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ABSTRACT

We provide the first proof that gradient descent (GD) with greedy sparsification
(TopK) and error feedback (EF) can obtain better communication complexity
than vanilla GD when solving the following distributed optimization problem
minx∈Rd{f(x) = 1

n

∑n
i=1 fi(x)}, where n = # of clients, d = # of features, and

f1, . . . , fn are smooth nonconvex functions. Despite intensive research since 2014
when EF was first proposed by Seide et al., this problem remained open until now.
Perhaps surprisingly, we show that EF shines in the regime when features are rare,
i.e., when each feature is present in the data owned by a small number of clients only.
To illustrate our main result, we show that in order to find a random vector x̂ such
that ∥∇f(x̂)∥2 ≤ ε in expectation, GD with the Top1 sparsifier and EF requires

O
((

L+ r
√

c
n min

{
c
n maxi L2

i ,
1
n

∑n
i=1 L

2
i

})
1
ε

)
bits to be communicated by

each worker to the server only, where L is the smoothness constant of f , Li is
the smoothness constant of fi, c is the maximal number of clients owning any
feature (1 ≤ c ≤ n), and r is the maximal number of features owned by any client
(1 ≤ r ≤ d). Clearly, the communication complexity improves as c decreases
(i.e., as features become more rare), and can be much better than the O(rL 1

ε )
communication complexity of GD in the same regime.

1 INTRODUCTION

In recent decades, the field of machine learning has undergone significant growth and development,
presenting numerous opportunities for innovation and advancement. As a result, breakthroughs have
been made in various areas such as computer vision (Krizhevsky et al., 2012; He et al., 2015; Ho et al.,
2020), natural language processing (Vaswani et al., 2017; Brown et al., 2020), reinforcement learn-
ing (Mnih et al., 2013; Sutton and Barto, 2018), healthcare (Esteva et al., 2019), and finance (Dixon
et al., 2020). The surge in machine learning applications has also stimulated the development of
associated optimization research.

What unique characteristics has modern machine learning introduced to optimization research?
i) Firstly, the design of modern models is inherently complex. For example, contemporary convolu-
tional neural networks are constructed from multiple blocks consisting of diverse types of layers that
are arranged hierarchically (LeCun et al., 2015). Consequently, these models are notably nonconvex
in nature (Choromanska et al., 2015). ii) Secondly, the quantity of data utilized during model training
is so extensive that the use of a single computing device is no longer practical. Therefore, it is
necessary to distribute the data across multiple computing resources, which raises the question of
how to effectively coordinate distributed (Yang et al., 2019) model training. Another motivation
for distributed training is derived from the federated learning framework (Li et al., 2019), where
data is owned by users who are not willing to share it with each other in a cross-device federated
learning scenario. In this case, the centralized algorithm must manage the training of several client
devices. iii) Thirdly, modern machine learning models have a tendency to expand in size, often
containing millions of parameters. For instance, in a distributed setting, during gradient descent,
each device must transmit a dense gradient vector consisting of millions of parameters each round
of communication (Li et al., 2020). This creates an unmanageable burden on the communication
network. Hence, there is a need for techniques that can reduce the number of bits transmitted through
communication channels while maintaining the convergence of the algorithm.
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The first two points, namely the lack of convexity and the distributed setup, provide the rationale
for focusing our investigation on the finite-sum minimization problem, presented in the following
equation:

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x)

}
, (1)

where fi : Rd → R is a smooth nonconvex function representing the local loss function on client i,
and n ∈ N is the number of participating clients in the training process, with d ∈ N representing the
dimension of the model. The third point, which we address by reducing the communication load via
lossy compression of updates, is elaborated in the following section.

2 COMMUNICATION COMPRESSION AND ERROR FEEDBACK

2.1 REDUCING COMMUNICATION IN DISTRIBUTED LEARNING

A common approach to solving the optimization problem (1) is to utilize Distributed Gradient Descent
(DGD), which takes the form:

xt+1 = xt − γt

n

n∑
i=1

∇fi(xt), (2)

where γt > 0 denotes the learning rate. The orchestration of this method occurs between a master
node (a central node that holds no data and is responsible for aggregation actions) and n clients. Prior
to the start of the algorithm, an initial iterate x0 ∈ Rd and a learning rate γ0 > 0 are selected. At
iteration t, the master node broadcasts the current iterate xt ∈ Rd to the clients, each client then
computes its gradient∇fi(xt) and sends it back to the master. Finally, the master node aggregates
all the gradients and uses them to perform the gradient descent step (2), updating the iterate to xt+1.
This process is repeated.

