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ABSTRACT
In contemporary research, large-scale graphs and graph neural net-

works (GNNs) serve as prevalent tools for organizing and modeling

web-related data. Nevertheless, the dynamic nature of web content,

characterized by continual change and evolution over time (e.g., the

prevailing trends and citation patterns in online citation networks),

presents a formidable challenge to the adaptability of GNNs in ad-

dressing these distributional shifts. In this work, we investigate the

problem of out-of-distribution (OOD) generalization for unsuper-

vised learning methods on graph data. To improve the robustness

against such distributional shifts, we propose a Model-Agnostic

Recipe for Improving OOD generalizability of unsupervised graph

contrastive learning methods, which we refer to as MARIO. MARIO

introduces two principles aimed at developing distributional-shift-

robust graph contrastive methods to overcome the limitations of

existing frameworks: (i) Invariance principle that incorporates ad-

versarial graph augmentation to obtain invariant representations

and (ii) Information Bottleneck (IB) principle for achieving general-

izable representations through refining representation contrasting.

To the best of our knowledge, this is the first work that investigates

the OOD generalization problem of graph contrastive learning,

with a specific focus on node-level tasks. Through extensive exper-

iments, we demonstrate that our method achieves state-of-the-art

performance on the OOD test set, while maintaining comparable

performance on the in-distribution test set when compared to ex-

isting approaches.
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1 INTRODUCTION
Graph-structured data is prevalent in Web applications, including

community detection [44], paper classification [5], and social rec-

ommendationn [15]. To address these tasks, GNNs have proven

to be effective tools. Nevertheless, many existing graph methods

assume that training and testing data follow the same distribution,

which is not always the case in real-world scenarios. For example,

citation networks exhibit distribution shifts due to evolving topics

and citation patterns [19, 26, 64]. Beyond addressing distribution

shifts, effectively utilizing massive unlabeled graph data remains a

challenging problem. Thus, this paper aims to uncover principles

for achieving superior out-of-distribution (OOD) generalization

performance with unlabeled graph data. To this end, two primary

challenges need to be addressed:

Challenge 1: Non-Euclidean data structure of graphs causes com-

plex distributional shifts (feature-level and topology-level) and lack

of environment labels (due to the inherent abstraction of graph),

which in consequence severely qualifies the direct application of

existing OOD generalization methods.

Challenge 2: Most existing OOD generalization methods heavily

rely on label information. It remains a practical challenge how to

elicit invariant representations when no access to labels is provided.

Many efforts have been made towards the resolution of the chal-

lenges above. To address Challenge 1, EERM [64], GIL [38], and

DIR [66] employ environment generators to simulate diverse distri-

butional shifts in graph data. By minimizing the mean and variance

of risks across multiple graphs and environments, these methods

manage to capture invariant features that generalize well on un-

seen domains. However, these approaches heavily rely on the label

information, which cannot be deployed in unsupervised settings,

as Challenge 2 suggests. Regarding the second challenge, graph

contrastive learning (GCL) has recently emerged as a prominent

unsupervised graph learning framework. Although some of the

GCL methods have demonstrated superior performance under in-

distribution tests, their efficacy under out-of-distribution tests is

still unclear, as they do not explicitly target on improving the OOD

generalization ability. In summary, current methods struggle to

effectively address both challenges simultaneously in the field of

unsupervised OOD generalization for graph data.

In this work, we for the first time systematically study the ro-

bustness of current unsupervised graph learning methods [22, 25,

57, 62, 70, 73, 77, 78] while facing distribution shifts. By analyzing

the common drawbacks of GCL methods, we propose a Model-

Agnostic Recipe for Improving OOD generalization of GCL meth-

ods (MARIO
1
). To solve the above challenges, MARIO works on

the two crucial components of a typical GCL method, i.e., view gen-

eration and representation contrasting, as depicted in Figure 1, and

1
Based on this recipe, we provide a shift-robust graph contrastive framework coined

as MARIO
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leaves the encoding models as an open choice for existing and fu-

ture works for the sake of universal application. Concretely, MARIO

introduces two principles aimed at developing distributional-shift-

robust graph contrastive methods to overcome the limitations of

existing frameworks: (i) Invariance principle that incorporates ad-

versarial graph augmentation to acquire invariant representations

(solving Challenge 1) and (ii) Information Bottleneck (IB) principle

for achieving generalizable representations (solving Challenge 2).
Furthermore, IB constraint in conjunction with invariance prin-

ciple can address key failures linked to invariant features [1, 36].

Throughout extensive experiments, we observe that some graph

contrastive methods are more robust to distribution shift, especially

in datasets with artificial spurious features (e.g., GOOD-CBAS).
Furthermore, our proposed model-agnostic recipe MARIO reaches

comparable performance on the in-distribution test domain but

shows superior performance on out-of-distribution test domain,

regardless of what model is deployed for view encoding.

As the first work that investigates the efficacy of unsupervised

graph learning methods while facing distribution shifts
2
, our pa-

per’s main contributions are summarized as follows:

• Through extensive experiments, we observe that some GCL

methods aremore robust to OOD tests than their supervised

counterparts, providing insights for solving the challenge

of graph OOD generalization.

• Motivated by invariant learning and information bottle-

neck, we analyze the limitations of the main components in

current GCL frameworks for OOD generalization, and we

further propose a Model-Agnostic Recipe for Improving

OOD generalization of GCL methods (MARIO).

• The proposed model-agnostic recipe MARIO can be seam-

lessly deployed for various graph encoding models, achiev-

ing SOTA performance under the out-of-distribution test

set while reaching comparable performance under the in-

distribution test set.

2 BACKGROUND AND PROBLEM
FORMULATION

In this section, we will start with the notations we use through-

out the rest of the paper (Sec. 2.1); then we introduce the problem

definition and background of graph OOD generalization (Sec. 2.2)

and graph self-supervised learning methods (Sec. 2.3); finally, we

formalize the problem of graph contrastive learning for OOD gen-

eralization (GCL-OOD) in Sec. 2.4.

2.1 Notations
Let G,Y represent input and label space respectively. 𝑓𝜙 (·) =

𝑝𝜔 ◦ 𝑔𝜃 (·) represents graph predictor which consists of a GNN en-

coder 𝑔𝜃 (·) and a classifier 𝑝𝜔 (·). The graph predictor 𝑓𝜙 : G → Y
maps instance 𝐺 = (𝐴,𝑋 ) ∈ G to label 𝑌 ∈ Y where 𝐴 ∈ R𝑁×𝑁
is the adjacent matrix and 𝑋 ∈ R𝑁×𝐷 is the node attribute matrix.

Here, 𝑁 , 𝐷 denote the number of nodes and attributes, respec-

tively. To measure the discrepancy between the prediction and the

ground-truth label, a loss function ℓsup is used (e.g., cross-entropy

2
In this work, we focus on node-level downstream tasks, which are more challenging

than graph-level tasks due to the interconnected nature of instances within a graph.

loss). For unsupervised learning, a pretext loss ℓunsup is applied

(e.g., InfoNCE loss [47]). And we use T as augmentation pool, the

augmentation function 𝜏 is randomly selected from T according to

some distribution 𝜋 . Let Gtar denote downstream dataset.

2.2 Graph OOD Generalization
Problem definition. Given training set Gtrain = (𝐺𝑖 , 𝑌𝑖 )𝑁𝑖=1
that contains 𝑁 instances drawn from the training distribution

𝑃train (𝐺,𝑌 ). In the supervised setting, it aims to learn an optimal

graph predictor 𝑓 ∗ that can exhibit the best generalization perfor-

mance on the data sampled from the test distribution:

𝑓 ∗
𝜙
= argmin

𝑓𝜙
E𝐺,𝑌∼𝑃test

[
ℓsup

(
𝑓𝜙 (𝐺), 𝑌

)]
, (1)

where 𝑃test (𝐺,𝑌 ) ≠ 𝑃train (𝐺,𝑌 ) means there exists a distribution

shift between training and testing sets, the optimal predictor trained

on the training set may not generalize well on the testing set.

Related works. Out-of-distribution generalization algorithms [37,

55] have gained prominence for handling unknown distribution

shifts in response to the growing need for managing unseen data

in real-world scenarios. Techniques like robust optimization [27,

53], invariant representation/predictor learning [4, 75], and causal

approaches [24, 51] have been proposed to tackle these issues. In

this subsection, we emphasize invariant representation learning for

graphs due to its practical assumptions and theoretical foundation.

Graph invariant learning methods extend invariant learning on

graph domainwhich are widely investigated recently [38, 43, 64, 66].

EERM [64], GIL[38], DIR [66] rely on environment generators to

find invariant predictive patterns with labels. GSAT [43] lever-

ages the attention mechanism and the information bottleneck

principle [3] to construct interpretable GNNs for learning invari-

ant subgraphs under distribution shifts. CIGA [11] proposes an

information-theoretic objective to extract invariant subgraphs, en-

suring immunity to distribution shifts. However, most works focus

on graph-level tasks under supervised setting.

Dealing with node-level tasks without labels is more challenging

due to the interconnected samples, large scale of graphs and lack

of supervision. In this work, we aim to pioneer an OOD algorithm

for these tasks, addressing this challenging problem.

2.3 Graph Contrastive Learning
Problem definition. Graph contrastive learning (GCL) is a repre-

sentative self-supervised graph learning method [22, 62, 70, 77, 78].

It consists of three main components: view generation, view en-

coding, and representation contrasting (Figure 1). Given an input

graph 𝐺 , two graph augmentations 𝜏𝛼 and 𝜏𝛽 are used to generate

two augmented views𝐺𝛼 = 𝜏𝛼 (𝐺) and𝐺𝛽 = 𝜏𝛽 (𝐺), respectively. A
GNN model 𝑔𝜃 [33, 61, 67] is then applied to the augmented views

to produce node representations 𝑔𝜃 (𝐺𝛼 ) ∈ R𝑁×𝐷 . Lastly, a con-
trastive loss function is applied to representations, pulling together

the positive pairs while pushing apart negative pairs. Taking the

InfoNCE loss [47] as an example, the formulation follows:

LMI (𝑔𝜃 ;G, 𝜋) = − E
𝐺∈G
E𝜏𝛼 ,𝜏𝛽∼𝜋2




𝑔𝜃 (𝜏𝛼 (𝐺)) − 𝑔𝜃 (
𝜏𝛽 (𝐺)

)


2
+ E
𝐺∈G

log E
𝐺 ′∈G

E𝜏 ′∼𝜋
[
𝑒 ∥𝑔𝜃 (𝜏𝛼 (𝐺 ) )−𝑔𝜃 (𝜏

′ (𝐺 ′ ) ) ∥2
]
,

(2)

2 Submission ID: 77. 2023-10-12 13:18. Page 2 of 1–19.
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where 𝐺 ′ denotes a randomly sampled graph from the graph data

distribution G, serving as the constraint for non-collapsing repre-
sentations. For simplicity, the representation produced by encoder

is automatically normalized to a unit sphere, i.e., ∥𝑔𝜃 (𝐺)∥ = 1,∀𝐺 ∈
G. By minimizing this loss, the former term (aka alignment loss

L
align

[63]) pulls positive pairs together by encouraging their simi-

larity, and the latter term (aka uniformity lossL
uniform

[63]) pushes

negative pairs apart. The quality of the pre-trained graph encoder is

then evaluated by the linear separability of the final representations.

Namely, a linear classifier 𝑝𝜔 is built on top of the frozen encoder:

𝑝∗𝜔 = argmin

𝑝𝜔
E𝐺,𝑌∼𝑃train

[
ℓsup

(
𝑝𝜔 ◦ 𝑔∗𝜃 (𝐺), 𝑌

)]
, (3)

where 𝑔∗
𝜃
(·) is obtained by minimizing Equation 2 without labels.

For evaluating pre-trained model, the optimal graph predictor 𝑓 ∗
𝜙
=

𝑝∗𝜔 ◦ 𝑔∗𝜃 will be applied to testing data.

Related work. Unsupervised contrastive methods in graph do-

mains have recently shown impressive progress, even surpassing

supervised methods in some cases [25, 62, 70, 76–78]. These self-

supervised methods typically assume that training and test data

share the same distribution. However, their effectiveness under

real-world scenarios with distribution shifts between training and

test sets remains uncertain. In response, RGCL [40] introduces a ra-

tionale generator for discovering causal subgraphs, enhancing OOD

generalization within contrastive learning. Nevertheless, RGCL is

not suitable for node-level tasks due to memory constraints, and

finding rational subgraphs for individual nodes proves impractical.

