator. The target is the same
sequence in reverse order. The vocabulary has 102 tokens: 100 valid elements, one separator, and
one padding token.

Memory Operation Descriptions.

STACK. The input encodes a sequence of push and pop operations, followed by a separator. The
target is the final stack contents, listed top-to-bottom. Tokens are pushed with 75% probability in
the first two thirds of the input and popped with 75% probability in the final third. Each push inserts
a unique token, pops remove the top element, and only one copy of a token may exist on the stack
at any time. The vocabulary has 103 tokens: 100 pushable elements, one pop token, one separator,
and one padding token.

Other Procedural Data Source Descriptions.

k-DYCK. We generate sequences of correctly nested parentheses using k distinct bracket pairs (vo-
cabulary size 2k), with k € {4,8,16}. All training sequences are fixed to length 128 and constructed
incrementally via a stack-based procedure ensuring syntactic validity. At each step, the generator
samples an opening or closing bracket with probability popen = 0.49 (Papadimitriou & Jurafsky),
2023)), forcing closure when the remaining token budget matches the number of open brackets.

k-DYCK SHUFFLE. This variant retains the same 2k-token vocabulary of bracket pairs but removes
the requirement of proper nesting. Sequences are sampled with a 50% probability of opening brack-
ets and fixed to length 128, with k € {4,8,16}. While every opening bracket is eventually closed,
truncation can yield ill-formed strings (Hu et al., [2025), though we did not observe adverse effects
in practice.

ECA RULE 110. We follow the setup of [Zhang et al.| (2024), generating data from Elementary
Cellular Automata under Rule 110, a Class IV system with Turing-complete dynamics. To model
binary state sequences with GPT-2, the embedding layer is replaced by a linear projection from
binary vectors, and the output softmax is replaced by a projection back to binary space, preserving
determinism. For transfer, we average the learned input embeddings across the ECA data and use
this representation to initialize the embedding layers of downstream transformers.

C MODEL DETAILS

We use a GPT-2-type architecture (Radford et al.l 2019) throughout our experiments. In Section 4
we employ a minimal configuration with 2 layers, 4 attention heads, and a hidden size of 16 for
HAYSTACK, ADDITION, REVERSED ADDITION and SORTING. For MULTIPLICATION, we use a

16

Under review as a conference paper at ICLR 2026

model size of 4 layers, 8 attention heads and a hidden size of 512. In Section [5]and [] we use the
small GPT-2 variant with 12 layers, 12 attention heads, and a hidden dimension of 768.

D ALGORITHMIC TASK DESCRIPTIONS

Memory Recall.

HAYSTACK. This task tests a model’s ability to retrieve information from long sequences. Each
input consists of a sequence of key—value pairs of the form [m1, ¢1, ma, ¢, . .., Mg, Ck, My], where
each m; is a unique marker and c; its associated value. The sequence terminates with a query marker
my,, and the model must locate its earlier occurrence in the context and output the corresponding
value ¢,,. We fix k = 30 in all experiments and report accuracy based on whether the predicted value
matches c,,.

Arithmetic.

ADDITION. This task probes a model’s ability to learn the compositional structure of arithmetic
addition when expressed in forward (non-reversed) notation. In this setting, the least significant
digits, crucial for carry operations, appear at the end of the sequence. As a result, transformers
must propagate carry information backward through the context, a dependency pattern misaligned
with the autoregressive training objective. Each input takes the form a+b=, where a and b are
randomly sampled n-digit integers. Inputs and outputs are digit-tokenized, with operator symbols
(+, =) assigned unique tokens. The model is trained to predict only the result digits, and cross-
entropy loss is computed solely on these positions. For all experiments we fix n = 5, and report
token-level accuracy on the predicted sum.

REVERSED ADDITION. This variant evaluates the same underlying arithmetic skill as ADDITION,
but aligns the sequence structure with the autoregression of the transformer. Both input and output
sequences are reversed, so carry propagation proceeds left-to-right in the same direction as genera-
tion. For example, the sum ab + cd = efg is represented as inputb a d c with outputg f e.
The task reduces long-range dependencies while preserving the need for multi-step reasoning. We
set n = 10 and evaluate using token-level accuracy.

MULTIPLICATION. This task evaluates a model’s ability to perform multi-digit multiplication. Each
input takes the form a x b =, where a and b are randomly sampled n-digit integers. The model must
generate the digit sequence corresponding to their product. Inputs and outputs are tokenized at the
digit level, with the multiplication operator (x) and equals sign (=) assigned special tokens. For all
experiments we fix n = 5. Cross-entropy loss and token-level accuracy are computed only on the
output positions corresponding to the product digits.