While DGD is known to be an optimal algorithm for finding a stationary point with a minimum
number of iterations on smooth nonconvex problems (Nesterov et al., 2018), it poses a significant
challenge to the communication network. At every communication round, DGD transmits dense
gradients of d dimensions to the master. As previously mentioned, this communication load is
unacceptable in many practical scenarios. One way to resolve this problem is to apply a contractive
compressor to the communicated gradients.
Definition 1. A (possibly randomized) mapping C : Rd → Rd is called a contractive compressor if
there exists a constant α ∈ (0, 1], known as the contraction parameter, such that

E
[
∥C(x)− x∥2

]
≤ (1− α)∥x∥2, ∀x ∈ Rd. (3)

An immensely popular contractive compressor is the TopK operator. Given a vector x ∈ Rd, this
operator retains only the k elements with the largest magnitudes and sets the remaining d−k elements
to zeroes. It is well-known that the TopK operator is contractive with α = k

d .

The next step in reducing the communication load within DGD, is to implement workers-to-server
communication compression. This modification of DGD is known as Distributed Compressed
Gradient Descent (DCGD), performing iterations

xt+1 = xt − γt

n

n∑
i=1

Cti (∇fi(xt)), (4)

where Cti is the compressor used by client i at iteration t.

DCGD has been shown to converge to stationary points using certain compressors (Gorbunov et al.,
2020; Khirirat et al., 2018). However, greedy contractive compressors such as TopK, which are often
preferred in practical applications (Szlendak et al., 2022), are not among them, and their practical
superiority is not explained by any existing theoretical results. Furthermore, negative results suggest
that DCGD with greedy contractive compressors such as TopK can experience exponential divergence
in the distributed setting (Beznosikov et al., 2020; Karimireddy et al., 2019), even on simple convex
quadratics. Hence, in order to safely apply contractive compressors in a multi-device communication
network, a fix is needed. Fortunately, a fix exists: it is generically known as Error Feedback.
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2.2 EVOLUTION OF ERROR FEEDBACK

The concept of Error Feedback (EF), also known as Error Compensation, was initially proposed
by Seide et al. (2014) as a heuristic approach to fix the divergence issues of DCGD. The first version
of EF, which for the purposes of this paper we shall denote as EF14, is structured as follows:

vti = Cti (eti + γt∇fi(xt)), xt+1 = xt − 1
n

n∑
i=1

vti , et+1
i = eti + γt∇fi(xt)− vti .

Here, Cti represents a contractive compressor utilized by client i at iteration t, and eti is a memory
vector that preserves all elements that were not transmitted by client i in the preceding iterations.
In this approach, at iteration t, the method sends compressed gradient compensated by the memory
vector. The memory vector is then updated and the process is repeated.

The first attempts to establish a theoretical basis for EF14 focused on the single-node scenario (Stich
et al., 2018; Alistarh et al., 2018), which is, however, detached from the practical utility of the
mechanism that is meaningful only in the distributed setting. An analysis in the distributed setting
was executed by (Beznosikov et al., 2020) for strongly convex problems. However, a key limitation
of their result was that the (expected) linear rate was only achievable in the homogeneous over-
parameterized setting. Subsequent efforts aimed to relax these assumptions and allow for a fast rate
even under data heterogeneity, but the EF14 framework seem too elusive to yield vastly improved
results. For example, Koloskova et al. (2020) established convergence of EF14 under the assumption
of bounded gradients. The authors demonstrate that the method requires T = O(ε−3/2) iterations
to attain an ε-accuracy in terms of the squared gradient norm. However, this rate is worse than the
T = O(ε−1) rate of vanilla DGD, and under stronger assumptions.

