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ABSTRACT

Latent-space optimization methods for counterfactual explanations—framed as
minimal semantic perturbations that change model predictions—inherit the ambi-
guity of Wachter et al.’s objective: the choice of distance metric dictates whether
perturbations are meaningful or adversarial. Existing approaches adopt flat or
misaligned geometries, leading to off-manifold artifacts, semantic drift, or ad-
versarial collapse. We introduce Perceptual Counterfactual Geodesics (PCG), a
method that constructs counterfactuals by tracing geodesics under a perceptually
Riemannian metric induced from robust vision features. This geometry aligns with
human perception and penalizes brittle directions, enabling smooth, on-manifold,
semantically valid transitions. Experiments on three vision datasets show that PCG
outperforms baselines and reveals failure modes hidden under standard metrics.

1 INTRODUCTION

As deep learning models grow in scale and impact, interpretability becomes paramount as it offers
a crucial lens into their internal reasoning. Traditional saliency-based methods, which highlight
influential input features (Simonyan et al., 2014; Sundararajan et al., 2017; Smilkov et al., 2017;
Kapishnikov et al., 2021; Ribeiro et al., 2016; Selvaraju et al., 2016; Lundberg & Lee, 2017),
have been widely adopted for vision models but produce static, often noisy attributions that lack
guidance on how predictions could be altered. Counterfactual explanation (CE) methods have
emerged as a complementary paradigm grounded in the fundamental human capacity to contemplate

“what if?” scenarios (Wachter et al., 2017; Ustun et al., 2019; Joshi et al., 2019; Artelt & Hammer,
2019). Rather than merely highlighting salient regions, CEs specify which semantic features should
be modified—and how—to produce a different prediction. Wachter et al. (Wachter et al., 2017)
formalized this notion as a solution to an optimization problem:

min
x

r(x⋆, x)︸ ︷︷ ︸
Similarity Distance

+ λ ℓ(f(x), y′)︸ ︷︷ ︸
Classification Loss

, (1)

where x⋆ is the original input, y′ the desired class, f the classifier, ℓ a loss function (e.g., cross-
entropy), r a distance metric, and λ a hyperparameter balancing classification and similarity.

Considerable debate has emerged around whether a CE is fundamentally distinct from an adversarial
example (AE), as both arise from the same optimization problem (Wachter et al., 2017; Browne &
Swift, 2020; Pawelczyk et al., 2022; Freiesleben, 2022). The choice of distance metric r plays a
central role: while it may support meaningful CEs, it can also encourage AEs if it favors imperceptibly
small, distributed perturbations. Wachter et al. Wachter et al. (2017) acknowledged this ambiguity,
noting that “AEs are counterfactuals by another name,” proposing distinction on two grounds: (i) a
misalignment of the distance metric with meaningful feature changes—since metrics typically used
for AEs favor such dispersed modifications, thereby diminishing their explanatory value, and (ii)
adversarial perturbations are non-semantic signals that displace inputs out of the possible world—i.e.,
off-manifold regions that do not correspond to valid examples under the data distribution.

Rather than directly solving eq. (1), some approaches leverage generative models to produce visual
CEs by exploiting low-dimensional semantic representations (Augustin et al., 2022; Mertes et al.,
2022; Looveren et al., 2021; Singla et al., 2020; Lang et al., 2021; Khorram & Fuxin, 2022). For
instance, Singla et al. (2020) trained a conditional GAN to produce exaggerated CEs, while Lang
et al. (2021) used a conditional STYLEGAN2-based approach to generate sparse visual CEs along
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disentangled classifier-relevant style-space directions. Khorram & Fuxin (2022) used cycle-consistent
losses to train transformations between factual and counterfactual distributions in generative latent
spaces. Though visually compelling, these methods rely on exhaustive techniques that depart from
the direct optimization formulation and ignore the geometry of the data manifold.

Other research adopt eq. (1) in the latent space of generative models (Joshi et al., 2019; Duong
et al., 2023; Dombrowski et al., 2024; Pegios et al., 2024), but either assume flat Euclidean geometry
(Joshi et al., 2019; Dombrowski et al., 2024), failing to capture the manifold’s intrinsic curvature, or
use geometrically informed yet adversarially vulnerable distance metrics (Pegios et al., 2024). For
example, REVISE (Joshi et al., 2019) solves the objective in eq. (1) in a VAE latent space under
Euclidean assumptions, using explicit ℓ1/ℓ2 distance terms. Dombrowski et al. (2024) discard explicit
similarity terms and employ Stochastic Gradient Descent (SGD) assuming flat geometry misaligned
with the underlying data manifold.

Figure 1: Schematic of PCG. An input is mapped through an encoder-generator pair. A linear
latent path to a perceptually plausible target-class sample (Class B, brown region) is refined in Phase
1 into the blue geodesic by minimizing robust perceptual energy. In Phase 2, the endpoint and
intermediate points are jointly optimized under classification loss and robust energy, resulting in the
red counterfactual geodesic. The green trajectory (REVISE, VSGD) ignores manifold geometry,
strays off-manifold and produces off-manifold AEs. The yellow trajectory (RSGD/-C) conforms to a
fragile geometry, getting stuck in on-manifold adversarial regions (Class B, outside brown region).

This misalignment often causes perturbations to stray off-manifold, leading to implausible or off-
manifold AEs. Pegios et al. (2024) proposed equipping the latent space with a Riemannian metric
induced by the generator and optimizing with Riemannian SGD (RSGD) to account for the geometry
of the data manifold. However, their induced metric is typically derived by pulling back either the
pixel-space ℓ2 or a standard classifier’s feature space metric. Both are problematic in the vision
domain: the ℓ2 norm is a poor proxy for human perception (Sinha & Russell, 2011; Jordan et al.,
2019; Rybkin, 2022), while a standard feature-based metric is semantically brittle as it inherits the
adversarial vulnerabilities of non-robust deep vision models (Sjögren et al., 2022; Ghazanfari et al.,
2024).

Such methods, while mostly proposed for tabular data settings, acutely fail in the high-dimensional
vision domain, where the counterfactual optimization process can’t distinguish between CEs and
AEs. Browne & Swift (2020) proposed the notion of a semantic divide—a distinction between pertur-
bations that affect human-understandable semantic features or low-level, uninterpretable features.
Perturbations with rich semantic content fall on the explanatory side; pixel-level or low-level ones
fall on the adversarial side. Browne & Swift (2020) argue that neither distance metrics nor appeals to
“possible worlds” fully resolve this distinction; instead, semantic relevance only determines whether a
result is a valid CE or an AE.