Logical and relational processing.

SORTING. This task assesses a model’s ability to perform algorithmic reasoning by sorting a se-
quence of integers. Each input consists of a list of n integers sampled uniformly from the range
[0, P — 1], where P denotes the vocabulary size. We fix n = 10 and P = 100. The input sequence
is followed by a separator token, after which the model must output the sorted version of the se-
quence. For example, the input 6 3 5 | requires the output 3 5 6. Training is autoregressive,
and evaluation is performed only on the output positions following the separator, with token-level
accuracy as the metric.

E EXPERIMENTAL DETAILS

E.1 PROCEDURAL PRETRAINING

Details for Section[d]

The hyperparameters used for procedural pretraining are summarised in Table[2] with the exception
of ECA RULE 110, whose configuration is reported separately below.

ECA RULE 110. Following Zhang et al.|(2024)), we pretrain models on data procedurally generated
from Elementary Cellular Automata under Rule 110. Each epoch begins from a new random initial
state, ensuring continual access to fresh samples and effectively unlimited training data. Models

17

Under review as a conference paper at ICLR 2026

Task SEQ. LENGTH LEARNING RATE VOCAB. SIZE
IDENTITY 4-20 5x 107 102
SET 2-20 5x107% 102
STACK 4-20 5x107* 103
k-DYCK 128 5x107° 2%k
k-DYCK SHUFFLE 128 5x107° 2xk

Table 2: Pretraining hyperparameters for each procedural task. All models use AdamW with weight
decay 0.01, batch size 256, and run for 1,000,000 steps. Early stopping (100 validation checks) is
applied for the algorithmic tasks.

are trained for up to 10,000 epochs with early stopping on validation loss. We use Adam with a
learning rate of 2 x 107, weight decay 0.01, and gradient clipping at norm 1.0, with batch size
64 (60 time steps, 100 spatial dimensions). The learning rate schedule consists of a 10% warm-up
phase followed by cosine decay.

Detail for Section

For all algorithmic procedural tasks used in this section (IDENTITY, SET, UNION, DELETE, SORT,
REVERSE, and STACK), we train using AdamW with a batch size of 64 and no warmup steps.
Following |[Hu et al.| (2025)), we pretrain models on procedural data with a weight decay of 0.1 for
WIKITEXT and C4, and use 0.01 for JAVACORPUS, CODEPARROT, and DEEPMIND-MATH. The
pretrained models are subsequently fine-tuned on their respective downstream datasets. An ablation
study in Appendix [K] confirms that this choice of weight decay during pretraining does not affect
our conclusions. We sweep sequence lengths over {8, 16, 32,64} and vary the number of procedural
pretraining steps between 100 and 2500. No warmup or learning rate decay is applied; instead, we
train with a fixed learning rate throughout. For consistency, the learning rate during pretraining is
matched to that of the downstream semantic objective, as preliminary experiments indicated this
setting to be most effective.

E.2 ALGORITHMIC TASKS

HAYSTACK, FORWARD ADDITION, REVERSED ADDITION, and SORTING. We trained models
for 10* steps with a batch size of 1,000. The training data is generated dynamically. We used
the AdamW optimizer with a learning rate of 10~3 and weight decay of 1073, We always use an
architecture consisting of 2 layers, 4 attention heads, and 16-dimensional embeddings. We report
mean and standard deviation over 10 seeds in Appendix [[]

MULTIPLICATION. These experiments employed a larger model with 4 layers, 8 attention heads,
and 512-dimensional embeddings. Thus, we use a smaller training batch size (64 vs. 1,000), result-
ing in approximately 156k update steps compared to 10k steps for the afforementioned reasoning
tasks, despite using the same number of training examples. We optimize with AdamW using a learn-
ing rate of 1073, weight decay of 10~3, and 500 warmup steps. We run this over 3 seeds, and report
standard deviations in Appendix

E.3 SEMANTIC DATA

WIKITEXT. We train our models on Wikitext-2 (Merity et al., |2016) using next-token prediction
with AdamW. Training runs for ~7 epochs (5,000 steps) with an effective batch size of 32. We use
a learning rate of 5 x 10~ with cosine decay and no warmup steps. Sequences are tokenized with
the GPT-2 tokenizer, truncated to 1,024 tokens. We evaluate the model on the validation split, using
1,024 samples. Our primary metric is validation perplexity.