Algorithm 1 EF21: Error Feedback 2021 with the TopKi compressor (Richtárik et al., 2021)
1: Input: x0 ∈ Rd; g01 ∈ Rd

1, . . . , g
0
n ∈ Rd

n (as defined in equation (10)); stepsize γ > 0;
sparsification levels K1, . . . ,Kn ∈ [d]; number of iterations T > 0

2: Initialize: g0 = 1
n

∑n
i=1 g

0
i

3: for t = 0, 1, 2, . . . , T − 1 do
4: xt+1 = xt − γgt

5: Broadcast xt+1 to the clients
6: for i = 1, . . . , n on the clients in parallel do
7: gt+1

i = gti + TopKi(∇fi(xt+1)− gti)

8: Send gt+1
i to the server

9: end for
10: gt+1 = 1

n

∑n
i=1 g

t+1
i

11: end for
12: Output: xT

Recently, Richtárik et al. (2021) re-engineered the EF technique and proposed their EF21 method.
This algorithm, presented in a specific version with the TopKi compressors in Algorithm 1, achieves
the optimal number of iterations of O(ε−1) for smooth nonconvex problems, without invoking any
strong assumptions. This paper represents a breakthrough in realizing the complete potential of
EF for distributed learning applications since EF21 achieves a better convergence rate than EF14,
under weaker assumptions, and exhibits better performance in practice. While it may seem that EF21
constitutes the ultimate culmination of the Error Feedback story, we argue that this is far from true!
And this is the starting point of our work. We elaborate on this in the next section.

3 ERROR FEEDBACK: DISCREPANCY BETWEEN THEORY AND PRACTICE

Our work is motivated through three observations about the unreasonable effectiveness of EF21.

3.1 OBSERVATION 1: IN PRACTICE, EF21 CAN BE EXTREMELY GOOD!

Let us start by looking at the practical performance of EF21 using the TopK compressor, contrasted
with the performance of the current best method for solving (1) in the smooth nonconvex regime in
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terms of theoretical communication complexity: the MARINA method of Gorbunov et al. (2021). In
Figure 1, which we adopted from from (Szlendak et al., 2022), EF21 is compared to two variants
of MARINA: with the RandK and PermK compressors used by the clients. While TopK is a greedy
mechanism, performed by each client without any regard for what the other clients do, PermK is the
exact opposite: it is a collaborative compression mechanism.

Figure 1: Comparison of three algorithms on the encoding learning task for the MNIST dataset (Szlen-
dak et al., 2022, Figure 2).

It is clear from Figure 1 that EF21 + TopK has similar performance to MARINA + PermK, and both
are much faster than MARINA with the “naive” RandK compressor.

3.2 OBSERVATION 2: IN THEORY, EF21 IS NOT BETTER THAN DGD!

However—and we believe that this is very important—while the theoretical communication com-
plexity of MARINA is significantly better than that of DGD (Gorbunov et al., 2021), the theoretical
communication complexity of EF21 at best matches the complexity of DGD! To state this formally,
let us revisit the assumptions Richtárik et al. (2021) used to perform their analysis of EF21.

Assumption 1. The function f is L-smooth, i.e., there exists L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd. (5)

Assumption 2. The functions fi are Li-smooth, i.e., there exists Li > 0 such that

∥∇fi(x)−∇fi(y)∥ ≤ Li ∥x− y∥ , ∀x, y ∈ Rd. (6)

Assumption 3. There exists f∗ ∈ R such that that f(x) ≥ f∗ for all x ∈ Rd.

The following observation formalized the above claim.

Lemma 1. Under Assumptions 1, 2, and 3, the optimal theoretical communication complexity of
Algorithm 1 obtained by Richtárik et al. (2021) is achieved when the parameter K in the TopK
compressor equals the dimension d.

So, to summarize, in theory, EF21 at its best reduces to vanilla DGD, but in practice, EF21 can be
orders of magnitude better than DGD. Why is error feedback so unreasonably effective? Despite
about a decade of research on the Error Feedback mechanism since the pioneering work of Seide
et al. (2014), and steady advances in the field and our theoretical understanding, there is clearly still
much to be explored regarding the communication complexity advantages it offers.