We agree with Browne & Swift (2020) that the second criterion proposed by Wachter et al.–
displacement to off-manifold regions–fails to adequately differentiate AEs from CEs. Several
studies have shown that on-manifold AEs exist (Ilyas et al., 2019; Garcia et al., 2023; Song et al.,
2018), and can be generated via generative models (Stutz et al., 2019; Zhao et al., 2018), representing
a subclass of AEs that reside within Wachter et al.’s “possible worlds”. However, we challenge the
assertion that distance metrics are inherently incapable of making the distinction. We show that if the
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data manifold is endowed with a semantically robust Riemannian metric, solving the counterfactual
optimization–when guided appropriately–can cross the semantic divide and produce valid CEs.

Failure Modes of Previous Approaches. We attribute the failure of previous latent-space counter-
factual optimization methods in the high-dimensional image data regime to three core limitations:

(i) Off-manifold Traversal. Optimization in latent space often disregards the geometry of
the data manifold, leading to off-manifold AEs or semantically implausible counterfactuals
(Pegios et al., 2024).

(ii) Local Gradient Optimization. Without global structural guidance, single-point geometry-
aware gradient methods operate locally and overlook the global manifold structure, including
the existence of on-manifold adversarial regions. As a result, they often converge to either
semantically distant counterfactuals or on-manifold AEs.

(iii) Versatility of Generators. Even when accounting for manifold geometry, high-capacity
generators can exploit non-robust or misaligned distance metrics to produce on-manifold
AEs (Stutz et al., 2019; Zhao et al., 2018; Gilmer et al., 2018), fooling the metric rather than
producing semantically meaningful perturbations that genuinely cross the semantic barrier.

Contributions. Motivated by findings in adversarial robustness that show robust models exhibit
perceptually aligned gradients (Ganz et al., 2023; Srinivas et al.; Shah et al., 2021; Kaur et al., 2019),
robust saliency maps (Etmann et al., 2019; Zhang & Zhu, 2019; Tsipras et al., 2019), and meaningful
CEs (Boreiko et al., 2022; Santurkar et al., 2019; Augustin et al., 2020), we introduce a semantically
grounded, data-manifold-based approach for perceptually progressive CEs. We emphasize that our
focus lies not in interpreting robust classifiers themselves, but in generating explanations for standard
models, positioning our work orthogonally to efforts aimed at explaining robust models (Boreiko
et al., 2022; Santurkar et al., 2019; Augustin et al., 2020). Our key contributions are as follows:

(i) Counterfactual Generation: We introduce Perceptual Counterfactual Geodesics (PCG),
which leverages a robust Riemannian metric on the latent space of a STYLEGAN2/3
generator (Karras et al., 2020b; 2021). This metric is induced from feature spaces of robust
vision models. PCG optimizes counterfactual trajectories along geodesic paths, ensuring that
counterfactual evolution adheres to robust perceptual perturbations that cross the semantic
barrier, avoiding off- or on-manifold adversarial regions.

(ii) Perceptual Geodesic Interpolation: We show that the robust latent geometry underlying
PCG enables smooth and semantically robust interpolations between samples. Our exper-
iments demonstrate that trajectories aligned with the robust Riemannian metric preserve
class coherence and perceptual structure. In contrast, other metrics collapse into visually
ambiguous or brittle transitions due to geometric misalignment.

2 BACKGROUND

2.1 DIFFERENTIAL GEOMETRY OF DEEP GENERATIVE MODELS

Deep generative models, such as VAEs and GANs, offer a powerful framework for learning high-
dimensional data distributions through low-dimensional latent representations (Kingma & Welling,
2022; Higgins et al., 2016; Goodfellow et al., 2014; Karras et al., 2018). These models define a
generative function g : Z → X , where Z ⊂ Rd is a latent space and X ⊂ RD is a high-dimensional
data space, typically d ≪ D. The image of Z under g, denotedM = g(Z) ⊂ X , forms a subset
of the data space, often referred to as the data manifold. Under mild regularity conditions—such
as smoothness of g with a full-rank Jacobian mapping Jg ≜ ∂g/∂z : Z → RD×d—this image is
a smooth, d-dimensional immersed submanifold of X (Shao et al., 2017; Arvanitidis et al., 2017).
This construction supports the manifold hypothesis, which posits that real-world high-dimensional
data concentrates near such a low-dimensional manifold (Brahma et al., 2016; Fefferman et al., 2013;
Tenenbaum et al., 2000).

However, while Z is typically treated as Euclidean, this assumption misaligns with the geometry
induced by g, as the nonlinear generator significantly distorts its structure. As a result, distances and
directions in Z do not reflect the true relationships of the data manifold. This motivates equipping the
latent space with a geometry that faithfully reflects the structure of the image manifoldM.
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2.2 PULLBACK METRICS AND THE GEOMETRY OF GENERATORS

A smooth manifold M ⊂ X inherits a tangent space TxM at each point x ∈ M, consisting of
directions along which one can move locally. To measure lengths and angles, we define a smoothly
varying inner product ⟨·, ·⟩x on each tangent space. This defines a Riemannian metric G(x), and the
pair (M, G) forms a Riemannian manifold.

Given a smooth generator g : Z → X , we equip the latent space Z with a Riemannian metric
via pullback from the ambient space X , assumed to have a metric GX(x) ∈ RD×D. For any
u, v ∈ TzZ ∼= Rd, we define:

⟨u, v⟩z := ⟨Jg(z)u, Jg(z)v⟩GX(g(z)) = u⊤Jg(z)
⊤GX(g(z))Jg(z)v,

where Jg(z) is the Jacobian of g at z. If Jg(z) has full column rank, this defines the pullback metric
as GZ(z) = Jg(z)

⊤GX(g(z))Jg(z).

While mathematically well-defined, this construction inherits the limitations of the ambient metric.
When GX(x) = I , the geometry is induced from the canonical pixel-wise ℓ2 metric. In high-
dimensional vision tasks, such distances misalign with human perception and are highly sensitive
to small, imperceptible perturbations. This issue is not limited to Euclidean metrics; it also applies
to other ambient geometries that lack robust semantic grounding. For example, Pegios et al. (2024)
pulls back a feature-based metric from a standard classifier, which operates in feature space but still
inherits the adversarial vulnerabilities of non-robust models. As a result, the induced latent geometry
reflects local structure relative to a brittle and semantically misaligned notion of similarity, often
leading to adversarial trajectories (Browne & Swift, 2020).

2.3 LATENT SPACE COUNTERFACTUAL OPTIMIZATION

We summarize several methods that solve variations of eq. (1) in the latent space of generative models.

REVISE. Joshi et al. (2019) introduced an approach based on VAEs for tabular data, where the latent
code z of an input x⋆ is updated via SGD on the objective L = d(x⋆, g(z)) + λ ℓ(f(g(z)), y′). This
method relies on two assumptions: that pixel-wise Euclidean distances in ambient space provide
meaningful similarity, and that Euclidean SGD updates in latent space correspond to smooth semantic
transitions. Both assumptions fail in high-dimensional vision domains, where distances are misaligned
with perception and SGD updates stray off-manifold.