JAVACORPUS: We train our models on Github’s JavaCorpus (Allamanis & Sutton,2013)) using next-
token prediction with AdamW. Training runs for 5 epochs with an effective batch size of 8. We use
a learning rate of 8 x 10~° and no warmup steps. The hyperparameters follow those in (Lu et al.,
2021). Sequences are tokenized with the CodeGPT (Lu et al., [2021)) tokenizer, with block size 1,024
tokens. We report validation perplexity and test accuracy for code completion.

18

Under review as a conference paper at ICLR 2026

C4: We pretrain our models on the C4 dataset (Raffel et al.| 2020) using next-token prediction with
AdamW. Training runs for 10,000 steps with an effective batch size of 32. We use a learning rate
of 5 x 10~* with cosine decay and no warmup steps. Sequences are tokenized with the GPT-2
tokenizer and truncated to 2,048 tokens. We evaluate models on the C4 validation split using 1,024
samples, reporting validation perplexity. To assess linguistic generalization, we also report accuracy
on the BLiMP grammaticality judgment benchmark (Warstadt et al.| 2020), which tests whether
models prefer grammatical over ungrammatical sentence pairs.

CODEPARROT: We pretrain our models on the CodeParrot datasetE] using next-token prediction with
AdamW. Training runs for 20,000 steps with an effective batch size of 48. We use a learning rate of
5 x 10~ with cosine decay, no warmup steps, and weight decay of 0.1. Sequences are tokenized
with the CodeParrot’s tokenizer and with length 1,024 tokens. We evaluate models on the validation
split with 1,000 evaluation steps and a batch size of 48, reporting validation loss and perplexity.

DEEPMIND-MATH: We pretrain our models on the Deepmind-Mathematics dataset (Saxton et al.,
2019) using next-token prediction with AdamW. Training runs for 50,000 steps with an effective
batch size of 64. We use a constant learning rate of 8 x 10~° (as is done in the original paper), no
warmup steps, and weight decay of 0.1. Sequences are tokenized at the character-level (including
digits, alphabet in upper and lower case, punctuation and whitespace, a total of 95 different tokens)
and have a length 512 tokens. We evaluate models on the in-distribution validation split with 100
evaluation steps and a batch size of 64, reporting the accuracy on the validation problems. This
ensures evaluating around 38,000 questions in each validation session. A problem is considered
correct if and only if the prediction exactly matches the groundtruth answer.

F TESTING SIMPLER EXPLANATIONS

F.1 ATTENTION SHARPENING

This appendix analyses whether the benefits of procedural pretraining arise from generic attention
sharpening. First, we find that a small subset of sharpened attention heads contain the useful induc-
tive bias for downstream tasks. Then, we attempt to reproduce the behaviour of these heads through
regularisation. We find this does not provide the same benefits, demonstrating that procedural pre-
training fosters specific inductive biases beyond generic attention sharpening.

F.1.1 ATTENTION ENTROPY ANALYSIS

We first examine the attention patterns of the procedurally pretrained models after fine-tuning on the
downstream tasks.

Setup. We measure the sharpness of each attention head using entropy,

H=- Zpi log p;,

where p; denotes the normalized attention weight assigned to token ¢. Low entropy corresponds to
selective attention, while high entropy reflects diffuse, uniform distributions. We compute head-wise
entropy after fine-tuning, averaging over 100 downstream evaluation examples.

Results. Figure [0]shows that procedural pretraining leads models, after downstream fine-tuning, to
consistently develop a subset of low-entropy heads. For example, a STACK-pretrained model fine-
tuned on HAYSTACK exhibits five of eight heads with entropy close to H =~ 0.8, while the remaining
three have substantially higher entropy around H ~ 3.0.

3https ://huggingface.co/datasets/codeparrot/codeparrot—-clean

19

https://huggingface.co/datasets/codeparrot/codeparrot-clean

Under review as a conference paper at ICLR 2026

STACK Attention-only transfer to HAYSTACK SET Attention-only transfer to HAYSTACK

Layer 1 075 Layer 1 090 152 3.0
b5}
> 25
<
a3
Layer 2 0.85 0.82 0.84 0.86 Layer 2 0.81 0.83 0.68 0.82 2.0
: : : : : : : . s 2
Head 0 Head 1 Head 2 Head 3 Head 0 Head 1 Head 2 Head 3 g
Attention head Attention head 5
1.0 =
SET Attention-only transfer to ADDITION SET Attention-only transfer to SORTING -2
£
o
<
Layer 1 1.46 092 Layer 1 114 1.68 0.69 1.57
0.5
Layer 2 0.78 0.68 1.64 Layer 2

Head 0 Head 1 Head 2 Head 3 Head 0 Head 1 Head 2 Head 3
Attention head Attention head

Figure 9: Head-wise attention entropy after fine-tuning. Procedural pretraining yields a subset of
low-entropy heads (blue).