Additionally, RGCL solely focuses on enhancing view generation.

In this work, we are the first to investigate the robustness of

graph self-supervised methods in the face of distribution shifts

on node-level tasks. We provide a model-agnostic approach to

enhance OOD generalization of GCL. In the next subsection, we

will formally define the problem of graph contrastive learning for

OOD generalization (GCL-OOD) and highlight its challenges.

2.4 GCL-OOD: Graph Contrastive Learning for
OOD Generalization

Suppose Φ(𝐺) is invariant rationales of input instance 𝐺 which is

stable in different environments (augmentations) following invari-

ance assumption [37, 55]:

E [𝑌 | Φ (𝐺𝑒 )] = E [𝑌 | Φ (𝐺𝑒′ )] , ∀𝑒, 𝑒′ ∈ supp (E𝑡𝑟 ) , (4)

where E𝑡𝑟 denotes the set of training environments
3
and the above

equation represents that invariant rationales exhibit predictive in-

variant (stable) correlations with semantic labels across different

environments.

The optimal (invariant) graph encoder 𝑔★
𝜃
achieves the invariant

rationales Φ(𝐺) across all the environments
4
:

𝑔★
𝜃
(𝐺𝑒 ) = 𝑔★𝜃 (𝐺𝑒′ ) = Φ(𝐺), ∀𝑒, 𝑒′ ∈ supp (E𝑡𝑟 ) . (5)

However, during the pre-training of GCL, we have no access to

labels under self-supervised setting. Here, we build a connec-

tion between pre-text loss LMI (𝑔𝜃 ;G, 𝜋) and downstream loss

3
Data in different environments has different data distributions.

4
We assume the augmentation function will not change the semantic labels of the

original input here.

View 

generation

View 

encoding

Representation 

contrasting

......

......

contrasting

( | )~

( | )~
( )

Figure 1: The pipeline of graph contrastive learning.

R
(
𝑔𝜃 ;Gtar

)
by upper-bounding referring to [28, 74]:

R (𝑝𝜔 ◦ 𝑔𝜃 ;G𝜋 ) ≤𝑐 ∥𝑝𝜔 ∥
√
𝐾𝜎

(
L
align
(𝑔𝜃 ;G, 𝜋)

) 1

4 + ∥𝑝𝜔 ∥𝜁 (𝜎, 𝛿)

+
𝐾∑︁
𝑘=1

G𝜋 (𝐶𝑘 ) ∥𝑒𝑘 − 𝑝𝜔 ◦ 𝜇𝑘 (𝑔𝜃 ;G𝜋 )∥ ,

(6)

where 𝑐 is a positive constant, 𝜁 (𝜎, 𝛿) is a set of constants that

only depends on (𝜎, 𝛿)-augmentation [28], 𝐶𝑘 ⊆ G is the set of the

data points in class 𝑘 , 𝜇𝑘 (𝑔𝜃 ;G) := E𝐺∼G [𝑔𝜃 (𝐺)] for 𝑘 ∈ [𝐾]. The
derivation and more illustrations can be found in Appendix A.

The first term in Equation 6 is the alignment loss optimized

during pre-training on G. The second term is determined by the

(𝜎, 𝛿) quantity of the data augmentation, with larger 𝜎 and smaller

𝛿 resulting in smaller 𝜁 (𝜎, 𝛿). The third term is associated with

the linear layer 𝑝 and is minimized in downstream training. The

class centers can be distinguished by choosing an appropriate reg-

ularization term L
uniform

, leading to the third term becoming 0

via 𝑝𝜔 . In short, Equation 6 implies that contrastive learning on

distribution G with augmentation function 𝜏 essentially optimizes

the upper-bound of supervised risk on the augmented distribution

G𝜏 resulting in a lower supervised risk. So, even without labels, we

can approach the goal formulated as Equation 5 during pre-training

to some extent, through modifying the main components in current

GCL methods which will be discussed in Section 3.

3 SHIFT-ROBUST GRAPH CONTRASTIVE
LEARNING

In this section, we will provide a Model-Agnostic Recipe for

Improving OOD generalization of GCL methods, dubbed MARIO.

A GCL training pipeline can be typically decomposed into three

components: (i) view generation, (ii) view encoding, and (iii) rep-

resentation contrasting, as illustrated in Figure 1. MARIO works

on the first (view generation) and the last component (represen-

tation contrasting), leaving the view encoding as an orthogonal

design choice for GCL methods. Therefore it can be applied to

various graph encoding models such as GCN [33], GAT [61], Graph-

SAGE [21] and etc.

In the remaining content, we will first analyze the drawbacks

of the two components in existing GCL methods for OOD gener-

alization and introduce our proposed recipe correspondingly in

Sec. 3.1 and Sec. 3.2. Finally, we will formulate the complete train-

ing scheme for graph OOD generalization problem in Sec. 3.3. The
complete derivation andmore detailed illustration of all lem-
mas, theorems and corollaries can be found in the Appendix.

Submission ID: 77. 2023-10-12 13:18. Page 3 of 1–19. 3
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3.1 Recipe 1: Revisiting Graph Augmentation
Data augmentation plays a crucial role in the transferability and

generalization ability of contrastive learning [10, 28, 58, 74]. It

is proved that contrastive learning on distribution G with aug-

mentation function 𝜏 essentially optimizes the supervised risk on

the augmented distribution G𝜏 instead of the original distribution

G [74]. Consequently, if the downstream distribution Gtar is simi-

lar to training distribution G, the encoder obtained by contrastive

learning shall perform well on it. Although the alignment loss in

the contrastive learning achieves certain level of generalization, the

learned representation distribution lacks domain invariance since

it only takes expectation over the augmentation distribution 𝜋 [74].

This limitation will hinder the OOD generalization of models [4, 74].

Our first improvement of graph contrastive learning based on

graph augmentation, inspired by invariant learning [4, 74], aims

to acquire domain-invariant features across {G𝜏 }𝜏∈T to address

Challenge 1. Firstly, let us retrospect invariant risk minimization [4].

Definition 1 (Invariant risk minimization, IRM). If there
is a classifier 𝑝𝜔∗ simultaneously optimal for all domains in B, we
will say that a data representation 𝑔𝜃 elicits an invariant predictor
𝑝𝜔∗ ◦ 𝑔𝜃 across a domain set B:

𝑝𝜔∗ ∈ argmin

𝑝𝜔
R(𝑝𝜔 ◦ 𝑔𝜃 ;G) for all G ∈ B, (7)

where R is the risk of the predictor 𝑝𝜔 ◦ 𝑔𝜃 measured on domain G.
Definition 1 yields the features that exhibit stable correlations

with the target variable. It has been empirically and theoretically

demonstrated that such features can enhance the generalization of

models across distribution shifts in supervised learning [1, 4]. By

settingB to the set of augmented graphs {G𝜏 }𝜏∈T , this concept can
be readily applied to graph contrastive learning methods with [53,

74]. The following definition of invariant alignment loss is the

proposed objective for GCL-OOD problem, and we will draw the

connection between Definition 1 and Definition 2 in Theorem 3.1.

Definition 2 (Invariant Alignment Loss). The invariant
alignment loss L

align
∗ of the graph encoder 𝑔𝜃 over the graph distri-

bution G is defined as

L
align

∗ (𝑔𝜃 ;G) := E
𝐺∈G

sup

𝜏,𝜏 ′∈T



𝑔𝜃 (𝜏 (𝐺)) − 𝑔𝜃 (
𝜏 ′ (𝐺)

)

2 . (8)

The invariant alignment loss measures the difference between

two representations under the most “challenging” two augmenta-

tions, rather than the trivial expectation as in Equation 2. Intuitively,

it avoids the situation where the encoder behaves extremely differ-

ently in different G𝜏 . A special case of binary classification problem

is analysed in Appendix B to substantiate it. Then we will discuss

why the supremum operator can solve such a dilemma.

Theorem 3.1 (Upper bound of variation across different

domains [74]). For two augmentation functions 𝜏 and 𝜏 ′, linear
predictor 𝑝 and representation𝑔, the variation across different domains
is upper-bounded by

sup

𝜏,𝜏 ′∈T
|R (𝑝 ◦ 𝑔;G𝜏 ) − R (𝑝 ◦ 𝑔;G𝜏 ′ ) | ≤ 𝑐 · ∥𝑝 ∥Lalign

∗ (𝑓 ,G). (9)

Furthermore, fix 𝑔 and let 𝑝𝜏 ∈ argmin𝑝 R (𝑝 ◦ 𝑔,G𝜏 ). Then we have
|R (𝑝𝜏 ◦ 𝑔;G𝜏 ′ ) − R (𝑝𝜏 ′ ◦ 𝑔;G𝜏 ′ ) | ≤

2𝑐 · (∥𝑝𝜏 ∥ + ∥𝑝𝜏 ′ ∥) Lalign
∗ (𝑔,G). (10)

The complete deduction and the connection between contrastive

loss and downstream risk R are in Appendix A. L
align

∗ replace the

expectation over T with the supremum in L
align

of Equation 2

resulting in L
align
(𝑔;G, 𝜋) ≤ L

align
∗ (𝑔;G) for all 𝑔 and 𝜋 , and the

augmentation function 𝜏 is randomly selected from the augmenta-

tion pool T based on distribution 𝜋 . When L
align

∗ is optimized to a

small value, it indicates that R (𝑝 ◦ 𝑔;G𝜏 ) remains consistent across

different augmentation functions 𝜏 , implying the optimal represen-

tation for G𝜏 is similar to G𝜏 ′ . That is, representation with smaller

L
align

∗ tends to elicit the same linear optimal predictors across

different domains, a property lacking in the original alignment loss.

Adversarial augmentation. One issue with substitut-

ing L
align

with L
align

∗ is the impracticality of estimating

sup𝜏,𝜏 ′∈T ∥𝑔(𝜏 (𝐺)) − 𝑔 (𝜏 ′ (𝐺))∥2, as it necessitates iterating

over all augmentation methods. In order to find the worst case

in the continuous space efficiently, we turn to the adversarial

training [31, 35, 54, 56] to approximate the supermum operator:

min

𝜃
E(𝐺,𝑌 )∼G

[
max

∥𝛿 ∥𝑝≤𝜖
𝐿 (𝑔𝜃 (𝑋 + 𝛿,𝐴), 𝑌 )

]
, (11)

where the inner loop maximizes the loss to approximate the most

challenging perturbation, whose strength ∥𝛿 ∥ ≤ 𝜖 is strictly con-

trolled so that it does not change the semantic labels of the original

view, e.g., 𝜖 = 1𝑒 − 3. Considering the training efficiency, in this

paper, we follow and further modify the supervised graph adversar-

ial training framework FLAG [35] to accommodate unsupervised

graph contrastive learning as follows:

min

𝜃
E(𝐺𝛼 ,𝐺𝛽 )∼G

[
max

∥𝛿 ∥𝑝≤𝜖
𝐿

(
𝑔𝜃 (𝑋𝛼 + 𝛿,𝐴𝛼 ), 𝑔𝜃 (𝑋𝛽 , 𝐴𝛽 )

)]
. (12)

While not entirely new, using adversarial augmentation in

graph learning models differs in our approach’s objective. Prior

works [30, 31] aimed to enhance model robustness against adver-

sarial attacks, while we utilize adversarial augmentation to boost

OOD generalization in GCL. Our contribution lies in providing

theoretical justifications and deeper insights into the benefits of

adversarial augmentation for OOD generalization within GCL.

3.2 Recipe 2: Revisiting Representations
Contrasting

The vanilla contrastive loss like Equation 2 aims to maximize the

lower bound of the mutual information between positive pairs.

However, there exists some redundant information (i.e., conditional
mutual information) that can impede the generalization of graph

contrastive learning. Our objective is to learn minimal sufficient

representation related to downstream task which can effectively

mitigate overfitting and demonstrate robustness against distribu-

tion shifts. In this subsection, we introduce a recipe for represen-

tation contrasting to improve the generalization of GCL methods,

motivated by the principle of information bottleneck (IB) [59] to

solve Challenge 2. In short, we refer to the modified contrastive loss

to get rid of supervision signals as well as learning generalized rep-

resentations to assist in addressing Challenge 1. (the IB constraint

4 Submission ID: 77. 2023-10-12 13:18. Page 4 of 1–19.
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Figure 2: Venn diagram of mutual information and condi-
tional mutual information
in conjunction with invariance principle effectively addresses key

failures linked to invariant features [1, 36].)