Vanilla SGD (VSGD). To adapt to vision settings, Dombrowski et al. (2024) proposed eliminating
the distance term in REVISE and directly applying vanilla SGD to the classification loss:

z ← z − η ∇z

[
ℓ
(
f(g(z)), y′

)]
.

While sidestepping metric misalignment in X , it still assumes a flat Euclidean geometry in Z, ignoring
the curvature induced by g. Since g is highly nonlinear in expressive models, such updates often stray
off the manifold and lead to off-manifold AEs or perceptually implausible counterfactuals.

Riemannian SGD (RSGD). Pegios et al. (2024) proposed RSGD to account for the curvature of the
data manifold by replacing Euclidean gradients with Riemannian ones derived from a pullback metric
on the latent space. Given a stochastic VAE generator gε(z) = µ(z) + σ(z)⊙ ε, with ε ∼ N (0, I),
the latent metric is defined as the expected pullback of the ambient ℓ2 metric:

ĜZ(z) ≈ Jµ(z)
⊤Jµ(z) + Jσ(z)

⊤Jσ(z),

and optimization proceeds via: z ← z − η
r

∥r∥2
, where r = ĜZ(z)

−1∇zℓ(f(Eε[gε(z)]), y
′).

A variant, RSGD-C, replaces the ambient metric with the pullback of a classifier-based feature metric,
using the final-layer representation of a standard classifier. This introduces task-awareness by aligning
updates with decision-relevant directions.

Both methods remain limited by their underlying metrics. Pixel-wise ℓ2 distances are fragile and
misaligned with perception, and standard classifier-based features inherit adversarial vulnerabilities.
RSGD/-C does not enforce geodesic paths and has been applied only in low-dimensional domains
where adversariality is less evident.
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3 METHODOLOGY

Prior approaches fail in the vision domain due to three tightly coupled issues: the use of perceptually
misaligned metrics (e.g., ℓ2 in pixel space or fragile classifier-based metrics), reliance on local
gradient updates that ignore global manifold structure, and the expressive power of high-capacity
generators that exploit these misalignments to produce adversarial perturbations.

Our method, PCG, addresses these limitations by casting counterfactual generation as a global
curvature-aware optimization over latent trajectories on a Riemannian manifold, where the generator
induces a latent geometry aligned with human perception. To define this geometry, we construct a
perceptually robust ambient metric. Unlike standard classifiers, robust models learn representations
that are resistant to adversarial perturbations and aligned with human perceptual similarity. These
robust intermediate activation spaces exhibit linearly separable structure and encode grounded,
semantically meaningful features. As a result, the Euclidean metric becomes a more reliable proxy
for perceptual similarity in these robust semantic spaces, unlike its failure in pixel or fragile semantic
spaces. We leverage this structure to define a composite ambient metric by aggregating pullbacks
of the Euclidean metric from robust feature spaces into the input space, capturing hierarchical,
perceptually coherent variations. Formally, we define the robust perceptual metric as:

GR(x) =

K∑
k=1

wk Jhk
(x)⊤Jhk

(x), wk =
1

Nk
,

where K is the number of selected intermediate layers of a pretrained robust vision model, hk(x)
denotes the activation of the k-th layer with dimensionality dk ≫ D, Jhk

(x) ∈ Rdk×D is its Jacobian
with respect to the input x ∈ RD, and Nk denotes the total size (number of elements) of the activation
hk(x), which normalizes each layer so that no single feature space dominates due to its size. Pulling
back GR through the generator g : Z → X defines the latent-space metric

GZ(z) = Jg(z)
⊤GR(g(z))Jg(z),

which induces a latent geometry that penalizes brittle or non-robust directions and favors perturbations
that produce perceptually smooth, semantically aligned variations in the image space.

We seek a smooth latent trajectory γ : [0, 1]→ Z such that g(γ(t)) evolves through robust semantic
regions. The perceptual length of this trajectory, where γ′(t) = dγ/dt is the latent-space velocity,
evaluated under GR, is

L(g(γ)) =

∫ 1

0

√
γ′(t)⊤GZ(γ(t))γ′(t)dt,

and minimizing this length under constant-speed parametrization is equivalent to minimizing the
robust perceptual energy (Jost, 2017):

E(g(γ)) =
1

2

∫ 1

0

γ′(t)⊤GZ(γ(t))γ
′(t)dt. (2)

Expanding GZ using the composite metric shows that the pullback energy is a weighted sum of
squared velocities in each robust feature space:

γ′(t)⊤GZ(γ(t))γ
′(t) =

K∑
k=1

wk

∥∥∥ d

dt
hk

(
g(γ(t))

)∥∥∥2
2
.

Minimizing E(g(γ)) thus amounts to finding a geodesic whose generator outputs move smoothly
and consistently across all robust semantic layers. To do this, we discretize γ into T + 1 points
{z0, . . . , zT }, where z0 is the latent encoding of the input x⋆, and zT is initialized as the latent
encoding of an arbitrary target-class sample from the dataset. This initialization is critical: unlike
previous methods that perform iterative updates from a single starting point—which often converge
to on-manifold adversarial endpoints—we initialize between two manifold-conforming points to
guide global transitions across semantically valid regions under the robust metric. Using forward
finite differences as in Shao et al. (2017), we approximate the robust feature-space velocity at ti
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as dhk(g(γ(t)))/dt |t=ti≈ (hk(g(zi+1)) − hk(g(zi)))/δt. This gives the discrete robust energy
equivalent of eq. (2):

Erobust(z) =
1

2

T−1∑
i=0

K∑
k=1

wk

δt

∥∥∥hk

(
g(zi+1)

)
− hk

(
g(zi)

)∥∥∥2
2
, where z ≜ [z0, . . . , zT ] and δt = 1/T.

Optimization proceeds in two stages. In Phase 1, we fix z0 and zT and minimize Erobust(z) with
respect to the intermediate points to obtain a geodesic consistent with the robust semantic geometry
induced by the generator. In Phase 2, we release zT and jointly optimize the energy and a classification
loss to ensure the endpoint maintains the desired prediction under f . The combined loss is

L(z) = Erobust(z) + λ · ℓ(f(g(zT )), y′),

Minimizing the combined loss traces a robust counterfactual path: Erobust, built on adversarially
robust features, supplies perceptually aligned, manifold-conforming gradients (Ganz et al., 2023;
Zhang & Zhu, 2019; Tsipras et al., 2019; Ilyas et al., 2019; Stutz et al., 2019) that guide on-manifold
updates and temper the endpoint loss, keeping the trajectory on a robust geodesic. The overall
structure of our two-stage optimization and the contrast with prior methods is illustrated in Figure 1;
full algorithm, and optimization details are provided in Appendix A.1.