F.1.2 SELECTIVE TRANSFER OF LOW-ENTROPY HEADS

We hypothesise that the useful inductive biases introduced by procedural pretraining are concen-
trated in the subset of low-entropy attention heads.

Setup. To test our hypothesis, we fine-tune on the downstream task while transferring either the
three lowest-entropy heads that emerge from the procedurally pretrained model (identified post hoc
after finetuning) or, for comparison, the three highest-entropy heads.

Results. Figure |10] shows that transferring only the three lowest-entropy heads preserves, and in
some cases even surpases the performance of full attention transfer. In contrast, transferring the
three highest-entropy heads results in performance comparable to the baseline without procedurally
pretrained attention. These results demonstrate that the benefits of procedural pretraining can be
concentrated in a small subset of sharp, low-entropy attention heads.

STACK — SET — SET — SET —
HAYSTACK HAYSTACK ADDITION SORTING
100 4= 1 7 7 -
| bl]
M 200 BN e | S
8 501 . 1 1
=
Q
Q
< 25 B E E
0
Attention-only trans. 3 low ent. 3 highent. === NoPP.T.

Figure 10: Validation accuracy after downstream fine-tuning when transferring subsets of proce-
durally pretrained attention heads. The three lowest-entropy heads preserve or even surpass full
transfer, while the three highest-entropy heads perform comparably to a baseline without procedural
pretraining. Results are over 10 random seeds.

20

Under review as a conference paper at ICLR 2026

F.1.3 ENTROPY REGULARISATION TO SELECTED ATTENTION HEADS

We now investigate whether the benefits of procedural

pretraining can be reproduced by explicitly enforcing 1009 I
low-entropy attention. —~ 80
IS
Setup. We attempt to replicate the behaviour of the E 60
beneficial attention heads through regularisation. An £
entropy regularization term is introduced during fine- 3 40
tuning on HAYSTACK to a model that did not undergo 20 4
procedural pretraining. This is applied to three se-

0 T T

lected heads, and drives them toward a target entropy
of 7 = 0.8, matching the average observed in the
three heads shown to carry useful inductive biases from
STACK pretraining (Figure[9]and[10).

Regularized Procedural

Figure 11: Validation accuracy on

Results. As shown in Figure[T1] this approach is in- HAYSTACK with entropy regularisation.
effective: the regularized heads perform substantially Models trained from scratch with ex-
worse than the STACK-pretrained heads when evalu- plicitly enforced low-entropy heads (or-
ated on the HAYSTACK task. ange) underperform those with proce-
In summary, these findings indicate that simply enforc- durally pretrained heads (blue), indicat-
ing sharper attention is insufficient to reproduce the ing that sharper attention alone is in-
benefits of procedural pretraining. We demonstrate that sufficient. Results are over 10 random
low entropy is merely a side effect of the benefits pro- seeds.

vided through procedural pretraining, not the cause.

F.2 WEIGHT SCALING

We test whether the benefits of procedural pretraining arise solely from weight distribution adjust-
ments, as opposed to precise weight structures and values. Our results show that the gains depend
critically on the latter.

Weight Shuffling. We apply layer-wise shuffling of the pretrained weights to the best-performing
models from Section 4.2] and evaluate downstream accuracy after fine-tuning. This setup explicitly
preserves weight distributions while erasing structure. Figure [I2]demonstrates that weight distribu-
tions alone are insufficient: performance collapses to the no procedural pretraining baseline, except
for SORTING, which retains partial benefits. We use 10 seeds and report mean results, with variance
data in Appendix [[]

Noise Injection. We introduce additive Gaussian noise to the procedurally pretrained weights of
the best models from Section [4.2] and evaluate performance after fine-tuning. We report a relative
improvement score, where 1.0 corresponds to unperturbed pretrained weights and 0.0 corresponds
to a baseline without procedural pretraining (random initialisation). Figure [I3|shows that gradually
increasing Gaussian noise consistently degrades performance, confirming that precise weight values
are crucial. We use 10 seeds and report mean results, with variance data in Appendix [[]

21

Under review as a conference paper at ICLR 2026

HAYSTACK ADDITION SORTING
X 100 100 100
= =
5y -
=
=
3 | —
< 0 0 0
Pretrained model Shuffled weights No PPT.

Figure 12: Layer-wise weight shuffling largely
eliminates the benefits of procedural pretrain-
ing, despite preserving the overall distribution
of weight values. This indicates that the advan-
tages arise from precise structural organisation
of the weights, rather than from their distribu-
tion alone.