Definition 3 (Information Bottleneck, IB). Let 𝑋,𝑍,𝑌 repre-
sent random variables of inputs, embeddings, and labels respectively.
The formulation of information bottleneck’s training objective is

argmax

𝜃
𝑅𝐼𝐵 (𝜃 ) = 𝐼𝜃 (𝑍 ;𝑌 ) − 𝛽𝐼𝜃 (𝑍 ;𝑋 ), (13)

where 𝐼𝜃 represents mutual information estimator with parameters
𝜃 , and 𝛽 > 0 controls the trade-off between compression and the
downstream task performance (larger 𝛽 leads to lower compression
rate but high MI between the embedding 𝑍 and the label 𝑌 ).

The IB principle [3, 59] aims to learn a minimal sufficient rep-

resentation for the given task. It achieves this by maximizing the

mutual information between the representation and the target (suf-
ficiency) while constraining the mutual information between the

representation and the input data (minimality), as shown in Fig-

ure 2a. This learning paradigm helps combat overfitting and en-

hances resilience against distribution shifts [1, 36, 65].

Motivated by this principle, we modify the vanilla contrastive

loss [73, 77, 78] as Equation 19. Current graph contrastive learning

methods aim to maximize mutual information between positive

pairs, as depicted in Figure 2b. However, in scenarios with available

training labels, some information in the vanilla contrastive loss be-

comes redundant. In Figure 2b,𝑉1 and𝑉2 represent two augmented

views from the same sample G, and𝑈 and𝑉 represent their respec-

tive representations. Eliminating this redundant information aligns

with the IB principle. To describe this redundancy more precisely,

we introduce conditional mutual information (CMI).

Definition 4 (Conditional Mutual Information, CMI). The
conditional mutual information 𝐼 (𝑈 ;𝑉 | 𝑌 ) measures the expected
value of mutual information between𝑈 and 𝑉 given 𝑌 which can be
formulated as

I(𝑈 ;𝑉 | 𝑌 ) : = E𝑦∼𝑌
[
𝐷KL

(
𝑃𝑈 ,𝑉 |𝑌=𝑦 ∥𝑃𝑈 |𝑌=𝑦𝑃𝑉 |𝑌=𝑦

)]
=

∫
Y
𝐷KL

(
𝑃𝑈 ,𝑉 |𝑌 ∥𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

)
d𝑃𝑌 .

(14)

To reduce the redundant information and hence improve the

OOD generalization ability, we need to minimize the CMI between

two views𝑈 and 𝑉 . However, it is intractable to estimate the equa-

tion above. In this work, we appeal to mutual information esti-

mators (e.g., Donsker-Varadhan estimator [6, 14], Jensen-Shannon

estimator [6, 46], InfoNCE [20, 47]) to estimate the conditional

mutual information. Taking InfoNCE [47] as an example, the CMI

objective can be approximated as

LCMI (𝑈 ,𝑉 ) = −E𝑦∼𝑃𝑌
[
E𝑢,𝑣∼𝑃𝑈 ,𝑉 |𝑦 [sim (𝑢, 𝑣)]

+E𝑢∼𝑃𝑈 |𝑦 logE𝑣−∼𝑃𝑉 |𝑦
[
𝑒sim(𝑢,𝑣

− )
] ] (15)

where sim(𝑥,𝑦) is the cosine similarity function, the positive pairs

are drawn from the conditional joint distribution, and negative pairs

are drawn from the product of conditional marginal distribution.

In short, we first sample 𝑦 ∼ 𝑌 , and then we sample positive and

negative pairs from 𝑃𝑈 ,𝑉 |𝑦 and 𝑃𝑈 |𝑦𝑃𝑉 |𝑦 . The negative format of

Equation 2 is a lower bound of the conditional mutual information

𝐼 (𝑈 ;𝑉 | 𝑌 ). The proof can be found in Appendix D.

Online Clustering. The main challenge of applying the above

approximation to our unsupervised pre-training is the lack of la-

bels 𝑌 . To address this issue, we utilize online clustering tech-

niques to obtain pseudo labels. These pseudo labels are iteratively

refined during training, ensuring an increase in their mutual infor-

mation with the ground-truth labels [39]. To integrate clustering

into our pre-text task, we employ strategies similar to [9, 39]. We

will initialize learnable prototypes 𝒄𝑖 for each cluster 𝑖 and matrix

𝐶 = [𝑐1, 𝑐2, · · · , 𝑐𝐾 ] collects all column prototype vectors. For clus-

tering, we can simply calculate the similarity between𝐾 prototypes

and node representations 𝑢𝑖 and 𝑣𝑖 for node 𝑖:

𝑝𝑢𝑖 (𝑦 | 𝑢𝑖 ) = softmax

(
𝐶𝑇 · 𝑢𝑖

)
, 𝑞𝑣𝑖 (𝑦 | 𝑣𝑖 ) = softmax

(
𝐶𝑇 · 𝑣𝑖

)
,

(16)

where the prototypes 𝐶 are updated by solving the problem of

swapped prediction [9]:

L
clu
(𝑈 ,𝑉 ) =

𝐵∑︁
𝑖

[
ℓ
(
𝑝𝑢𝑖 , 𝑞𝑣𝑖

)
+ ℓ

(
𝑞𝑢𝑖 , 𝑝𝑣𝑖

) ]
,

where ℓ
(
𝑝𝑢𝑖 , 𝑞𝑣𝑖

)
= −

∑︁
𝑘

𝑞
(𝑘 )
𝑣𝑖 log 𝑝

(𝑘 )
𝑢𝑖 .

(17)

The clustering loss focuses on contrasting nodes by comparing

cluster assignments rather than their representations. However, it

may lead to a trivial solution where all samples are in one cluster.

To prevent this, we introduce a constraint for equal prototype

assignment partition [9]. Details can be found in Appendix E.

For stable training, we use bi-level optimization [41] for updating

the encoder and prototypes (more details in Section 3.3). With these

prototypes, we can infer the pseudo labels of node representations:

𝑌 = argmax𝐶𝑇𝑈 . (18)

Hence our final shift-robust contrastive loss can be formulated as

min

𝑔𝜃
L
rob

= argmax 𝐼𝜃 (𝑈 ;𝑉 ) − 𝛾𝐼𝜃 (𝑈 ;𝑉 | 𝑌 )

= argmin

𝑔𝜃

LMI − 𝛾LCMI,
(19)

where 𝐼𝜃 (𝑈 ;𝑉 ), 𝐼𝜃 (𝑈 ;𝑉 | 𝑌 ) can be instantiated as Equation 2 and

Equation 19 respectively; 𝛾 ≥ 0 controls the trade-off between com-

pression and pre-text task’s performance similar in Equation 13.

Intuitively, if the positive pairs have already shared the same se-

mantic labels in the feature space (i.e., belong to the same cluster),

the objective will reduce their shared information to avoid learn-

ing redundant information and overfitting [3, 65] during training,

which will bring performance gain in OOD generalization.

Submission ID: 77. 2023-10-12 13:18. Page 5 of 1–19. 5
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3.3 Model Training
Our shift-robust contrastive loss is formulated as Equation 19 which

involves maximizing the mutual information and minimizing the

conditional mutual information at the same time. As mentioned

in Section 3.2, bi-level optimization [41] is used for updating the

prototypes 𝐶 and other parameters in Equation 19:

𝑔𝑘+1 = argmin

𝑔
L
rob
(𝑔𝑘 ,𝐶𝑘+1;G,T),

𝐶𝑘+1 = argmin

𝐶
L
clu
(𝑔𝑘 ,𝐶;G,T),

(20)

where the parameter of the graph encoder 𝑔𝜃 is omitted for unclut-

tered notations. Concretely, we first fix the encoder 𝑔 and update

the prototypes with 𝑙 steps of SGD to approximate the argmin

optimization, and then with the near-optimal prototypes 𝐶 , we

update the parameters of the encoder for 1 step of SGD. With the

adversarial augmentation, our final optimization objective L
rob

for

the graph encoder is replaced by:

min

𝑔
E(𝐺𝛼 ,𝐺𝛽 )∼G

[
max

∥𝛿 ∥𝑝≤𝜖
L
rob

(
𝑔(𝑋𝛼 + 𝛿,𝐴𝛼 ), 𝑔(𝑋𝛽 , 𝐴𝛽 ),𝐶

)]
.

(21)

The combination of Invariance principle (Recipe 1) and Information

Bottleneck principle (Recipe 2) further enhances OOD generaliza-

tion in learned representations. Because invariance with IB con-

straint helps solve key failures linked to invariant features [1, 36].

The ablation study in Sec. 4.3 confirms this synergy in unsupervised

context, surpassing the performance of individual components. Fur-

thermore, the efficiency of ourmethod is comparable to GRACE [78].

More details and Algorithm can be found in Appendix F.

4 EXPERIMENTS
In this section, we first introduce the experimental setup including

datasets, training, and evaluation protocol in Sec. 4.1 and 4.2. We

then perform an ablation study to demonstrate the effectiveness of

each proposed component in Sec. 4.3. Lastly, we analyze the impact

of important hyper-parameters in Appendix 4.4. It is important to

note that we focus on node-level tasks (e.g., node classification)

in this work. As for graph-level tasks, we leave them as our fu-

ture work, while some simple experiments are also provided in

Appendix H.1. Additionally, we integrate our method with various

encoding models, showcasing the model-agnostic nature of our

recipe in Appendix H.3. And we provide some qualitative results

such as feature visualization in Appendix H.5.

4.1 Datasets
There exist some benchmarks for evaluating graph out-of-

distribution generalization [13, 19, 29]. Among them, GOOD [19]

is the most representative and comprehensive one. It curates more

diverse graph datasets with diverse tasks, including single/multi-

task graph classification, graph regression, and node classi-

fication involving more distribution shifts, i.e., concept shift

(supp (𝑃train (𝑋 )) ≈ supp (𝑃test (𝑋 )) and 𝑃train (𝑌 |𝑋 ) ≠ 𝑃test (𝑌 |𝑋 ))
[17] and covariate shift (𝑃train (𝑌 |𝑋 ) = 𝑃test (𝑌 |𝑋 ) and 𝑃train (𝑋 ) ≠
𝑃text (𝑋 )) [55]. Hence in this work, we follow the evaluation proto-

col proposed in [19]. Furthermore, we validate the effectiveness of

our method in the datasets (i.e., Amazon-Photo, Elliptic) that are

used in EERM [64]. The statistics and detailed introduction to these

datasets can be found in Table 4 and Appendix G.2.

4.2 Unsupervised Representation Learning
4.2.1 Transductive Setting. In this subsection, we validate our pro-

posed algorithm in the transductive setting, where test nodes par-

ticipate in message passing during training, following [19].

Baselines:We conduct experiments with 12 baselines from three

categories: (i) supervised methods, including empirical risk min-

imization (ERM) [60], FLAG [35], invariant risk minimization

(IRM) [4], and graph OOD method EERM [64]; (ii) self-supervised

generative methods including GAE [32], VGAE [32], Graph-
MAE [25]; (iii) self-supervised contrastive methods: DGI [62],MV-
GRL [22], GRACE [78], RoSA [77], BGRL [57], COSTA [73],

SwAV [9]. The descriptions of baselines are in Appendix G.1.

Experimental setup: To ensure a fair comparison, we use the same

model configuration for all methods, following [19], and perform

grid search to find optimal hyperparameters like learning rate and

epochs. More details can be found in Appendix G.3.

Analysis: Based on the experimental results listed in Table 1 and 2,

we can draw the following conclusions: firstly, we find strong self-

supervised methods (e.g., GRACE, BGRL, COSTA) are more robust

to distribution shifts compared to supervised methods. Secondly,

we find the methods designed for OOD generalization (i.e., IRM)

and graph OOD generalization (i.e., EERM) do not attain superior

performance than ERM on most of the datasets. This phenomenon

is also observed in [2, 19, 52], showcasing the challenge of achieving

invariant prediction in non-Euclidean graph settings.

Furthermore, our method surpasses other SOTA self-supervised

methods by a considerable margin on all OOD test sets while achiev-

ing comparable performance on in-distribution test sets. For in-

stance, on small datasets such as GOOD-CBAS, our method outper-

forms GRACE
5
by over 2% absolute accuracy on OOD test set. On

larger datasets like GOOD-Cora and GOOD-Twitch, our method

consistently outperforms others, with over 7% absolute accuracy

improvement on GOOD-Twitch’s OOD test set under covariate

shift. These statistics prove the effectiveness of our design.