4 EXPERIMENTS

We evaluate PCG against prior latent-space optimization methods. In section 4.1, we first show the
failure mode of interpolation methods inherent in their geometrical assumptions, and demonstrate the
effect of our proposed robust Riemannian metric in generating perceptually smooth geodesics that
underpins PCG. In section 4.2, we compare PCG with other approaches in terms of the perceptual
plausibility of the generated counterfactuals. Finally, we quantitatively evaluate PCG under both
typical and geometry-aware distance measures. Code for our experiments is available here.

Datasets. We evaluate our method on three high-dimensional real-image datasets: (1) AFHQ (Choi
et al., 2020), with high-resolution images of cats, dogs, and wild animals; (2) FFHQ (Karras et al.,
2019), containing 70,000 diverse human face images; and (3) PlantVillage (Hughes & Salathé, 2015),
with labeled images of healthy and diseased plant leaves across species.

Models. We train STYLEGAN2 generators from scratch on AFHQ and PlantVillage (≈140 NVIDIA
H100 GPU-hours per model) (Karras et al., 2020a). For AFHQ, we also use a pretrained STYLEGAN3
generator (Karras et al., 2021). For FFHQ, we use pretrained STYLEGAN2 and STYLEGAN3.
Post hoc, we train image-to-latent encoders (used for all counterfactual optimization in z-space)
and then briefly fine-tune the encoder–generator pair jointly. For classifiers, we train binary models
based on the VGG-19 backbone (Simonyan & Zisserman, 2014): one per AFHQ class pair and
a healthy–vs–unhealthy classifier for PlantVillage. Because FFHQ lacks labels, we train attribute
classifiers on CelebA (Liu et al., 2015) and apply them to FFHQ. Architectural and training details
appear in Appendix A.3.

Baselines. We compare PCG against the following latent-space based approaches:
• REVISE (Joshi et al., 2019). Latent-space equivalent of Wachter et al.’s objective based on SGD.
• VSGD (Dombrowski et al., 2024). It performs distance-free vanilla SGD in the latent space.
• RSGD/-C (Pegios et al., 2024). In these variants, a Riemannian metric is used to guide SGD. The

metrics are pull-back from either the Euclidean metric in the ambient space or in the final layer of
the classifier under explanation.

4.1 EFFECT OF LATENT GEOMETRY ON INTERPOLATION

In Figure 2, we illustrate how latent-space geometry shapes interpolation. The top row linearly
interpolates in latent space Z under a Euclidean assumption, which ignores the nonlinear distortion
induced by the generator and produces mid-path off-manifold artifacts such as class ambiguity,
unnatural warping, and deformed textures. The second row minimizes pixel-space MSE in X, which
induces a latent-space geometry by pulling back the Euclidean metric from X to Z; transitions
remain brittle and semantically incoherent, with midway blends of disparate attributes that expose

6
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the fragility and misalignment of pixel-wise distances. The third row uses the pullback of a feature
metric from a standard ResNet-50 (He et al., 2016) (see appendix A.4); semantics improve, yet fading,
illumination shifts, and class discontinuities persist. These instabilities reflect the vulnerability of non-
robust models to adversarial perturbations and reliance on brittle features, with similar failure modes
reported in Laine (2018) using VGG-19. In contrast, the fourth row applies our robust perceptual
metric derived from a robust ResNet-50, producing smooth, on-manifold trajectories with consistent
semantics and coherent evolution. This confirms our hypothesis that robust Riemannian geometry
enables smooth, semantically valid on-manifold interpolations while avoiding adversarial collapse.

Figure 2: Interpolation paths under four latent geometries based on STYLEGAN2 (top→bottom). (a)
Z-linear (Euclidean): flat latent metric; off-manifold artifacts. (b) Pixel MSE pullback: Euclidean
metric pulled back to Z; brittle, incoherent paths. (c) Standard feature pullback: non-robust ResNet-
50; better semantics but still fading and discontinuities. (d) Robust perceptual pullback (ours): robust
ResNet-50; smooth, consistent, on-manifold trajectories. See Appendix B.1 for STYLEGAN3 results.

4.2 PERCEPTUAL COUNTERFACTUAL GEODESICS

Having established smooth perceptual geodesics under our proposed metric, we now demonstrate
their refinement into plausible CEs. Figure 3 showcases the two-stage nature of our approach. In
Phase 1 (rows 1 and 3), we generate an initial perceptual geodesic between the input and an arbitrary
target-class sample, such as a dog image for a cat input, or a non-blonde face for a blonde input.
Although the target is semantically distant, the path remains coherent, illustrating the alignment of
our metric with perceptual structure. In Phase 2 (rows 2 and 4), we release the endpoint and jointly
optimize it with the path under the classification loss, allowing the counterfactual to move closer to
the input while maintaining geodesicity. The resulting counterfactual geodesics trace robust regions of
the data manifold and maintain consistent semantics throughout the trajectory, retaining the semantic
continuity and avoiding adversarial shortcuts or abrupt transitions. This step ensures the whole path
travels through perceptually robust regions on the manifold as shown in Fig 1. We show that different
choices of the target-class exemplar lead optimization to converge within a small neighborhood of
the input, producing diverse yet faithful counterfactual explanations; see Appendix B.3

Comparison with Baselines. We now evaluate the final counterfactuals produced by PCG against
existing latent-space optimization methods. As shown in Figure 4, our method consistently produces
semantically valid CEs that remain close to the input while effecting the desired class transition. In
contrast, RSGD and RSGD-C, despite accounting for local curvature, rely on fragile metrics (e.g.,
pixel-space ℓ2 or non-robust classifier features) that remain vulnerable to adversarial manipulation.
Many of the generated counterfactuals collapse into on-manifold AEs—as seen in rows 1, 2, 4, 5,
and 6. Like the outputs of other baselines, they fall on the adversarial side of the semantic divide.
Even when RSGD variants converge (e.g., row 3), the output is visibly distant from the input in pose
and structure, reflecting the lack of geodesic constraint and a tendency to traverse longer manifold
paths. VSGD, which assumes flat Euclidean geometry, produces off-manifold perturbations that are
either perceptually implausible, or adversarial. In row 2, the generated counterfactual exhibits class
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ambiguity and disoriented eye alignment; in row 3, the face is unnaturally elongated with distortions
under the chin; in row 6, the leaf counterfactual contains an unnatural cusp-like protrusion that breaks
the expected symmetry, fullness, and surface continuity of leaves. These artifacts arise from ignoring
the data manifold altogether. REVISE exhibits similar failure modes: the strong pixel-wise distance
penalty constrains outputs to remain close in ℓ2 norm, but adversarial. All REVISE outputs in the
figure represent off-manifold AEs, driven by the optimization pressure to minimize distance rather
than induce meaningful semantic change. In contrast, PCG navigates robust regions of the manifold
along perceptual geodesics, producing minimal, semantically faithful changes.