3.3 OBSERVATION 3: EF21 HAS ABSOLUTELY NO SCALING IN THE HOMOGENEOUS DATA
REGIME!

Our final observation is that EF21 performs remarkably poorly in the fully data homogeneous
regime, i.e., when f1 = f2 = · · · = fn = f . For simplicity, assume that all initial gradient
estimators g01 , . . . , g

0
n are identical. In this case, running EF21 with the TopK compressor in the

distributed (n > 1) setting is equivalent to running it in the single node (n = 1) setting! That is,
EF21 has no parallel scaling at all! Specifically, if at iteration t we have gti ≡ g′ for all i, then
gt+1
i = gti + TopK(∇fi(xt) − gti) = g′ + TopK(∇f(xt) − g′) for all i, meaning that all gt+1

i
coincide, again. Note that the average of these estimators does not depend on n and, as a result, EF21
generates the same chain of iterates xt for any value of n.
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Table 1: Communication complexity of DGD with the Top1 compressor and Error Feedback (either
EF14 due to Seide et al. (2014), or EF21 due to Richtárik et al. (2021)). L = smoothness constant
of f ; Li = smoothness constant of fi; Lmax = maxi Li; L̃2 = 1

n

∑n
i=1 L

2
i ; L+ is the smoothness

constant defined in Assumption 4. Note that L+ ≤ L̃ and L ≤ L̃.

Base
method Compressor Error feedback

mechanism
Communication

complexity
Better

than DGD?
DGD — — O(rLε−1) =
DGD Top1 — diverges(i) ✗

DGD Top1 EF14 (Seide et al., 2014) O
(
ε−3/2

)
(iii) ✗

DGD Top1 EF21 (Richtárik et al., 2021) O
((

L + rL̃
)
ε−1

)
(iv) ✗

DGD Top1 EF21 (Richtárik et al., 2021) O
((

L + r
√

c
nL+

)
ε−1

) (v) ✓(ii)

DGD Top1 EF21 (Richtárik et al., 2021) O
((

L + r

√
c
n min

{
c
nL2

max, L̃
2
})

ε−1

)
(v) ✓(ii)

(i) See Beznosikov et al. (2020); (ii) If
√

c
nL+ ≤ L; (iii) Proved by Koloskova et al. (2020)under bounded gradient assumption;

(iv) Proved by Richtárik et al. (2021); (v) New results proved in this paper.

3.4 SUMMARY OF CONTRIBUTIONS

The above three observations point to deep issues in our theoretical understanding of EF in general,
and its most recent and best performing incarnation EF21 in particular. However, our last observation
also offers a hint at a possible resolution. Indeed, since EF21 cannot possibly perform well on data
homogeneous problems, we conjecture that its practical superiority is due to a certain “favorable”
type of data heterogeneity. This is perhaps counter-intuitive because heterogeneous problems are
typically much harder than homogeneous ones (Li et al., 2019). Specifically, our contributions are:

a) Sparsity rules & the first time error feedback beats gradient descent. We present a refined
theoretical analysis of the EF21 algorithm (with the greedy TopK compressor) demonstrating that,
under certain conditions on the sparsity parameters c and r associated with the problem (defined
in (9)), EF21 can surpass DGD in terms of theoretical communication complexity. This is the first
result in the vast literature on error feedback of this type. In particular, in Theorem 2, we provide a
stronger convergence rate for EF21 in terms of its communication complexity. For EF21 with the
Top1 compressor, for example, we establish an O((L + r

√
c
nL+)

1
ε ) communication complexity,

where L+ is defined in Assumption 4. In the regime when
√

c
nL+ ≤ L, which holds when either c

is small or n is large, EF21 is better than DGD.

b) Experimental validation. We conduct rigorous toy experiments on linear regression functions to
validate our theoretical findings. In one of our experiments, we redefine c as an adaptive parameter
ct satisfying the inequality ∥gt −∇f(xt)∥2 ≤ ct

n G
t presented in Lemma 5. We also introduce a

heuristically defined adaptive stepsize γ(ct), which demonstrates good performance in a logistic
regression experiment on non-sparse data.

We believe that this paper represents a milestone in advancing our understanding of Error Feedback
algorithms, and lays the groundwork for further advancements in the field.