1.0
0.5
0.0
-0.5
-1.0

Relative improv.

0 0.01 0.05
Noise level (o)
ADDITION SORTING

0.1

HAYSTACK No procedural pretraining
Figure 13: Injecting Gaussian noise into pre-
trained weights progressively erodes the ben-
efits of procedural pretraining. This demon-
strates that precise weight values are essential,
and coarse statistics such as weight magnitudes
alone cannot account for the performance bene-
fits.

G PROCEDURAL DATA HYPERPARAMETER GRID SEARCH

We study the influence of both pretraining steps and input sequence length on the effectiveness of
procedural pretraining for downstream semantic tasks.

Setup. We conduct a grid search over sequence length and number of pretraining steps to deter-
mine which configurations of procedural pretraining yield the lowest semantic validation perplexity.
Each model is first pretrained on a single procedural task for T} tokens, followed by 75 tokens of se-
mantic data (WIKITEXT for natural language and JAVACORPUS for code), with full-model transfer.
The value of T is varied by adjusting the sequence length and number of pretraining steps, while
T5 remains fixed.

Results. Figure[T4]and [T3]report validation perplexity across all configurations, showing that both
sequence length and pretraining steps strongly influence performance, with optimal settings differing
by domain and task.

DELETE IDENTITY REVERSE SET SORT STACK UNION 70
a
) 65 >,
.%0 50."5
g e
g i)
3 . [P L L . P 555
~ 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8§ 16 32 64 8 16 32 64 8 16 32 64 50

Sequence length

» DELETE IDENTITY REVERSE SET SORT STACK UNION 105
o
2 10.0 5,
2n 2500 2
g 95 2
£ 1000 | E
g | N | I P - I 00 &
&’ 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 .

Sequence length

Figure 14: Validation perplexity for different configurations of procedural pretraining when fine-
tuned on WIKITEXT (top) and JAVACORPUS (bottom), sweeping over sequence length and number
of pretraining steps. Each panel corresponds to a distinct procedural task, with colours indicating
perplexity (lower is better). The best-performing configuration for each task is marked in green.

22

Under review as a conference paper at ICLR 2026

16 Dyck 16 DYCK SHUFFLE 70
2 ”» 16 Dyck 16 DYCK SHUFFLE [T 10
Iy a
2 2500 “ . 65 & 2 10.0 5,
en = 20 2500 2
£ 1000 6()-% £ 95 2
£ —t 5 £ 1000 ; 5
5 500 55 & g . ‘ ‘ 9.0 &
£ £ 16 32 64 128 16 32 64 128

16 32 64 128 16 32 64 128
Sequence length

[
=]
ol
[

Sequence length

Figure 15: Validation perplexity for DYCK and DYCK SHUFFLE procedural pretraining when fine-
tuned on WIKITEXT (left) and JAVACORPUS (right), sweeping over sequence length and number of
pretraining steps. Setup matches Figure [T4 Colours indicate perplexity (lower is better), with the
best-performing configuration marked in green.

H LONGER SEQUENCES FOR PROCEDURAL PRETRAINING

We extend the sequence length search on WIKITEXT from 8—64 tokens (Appendix[G) to 128 tokens
using full-model transfer for the best perfoming procedural tasks. Results are mixed: SET benefits
from longer sequences, while SORT and UNION do not. Thus, the utility of longer procedural
sequences is task-dependent.

N
S

SET SORT UNION

=)
o)

2500
1000
500

(=)
<
Perplexity

Pretraining steps
W
W

8 16 32 64128 8 16 32 64128 8 16 32 64128
Sequence length

w
S

Figure 16: Effect of extending sequence length during procedural pretraining on WIKITEXT. Longer
sequences improve subsequent language modelling for SET but not SORT or UNION, showing that
the benefit of extended contexts is task-dependent.

I TRANSFERABILITY ANALYSIS

We analyse the correlation between procedural pretraining loss and downstream loss on C4. For SET
and UNION, transfer performance deteriorates when procedural loss is either too high or too low,
suggesting that both underfitting and overfitting impair generalization. Consequently, the strongest
transfer is observed at intermediate levels of procedural optimization. In contrast, for SORT, transfer
performance contintues to improve steadily as procedural loss decreases, demonstrating that the
transferability of procedural pretraining is task dependent.

Language (C4)
[
4.150
2
c4125{ © °
= o
=1
241004 %
Q OO
w o er o
4.075 °
B o
0 2 4

Procedural loss

O SEr O SorTr O UNION

Figure 17: Transferability of procedural pretraining. Relationship between procedural validation
loss and downstream loss on C4. For SET and UNION, transfer is strongest at intermediate proce-
dural losses, with both underfitting and overfitting harming generalization. For SORT, continually
decreasing procedural loss consistently improves transfer.