Figure 3: Perceptual Counterfactual Geodesics. Rows 1 and 3: initial geodesics from Phase 1 between
an input and a target-class sample. Rows 2 and 4: counterfactual geodesics after Phase 2, where the
endpoint is optimized with the path. Trajectories from Phase 2 stay in robust regions of the manifold
and preserve semantic continuity. Results from STYLEGAN2 (see Appendix B.2 for STYLEGAN3)

Table 1: Quantitative comparison across datasets for STYLEGAN2 (see Appendix B.4 for STYLE-
GAN3 and Appendix B.5 for runtime complexity). Columns report L1 (pixel ℓ1), L2 (pixel ℓ2), LF
(pullback from standard VGG-16), and LR (pullback from robust Inception-V3). Lower is better.

Method AFHQ FFHQ PlantVillage

L1 L2 LF LR L1 L2 LF LR L1 L2 LF LR

REVISE 1.20±0.12 0.73±0.18 1.08±0.10 2.70±0.05 0.82±0.08 0.32±0.13 0.82±0.08 2.78±0.06 0.50±0.13 0.38±0.15 0.96±0.06 2.87±0.07
VSGD 1.31±0.11 1.49±0.15 1.60±0.09 2.90±0.08 0.79±0.11 0.96±0.10 1.50±0.12 2.86±0.07 0.83±0.13 0.94±0.17 1.18±0.07 3.01±0.09
RSGD 0.85±0.08 1.32±0.09 0.70±0.07 1.85±0.05 0.61±0.05 0.84±0.07 0.61±0.04 2.41±0.05 0.78±0.08 0.82±0.11 0.54±0.05 2.28±0.04

RSGD-C 0.93±0.10 1.45±0.17 0.65±0.08 1.75±0.06 0.68±0.06 0.93±0.09 0.48±0.04 2.11±0.04 0.80±0.10 0.86±0.13 0.45±0.05 2.03±0.06
PCG (ours) 0.79±0.07 1.14±0.10 0.53±0.06 0.31±0.02 0.42±0.03 0.72±0.09 0.39±0.05 0.22±0.06 0.36±0.03 0.56±0.05 0.34±0.04 0.20±0.05

Quantitative Evaluation. We assess counterfactual proximity using four distance metrics: L1 (pixel-
wise ℓ1), L2 (pixel-wise ℓ2), LF (distance induced by the pullback from standard ResNet-50 features),
and LR (pullback from robust ResNet-50 features). Each induced metric is computed between the
input and the final counterfactual in image space using the local quadratic form LG(z0, zT ) =√
(g(zT )− g(z0))⊤G(g(z0))(g(zT )− g(z0)), where G ∈ {GF , GR} is the respective ambient

metric. This approximates perceptual distance in the feature space around the input. To avoid
entanglement between optimization and evaluation, we compute LF using an independent VGG-16
model that was never involved in training or counterfactual optimization, and we compute LR using
a robustly trained Inception-V3 model (Alfarra et al., 2022) separate from the robust ResNet-50
that defines our metric. As shown in Table 1, our method achieves the lowest distances across all
geometry-aware metrics and also under L1, indicating sparse, perceptually meaningful changes. The
margin is largest under LR, and extends to LF , since our robust geodesics stay closer even under
weaker perceptual proxies. REVISE and VSGD often stray off-manifold, producing AEs that appear
close under L2 (unsurprisingly, as REVISE directly minimizes this metric) but deviate sharply in
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all perceptual geometries. RSGD and RSGD-C operate under their metrics, but lack geodescity and
remain vulnerable to on-manifold AEs—perturbations smooth under ℓ2 and LF yet semantically
fragile. These cases highlight that our proposed LR serves as a more faithful evaluation metric,
exposing failure modes that remain hidden under non-robust distances. Low scores in L1,L2, or LF
do not guarantee meaningful proximity and can coincide with adversarial behavior.

Figure 4: Qualitative comparison of counterfactuals across methods with STYLEGAN2. Columns
show input images followed by counterfactuals from PCG (ours), RSGD, RSGD-C, VSGD, and
REVISE. Rows indicate input and target attribute/class. PCG produces minimal, semantically faithful
changes along robust geodesics, while baselines often show off-manifold artifacts, semantic drift, or
adversarial collapse. Optimization details for baselines are presented in Appendix A.2.

5 CONCLUSION

We introduced Perceptual Counterfactual Geodesics (PCG), a method for generating semantically
faithful counterfactuals by optimizing smooth trajectories on a latent Riemannian manifold equipped
with a robust perceptual metric. Our two-phase framework operationalizes established ideas from
pullback geometry and robust perception into a practical algorithm. Empirically, PCG outperforms
latent-space baselines and avoids their common failure modes (off- and on-manifold adversarial
collapse, semantic drift). In addition, the robust geometry-aware evaluation LR exposes errors that
remain hidden under standard distances, providing a more reliable yardstick for counterfactual quality.
Conceptually, the contribution is algorithmic: we show that when the latent space is endowed with a
robust, perceptually aligned geometry and optimized globally along paths, counterfactuals become
smooth, diverse, and faithful. Limitations and future work are discussed in Appendix C
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6 ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. Our experiments use publicly
available vision datasets under their licenses; no new human-subject data were collected, and we do
not perform re-identification or demographic inference. Any released code is intended for research
use and will include guidance discouraging harmful or deceptive applications. LLM usage disclosure:
in line with ICLR policy, we used a large language model only for light copy-editing (grammar, typos,
minor phrasing/formatting); it did not contribute to research ideation, analysis, or claims.

7 REPRODUCIBILITY STATEMENT

All methodological details, derivations, and hyperparameter settings required to reproduce our
experiments are described in the main text (Section 3) and in Appendix A.1, where we also provide
pseudocode for our two-stage optimization procedure. Architectural specifications, training protocols
for generators, encoders, and classifiers, and additional results (including sensitivity to initialization)
are included in Appendices A and B. Anonymized source code implementing PCG and all evaluation
metrics is provided in Section 4 to enable full replication of our experiments.
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A FURTHUR DETAILS ON THE PCG ALGORITHM, BASELINES, MODELS, AND
METRICS.