4 RARE FEATURES

We begin our narrative by delineating the key features of the sparsity pattern in fi. Let us define

Z def
=
{
(i, j) ⊆ [n]× [d] | [∇fi(x)]j = 0 ∀x ∈ Rd

}
,

or, equivalently, Z ⊆ [n]× [d] represents the set of pairs (i, j), where fi(x) does not depend on xj .
For instance, if all functions depend on all variables, then Z = ∅. Further, we define:

Ij
def
= {i ∈ [n] : (i, j) /∈ Z}, Ji

def
= {j ∈ [d] : (i, j) /∈ Z}, (7)

or, informally, Ij denotes the set of local loss functions in which the variable xj is active, and
Ji denotes the set of active variables in the function fi. It is reasonable to assume that 1 ≤ |Ij |
and 1 ≤ |Ji| for all j ∈ [d] and i ∈ [n]. Otherwise, if Ij′ = 0, the specific variable j′ can be

5



Under review as a conference paper at ICLR 2024

safely ignored in the equation (1). Similarly, if Ii′ = 0, we can safely exclude the client i′ from
consideration as they play no role in (1). Since the union of sets Ij represents the set of all active
variables, which we can express as [n] × [d] \ Z , we write

∑d
j=1 |Ij | = nd − |Z|. Similarly,∑n

i=1 |Ji| = nd− |Z|. Hence, we have

1
n

1
d

d∑
j=1

|Ij | = 1
d

1
n

n∑
i=1

|Ji| = 1− |Z|
nd . (8)

We now define two key sparsity parameters as follows:

c
def
= max

j∈[d]
|Ij |, r

def
= max

i∈[n]
|Ji|. (9)

The parameter c represents the maximum number of clients possessing any variable, while r denotes
the maximum number of variables possessed by any client. Therefore, 1 ≤ c ≤ n and 1 ≤ r ≤ d.
Since both c and r represent maximum values in their sets, they are both lower bounded by average
values over those sets. The following inequalities result from both observations:

1 ≥ c
n ≥

1
n

1
d

d∑
j=1

|Ij |
(8)
= 1− |Z|

nd , 1 ≥ r
d ≥

1
d

1
n

n∑
i=1

|Ji|
(8)
= 1− |Z|

nd .

An illustrative instance of loss functions having small c and r is represented by generalized linear
models with sparse data.
Example 1 (Linear models with sparse data). Let fi(x) = ℓi(a

⊤
i x), i = 1, 2, . . . , n, where ℓi : R→

R are loss functions, and the vectors a1, . . . , an ∈ Rd are sparse. Then

Z = {(i, j) ∈ [n]× [d] : ℓ′i(a
⊤
i x)aij = 0, ∀x ∈ Rd} ⊇ {(i, j) ∈ [n]× [d] : aij = 0} def

= Z ′.

In this case, c ≤ maxj |{i : (i, j) ̸= Z ′}| = maxj |{i : aij ̸= 0}|.

We conclude this section by introducing notation that is essential for our subsequent results:

Rd
i

def
= {u = (u1, . . . , ud) ∈ Rd : uj = 0 whenever (i, j) ∈ Z}. (10)

Note that for any x ∈ Rd, the gradient∇fi(x) belongs to Rd
i .

5 THEORY

In this section, we present fundamental insights into how the convergence of EF21 is affected
by c and r. To accomplish this, we revisit all the crucial elements of the original analysis of
EF21 (Richtárik et al., 2021) and enhance it.

5.1 AVERAGE SMOOTHNESS

The convergence rate of EF21 is directly affected by Assumption 2 only when the analysis estimates
the average smoothness. Specifically, the original analysis uses the inequality

1
n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2
(6)
≤ 1

n

n∑
i=1

L2
i ∥x− y∥2 = L̃2∥x− y∥2,

where L̃2 def
= 1

n

∑n
i=1 L

2
i (Richtárik et al., 2021). Given that this is the only place in the analysis

where the local smoothness constants Li are relevant, a more intelligent way to analyze Algorithm 1
is to replace this assumption with a less restrictive one presented as follows.
Assumption 4. There exists a constant L+ ≥ 0 such that

1
n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+ ∥x− y∥2 , ∀x, y ∈ Rd. (11)

Based on the aforementioned observation, it follows that L2
+ is bounded above by L̃2. However, we

can obtain a more refined upper bound on L2
+ by leveraging the concept of sparsity introduced earlier.