23

Under review as a conference paper at ICLR 2026

J THE EFFECT OF VOCABULARY SIZE

We investigate the effect of vocabulary size during procedural pretraining.

Setup. Models are pretrained on SET, SORT, and UNION with vocabularies from 25 to 500 sym-
bols (the main results use 100 by default), then transferred to WIKITEXT using full-model transfer.
Evaluation perplexity is reported after fine-tuning.

Language (WIKITEXT)

Perplexity
IS
(=3

2550 100 200 500
Vocabulary size during procedural pretraining
SET SORT UNION

Figure 18: Effect of vocabulary size during procedural pretraining on WIKITEXT. Small vocabular-
ies (25-50) degrade transfer performance, while moderate sizes (~100-200) are sufficient. Larger
vocabularies offer no further improvement.

Results. As shown in Figure[I8] very small vocabularies (25-50) harm transfer, leading to higher
perplexity. For SET and UNION, performance stabilizes once the vocabulary reaches a moderate
size (~100), with larger sizes offering no further gains. SORT benefits modestly at 200 but declines
at 500. Overall, procedural pretraining is most effective within a moderate vocabulary range, too
small harms transfer, while too large brings no improvement or negative return.

K WEIGHT DECAY ABLATION

In the main paper, natural language experiments use a weight decay of 0.1 during procedural pre-
training, following [Hu et al.| (2025). To test this choice, we reduce the weight decay to 0.01 (the
value used for code and math) and evaluate performance on C4 semantic pretraining. The takeaway
that MLP-only transfer is best for natural language remains unchanged, showing that our findings
are robust to this hyperparameter.

Language (C4)

Perplexity
n
=]

Weight decay = 0.1 Weight decay = 0.01
Full-model transfer Attention-only transfer
MLP-only transfer No procedural pretraining

Figure 19: Effect of weight decay during procedural pretraining on C4. Changing weight decay
from 0.1 to 0.01 does not alter the outcome: MLP-only transfer remains the best configuration for
natural language.

24

Under review as a conference paper at ICLR 2026

L ADDITIONAL RESULTS

L.1 ALGORITHMIC REASONING TASKS

Pretraining task HAYSTACK ADDITION REVERSED ADDITION MULTIPLICATION SORTING

RAND INIT. 11.3+0.4 59.1£7.0 76.4 £ 23.2 42.7+5.3 82.7+11.6
4-DYCK 98.3+1.1 52.7+0.3 35.7+ 2.5 46.7 + 4.6 56.3 +19.2
8-DYCK 93.6 £1.3 53.4+£0.3 48.94+4.9 44.54+0.9 98.7+0.3
16-DyCK 96.9+ 1.0 87.8 £4.2 83.5+ 0.6 39.4+3.3 95.5+1.0
4-DYCK SHUFFLE 7.3+0.6 54.5 + 0.2 87.8 £12.9 41.8 +£3.7 61.0+1.4
8-DYCK SHUFFLE 9.6 +£0.3 67.7+ 0.8 90.1 £5.9 37.4+0.1 84.1 5.7
16-DYCK SHUFFLE 18.6 £26.3 70.8+5.5 87.0+12.8 44.0+0.1 71.1+5.4
STACK 55.2+39.3 62.3+£5.3 34.9+0.2 46.6 £+ 2.0 21.3+0.6
IDENTITY 18.84+14.3 54.7+0.2 42.7+0.9 46.6 + 2.7 19.94+ 0.5
SET 1894+26.6 53.4+0.1 44.6 £5.1 43.5+ 8.4 93.5+1.6
UNION 9.8 +1.1 48.6 £ 0.7 50.8 £ 0.2 63.5+2.3 16.9+ 0.5
REVERSE 33.3+£224 46.1+2.3 46.8 +1.33 54.4 + 3.2 16.7 4+ 0.5
DELETE 52.6 222.4 60.7 +4.19 40.0+1.8 61.9+1.4 20.1 +£0.6
ECA RULE 110 10.5£0.5 69.6 £ 7.9 91.1 £16.1 — 769+t 1.4
BEST MODEL SHUFFLED 10.3 £0.5 52.0 +£0.3 65.0 £21.4 48.4+4.4 69.9 + 2.2

Table 3: Full results across all pretraining tasks and algorithmic reasoning tasks. Each cell reports
the mean accuracy =+ standard deviation over 10 random seeds, except for MULTIPLICATION, which
is over 3 seeds. The means of these results are visualised in Figure@