4.2.2 Inductive Setting. In this subsection, we conduct experiments

under inductive settings, where test nodes are kept unseen during

training. This setting is more suitable for domain generalization.

Baselines: For GOOD-WebKB and GOOD-CBAS, we adopt ERM,

IRM, GraphMAE, and GRACE as baselines. For Amazon-Photo and

Elliptic datasets, we select ERM, EERM, and GRACE as our baselines.

As for the experimental setup, please refer to Appendix G.3.

Experimental setup: We conduct experiments on Amazon-Photo

dataset [68] and Elliptic [48] dataset in this subsection. These

datasets consist of many snapshots (training data and testing data

use different snapshots) which are naturally inductive. As for the

inductive setting on GOOD-WebKB and GOOD-CBAS datasets, the

results and analysis can be found in Appendix H.2.

Analysis: According to Figure 3,4,8, we can draw following con-

clusions: firstly, based on Figure 3, it is evident that our method

outperforms other representative supervised and self-supervised

methods on all test graphs (T1∼T8). This superiority is reflected in

5
We compare MARIO with GRACE [78] since it is built upon the latter method accord-

ing to our proposed recipe.

6 Submission ID: 77. 2023-10-12 13:18. Page 6 of 1–19.
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Table 1: Experimental results of all methods under concept shift. The bold font means the top-1 performance and the underline
represents the second performance across the unsupervised methods. ’ID’ represents in-distribution test performance and
’OOD’ means out-of-distribution test performance. (OOM: out-of-memory on a GPU with 24GB memory)

concept shift

GOOD-Cora GOOD-CBAS GOOD-Twitch GOOD-WebKB

word degree color language university

ID OOD ID OOD ID OOD ID OOD ID OOD

ERM [60] 66.38±0.45 64.44±0.18 68.60±0.40 60.76±0.34 89.79±1.39 83.43±1.19 80.80±1.00 56.92±0.92 62.67±1.53 26.33±1.09

FLAG [35] 66.84±0.51 65.15±0.17 68.48±0.95 61.25±0.76 88.43±2.32 82.14±0.55 80.93±0.84 57.24±0.64 60.33±1.64 25.78±1.39

IRM [4] 66.42±0.41 64.29±0.31 68.57±0.35 61.45±0.24 89.64±1.21 82.29±1.14 78.87±1.04 59.30±1.79 62.67±1.10 26.88±1.42

EERM [64] 65.10±0.44 62.45±0.19 66.95±0.44 56.58±0.25 79.07±2.12 64.50±1.01 OOM OOM 62.50±2.01 28.07±3.23

GAE [32] 60.65±0.89 58.00±0.55 62.59±1.11 53.44±0.80 75.28±1.36 68.07±2.05 81.25±0.81 51.51±1.05 62.17±3.34 25.78±1.85

VGAE [32] 63.19±0.53 60.35±0.47 61.65±0.66 54.28±0.28 76.50±0.50 59.07±0.56 80.46±0.53 55.56±4.53 62.50±2.38 24.40±2.57

GraphMAE [25] 66.44±0.46 64.87±0.30 67.95±0.46 59.41±0.39 89.14±0.89 82.93±0.93 80.05±0.64 59.38±1.49 61.83±3.37 29.27±2.15

DGI [62] 63.33±0.56 60.71±0.49 65.93±1.02 55.83±0.53 91.22±1.47 85.00±1.66 80.05±0.87 59.16±1.88 61.83±2.83 28.63±1.92

MVGRL [22] OOM OOM OOM OOM 88.57±1.15 76.50±1.17 OOM OOM 62.00±3.79 28.26±4.20

GRACE [78] 65.61±0.61 63.92±0.44 68.59±0.35 60.15±0.45 92.00±1.39 88.64±0.67 83.43±0.63 60.45±1.46 64.00±3.43 34.86±3.43

RoSA [77] 64.06±0.67 62.44±0.39 67.07±0.65 57.68±0.44 90.78±2.27 85.93±2.14 82.39±0.42 57.45±2.16 64.17±4.10 32.20±2.15

BGRL [57] 65.18±0.43 63.43±0.45 66.83±0.80 59.63±0.38 92.36±1.16 87.14±1.60 82.52±0.60 55.48±1.48 63.67±2.33 31.47±3.43

G-BT [7] 64.85±0.59 63.29±0.26 67.23±0.80 56.89±0.46 92.50±1.07 88.36±1.24 83.28±0.27 58.82±1.75 63.50±2.03 31.74±2.50

COSTA [73] 65.05±0.80 62.37±0.45 66.76±0.87 55.73±0.36 93.50±2.62 89.29±3.11 83.15±0.30 55.03±3.22 61.66±2.58 32.39±2.13

SwAV [9] 62.22±0.53 59.79±0.53 64.65±0.94 55.06±0.39 89.00±0.79 81.72±0.66 83.32±0.15 59.69±1.97 65.17±3.76 29.36±2.01

MARIO (ours) 67.11±0.46 65.28±0.34 68.46±0.40 61.30±0.28 94.36±1.21 91.28±1.10 82.31±0.54 63.33±1.72 65.67±2.81 37.15±2.37

Table 2: Experimental results of all methods under covariate shift.

covariate shift

GOOD-Cora GOOD-CBAS GOOD-Twitch GOOD-WebKB

word degree color language university

ID OOD ID OOD ID OOD ID OOD ID OOD

ERM [60] 70.50±0.41 64.69±0.33 72.46±0.49 55.53±0.50 92.00±3.08 77.57±1.29 70.98±0.41 49.35±5.09 39.34±1.79 14.52±3.14

FLAG [35] 70.82±0.45 64.98±0.22 72.88±0.31 56.25±0.33 92.43±2.12 79.00±1.70 70.69±0.59 46.87±1.86 40.65±1.77 14.68±3.04

IRM [4] 70.48±0.26 64.53±0.57 71.98±0.34 53.72±0.46 90.86±2.41 78.86±1.67 69.81±0.95 49.11±2.82 38.52±3.30 13.97±2.80

EERM [64] OOM OOM OOM OOM 65.00±2.57 57.43±3.60 OOM OOM 46.07±4.55 27.40±7.65

GAE [32] 56.63±0.79 48.93±0.93 66.30±0.88 34.01±0.87 73.00±2.16 60.86±3.01 67.24±1.23 47.65±2.49 45.08±6.32 28.02±6.29

VGAE [32] 62.02±0.66 54.12±0.86 69.41±0.57 44.20±1.29 62.29±2.04 63.29±1.11 66.99±1.43 50.48±4.58 48.85±4.68 20.87±6.69

GraphMAE [25] 68.14±0.43 64.00±0.33 73.36±0.56 53.75±0.55 67.28±3.03 67.28±1.49 68.84±1.20 48.02±2.79 48.03±4.34 30.00±8.09

DGI [62] 60.85±0.75 57.03±0.67 68.97±0.41 41.75±0.88 69.57±4.09 59.71±3.43 68.43±1.05 44.83±1.61 48.52±5.04 21.11±7.50

MVGRL [22] OOM OOM OOM OOM 65.00±1.94 64.15±0.77 OOM OOM 54.10±5.39 16.59±6.51

GRACE [78] 68.77±0.33 64.21±0.41 72.69±0.34 56.10±0.63 93.57±1.83 89.29±3.40 71.12±0.87 46.21±1.54 49.67±5.82 28.10±4.68

RoSA [77] 68.19±0.56 62.48±0.61 71.04±0.62 52.72±0.79 84.71±4.14 79.14±3.51 70.58±0.36 45.83±1.72 52.30±4.24 34.24±7.92

BGRL [57] 67.23±0.43 61.33±0.36 72.11±0.39 49.15±0.73 89.00±2.56 79.86±3.29 71.43±0.53 43.86±0.94 51.80±5.55 30.32±7.61

G-BT [7] 67.72±0.37 63.34±0.52 69.89±0.60 54.18±0.55 94.00±1.24 91.29±2.67 71.25±0.75 46.36±1.60 53.77±4.80 25.48±8.81

COSTA [73] 65.28±0.60 60.33±0.53 70.65±0.62 54.03±0.28 92.29±1.59 82.71±2.74 69.29±1.37 49.07±2.13 50.49±3.01 29.84±4.75

SwAV [9] 63.29±1.01 56.98±0.94 70.27±0.73 43.00±0.52 89.57±1.12 81.43±1.69 69.19±0.93 49.37±2.96 49.84±4.82 30.55±6.72

MARIO(ours) 69.99±0.54 65.06±0.34 72.73±0.43 57.73±0.45 95.43±1.40 95.00±2.41 68.31±0.78 57.37±1.37 53.94±3.23 35.24±4.98

Figure 3: Results on Amazon-photo with artificial distribution shifts. T1-T8 are distinct test graphs created by environment IDs.

the larger median value of our method compared to others. For in-

stance, MARIO achieves over a 3% absolute improvement compared

to ERM in terms of the mean value of eight median values.

Secondly, from the results presented in Figure 4, we can observe

that our method averagely harvests 10.9% absolute improvement

over GRACE and 12.5% absolute improvement over EERM in terms

of F1 scores on Elliptic dataset. This demonstrates the effectiveness

of our method in handling distribution shifts and improving per-

formance compared to existing approaches. It is worth noting that

GRACE’s performance worsens over time, indicating its inability to
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Table 3: Ablation studies for MARIO by masking each component.

concept shift

GOOD-Cora GOOD-CBAS GOOD-Twitch GOOD-WebKB

word degree color language university

ID OOD ID OOD ID OOD ID OOD ID OOD

MARIO 67.11±0.46 65.28±0.34 68.46±0.40 61.30±0.28 94.36±1.21 91.28±1.10 82.31±0.54 63.33±1.72 65.67±2.81 37.15±2.37
MARIO(w/o ad) 66.23±0.53 64.02±0.18 67.88±0.38 60.46±0.29 93.21±1.25 90.29±0.91 82.42±0.73 60.50±1.02 64.83±2.83 36.51±3.25

MARIO(w/o cmi) 65.32±0.60 63.51±0.32 68.14±0.32 61.19±0.34 94.15±1.23 90.57±1.96 82.51±0.56 61.41±2.63 64.50±4.35 35.78±2.53

MARIO(w/o cmi, ad) 64.67±0.55 63.11±0.32 67.95±0.65 60.01±0.57 93.36±1.66 89.64±1.73 81.90±0.75 60.12±1.60 64.17±3.67 34.13±2.38

handle distribution shifts effectively. In contrast, our method con-

sistently achieves better F1 scores, except for T9, which is caused

by the dark market shutdown occurred after T7 [48].

Overall, the observations we have made provide strong evidence

of the great capacity of our method for handling distribution shifts,

validating its effectiveness and potential for real-world applications.

Figure 4: Experiment results on Elliptic dataset with label
distribution shifts. T1∼T9 denote different groups of test
graph snapshots according to the chronological order.

4.3 Ablation Studies
Table 3 provides a detailed analysis of the effect of each component

according to our proposed recipe for improving OOD generaliza-

tion in graph contrastive learning. We examine the different vari-

ants of our method and their impact on performance. Specifically,

MARIO (w/o ad) represents MARIO without adversarial augmen-

tation. MARIO (w/o cmi) denotes we only maximize the mutual

information between positive pairs without considering conditional

mutual information. MARIO (w/o cmi, ad) means a vanilla graph

contrastive method that is similar to GRACE.

From Table 3, we observe that MARIO (w/o cmi) significantly un-

derperforms MARIO on OOD test sets, emphasizing the importance

of minimizing redundant information for improving OOD general-

ization in GCL methods. Adversarial augmentation also contributes

to improved OOD generalization by approximating a supremum

operator, enabling the learning of more invariant features, as dis-

cussed in Section 3.1. In summary, the analysis of these variants

confirms the effectiveness of the proposed enhancements in data

augmentation and contrastive loss. Each component enhances per-

formance, and their combination creates a stronger self-supervised

graph learner with improved graph OOD generalization.