Concretely, we present the following lemma which provides a tighter bound on L+.
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Lemma 2. If Assumption 2 holds, then Assumption 4 holds with

L+ ≤
√

maxj{∑i:(i,j)/∈Z L2
i}

n ≤ min

{√
cmaxi L2

i

n , L̃

}
. (12)

Let us introduce L+(Z)
def
=

√
maxj{∑i:(i,j)/∈Z L2

i}
n . According to Lemma 2, L+ ≤ L+(Z). Moreover,

if Z ′ ⊃ Z , all other factors being equal, then the resulting sparsity level is higher and thus L+(Z ′) ≤
L+(Z). Therefore, we can infer that a higher degree of sparsity leads to a smaller value of L+.

5.2 CONTRACTION ON Rd
i

Another important insight concerns the contraction parameter of the TopK compressor.
Lemma 3. Consider problem (1) and Algorithm 1. Then, for all i ∈ [n] and x ∈ Rd

i , we have

∥TopKi(x)− x∥2 ≤
(
1− min{Ki,|Ji|}

|Ji|

)
∥x∥2 . (13)

The intuition behind the lemma is that if the active dimension space |Ji| of the function fi is less
than d, then the TopKi compressor is more efficient. For example, if Ki = |Ji|, then the contractive
compressor returns all non-zero components, resulting in the corresponding contraction parameter
αi = 1. The lemma implies that if Ki ≡ K for all i ∈ [n], then the worst contraction parameter is K/r.

5.3 INTERPOLATING BETWEEN ORTHOGONALITY AND PARALLELISM

The sparsity parameter c has an important role in interpolating between orthogonal and parallel
vectors, as demonstrated in the following lemma.

Lemma 4. If u1 ∈ Rd
1, . . . , un ∈ Rd

n, then
∥∥∥∥ n∑
i=1

ui

∥∥∥∥2 ≤ c
n∑

i=1

∥ui∥2 .

If c = 1, then each client i owns a unique set of variables, and hence the scalar products ⟨ui, uj⟩
are zero for i ̸= j, since non-zero elements of one vector are multiplied by zeros of another in the
product sum. Note that for orthogonal vectors, Lemma 4 becomes an equality with c = 1. When
c = n, Lemma 4 reduces to Young’s inequality, which states that for any ui ∈ Rd, ∥

∑n
i=1 ui∥2 ≤

n
∑
∥ui∥2. This inequality is an equality when all vectors are parallel and of the same length.

In the context of EF21 theory, Lemma 4 provides another enhancement. To present it, we introduce
the following quantity representing the error in our estimation of the gradients:

Gt def
= 1

n

n∑
i=1

Gt
i, Gt

i
def
= ∥gti −∇fi(xt)∥2 . (14)

The following lemma represents this enhancement.
Lemma 5. Assume that g0i ∈ Rd

i for all i ∈ [n]. Then, it holds for all t ≥ 0 that

∥gt −∇f(xt)∥2 ≤ c
nG

t. (15)

In contrast to the standard analysis that uses the inequaity ∥gt −∇f(xt)∥2 ≤ Gt, Lemma 5 provides
an enhanced result by incorporating the sparsity parameter c.

5.4 MAIN THEOREM

Drawing on the key observations made above, we can now present our main result.

Theorem 2. Let Assumptions 1, 3, 4 hold. Let α
def
= mini αi, where αi

def
= min{Ki,|Ji|}

|Ji| , θ
def
=

1 −
√
1− α and β

def
= 1−α

1−
√
1−α

. Choose γ ≤ 1

L+L+

√
βc
θn

. Under these conditions, the iterates of

Algorithm 1 (EF21) satisfy

1
T

T−1∑
t=0
∥∇f(xt)∥2 ≤ 2(f(x0)−f∗)

γT + c
n

G0

θT . (16)
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Figure 2: Comparison of the performance of EF21 + Top1 with the standard approach proposed
by Richtárik et al. (2021) and a newly proposed stepsize (see Theorem 2) on the linear regression
problem. The sparsity pattern c is controlled by manipulating the sparsity of the data matrix.