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY
4-DYCK 98.3+ 1.1 8.7+0.5 11.6 £ 0.5
16-DYCK SHUFFLE 18.6 £+ 26.3 8.9+0.9 16.5 + 10.6
STACK 55.2 + 39.3 7.1+0.6 98.9 £ 0.8
IDENTITY 18.8 £14.3 7.0+0.9 99.0+ 1.7
SET 18.9 4 26.6 8.3+0.7 88.9 £ 27.1
UNION 9.8 +1.1 824+0.7 11.74+04
REVERSE 33.3 +22.4 7.3+1.2 98.6 + 0.8
DELETE 52.6 +22.4 8.4+ 0.8 91.8+ 3.5
ECA 10.5+0.5 8.7+1.0 11.6 £1.0

Table 4: HAYSTACK task accuracy (mean =+ standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

25

Under review as a conference paper at ICLR 2026

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY
16-DYCK 87.8+4.2 60.0 £ 6.6 59.2 +£10.4
16-DYCK SHUFFLE 70.8 £ 5.5 61.7 6.9 55.3 £ 4.9
STACK 62.3 5.3 61.1£9.4 56.2 £ 5.0
IDENTITY 54.7 £ 0.2 58.3 £ 7.2 69.7 £ 13.1
SET 53.4£0.1 59.6 £ 6.4 81.1£12.2
UNION 48.6 £ 0.7 65.0 £12.2 59.8 £ 9.0
REVERSE 46.1 £2.3 57.8+7.0 60.9 7.9
DELETE 60.7 + 4.2 59.2 £ 8.1 63.3 £ 14.0
ECA 69.6 £ 7.9 63.1 = 14.4 65.8 £12.8

Table 5: ADDITION task accuracy (mean =+ standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY
16-Dyck 83.5+0.6 64.0 £ 26.4 49.1 +20.3
8-DYCK SHUFFLE 90.1 £5.9 65.8 £ 24.8 63.3 £ 18.1
STACK 34.9+0.2 74.4+24.7 42.1+8.1
IDENTITY 42.7+0.9 71.7+£29.2 45.2 4+ 3.7
SET 44.6 £ 5.1 71.24+23.7 54.44+10.4
UNION 50.8 £0.2 72.3 £29.6 50.3 £16.5
REVERSE 46.8 + 1.3 75.8 £27.1 446+ 3.4
DELETE 40.0 £ 1.8 55.2 £23.0 44.6 9.2
ECA 91.1+16.1 70.5 £ 31.6 75.5 £ 27.2

Table 6: REVERSED ADDITION task accuracy (mean = standard deviation over 10 seeds) for models
initialized with weights from different pretraining tasks. We report results for full model transfer,
MLP-transfer, and attention-transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY
8-DYCK 98.71+0.3 72.8+3.1 71.4+5.7
8-DYCK SHUFFLE 84.14+5.7 78.21+8.6 62.94+6.7
STACK 21.3£0.6 71.0£2.2 77.5+£12.2
IDENTITY 19.9+0.5 74.5£8.1 91.3£10.1
SET 93.5+1.6 73.5+1.5 98.1+2.8
UNION 16.9 £ 0.5 72.3£1.9 76.4 +16.4
REVERSE 16.7 £ 0.5 71.2+2.6 82.1 £15.1
DELETE 20.1 £ 0.6 78.0+10.9 81.3 +24.3
ECA 76.9+ 1.4 77.1£8.1 73.94+3.2

Table 7: SORTING task accuracy (mean =+ standard deviation over 10 seeds) for models initial-
ized with weights from different pretraining tasks. We report results for full model transfer, MLP-
transfer, and attention-transfer.

26

Under review as a conference paper at ICLR 2026

Perturbation HAYSTACK ADDITION REVERSED ADDITION SORTING

Pretrained 98.9+0.8 87.8+£4.2 90.1£5.9 98.7+0.3
Shuffled 17.24+£12.7 61.0£9.1 82.9+23.5 94.2+4.2
0.01 noise 98.6£1.7 T77.6+20.1 74.0 £21.0 96.0 £ 7.6
0.05 noise 50.8 +£30.5 62.1+13.3 91.0 £15.7 71.9£26.1
0.10 noise 329+6.1 56.4 £ 7.4 83.6 £21.5 37.9+£5.8
Randominit 11.3+0.4 59.1£7.0 76.4 £ 23.2 82.7+11.6

Table 8: Mean accuracy (% standard deviation over 10 seeds) across five algorithmic tasks under
different perturbation conditions. Pretrained models were selected based on best individual perfor-
mance per task: STACK (attention-transfer) for HAYSTACK, 16-DYCK for ADDITION (full-transfer),
8-DYCK SHUFFLE for REVERSED ADDITION (full-transfer), 8-DYCK for SORTING (full-transfer).