4.4 Sensitivity Analysis
In this section, we perform sensitivity analysis on two crucial hyper-

parameters of our method using the GOOD-WebKB dataset with

concept shift. We explore different values for the coefficient 𝛾 in

Equation 19 and the number of prototypes |𝐶 | in Equation 16. The

analysis reveals that the best OOD test accuracy is achieved with

𝛾 = 0.1 and |𝐶 | set to 100 or 200. Both higher and lower values of 𝛾

and |𝐶 | result in suboptimal performance. These findings emphasize

the importance of selecting appropriate hyper-parameter values to

balance compression levels and pseudo label counts which are also

found in DIB [3], leading to improved graph OOD generalization.

Based on the sensitivity analysis, we determined that setting𝛾 = 0.1

and |𝐶 | = 100 on most datasets, as these hyperparameter values

optimize graph OOD generalization while maintaining a reasonable

compression level and pseudo label count.

Figure 5: Sensitivity Analysis on CMI coefficient and the
number of prototypes.

5 CONCLUSION
In this work, we propose a model-agnostic recipe called MARIO

(Model-Agnostic Recipe for Improving OOD Generalization) to ad-

dress the challenges of distribution shifts in graph contrastive learn-

ing. Specifically, this recipe mainly aims to address the drawbacks

of the main components (i.e., view generation and representation

contrasting) in graph contrastive learning while facing distribution

shifts motivated by invariant learning and information bottleneck

principles. To the best of our knowledge, this is the first work that

investigates the OOD generalization problem of graph contrastive

learning specifically for node-level tasks. We conduct substantial

experiments to show the superiority of our method on various

real-world datasets with diverse distribution shifts. This research

contributes to bridging the gap in understanding and addressing

distribution shifts in graph contrastive learning, providing valuable

insights for future research in this area.
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A PROOFS IN SECTION 2
In this section, we will illustrate some notations mentioned in

Equation 6 firstly, and then we will provide a proof of Equation 6.

Definition 5 ((𝜎, 𝛿)-augmentation[28]). Let 𝐶𝑘 ⊆ G denote
the set of all points in class 𝑘 . A graph augmentation set T can be
referred to as a (𝜎, 𝛿)-augmentation on G, where 𝜎 ∈ (0, 1] and 𝛿 > 0.
This is the case if, for every 𝑘 ∈ [𝐾], there exists a subset 𝐶0

𝑘
⊆ 𝐶𝑘

such that the following conditions hold:

𝑃𝐺∼G
(
𝐺 ∈ 𝐶0

𝑘

)
≥ 𝜎𝑃𝐺∼G (𝐺 ∈ 𝐶𝑘 ) ,

and sup

𝐺1,𝐺2∈𝐶0

𝑘

𝑑𝐴 (𝐺1,𝐺2) ≤ 𝛿, (22)

where 𝑑A (𝐺1,𝐺2) := inf𝜏1,𝜏2∈T 𝑑 (𝜏1 (𝐺) , 𝜏2 (𝐺)) for some distance
𝑑 (·, ·).

This definition quantifies the concentration of augmented data.

An augmentation set with a smaller value of 𝛿 and a larger value of𝜎

results in a more clustered arrangement of the original data. In other

words, samples from the same class are closer to each other after

augmentation. Consequently, one can anticipate that the learned

representation 𝑔𝜃 will exhibit improved cluster performance. This

principle was proposed in [28] and modified to a more practical

scenario by [74].

Proof of Equation 6. For simplicity, we omit the notations G and

𝜋 here and omit the parameters 𝜃, 𝜔 of 𝑔𝜃 and 𝑝𝜔 , and use 𝐺1 to

denote the augmented data, use 𝑡𝑘 to represent G𝜋 (𝐶𝑘 ) and use 𝜇𝑘
to denote 𝜇𝑘 (𝑔;G𝜋 ). Based on Theorem 2, Lemma B.1 in [28], and

Appendix B in [74], we have

E
𝐺∈𝐶𝑘

∥𝑔 (𝐺1) − 𝜇𝑘 ∥ ≤ 𝑐
√︄

1

𝑡𝑘
L

1

4

align
(𝑔) + 𝜁 (𝜎, 𝛿) (23)

for some constant 𝑐 , where

𝜁 (𝜎, 𝛿) := 4

(
1 − 𝜎

(
1 − 𝐿𝛿

4

))
(24)

We can find 𝜁 is decreasing with 𝜎 and increasing with 𝛿 . So, we

can obtain:

𝑐

(
𝐾∑︁
𝑘=1

√︁
𝑡𝑘

)
L

1

4

align
(𝑓 ) + 𝜁 (𝜎, 𝛿)

≥
𝐾∑︁
𝑘=1

𝑡𝑘 E
𝐺∈𝐶𝑘

∥𝑔 (𝐺1) − 𝜇𝑘 ∥

≥
𝐾∑︁
𝑘=1

𝑡𝑘

∥𝑝 ∥ E𝐺∈𝐶𝑘

E
𝐺1∈𝜏 (𝐺 )

∥𝑝 ◦ 𝑔 (𝐺1) − 𝑝 ◦ 𝜇𝑘 ∥

≥
𝐾∑︁
𝑘=1

𝑡𝑘

∥𝑝 ∥ E𝐺∈𝐶𝑘

E
𝐺1∈𝜏 (𝐺 )

∥𝑝 ◦ 𝑔 (𝐺1) − 𝑒𝑘 ∥

− 1

∥𝑝 ∥

𝐾∑︁
𝑘=1

𝑡𝑘 ∥𝑒𝑘 − 𝑝 ◦ 𝜇𝑘 ∥

=
1

∥𝑝 ∥ R(𝑝 ◦ 𝑔) −
1

∥𝑝 ∥

𝐾∑︁
𝑘=1

𝑡𝑘 ∥𝑒𝑘 − 𝑝 ◦ 𝜇𝑘 ∥

(25)

for all linear layer 𝑝 ∈ R𝐾×𝑑1 . Therefore, we obtain

R(𝑝 ◦ 𝑔) ≤ 𝑐 ∥𝑝 ∥L
1

4

align

𝐾∑︁
𝑘=1

√︁
𝑡𝑘 + ∥𝑝 ∥𝜁 (𝜎, 𝛿)

+
𝐾∑︁
𝑘=1

𝑡𝑘 ∥𝑒𝑘 − 𝑝 ◦ 𝜇𝑘 ∥

≤ 𝑐 ∥𝑝 ∥
√
𝐾L

1

4

align
+ ∥𝑝 ∥𝜁 (𝜎, 𝛿)

+
𝐾∑︁
𝑘=1

𝑡𝑘 ∥𝑒𝑘 − 𝑝 ◦ 𝜇𝑘 ∥ .

(26)

B SPECIAL CASE
The case adopted from [74] is used to prove the encoders learned

through contrastive learning could behave extremely differently in

different G𝜏 .

Proposition B.1. Consider a binary classification problem with
data (𝑋1, 𝑋2) ∼ N (0, 𝐼2). If 𝑋1 ≥ 0, the label 𝑌 = 1, and the data
augmentation is to multiply 𝑋2 by standard normal noise:

𝜏𝜃 (𝑋 ) = (𝑋1, 𝜃 · 𝑋2)
𝜃 ∼ N(0, 1) (27)

The transformation-induced domain set is B =

{G𝑐 : G𝑐 = (𝑋1, 𝑐 · 𝑋2) for 𝑐 ∈ R}. Considering the 0-1 loss,
∀𝜀 ≥ 0, there holds representation 𝑔 and two domains G𝑐 and G𝑐′
such that

Lalign (𝑔;G, 𝜋) < 𝜀 (28)

but 𝑔 behaves extremely differently in different domains G𝑐 and G𝑐′ :

|R (𝑔;G𝑐 ) − R (𝑔;G𝑐′ ) | ≥
1

4

(29)

This instance6 illustrates that the obtained representation with small
contrastive loss will still exhibit significantly varied performance over
different augmentation-induced domains. The underlying idea behind
this example lies in achieving a small Lalign by aligning different
augmentation-induced domains in an average sense, rather than a
uniform one. Consequently, the representation might still encounter
large alignment losses on certain infrequently chosen augmented
domains.

Proof. For 𝜀 ≥ 0, let 𝑡 =
√
𝜀/2 and 𝑔(𝑥1, 𝑥2) = 𝑥1 + 𝑡𝑥2 . Then, the

alignment loss of 𝑔 satisfies:

L
align
(𝑔;G, 𝜋) = 𝑡2E𝑋 2

2
E

(𝜃1,𝜃2 )∼N(0,1)2
(𝜃1 − 𝜃2)2 = 2𝑡2 < 𝜀. (30)

Set 𝑐 as 0 and 𝑐′ as 1/𝑡 , it is obviously that:

R (𝑔;G𝑐 ) = 0 (31)

but

R (𝑔;G𝑐′ ) =

𝑃 (𝑋1 < 0, 𝑋1 + 𝑋2 ≥ 0) + 𝑃 (𝑋1 ≥ 0, 𝑋1 + 𝑋2 ≤ 0) = 1

4

(32)

6
For simplicity, we assume the adjacent matrix is an identity matrix here.
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C PROOF OF THEOREM 3.1
Proof of Theorem 3.1:

R (𝑝 ◦ 𝑔;G𝜏 ) − R (𝑝 ◦ 𝑔;G𝜏 ′ )

= E
(𝐺,𝑌 )∼G

(
|𝑝 ◦ 𝑔(𝜏 (𝐺)) − 𝑌 |2 −

��𝑝 ◦ 𝑔 (
𝜏 ′ (𝐺)

)
− 𝑌

��2)
= E
(𝐺,𝑌 )∼G

(
𝑝 ◦ 𝑔(𝜏 (𝐺)) − 𝑝 ◦ 𝑔

(
𝜏 ′ (𝐺)

) )
((𝑝 ◦ 𝑔(𝜏 (𝐺))+

𝑝 ◦ 𝑔
(
𝜏 ′ (𝐺)

) )
+ 2𝑌

)
≤ 𝑐 E
(𝐺,𝑌 )∼G



𝑝 ◦ 𝑔(𝜏 (𝐺)) − 𝑝 ◦ 𝑔 (
𝜏 ′ (𝐺)

)


≤ 𝑐 ∥𝑝 ∥ E

(𝐺,𝑌 )∼G



𝑔(𝜏 (𝐺)) − 𝑔 (
𝜏 ′ (𝐺)

)


≤ 𝑐 ∥𝑝 ∥L

align
∗ (𝑔)

(33)

D PROOF OF CMI LOWER BOUND
In this section, we provide a theoretical justification of why Equa-

tion 2 is a lower bound of CMI. And some justifications are borrowed

from [42, 45]. Firstly, we present the following lemmas which will

be used.

D.1 Fundamental Lemmas
Lemma D.1. Let𝑈 and 𝑉 be two random variables whose sample

spaces areU andV , 𝑓 : (U ×V) → R be a mapping function, and
P and Q be the probability measures onU ×V , we can obtain:

𝐷KL (P∥Q) = sup

𝑓

E(𝑢,𝑣)∼P [𝑓 (𝑢, 𝑣)] − E(𝑢,𝑣)∼Q
[
𝑒 𝑓 (𝑢,𝑣)

]
+ 1 (34)

Proof. The second-order functional derivative of the above func-
tion is −𝑒 𝑓 (𝑢,𝑣) · 𝑑Q. This negative term means Equation 34 has a

supreme value. Through setting the first-order functional deriva-

tive as zero 𝑑P − 𝑒 𝑓 (𝑢,𝑣) · 𝑑Q = 0, we can get the optimal mapping

function 𝑓 ∗ (𝑢, 𝑣) = log
𝑑P
𝑑Q

. Rewrite the Equation 34 with 𝑓 ∗:

EP
[
𝑓 ∗ (𝑢, 𝑣)

]
−EQ

[
𝑒 𝑓
∗ (𝑢,𝑣)

]
+1 = EP

[
log

𝑑P

𝑑Q

]
= 𝐷KL (P∥Q) (35)

Lemma D.2. Let 𝑈 , 𝑉 , and 𝑌 be three random variables whose
sample spaces areU,V andY, 𝑓 : (U×V×Y) → R be a mapping
function, and P and Q be the probability measures onU ×V ×Y,
we can obtain:

𝐷KL (P∥Q) = sup

𝑓

E(𝑢,𝑣,𝑦)∼P [𝑓 (𝑢, 𝑣,𝑦)]

− E(𝑢,𝑣,𝑦)∼Q
[
𝑒 𝑓 (𝑢,𝑣,𝑦)

]
+ 1

(36)

Proof. The second-order functional derivative of the above func-
tion is −𝑒 𝑓 (𝑢,𝑣,𝑦) · 𝑑Q. This negative term means Equation 36 has a

supreme value. Through setting the first-order functional derivative

as zero 𝑑P − 𝑒 𝑓 (𝑢,𝑣,𝑦) · 𝑑Q = 0, we can get the optimal mapping

function 𝑓 ∗ (𝑢, 𝑣,𝑦) = log
𝑑P
𝑑Q

. Rewrite the Equation 36 with 𝑓 ∗:

EP
[
𝑓 ∗ (𝑢, 𝑣,𝑦)

]
− EQ

[
𝑒 𝑓
∗ (𝑢,𝑣,𝑦)

]
+ 1 = EP

[
log

𝑑P

𝑑Q

]
= 𝐷KL (P∥Q)

(37)

D.2 Results based on Lemma D.1
Lemma D.3.