We make the following immediate observations:

1. If we let Ki = 1 for all i ∈ [n], then αi =
1

|Ji| and α = mini αi =
1

maxi |Ji|
(9)
= 1

r . Thus, the

term appearing in the stepsize can be bounded as follows:
√

β/θ = (
√
1−α+1−α)/α ≤ 2

√
1−α/α =

2r
√
1− 1/r = 2

√
r(r − 1) ≤ 2r, where the proof of the first equality is deferred to the appendix.

By using Theorem 2, we find that EF21 with Top1 compressor requires O((L + rL+

√
c
n )

1
ε )

bits to converge to the ε-stationary point. Comparing this with the standard communication
complexity of DGD O(rL 1

ε ), we can see that EF21 gets asymptotically faster if L+

√
c
n ≤ L.

In fact, when Ki ≡ K in Algorithm 1, the optimal value for K is either 1 or r, as elucidated
in Lemma 6 in the appendix.

2. By using the largest stepsize allowed by the theory, we get the bound

1
T

T−1∑
t=0
∥∇f(xt)∥2 ≤ 2

(
L+min

{√
cmaxi L2

i

n ,

√∑n
i=1 L2

i

n

}√
βc
θn

)
Ψ0

T . (17)

3. In a pessimistic scenario where c = n, the bound (17) recovers the standard EF21 rate:

1
T

T−1∑
t=0
∥∇f(xt)∥2 ≤ 2

(
L+

√∑n
i=1 L2

i

n

√
β
θ

)
Ψ0

T .

4. In an optimistic scenario where c = 1, the bound (17) recovers the EF21 rate in the separable
regime, discussed in the appendix:

1
T

T−1∑
t=0
∥∇f(xt)∥2 ≤ 2

(
L+

√
maxi L2

i

n

√
β
θn

)
Ψ0

T .

In the next section, we perform computational experiments to validate our theoretical results.

6 EXPERIMENTS

The practical superiority of EF21 has been demonstrated in various previous publications (Szlendak
et al., 2022; Richtárik et al., 2021). These publications have explicitly indicated that the stepsize of
EF21 utilized in the experiments is fine-tuned, and is typically substantially larger than the value
suggested by theoretical analysis. Consequently, the objective of our experimental section is not to
reassert the dominance of the Error Feedback algorithm, but rather to substantiate our theoretical
contentions. In order to do so, it suffices to perform small scale but carefully executed experiments.

6.1 LINEAR REGRESSION ON SPARSE DATA

Consider the following optimization problem:

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x) =
1
n

n∑
i=1

1
m ∥Aix− bi∥2

}
,

where Ai ∈ Rm×d, bi ∈ Rm are the sparse training data and labels. Each fi is a Li-smooth function,
where Li = supx∈Rd ∥∇2fi(x)∥ =

∥∥ 2
mA⊤

i Ai

∥∥ (Nesterov et al., 2018). We show in the appendix

8
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Figure 3: Comparison of the performance of the EF21 + Top1 algorithm, with both standard and
adaptive stepsize, and the GD method, on a logistic regression problem on the LIBSVM datasets. All
stepsizes are theoretical.

that the function f(x) satisfies Assumption 4 with L2
+ = 4

m2nλmax

(∑n
i=1(A

⊤
i Ai)

2
)
. In all

experiments in this section, we fix n, d and m to 500, 100 and 12, respectively.

As the function fi is a generalized linear function, we can manipulate the sparsity of the data
matrix Ai to adjust the sparsity parameter c (see Example 1). In our experiments, we varied the
ratio c/n, a critical factor in the theoretical analysis, over the values in the list [0.05, 0.5, 0.9].
To strengthen our findings, we controlled individual smoothness constants Li to ensure that the
constant L2

+ from Assumption 4, which is presented in our theoretical results, was much smaller than
L̃2 = 1

n

∑n
i=1 L

2
i used by Richtárik et al. (2021). Further details can be found in the appendix.

All experiments were implemented using FL_PyTorch (Burlachenko et al., 2021) and were con-
ducted on two Linux workstations with x86_64 architecture and 48 CPUs each.