A.1 PCG OPTIMIZATION

Our objective minimizes the discrete robust perceptual energy of a latent trajectory under the pullback
geometry. Because we differentiate the energy itself (squared feature increments along hk ◦ g,
backprop through hk and g automatically inserts the Jacobian factors that define the pullback metric.
Two implications follow. First, in Phase 1 (energy-only), standard gradient descent already converges
to a manifold-conforming geodesic for the path variables, so a Riemannian correction brings no
additional benefit. Second, in Phase 2 we add a classification term that touches only the endpoint
zT ; while one could Riemannian-correct that update in isolation, it is unnecessary in our coupled
objective: the energy term continues to regularize all latent points (including zT ), steering the entire
trajectory to remain a counterfactual geodesic.

PCG proceeds in two phases. The first constructs a smooth geodesic path between the input and a
target-class sample, optimized for 200 steps with a fixed learning rate of 1e−3. The second refines
the path into a faithful counterfactual over 300 steps, using the same learning rate and a dynamic λ
schedule: starting from 1e−4 and multiplying by 5 every 50 steps. At each such interval, we apply
a re-anchoring strategy: the path endpoint is reassigned to the closest point to the input along the
trajectory that is classified as belonging to the target class. We then increase the resolution of the
path by inserting midpoints between each pair of consecutive latent codes, restoring the original path
length. Optimization resumes to refine the updated path, progressively giving closer counterfactuals.
For completeness, the PCG optimization pseudocode is given in Algorithm 1.

A.2 BASELINES OPTIMIZATION

To ensure comparability, all baselines start from the same initialization z0 = e(x⋆), use
the same encoder–generator pair, and are optimized for the same number of steps as PCG
(200 + 300). We use Adam (Kingma & Ba, 2015) and select the step size by a small sweep
η∈{1e−4, 3e−4, 1e−3, 1e−2} on a held-out split; we report the best setting per method.

VSGD. Vanilla latent descent minimizes only the classification loss ℓ(f(g(z)), y′) (no similarity
term, no λ). We run Adam with the learning-rate sweep above.

REVISE. We optimize d(x⋆, g(z)) + λ ℓ(f(g(z)), y′) in latent space. For fairness and due diligence,
λ follows the same dynamic schedule used in PCG Phase 2 (start 1e−4, ×5 every 50 steps). We use
the same Adam sweep for η.

RSGD/-C. These variants require the inverse of the induced latent metric. We compute the natural-
gradient direction by solving GZ(z) r = ∇zL with Conjugate Gradients (Hestenes & Stiefel, 1952),
using Jacobian–vector products via autodiff; this avoids explicit Jacobian assembly and matrix
inversion. Since the original code targets VAEs on tabular data and is not public, we implement a
deterministic metric compatible with our GAN setting (pixel ℓ2 pullback for RSGD; classifier-feature
pullback for RSGD-C) and apply the same Adam step-size sweep for the outer update.

A.3 GENERATORS, ENCODERS, AND CLASSIFIERS

Style-based generator (image prior). We use the official StyleGAN2-ADA (and, where noted,
StyleGAN3) implementations as our image prior. The generator provides a smooth latent manifold
on which we optimize trajectories; we do not introduce architectural modifications beyond standard
configuration (resolution/weights).

Image→latent encoder (inversion). To place real images on the generator’s latent manifold, we
train a lightweight encoder that maps an input image to a single latent vector compatible with the
generator’s input space. Its role is purely representational: enable mapping for endpoints and faithful
reconstructions; exact layer choices are not critical to the method.

Discriminator (training-only). When (re)training a generator, we use the standard discriminator
bundled with the official StyleGAN repositories. It is only a training counterpart—never used by our
optimization or evaluation procedures.
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Task classifiers (decision function f ). For each dataset/attribute, we use a conventional supervised
image classifier (e.g., VGG-19 from TorchVision) as the decision function whose prediction we seek
to change. These models are straightforward baselines chosen for familiarity and availability; they
are not part of the perceptual metric.

Robust backbones (perceptual geometry & evaluation). To define our robust perceptual metric
and for geometry-aware , we rely on adversarially trained ImageNet backbones sourced from public
robustness libraries. These networks are used only to induce a perceptually aligned geometry and to
score distances; they are distinct from the task classifier f .

Why these choices. The generator supplies a strong visual prior (manifold parameterization), the
encoder puts real data on that manifold, the classifier defines the target decision boundary, and robust
backbones define a perceptually grounded geometry. This separation lets us optimize counterfactual
paths on a high-quality manifold while keeping the decision function and the perceptual metric
decoupled.

Requirements for each method. Tables 2 and 3 summarize practical requirements and optimization
burden. All methods require a generator g and (for real images) an encoder e; only PCG additionally
uses a robust backbone to induce the perceptual geometry. Unlike RSGD variants, PCG does not
perform metric inversion (no CG solves), which keeps its runtime below RSGD/RSGD-C despite
being path-based; qualitatively it is “Medium,” while RSGD and RSGD-C are “High” and “Highest,”
respectively. REVISE and VSGD remain the lightest due to single-point Euclidean updates without
metric operations.

Table 2: Component requirements by method. "Yes/Optional" means the encoder is needed for
real-image inversion but optional for synthetic latents.

Method Generator g Encoder e Classifier f Robust backbone

PCG (ours) Yes Yes/Optional Yes Yes
RSGD-C Yes Yes/Optional Yes No
RSGD Yes Yes/Optional Yes No
REVISE Yes Yes/Optional Yes No
VSGD Yes Yes/Optional Yes No

Table 3: Optimization and compute summary. "Metric inversion" refers to solving GZ(z) r = ∇zL
(e.g., via Conjugate Gradients).

Method Optimization Style Metric inversion Relative compute

PCG (ours) Path optimization (two-phase: energy then energy+cls) No Medium
RSGD-C Single-point Riemannian descent (feature-space pull-

back)
Yes (CG) Highest

RSGD Single-point Riemannian descent (pixel-space pullback) Yes (CG) High
REVISE Single-point Euclidean descent (distance + cls) NA Low
VSGD Single-point Euclidean descent (cls only) NA Lowest

A.4 METRIC COMPOSITION, ROBUST BACKBONES, AND SMOOTHNESS

Backbone choice. We instantiate the perceptual geometry using adversarially trained ImageNet
backbones (default: robust ResNet-50). These networks are used only to induce the metric and for
geometry-aware evaluation; they are never the same model as the task classifier f , and their weights
remain frozen.