Weak-CMI(𝑈 ;𝑉 | 𝑌 )

= 𝐷KL

(
𝑃𝑈 ,𝑉 ∥E𝑃𝑌

[
𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

] )
= sup

𝑓

E(𝑢,𝑣)∼𝑃𝑈 ,𝑉
[𝑓 (𝑢, 𝑣)]

− E(𝑢,𝑣)∼E𝑃𝑌 [𝑃𝑈 |𝑌 𝑃𝑉 |𝑌 ]
[
𝑒 𝑓 (𝑢,𝑣)

]
+ 1

(38)

Proof. Let P be the joint distribution 𝑃𝑈 ,𝑉 and Q be expecta-

tion on the product of marginal distribution E𝑃𝑌
[
𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

]
in

Lemma D.1.

Lemma D.4.

sup

𝑓

E(𝑢,𝑣1 )∼P,(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1)

log
𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )


≤ 𝐷KL (P∥Q)

(39)

Proof. ∀𝑓 , we can draw:

𝐷KL (P∥Q) = E(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1) [𝐷KL (P∥Q)]

≥ E(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1)
E(𝑢,𝑣1 )∼P

log
𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )


−E(𝑢,𝑣1 )∼Q


𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )

 + 1


= E(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1)

[
E(𝑢,𝑣1 )∼P

log
𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )


− 1 + 1

]
= E(𝑢,𝑣1 )∼P,(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1)

log
𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )

 .

(40)

In detail, the first line always exists because𝐷KL (P∥Q) is a constant.
The second line comes from Lemma D.1. And because (𝑢, 𝑣1) and
(𝑢, 𝑣2:𝑛) can be interchangeable when they are all sampled from Q,
we can obtain the result in the third line. In conclusion, since the

inequality works for ∀𝑓 , we can obtain Lemma D.4

D.3 Results based on Lemma D.2
Lemma D.5.

CMI(𝑈 ;𝑉 | 𝑌 ) := E𝑃𝑌
[
𝐷KL

(
𝑃𝑈 ,𝑉 |𝑌 ∥𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

)]
= 𝐷KL

(
𝑃𝑈 ,𝑉 ,𝑌 ∥𝑃𝑌 𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

)
= sup

𝑓

E(𝑢,𝑣,𝑦)∼𝑃𝑈 ,𝑉 ,𝑌
[𝑓 (𝑢, 𝑣,𝑦)]

− E(𝑢,𝑣,𝑦)∼𝑃𝑌 𝑃𝑈 |𝑌 𝑃𝑉 |𝑌
[
𝑒 𝑓 (𝑢,𝑣,𝑦)

]
+ 1

(41)
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D.4 Proving Weak-CMI (𝑈 ;𝑉 |𝑌 ) < CMI(𝑈 ;𝑉 |𝑌 )
Proposition D.6. Weak-CMI (𝑈 ;𝑉 | 𝑌 ) ≤ CMI(𝑈 ;𝑉 | 𝑌 ) .

Proof. According to Lemma D.3,

Weak-CMI(𝑈 ;𝑉 | 𝑌 )
= sup

𝑓

E(𝑢,𝑣)∼𝑃𝑈 ,𝑉
[𝑓 (𝑢, 𝑣)]

− E(𝑢,𝑣)∼E𝑃𝑌 [𝑃𝑈 |𝑌 𝑃𝑉 |𝑌 ]
[
𝑒 𝑓 (𝑢,𝑣)

]
+ 1

= sup

𝑓

E(𝑢,𝑣,𝑦)∼𝑃𝑈 ,𝑉 ,𝑌
[𝑓 (𝑢, 𝑣)]

− E(𝑢,𝑣,𝑦)∼𝑃𝑌 𝑃𝑈 |𝑌 𝑃𝑈 |𝑌
[
𝑒 𝑓 (𝑢,𝑣)

]
+ 1

(42)

When the equality for Weak-CMI holds, we assume the function

as 𝑓 ∗
1
(𝑢, 𝑣). And let 𝑓 ∗

2
(𝑢, 𝑣,𝑦) = 𝑓 ∗

1
(𝑢, 𝑣) which means ∀𝑦 ∼ 𝑃𝑌 ,

𝑓 ∗
2
(𝑢, 𝑣,𝑦) will not change. Then, we can get:

Weak-CMI(𝑈 ;𝑉 | 𝑌 )
= E(𝑢,𝑣,𝑦)∼𝑃𝑈 ,𝑉 ,𝑌

[
𝑓 ∗
1
(𝑢, 𝑣)

]
− E(𝑢,𝑣,𝑦)∼𝑃𝑌 𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

[
𝑒 𝑓
∗
1
(𝑢,𝑣)

]
+ 1

= E(𝑢,𝑣,𝑦)∼𝑃𝑈 ,𝑉 ,𝑌

[
𝑓 ∗
2
(𝑢, 𝑣,𝑦)

]
− E(𝑢,𝑣,𝑦)∼𝑃𝑌 𝑃𝑈 |𝑌 𝑃𝑈 |𝑌

[
𝑒 𝑓
∗
2
(𝑢,𝑣,𝑦)

]
+ 1

(43)

Comparing Equation 43 with Lemma D.5, we can conclude

Weak-CMI (𝑈 ;𝑉 | 𝑌 ) ≤ CMI(𝑈 ;𝑉 | 𝑌 ).

D.5 Showing the Equation 2 is a lower bound of
CMI

Proposition D.7. We restate the Equation 2 in the main text, and
call it as the estimate of CMI (CMIE):

CMIE := sup

𝑓

E
𝑦∼𝑃𝑌

E(𝑢𝑖 ,𝑣𝑖 )∼𝑃𝑈 ,𝑉 |𝑦⊗𝑛

log
𝑒 𝑓 (𝑢𝑖 ,𝑣𝑖 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢𝑖 ,𝑣𝑗 )




≤ 𝐷KL

(
𝑃𝑈 ,𝑉 ∥E𝑃𝑌

[
𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

] )
= Weak-CMI (𝑈 ;𝑉 | 𝑌 ) ≤ CMI(𝑈 ;𝑉 | 𝑌 )

(44)

Proof. By defining P = 𝑃𝑈 ,𝑉 and Q = E𝑃𝑌
[
𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

]
we can

obtain:

E(𝑢,𝑣1 )∼P,(𝑢,𝑣2:𝑛 )∼Q⊗(𝑛−1)

log
𝑒 𝑓 (𝑢,𝑣1 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢,𝑣𝑗 )

 =

E𝑦∼𝑃𝑌

E(𝑢𝑖 ,𝑣𝑖 )∼𝑃𝑈 ,𝑉 |𝑦⊗𝑛

log
𝑒 𝑓 (𝑢𝑖 ,𝑣𝑖 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢𝑖 ,𝑣𝑗 )




(45)

Combined with Lemma D.4, we can deduce:

sup

𝑓

E𝑦∼𝑃𝑌

E(𝑢𝑖 ,𝑣𝑖 )∼𝑃𝑈 ,𝑉 |𝑦⊗𝑛

log
𝑒 𝑓 (𝑢𝑖 ,𝑣𝑖 )

1

𝑛

∑𝑛
𝑗=1 𝑒

𝑓 (𝑢𝑖 ,𝑣𝑗 )


 ≤

𝐷KL

(
𝑃𝑈 ,𝑉 ∥E𝑃𝑌

[
𝑃𝑈 |𝑌 𝑃𝑉 |𝑌

] ) (46)

Through Proposition 42 that Weak-CMI (𝑈 ;𝑉 | 𝑌 ) ≤ CMI(𝑈 ;𝑉 |
𝑌 ), we can draw the conclusion that CMIE is a lower bound of CMI.

E ONLINE CLUSTERING
To avoid the trivial solution, we add the constraint that the proto-

type assignments must be equally partitioned following:

Q =

{
𝑄 ∈ R𝐾×𝐵+ | 𝑄1𝐵 =

1

𝐾
1𝐾 , 𝑄

⊤1𝐾 =
1

𝐵
1𝐵

}
, (47)

where the matrix 𝑄 = [𝑞𝑢1 , 𝑞𝑢2 , · · · , 𝑞𝑢𝐵 ] will be optimized that

belong to transportation polytope, 1𝐾 ,1𝐵 denotes the vectors of all

ones containing K, B dimension. Then, the objective function of

Equation 17 can be reformulated as

min

𝑝,𝑞
L
clu

= min

𝑄∈Q
⟨𝑄,− log 𝑃⟩F − log𝐵, (48)

where 𝑃 = [ 1
𝐵
𝑝𝑢1 , · · · , 1𝐵 𝑝𝑢𝐵 ] is calculated by Equation 16 and ⟨·⟩F

is the Frobenius dot-product. The loss function in Equation 48 is

an optimal transport problem that can be efficiently addressed by

iterative Sinkhorn-Knopp algorithm [12]:

𝑄∗ = Diag(𝑡) exp
(
𝑃𝜆

)
Diag(𝑟 ), (49)

where 𝑡 and 𝑟 are renormalization vectors which are calculated by

the iterative Sinkhorn-Knopp algorithm, and the hyper-parameter

𝜆 is employed to balance the convergence speed and the proximity

to the original transport problem.

F ALGORITHM
The augmentation process consists of two main steps. First, the

augmentation function (which includes feature masking and edge

dropping) is applied to the original graph, resulting in two aug-

mented views. Second, a learnable perturbation is added to one of

the views’ input feature spaces. These two augmented views are

then fed into a shared encoder to obtain node representations. The

final step involves applying the contrastive loss to these represen-

tations. To optimize the perturbation, we maximize the contrastive

loss in the inner loop while accumulating gradients to optimize

the encoder parameters in the outer loop. The complete pipeline is

detailed in Algorithm 1.

G EXPERIMENTAL DETAILS
G.1 Baselines
We consider empirical risk minimization (ERM), one OOD algo-

rithm IRM and one graph-specific OOD algorithm EERM as super-

vised baselines. And we include eleven self-supervised methods as

unsupervised baselines:

• Invariant Risk Minimization (IRM [4]) is an algorithm that

seeks to learn data representations that are robust and gen-

eralize well across different environments by penalizing

feature distributions that have different optimal linear clas-

sifiers for each environment

• EERM [64] generates multiple graphs by environment gen-

erators and minimizes the mean and variance of risks from

multiple environments to capture invariant features.

• Graph Autoencoder (GAE [32]) is an encoder-decoder struc-

ture model. Given node attributes and structures, the en-

coder will compress node attributes into low-dimension

latent space, and the decoder (dot-product) hopes to recon-

struct existing links with compact node features.
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Algorithm 1 Algorithm for a shift-robust framework for graph

contrastive learning.

Input: Augmentation pool T , ascent steps𝑀 , ascent step size 𝜖 ,

encoder 𝑔𝜃 , projector 𝑝𝜔 , and training graph 𝐺 = (𝐴,𝑋 )
1: while not converge do
2: 𝜏𝛼 , 𝜏𝛽 ∼ T
3: 𝐺𝛼 ,𝐺𝛽 = 𝜏𝛼 (𝐺), 𝜏𝛽 (𝐺)
4: 𝐶 = argmin𝐶 Lclu

(
𝑔(𝐺𝛼 ), 𝑔(𝐺𝛽 ),𝐶

)
5: 𝛿0 ← 𝑈 (−𝜖, 𝜖)
6: ℏ0 ← 0

7: for t = 1 . . . 𝑀 do
8: 𝑍𝛼 = 𝑝𝜔 ◦ 𝑔𝜃 (𝑋𝛼 + 𝛿𝑡−1, 𝐴𝛼 )
9: 𝑍𝛽 = 𝑝𝜔 ◦ 𝑔𝜃 (𝑋𝛽 , 𝐴𝛽 )
10: ℏ𝑡 ← ℏ𝑡−1 + 1

𝑀
· ∇𝜃,𝜔Lrob

(
𝑍𝛼 , 𝑍𝛽 ,𝐶

)
11: ℏ𝛿 ← ∇𝛿Lrob

(
𝑍𝛼 , 𝑍𝛽 ,𝐶

)
12: 𝛿𝑡 ← 𝛿𝑡−1 + 𝜖 · ℏ𝛿/∥ℏ𝛿 ∥𝐹
13: end for
14: 𝜃 ← 𝜃 − 𝜂 · ℏ𝑀,𝜃
15: 𝜔 ← 𝜔 − 𝜂 · ℏ𝑀,𝜔
16: end while

• Variational Graph Autoencoder (VGAE [32]) is similar to

GAE but the node features are re-sampled from a normal

distribution through a re-parameterization trick.