L.2 SEMANTIC DATA

® Code (JAVACORPUS)

>

g

5 0.70 = o

Q

3 ek

g | B

T 068 1 I
£ I z

8 T T T

© SET UNION SORT
=}

8 Full-model transfer Attention-only transfer

MLP-only transfer

No procedural pretraining

Figure 20: Token level code completion accuracy on JAVACORPUS from (Lu et al. 2021). We
compare partial transfer of pretrained weights with full-model transfer. This extends the partial
transfer analysis from Figure [0 in the main paper, showing Attention-only transfer is superior for

code in isolation.

Language (C4)

0.70 I I

0.68

BLiMP accuracy (%)

T T
SET UNION
Full-model transfer
MLP-only transfer

T
SORT

Attention-only transfer

No procedural pretraining

Figure 21: BLiMP accuracy (Warstadt et al., 2020) after finetuning on C4. We compare partial
transfer of pretrained weights with full-model transfer. Consistent with Figure[6] MLP-only transfer

achieves the best performance on grammatical understanding.

27

Under review as a conference paper at ICLR 2026

Language (C4)
75 1 75 7 75 1
70 4 70 4 70 4
2 2 2
.5 £ £
—= 651 = 651 = 651
= = =
ko) 5 L
v ~ ~
60 A 60 4 60 A
55 T T T T 55 T T T T 55 T T T T
2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000
Semantic pretraining steps Semantic pretraining steps Semantic pretraining steps
62 1
62.5 62 1
z2 2 0l z
g % E o
B 60.0 B =
15} 5] L
~ [av ~
58 A 58 -
57.5 4
0.0 4.1 82 123 164 205 0.0 4.1 82 123 164 205 0.0 4.1 82 123 164 205
Procedural tokens (million) # Procedural tokens (million) # Procedural tokens (million)
e o) e
.2 .2 .2
= 600 A = 600 | = 600 A
E E E
A A =
g 500 1 5 500 £ 500 -
2 2 2
8 8 s
Q Q Q
‘S 400 - 2 400 -2 400
5 g g
=] =] g
@ 300 & 300 A A 300
I+ T T T T T I+ T T T T T 3+ T T T T T
0.0 4.1 82 123 164 205 0.0 4.1 82 123 164 205 0.0 4.1 82 123 164 205
Procedural tokens (million) # Procedural tokens (million) # Procedural tokens (million)
UNION (Full-model transfer) SORT (Full-model transfer) SET (Full-model transfer) No procedural pretraining
UNION (MLP-only transfer) SORT (MLP-only transfer) SET (MLP-only transfer)

Figure 22: Comparison of MLP-only transfer and full-model transfer on C4 for UNION, SORT
and SET. (Top) Perplexity curves during semantic pretraining. (Middle) Additive setting results.
(Bottom) Substitutive setting results. Across all views, MLP-only transfer outperforms full transfer,
confirming that procedurally pretrained MLP layers are especially effective for natural language.

28

	Introduction
	Related Work
	Preliminaries
	Experimental Setup
	Generating Procedural Data

	Probing Procedural Pretraining with Algorithmic Reasoning
	Which Algorithmic Skills Improve with Procedural Pretraining?
	Where does the Pretrained Information Reside?
	Are There Simpler Explanations for the Benefits of Pretraining?

	Can Procedural Data Complement or Replace Standard Data?
	Domain-Specific Corpora
	Larger Pretraining Corpora
	Localisation of the Transferable Pretrained Information

	Combining Multiple Types of Procedural Data
	Data Mixtures
	Weight Mixtures

	Discussion
	Extended Literature Review
	Procedural Pretraining
	Model details
	Algorithmic Task Descriptions
	Experimental Details
	Procedural Pretraining
	Algorithmic Tasks
	Semantic Data

	Testing Simpler Explanations
	Attention Sharpening
	Attention Entropy Analysis
	Selective Transfer of Low-Entropy Heads
	Entropy Regularisation to Selected Attention Heads

	Weight Scaling

	Procedural Data Hyperparameter Grid Search
	Longer Sequences for Procedural Pretraining
	Transferability Analysis
	The Effect of Vocabulary Size
	Weight Decay Ablation
	Additional Results
	Algorithmic Reasoning Tasks
	Semantic Data