Composite metric (layer aggregation). Our composite perceptual metric is constructed by pulling
back the Euclidean metric from multiple activation layers of the robust backbone. Concretely, we
aggregate features from the stem (layer 0) and all four residual stages (layers 1–4) of a robust ResNet-
50. Layers are balanced via simple normalization weights so that no single stage dominates. The
standard metric is based on the same layers but from a standard ResNet-50.
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Algorithm 1 Perceptual Counterfactual Geodesics (PCG)
Require: Input image x⋆, target class y′, encoder e, generator g, classifier f
Require: Robust feature maps {hk}Kk=1, path length T , Phase-1 steps S1, Phase-2 steps S2

Require: Learning rate η, loss weight schedule {λs}S2
s=1, re-anchoring period P

1: function ROBUSTENERGY(z = [z0, . . . , zT ])
2: δt← 1/T , E ← 0
3: for i = 0 to T − 1 do
4: for k = 1 to K do
5: uik ← hk(g(zi+1))− hk(g(zi))
6: E ← E + 1

2
1
δt ∥uik∥22

7: end for
8: end for
9: return E

10: end function

11: Initialization:
12: z0 ← e(x⋆)
13: Choose a target-class sample xtgt with argmax f(xtgt) = y′

14: zT ← e(xtgt)

15: Initialize {zi}T−1
i=1 by linear interpolation between z0 and zT

16: Phase 1: Robust geodesic with fixed endpoints
17: for s = 1 to S1 do
18: E ← ROBUSTENERGY([z0, . . . , zT ])
19: Compute ∇z1,...,zT−1

E by backprop
20: for i = 1 to T − 1 do
21: zi ← zi − η∇ziE
22: end for
23: end for

24: Phase 2: Endpoint-aware refinement under classification constraint
25: for s = 1 to S2 do
26: E ← ROBUSTENERGY([z0, . . . , zT ])
27: Lcls ← ℓ(f(g(zT )), y

′)
28: L ← E + λs Lcls
29: Compute ∇z1,...,zTL by backprop
30: for i = 1 to T − 1 do
31: zi ← zi − η∇ziL
32: end for
33: zT ← zT − η∇zTL ▷ endpoint update
34: if s mod P = 0 then ▷ re-anchoring
35: Re-anchor zT to the closest point along the path classified as y′
36: Densify path by inserting midpoints and resampling to T+1 points
37: end if
38: end for

39: Return final path [z0, . . . , zT ] and counterfactual xcf = g(zT )

Smoothness. To ensure the induced metric varies smoothly, we replace non-smooth ReLU variants
in our models with Softplus post hoc (after training). In practice this does not materially change
behavior, as activations typically operate in smooth regions; it only guarantees that the metric field is
differentiable along the paths we optimize.

Rationale. Robust backbones provide activation spaces that better align with human perceptual
similarity than standard models, leading to latent geometries that discourage brittle directions and
yield smoother, semantically coherent trajectories on the generator’s manifold. Keeping the robust
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backbone distinct from f avoids biasing optimization toward a particular decision head and cleanly
separates geometry from classification.

B MORE RESULTS & ANALYSIS

B.1 INTERPOLATION RESULTS

Figures 5 and 6 compare straight-line interpolations under four geometries based on STYLEGAN3.
From top to bottom in each panel: (i) Z-linear interpolation (flat latent space), (ii) pixel-space MSE
pullback (XMSE), (iii) standard feature pullback (FMSE), and (iv) our robust perceptual pullback
(RMSE). The robust metric produces smooth, on-manifold transitions with consistent semantics
(identity/pose for faces; class coherence for animals), while Z-lerp and pixel MSE exhibit mid-
trajectory artifacts and blends. The standard feature pullback improves semantics but still suffer from
similar failure modes. These visuals mirror the trends discussed in the main text and motivate using a
robust geometry for PCG.

Figure 5: Interpolations on FFHQ under four geometries. Rows (top to bottom): Z-lerp, XMSE
pullback, FMSE pullback, and robustRMSE pullback. The robust row shows a smooth, semantically
consistent evolution (e.g., gradual attribute change without identity drift), whereas the other geome-
tries introduce off-manifold blends and texture/illumination artifacts mid-path.

Figure 6: Interpolations on AFHQ under four geometries. Same ordering as Fig. 5. The robust
RMSE path preserves class coherence and yields clean transitions, while Z-lerp and XMSE produce
ambiguous hybrids and brittle textures; FMSE reduces but does not eliminate these effects.
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B.2 PERCEPTUAL COUNTERFACTUAL GEODESICS ACROSS AFHQ AND FFHQ.

Figures 7 (AFHQ, two examples) and 8 (FFHQ, two examples) visualize the two-phase PCG
procedure with STYLEGAN3. In each panel, the top row is the initial linear path in Z (straight
interpolation between the encoded input and a target exemplar), which often drifts off-manifold or
blends semantics mid-trajectory. The middle row is the Phase 1 robust geodesic with fixed endpoints;
transitions become smooth and class-consistent. The bottom row is the Phase 2 counterfactual
geodesic, where the endpoint is jointly refined with the classification loss; the endpoint moves
closer to the input while achieving the target class/attribute, and the entire path remains on-manifold.
Qualitatively, AFHQ preserves species structure and textures, while FFHQ preserves identity and
pose as attributes change, supporting the claims about semantic fidelity and geometry-aware paths.

Figure 7: PCG on AFHQ (STYLEGAN3), two examples (Cat → Dog & Wild → Dog). Rows
(top to bottom): initial linear path in Z between the encoded input and a target exemplar; Phase 1
robust geodesic (energy-only) with fixed endpoints; Phase 2 counterfactual geodesic after endpoint
refinement with classification loss. The geodesic rows remove mid-path blends and keep species-level
semantics while reaching the target class.
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Figure 8: PCG on FFHQ (StyleGAN3), two examples (Glasses→ No-glasses & Female→Male).
Same layout as Fig. 7. Phase 1 produces smooth, on-manifold transitions; Phase 2 moves the endpoint
toward the input while satisfying the target classifier. Identity and pose are largely preserved as the
target attribute changes, and intermediate frames remain perceptually coherent.

B.3 SENSITIVITY TO DIFFERENT TARGET CLASS SAMPLES

Figures 9 and 10 test how PCG depends on which target-class exemplar is used to initialize the path.
For each input we run PCG twice, once per exemplar. We observe that the Phase 1 geodesic reflects
the chosen exemplar (different coarse routes in latent space), but after Phase 2 (endpoint refinement
with classification loss) the counterfactual geodesics converge to a tight neighborhood around the
input while achieving the target label/attribute. This yields diverse yet faithful counterfactuals and
supports the main-text claim about robustness to target initialization.
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Figure 9: Sensitivity to target exemplar on AFHQ (StyleGAN3) (Cat→Wild). Rows: (1) Phase 1
geodesic initialized with target exemplar A, (2) resulting Phase 2 counterfactual geodesic, (3) Phase 1
geodesic with a different exemplar B, (4) resulting Phase 2 counterfactual geodesic. Although the
Phase 1 routes differ, the Phase 2 counterfactuals converge near the input and satisfy the target class,
indicating low sensitivity to the exemplar choice and producing diverse but faithful variations.