• GraphMAE [25] is a masked autoencoder. Different to GAE

and VGAE, it will mask partial input node attributes firstly

and then the encoder will compress the masked graph

into latent space, finally a decoder aims to reconstruct the

masked attributes.

• Deep Graph Infomax (DGI [62]) is a node-graph contrastive

methodwhich contrasts the node representations and graph

representation. First, it will apply the corrupt function to

obtain a negative graph and two graphs will be fed into a

shared GNN model to generate node embeddings. And a

readout function will be applied on the original node em-

beddings to obtain graph-level representation. Corrupted

embeddings and readout graph representation are consid-

ered as positive pairs, original node representations and

readout graph representation are considered as positive

pairs.

• MVGRL [22] is similar to DGI but utilizes the information

of multi-views. Firstly, it will use edge diffusion function to

generate an augmented graph. And asymmetric encoders

will be applied on the original graph and diffusion graph to

acquire node embeddings. Next, a readout function is em-

ployed to derive graph-level representations. Original node

representations and augmented graph-level representation

are regarded positive pairs. Additionally, the augmented

node representations and original graph-level representa-

tion are also considered as positive pairs. The negative pairs

are constructed following [62].

• RoSA [77] is a robust self-aligned graph contrastive frame-

work which does not require the explicit alignment of nodes

in the positive pairs so that allows more flexible graph aug-

mentation. It proposes the graph earth move distance (g-

EMD) to calculate the distance between unaligned views to

achieve self-alignment. Furthermore, it will use adversarial

training to realize robust alignment.

• GRACE [78] is node-node graph contrastive learning

method. It designs two augmentation functions (i.e., re-
moving edges and masking node features) to generate two

augmented views. Then a shared graph model will be ap-

plied on augmented views to generate node embedding

matrices. The node representations augmented from the

same original node are regarded as positive pairs, otherwise

are negative pairs. Lastly, pairwise loss (e.g., InfoNCE [47])

will be applied on these node matrices.

• BGRL [57] is similar to GRACE but without negative sam-

ples which is motivated by BYOL [18].

• G-BT [7] is a self-supervised framework that introduces

Barlow Twins [71] into graph domain. This method also

gets rid of negative samples.

• COSTA [73] proposes feature augmentation to decrease the

bias introduced by graph augmentation.

• SwAV [9] is an unsupervised online clustering method

which incorporates prototypes for clustering and employs

swapped prediction for model training. It is originally de-

signed for the computer vision domain, we adopt it into

graph domain.

G.2 Datasets
For GOOD-Cora, GOOD-Twitch, GOOD-CBAS and GOOD-WebKB

datasets, they are all adopted from GOOD[19] which is a com-

prehensive Graph OOD benchmark. These datasets contain both

concept shift and covariate shift splits, for more details of splitting,

please refer to Appendix A in [19].

GOOD-Cora is a citation network that is derived from the full

Cora dataset [8]. In the network, each node represents a scientific

publication, and edges between nodes denote citation links. The task

is to predict publication types (70-classification) of testing nodes.

The data splits are generated based on two domain selections (i.e.,
word, degree). The word diversity selection is based on the count

of selected words within a publication and is independent of the

publication’s label. On the other hand, the node degree selection

ensures that the popularity of a paper does not influence its assigned

class.

GOOD-Twitch is a gamer network dataset. In this dataset, each

node represents a gamer, and the node features correspond to the

games played by each gamer. The edges between nodes represent

friendship connections among gamers. The binary classification

task associated with this dataset involves predicting whether a user

streams mature content or not. The data splits for GOOD-Twitch

are based on the user language, ensuring that the prediction target

is not biased by the specific language used by a user.

GOOD-CBAS is a synthetic dataset that is modified from the

BA-Shapes dataset [69]. It involves a graph where 80 house-like

5
This dataset is adopted from [68]. [64] constructs ten graphs with different environ-

ment id’s for each graph.

6
The original is available on https://www.kaggle.com/ellipticco/elliptic-data-set
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Table 4: The descriptions of datasets. “Domain-Level” means splitting by graphs, “Time-Aware” denotes splitting according
to chronological order.“Word” and “Degree” represent splitting according to word diversity and node degree respectively.
“Language” means splitting by user language, implying that the prediction target should not be biased by the language a user
uses. “University” denotes splitting according to the domain university, suggesting that classified webpages are based on word
contents and link connections instead of university features. “Color” means splitting by node color differences in covariate
splits and color-label correlations in concept splits.

Datasets Network Type #Nodes #Edges #Attributes #Classes Train/Val/Test Split Metric

Amazon-Photo
7

Co-purchasing network 7,650 119,081 755 10 Domain-Level Accuracy

Elliptic
8

Bitcoin transactions 203,769 234,355 165 2 Time-Aware F1-Score

GOOD-Cora Scientific publications 19,793 126,842 8,710 70 Word/Degree Accuracy

GOOD-Twitch Gamer network 34,120 892,346 128 2 Language ROC-AUC

GOOD-CBAS A BA-house graph 700 3,962 4 4 Color Accuracy

GOOD-WebKB Webpage network 617 1,138 1,703 5 University Accuracy

motifs are attached to a base graph following the Barabási–Albert

model, resulting in a graph with 300 nodes. The task associated

with this dataset is to predict the role of each node within the

graph. The roles can be classified into four classes, which include

identifying whether a node belongs to the top, middle, or bottom

of a house-like motif, or if it belongs to the base graph itself. In

contrast to using constant node features, the GOOD-CBAS dataset

introduces colored features. This modification poses challenges

for out-of-distribution (OOD) algorithms, as they need to handle

differences in node colors within covariate splits and consider the

correlations between node color and node labels within concept

splits.

GOODWebKB is a network dataset that focuses on university

webpages. Each node in the network represents a webpage, and

the node features are derived from the words that appear on the

webpage. The edges between nodes represent hyperlinks between

webpages. The task associated with this dataset is a 5-class predic-

tion task, where the goal is to predict the class of each webpage.

The data splits for GOOD-WebKB are based on the domain of the

university, ensuring that the classification of webpages is based on

their word contents and link connections rather than any specific

university features.

Amazon-Photo is a co-purchasing network that is widely used

for evaluating the design of GNN models. In this network, each

node corresponds to a specific product, and the presence of an edge

between two products indicates that they are frequently purchased

together by customers. In the original dataset, it is observed that

the node features exhibit a significant correlation with the corre-

sponding node labels. In order to evaluate the model’s ability to

generalize to out-of-distribution scenarios, it is necessary to in-

troduce distribution shifts into the training and testing data. To

achieve this, we adopt the strategies employed in the EERM [64].

Specifically, we leverage the available node features 𝑋1 to create

node labels 𝑌 and spurious environment-sensitive features 𝑋2. To

elaborate, a randomly initialized GNN takes 𝑋1 and the adjacency

matrix as inputs and employs an argmax operation in the output

layer to obtain one-hot vectors as node labels. Additionally, we

employ another randomly initialized GNN that takes the concatena-

tion of 𝑌 and an environment id as input to generate spurious node

features 𝑋2. By combining these two sets of features, we obtain the

input node features, 𝑋 = [𝑋1, 𝑋2], which are used for both training

and evaluation. This process is repeated to create ten graphs with

distinct environment id’s. Such a shift between different graphs can

be considered as a concept shift [55]. Finally, one graph is allocated

for training, another for validation, and the remaining graphs are

used for evaluating the OOD generalization of the trained model.

Elliptic is a financial network that records the payment flows

among transactions as time goes by. It consists of 49 graph snap-

shots which are collected at different times. Each graph snapshot is

a network of Bitcoin transactions where each node represents one

transaction and each edge denotes a payment flow. Partial nodes

(approximately 20%) are labeled as licit or illicit transactions and we

hope to identify illicit transactions in the future. For data preprocess-

ing, we adopt the same strategies in EERM [64]: removing extremely

imbalanced snapshots and using the 7th-11th/12th-17th/17th-49th

snapshots for training/validation/testing data. And 33 testing graph

snapshots will be split into 9 test sets according to chronological

order. In Figure 6, we depict the label rate and positive label rate for

training/validation/testing sets. It is evident that the varying posi-

tive label rates across different data sets are apparent. Indeed, the

model needs to deal with the label distribution shifts from training

to testing data.

G.3 Experimental Setup
Transductive setting. We use the same model configuration (e.g.,
same encoder) across different datasets for a fair comparison fol-

lowing [19]. We use grid search to find other hyper-parameters (e.g.,
learning rate, epochs) for different methods. For all experiments,

we select the best checkpoints for ID and OOD tests according to

results on ID and OOD validation sets following [19], respectively.

Experimental details and hyper-parameter selections are provided

in Appendix G.4. For evaluating unsupervised methods, a linear

classifier will be built on the frozen trained encoder after finishing

pre-training. The reported results are the mean performance with

standard deviation after 10 runs following [19].

Inductive setting. For GOOD-WebKB and GOOD-CBAS datasets,

we use the same model configuration in Section 4.2.1. For Amazon-

Photo dataset [68] and Elliptic [48] dataset, they consist of many

snapshots (training data and testing data use different snapshots)

which are naturally inductive. For Amazon-Photo dataset, we use
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Figure 6: The label rates and positive label rates of Elliptic
dataset. ‘Tr’ means training data, ‘Val’ denotes validation data
and others represent testing data. In the different splits, the
label distributions are disparate.

2-layer GCN [33] as the encoder and for elliptic dataset, we use

5-layer GraphSAGE [21] as encoder following [64].

G.4 Hyper-parameters
For GOOD datasets, we adopt GraphSAINT [72] as subsampling

technique, while utilizing a 3-layer GCN [33] with 300 hidden units

as the backbone following [19]. For the supervised baselines (i.e.,
ERM, IRM, EERM), we use the identical hyper-parameters speci-

fied in [19]. For other unsupervised baselines, we conduct a grid

search to find the best performance. Specifically, max training epoch

ranges in {50, 100, 200, 500, 600} and learning rate ranges in {1e-1,1e-

2,1e-3,1e-4,1e-5}, augmentation ratio range in [0.1, 0.6]. Regarding
GraphMAE, the masking ratio ranges in {0.25,0.5,0.75}, and we use

a one-layer GCN as the decoder. For MARIO, the specific hyper-

parameters are listed in Table 5. For the adversarial augmentation,

we set ascent steps𝑀 as 3 and the ascent step size 𝜖 as 1e-3.

For Amazon-Photo, we utilize 2-layer GCN with 128 hidden

units as encoder, and we set 𝜏, 𝑝 𝑓 ,1, 𝑝 𝑓 ,2, 𝑝𝑒,1, 𝑝𝑒,2, 𝛾, |𝐶 | as 0.2,

0.2, 0.3, 0.2, 0.3, 0.1, 100 respectively and learning rate as 1e-

4. Other hyper-parameters remain the same in EERM [64]. Re-

garding Elliptic datasets, we employ 5-layer GraphSAGE [21]

with 32 hidden units as encoder following EERM [64]. And we

set 𝜏, 𝑝 𝑓 ,1, 𝑝 𝑓 ,2, 𝑝𝑒,1, 𝑝𝑒,2, 𝛾, |𝐶 | as 0.8, 0.2, 0.3, 0.2, 0.3, 0.5, 120 re-

spectively. The remaining hyper-parameters are consistent with

EERM [64].