Figure 10: Sensitivity to target exemplar on FFHQ (StyleGAN3) (Blonde→ Non-blonde). Same
layout as Fig. 9. Two different target exemplars lead to distinct Phase 1 paths, yet the Phase 2
counterfactual geodesics converge to a small neighborhood around the input while achieving the
target attribute; identity and pose remain largely preserved.

Quantitative sensitivity (three initializations per input). To quantify low sensitivity to target
initialization, we run PCG M=3 times per input with different target exemplars and measure how
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close and consistent the resulting counterfactuals (CFs) are. We use the LPIPS perceptual distance
(Zhang et al., 2018) and report two intuitive, scale-aware metrics: (i) CF dispersion ratio (CDR) —
how tightly CFs cluster compared to typical variation within the target class, and (ii) CF diameter —
the worst-case dissimilarity among the CFs.

Definitions. Let C = {x(1)
cf , x

(2)
cf , x

(3)
cf } be the CF endpoints for one input x⋆. Let LPIPS(·, ·) denote

the perceptual distance, and let dtgt be the average LPIPS between random pairs sampled from the
target class (estimated once per dataset/attribute using 30 random pairs).

(1) CDR:

dCF =
2

M(M − 1)

∑
m<n

LPIPS
(
x
(m)
cf , x

(n)
cf

)
, CDR =

dCF

dtgt
.

CDR≪ 1 indicates CFs form a cluster much tighter than typical target-class variability.

(2) CF diameter:
DiamCF = max

m<n
LPIPS

(
x
(m)
cf , x

(n)
cf

)
,

so a small value guarantees even the most dissimilar CFs remain close.

Sensitivity summary (AFHQ and FFHQ) based on STYLEGAN2. Using the LPIPS-based
metrics defined above, Table 4 reports the CF dispersion ratio (CDR) and CF diameter for three
target-initializations per input (mean ± std). CDR is the intra-CF mean LPIPS normalized by a target-
class baseline computed from 30 random target pairs; CF diameter is the maximum pairwise LPIPS
among the three CFs. For both metrics, lower is better (tighter clustering and smaller worst-case
gap).

For both datasets, CDR≪ 1 shows that CFs produced from different target exemplars form a tight
cluster relative to the target-class spread, consistent with our claim that PCG converges on diverse yet
faithful counterfactuals; the small CF diameters confirm this even in the worst case.

Table 4: Sensitivity to target initialization (three runs per input). LPIPS-based tightness across
counterfactuals (lower is better). CDR is the intra-CF mean LPIPS normalized by the target-class
baseline LPIPS (estimated from 30 random target pairs).

Dataset / Task CDR (LPIPS) CF Diameter (LPIPS)

AFHQ: cat → dog 0.19 ± 0.06 0.18 ± 0.05
FFHQ: not-smile → smile 0.21 ± 0.08 0.16 ± 0.04
FFHQ: bald → hairy 0.28 ± 0.05 0.19 ± 0.05

B.4 QUANTITATIVE RESULTS BASED ON STYLEGAN3

As in the main text, PCG consistently achieves the lowest values under the geometry-aware metrics
LF and LR and remains competitive under pixel metrics. These appendix results, obtained on
STYLEGAN3, show that the robust geodesic formulation retains its advantage without re-tuning and
confirm the stability of PCG’s behaviour across model choices.

Table 5: Quantitative comparison across datasets.

Method AFHQ FFHQ

L1 L2 LF LR L1 L2 LF LR

REVISE 1.18±0.12 0.72±0.17 1.05±0.10 2.68±0.04 0.81±0.07 0.33±0.12 0.81±0.09 2.75±0.06
VSGD 1.30±0.11 1.48±0.15 1.57±0.09 2.88±0.08 0.78±0.11 0.95±0.10 1.49±0.12 2.83±0.08
RSGD 0.84±0.08 1.30±0.09 0.68±0.07 1.83±0.05 0.60±0.05 0.83±0.07 0.60±0.04 2.39±0.05

RSGD-C 0.92±0.10 1.43±0.16 0.63±0.08 1.73±0.06 0.67±0.06 0.91±0.09 0.47±0.04 2.08±0.05
PCG (ours) 0.78±0.07 1.13±0.10 0.51±0.06 0.30±0.02 0.41±0.03 0.71±0.09 0.38±0.05 0.21±0.05
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B.5 RUNTIME COMPLEXITY ON AFHQ

On AFHQ, measured on a single NVIDIA H100 GPU, Table 6 reports per-sample wall-clock runtimes
and speedups across methods based on STYLEGAN2. VSGD is the fastest (1.6 min). PCG runs in 3.4
min per sample despite being path-based (here T=10): with a GPU, all path nodes and robust-feature
evaluations are batched in a single forward/backward, so the extra cost is modest. RSGD is slowest
(5.7 min) because each step requires solving GZ(z) r = ∇zLwith Conjugate Gradients; the inner CG
iterations and repeated Jacobian–vector products through g (and, for RSGD-C, the feature backbone)
dominate wall-clock. Absolute times depend on precision and batch sizing, but the relative ordering
was consistent across runs.

Table 6: AFHQ per-sample wall-clock runtime (minutes). RSGD serves as a representative for
RSGD/RSGD-C; VSGD represents standard Euclidean-gradient methods.

Method Time (min) Speedup vs RSGD Notes

VSGD (rep. Euclidean) 1.6 3.56x Classification loss only; lowest cost.
PCG (ours) 3.4 1.68x Path-based with T=10 nodes; nodes batched

on GPU.
RSGD (rep. RSGD/–C) 5.7 1.00x Natural-gradient via CG; Jacobian–vector prod-

ucts dominate.

C LIMITATIONS & FUTURE WORK

PCG depends on pretrained generators/encoders, shared by all latent-space approaches, and robust
vision backbones; this reliance may limit applicability in domains where such resources are scarce
or hard to train. While our robust metric and two-stage path refinement mitigate artifacts from
imperfect generators, PCG cannot fully overcome a severely mis-specified latent space. In terms of
computation, PCG is path-based, but with short paths and batched evaluation its per-sample cost is
moderate and typically below RSGD/RSGD-C, which incur additional expense from metric inversion
via conjugate gradients. Our study focuses on images; extending the framework beyond vision (e.g.,
graphs or language) is non-trivial and left open. Future work includes: (i) multimodal extensions
that couple text and image spaces (e.g., CLIP or diffusion backbones) via joint latent geometries and
cross-modal robust metrics; (ii) video counterfactuals, incorporating temporal coherence (motion
consistency, content persistence) and video backbones to define spatiotemporal perceptual geometry;
and (iii) methods for low-resource regimes, such as lightweight robust feature surrogates or few-shot
adaptation of perceptual metrics.
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