G.5 Evaluation metrics
In order to evaluate the pre-trained models, we adopt the linear

evaluation protocol which is commonly used in self-supervised

methods [10, 18, 23]. That is, we will train a linear classifier (i.e.,
one-layer MLP) on top of (frozen) representations learned by self-

supervised methods. The training epochs (Epochs for LC in Table 5)

and learning rate (LR for LC in Table 5) of the linear classifier

are obtained by grid search. The reported results are the mean

performance with standard deviation after 10 runs following [19].

G.6 Computer infrastructures specifications
For hardware, all experiments are conducted on a computer server

with eight GeForce RTX 3090 GPUs with 24GB memory and 64

AMD EPYC 7302 CPUs. And our models are implemented by Py-

torch Geometric 2.0.4 [16] and Pytorch 1.11.0 [49]. All datasets used

in our work are available on https://github.com/divelab/GOOD and

https://github.com/qitianwu/GraphOOD-EERM.

H ADDITIONAL EXPERIMENTS
Due to space constraints in the main content, we have included

additional experiments in this section to provide a comprehensive

evaluation. Firstly, we perform graph classification in Section H.1.

Then, we present additional experiments on the GOOD-CBAS and

GOOD-WebKB datasets under the inductive setting. Furthermore,

we demonstrate the model-agnostic nature of the recipe by inte-

grating it with various graph neural networks (GNNs), including

GCN, GraphSAGE, and GAT, in Section H.3. Additionally, we eval-

uate our recipe on various self-supervised methods to illustrate

that MARIO is a plug-in that can be integrated with many current

GCL methods in Section H.4. Finally, we visualize the experimental

results, including metric score curves and feature embeddings, in

Section H.5.

H.1 Graph classification
H.1.1 Datasets. The PROTEINS dataset comprises protein data.

During training, we use graphs ranging from 4 to 25 nodes, while

during testing, we evaluate on graphs spanning from 6 to 620 nodes

[34]. The D&D dataset is also protein-based and involves two dis-

tinct splitting methods, namely D&D200 and D&D300 [34]. For the

D&D200 split, training is conducted on graphs containing 30 to 200

nodes, and testing is performed on graphs consisting of 201 to 5,748

nodes. As for the D&D300 split, training is carried out on 500 graphs

ranging from 30 to 300 nodes, while testing is conducted on other

graphs comprising 30 to 5,748 nodes.

H.1.2 Experimental setups. For all graph classification datasets,

we utilize 2-layer GCN containing 64 hidden units as graph en-

coder, and we choose global max pooling as the readout function.

For other hyper-parameters, we set lr, 𝜏, 𝑝 𝑓 ,1, 𝑝 𝑓 ,2, 𝑝𝑒,1, 𝑝𝑒,2, 𝛾, |𝐶 |
as 0.01, 0.5, 0.2, 0.3, 0.2, 0.3, 0.5, 40 respectively for self-supervised

methods. For ERM, the learning rate ranges in {1e-2, 1e-3, 5e-3,

1e-4} and the number of training epochs is selected in {50, 100,

200}. For evaluating pre-trained models, we use an off-the-shelf

ℓ2-regularized LogisticRegression classifier from Scikit-Learn [50]

using the ’liblinear’ solver with a small hyperparameter search over

the regularization strength to be between

{
2
−10, 2−9, . . . 29, 210

}
.

H.1.3 Baselines. GraphCL [70] investigated the impact of differ-

ent graph augmentations (i.e., node dropping, edge perturbation,
attribute masking and subgraph sampling) on graph classification

datasets. The framework is similar to SimCLR [10] but specified for

graph domain.

H.1.4 Results. From Table 6, we can find GraphCL [70] can achieve

comparable performance with ERM even without labels. And our
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Table 5: Hyperparameters specifications for MARIO

GOOD-Cora GOOD-CBAS GOOD-Twitch GOOD-WebKB

word degree color language university

concept covariate concept covariate concept covariate concept covariate concept covariate

Model GCN GCN GCN GCN GCN GCN GCN GCN GCN GCN

# Layers 3 3 3 3 3 3 3 3 3 3

# Hidden size 300 300 300 300 300 300 300 300 300 300

Epochs 100 150 100 100 200 500 600 200 100 500

Learning rate 1e-3 1e-3 1e-3 1e-3 1e-1 1e-2 1e-1 1e-1 1e-2 1e-2

𝜏 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5

𝑝 𝑓 ,1 0.3 0.3 0.0 0.3 0.2 0.2 0.2 0.2 0.5 0.2

𝑝 𝑓 ,2 0.4 0.3 0.0 0.3 0.3 0.3 0.3 0.3 0.5 0.3

𝑝𝑒,1 0.4 0.4 0.6 0.6 0.2 0.2 0.2 0.2 0.5 0.2

𝑝𝑒,2 0.5 0.4 0.6 0.6 0.3 0.3 0.3 0.3 0.5 0.3

|𝐶 | 100 100 150 150 100 100 100 100 100 100

𝛾 0.2 0.5 0.8 0.8 0.1 0.1 0.2 0.2 0.1 0.2

Pro. LR 1e-5 1e-5 1e-5 1e-5 1e-4 1e-7 1e-5 1e-3 1e-3 1e-3

Epochs for LC 500 200 100 100 100 2000 100 100 50 50

LR for LC 1e-4 1e-3 1e-3 1e-3 1e-2 1e-3 1e-1 1e-1 1e-1 1e-1

recipe can boost the OOD generalization ability of unsupervised

methods and even surpasses ERM which means our recipe is also

effective for graph classification task.

Table 6: Results of different methods on OOD graph classifi-
cation tasks. We report the mean of Accuracy with standard
deviation after 10 runs.

PROTEIN25 D&D200 D&D300

#Train/Test Graphs 500/613 462/716 400/678

#Nodes Train 4-25 30-200 30-300

#Nodes Test 6-620 201-5748 30-5748

ERM 77.24±0.95 44.25±5.16 67.91±1.60

GraphCL 76.92±0.91 48.12±6.43 67.82±1.29

GraphCL(+MARIO) 78.08±0.97 51.62±5.47 69.13±1.23

H.2 Inductive Setting on More datasets
In the main content, we conduct experiments on Amazon and El-

liptic datasets under the inductive setting. In this subsection, we

will supplement experiments of more datasets (i.e., GOOD-WebKB

and GOOD-CBAS) under inductive settings.

Baselines: For GOOD-WebKB and GOOD-CBAS, we adopt ERM,

IRM, GraphMAE, and GRACE as baselines.

Experimental Setup: We use the same model configuration in

Section 4.2.1. The reported results are the mean performance after

10 runs following [19].

Analysis: Based on the observations from Figure 7 and Figure 8

MARIO demonstrates the best performances on both ID and OOD

test sets for GOOD-WebKB and GOOD-CBAS datasets, under both

concept shift and covariate shift. Notably, MARIO outperforms

other methods by more than 3% and 10% absolute improvement

on GOOD-WebKB and GOOD-CBAS, respectively, under covariate

shift. We can draw similar conclusions as discussed in Section 4.2.1.

Even under the inductive setting, our method continues to demon-

strate excellent OOD generalization capabilities and achieves com-

parable or even improved in-distribution test performance. These

statistical results further validate the effectiveness of our method

in handling distribution shifts and enhancing generalization per-

formance.

Figure 7: Results on GOOD-WebKB andGOOD-CBAS datasets
with concept shift under the inductive setting. ‘GOOD-
WebKB-ID’ means in-distribution test performance and
‘GOOD-WebKB-OOD’ means out-of-distribution test perfor-
mance. So are ‘GOOD-CBAS-ID’ and ‘GOOD-CBAS-OOD’. We
report the mean accuracy across 10 runs.
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Figure 8: Results on GOOD-WebKB andGOOD-CBAS datasets
with covariate shift under the inductive setting.

Table 7: Results of different learning approaches with differ-
ent encoding models (i.e., GCN, GraphSAGE, GAT).

Model Method

GOOD-CBAS GOOD-WebKB

color university

ID OOD ID OOD

GCN

ERM 89.79±1.39 83.43±1.19 62.67±1.53 26.33±1.09

GRACE 92.00±1.39 88.64±0.67 64.00±3.43 34.86±3.43

MARIO 94.36±1.21 91.28±1.10 65.67±2.81 37.15±2.37

SAGE

ERM 95.07±1.51 75.14±1.19 73.67±2.08 46.33±3.42

GRACE 95.29±1.11 74.43±2.36 70.50±5.06 49.54±3.83

MARIO 96.00±1.07 76.29±3.01 71.00±3.82 51.74±4.63

GAT

ERM 78.64±3.63 72.93±2.64 61.33±3.71 28.99±2.63

GRACE 84.57±1.79 78.36±1.60 59.50±2.36 35.78±3.26

MARIO 84.93±1.95 80.43±1.89 62.17±4.78 38.17±3.10

H.3 Integrated with Other Models
In the subsection, we demonstrate the model-agnostic nature of the

recipe by integrating it with various graph neural network (GNN)

models, including GCN, GraphSAGE, and GAT.

From Table 7, it can be observed that regardless of the specific

GNN model used as the encoder, our method consistently achieves

the best performance on the OOD test set. This indicates the effec-

tiveness and robustness of our method across different GNNmodels.

By achieving superior performance across different GNN models,

MARIO demonstrates its versatility and ability to improve the OOD

generalization of various graph neural models. This highlights the

broad applicability and effectiveness of our recipe in enhancing the

performance of different GNN encoders.

Furthermore, we integrate our recipe with other GCL methods

in Appendix H.4. The results demonstrate our recipe can boost the

OOD generalization ability of various GCL methods which means

our recipe can serve as a plug-in for many current classical GCL

methods.

H.4 Integrated with Other Methods
Our recipe is not only model-agnostic but also an add-on training

scheme that can be adopted on most graph contrastive learning

(a) ERM (b) MARIO

Figure 9: Metric score curves for ERM and MARIO on GOOD-
CBAS.

(a) ERM (b) MARIO

Figure 10: Metric score curves for ERM andMARIO onGOOD-
Cora word domain with concept shift.

(a) ERM (b) MARIO

Figure 11: Metric score curves for ERM andMARIO onGOOD-
Cora degree domain with concept shift.

(a) ERM (b) MARIO

Figure 12: Metric score curves for ERM andMARIO onGOOD-
Twitch language domain with concept shift.

(GCL) methods. In Table 8, we use our recipe to guide various

GCL methods (GRACE, COSTA). MARIO can further boost these

methods on both ID and OOD test performance.
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(a) EERM (b) GRACE (c) MARIO

Figure 14: t-SNE visualization of node embeddings on GOOD-
Cora dataset9, (a) depicts node embeddings from trained
EERM, (b) shows embeddings from trained GRACEmodel, (c)
is the result of trained MARIO. The margins of each cluster
learned from MARIO are much wider than others.

(a) ERM (b) MARIO

Figure 13: Metric score curves for ERM andMARIO onGOOD-
WebKB university domain with concept shift.

Table 8: Results of various methods integrated with MARIO.
We report the mean and standard deviation of Accuracy after
10 runs.

concept shift

GOOD-WebKB GOOD-CBAS

university color

ID OOD ID OOD

GRACE 64.00±3.43 34.86±3.43 92.00±1.39 88.64±0.67

GRACE (+MARIO) 65.67±2.81 37.15±2.37 94.36±1.21 91.28±1.10

COSTA 61.66±2.58 32.39±2.13 93.50±2.62 89.29±3.11

COSTA(+MARIO) 62.33±2.60 35.32±3.46 98.00±1.31 94.36±1.51

H.5 Visualization
H.5.1 Metric Score Curves. We present metric score curves for

ERM and MARIO, including training, ID validation, ID testing,

OOD validation, and OOD testing accuracy, in Figure 9,10,11,12,13.

Notably, MARIO demonstrates superior convergence with approxi-

mately 10% absolute improvement on the OOD test set compared

to ERM on GOOD-CBAS dataset. Furthermore, MARIO effectively

narrows the performance gap between in-distribution and out-

of-distribution performance, showcasing its efficacy in enhancing

OOD generalization for graph data.

H.5.2 Feature Visualization. We visualize both in-distribution (ID)

and out-of-distribution (OOD) node embeddings separately in Fig-

ure 14. The first row shows the ID node embeddings, while the

second row displays the OOD node embeddings. Notably, MARIO

exhibits superior clustering performance compared to other meth-

ods for both ID and OOD node sets. The clusters are more distinct,

with larger margins, underscoring the effectiveness of our method

in handling OOD data.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9
In order to better visualization, we select seven informative classes. And all models

are trained under concept shift in degree domain.
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