The results presented in Figure 2 demonstrate that the performance gap between EF21 with the
standard and new stepsizes, as proposed in Theorem 2, is significant when the parameter c is much
smaller than its maximum value n. Conversely, as c approaches n, the difference in performance
becomes negligible. This is expected because firstly, the new stepsize scales directly with the ratio
c/n, and secondly, the constant L2

+, as can be seen from (12), approaches L̃2 = 1
n

∑n
i=1 L

2
i which is

utilized in the standard theory. The findings align with the paper’s main claim that EF21 achieves
faster convergence with smaller sparsity parameter c.

6.2 LOGISTIC REGRESSION WITH ADAPTIVE STEPSIZE

The inequalities in (12) and (15) rely heavily on the parameter c. To explore the possibility of
eliminating the sparsity condition altogether, we consider replacing the initial definition of c as a
sparsity pattern with (15). In this experimental section, we investigate this question.

We consider the following optimization problem:

min
x∈Rd

{
f(x) = 1

N

N∑
i=1

log(1 + e−yia
⊤
i x)

}
,

where ai ∈ Rd, y ∈ −1, 1 represent the training data and labels, respectively. We utilize three
LIBSVM (Chang and Lin, 2011) datasets, namely phishing, mushrooms, w5a, as the training data,
dividing the data evenly between n = 300 clients.

We compute the parameter ct according to (15), i.e., ct def
= n∥gt−∇f(xt)∥2

Gt , at each iteration of EF21.

We further estimate Lt
+

def
= min{

√
ct maxi L2

i

n ,

√∑n
i=1 L2

i

n }, and finally, compute the stepsize using

the formula provided in Theorem 2: γt def
= (L+Lt

+

√
ct

n

√
1−α+1−α

α )−1. We admit that computing ct

in its current form is infeasible as it requires the computation of∇f(xt), which is usually unavailable
at the master.

As can be seen from Figure 3, our results demonstrate that adaptive computation of ct can be a
promising direction for further investigation.
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A AUXILIARY RESULTS AND MISSING PROOFS

A.1 PROOF OF LEMMA 1

Proof. Let us now recall that EF21 needs at least1 T =
2∆0

f

(
L+L̃

(
1+

√
1−α

α −1
))

ε iterations to ensure

E
[∥∥∇f(x̂T )

∥∥2] ≤ ε, where ∆0
f = f(x0) − f∗, L̃ =

√
1
n

∑n
i=1 L

2
i , and α is the contraction

parameter of the compressor. In the case of TopK, as was noted earlier, α = K
d . To find the optimal

α, which requires the minimum number of communication, we need to minimize T ·K · n, since at
each iteration of the algorithm each of n clients sends K float numbers. Thus,

min
k

2∆0
f

(
L+ L̃

(
1+

√
1−α
α − 1

))
ε

·K · n

α=K
d⇐⇒ min

α

{
ξ(α)

def
=

(
L+ L̃

(
1 +
√
1− α

α
− 1

))
· α
}
.

Taking the derivative of the object over α, we get

ξ′(α) = L+ L̃

(
1 +
√
1− α

α
− 1

)
+ L̃α

(
− 1

(1−
√
1− α)2

1

2
√
1− α

)
= L+ L̃

(
1 +
√
1− α

α
− 1

)
− L̃

1 +
√
1 + α

1−
√
1− α

1

2
√
1− α

= L− L̃+
L̃

1−
√
1− α

(
1− 1 +

√
1 + α

2
√
1− α

)
= L− L̃+

L̃

(1−
√
1− α)2

√
1− α

(
√
1− α− 1)︸ ︷︷ ︸

≤0

≤ L− L̃

≤ 0,

where the last inequality holds since L ≤ L̃. Indeed, L ≤ 1
n

∑n
i=1 Li ≤

√
1
n

∑n
i=1 L

2
i = L̃. As a

result, it can be concluded that the minimum of the objective function is achieved when the value of α
is the largest, i.e., α = 1). For the specific case of the TopK compressor, choosing α = 1 corresponds
to selecting k = d in the compressor definition.

A.2 OPTIMAL CONTRACTION PARAMETER FOR SPARSE FEATURES

In this subsection, we discuss what the optimal contraction parameter is when sparse features
are present. Here, we leverage the central convergence theorem presented in the paper, namely,
Theorem 2.
Lemma 6. In Algorithm 1, assume Ki ≡ K and g0i = ∇fi(x0) for all i ∈ [n]. Let us denote

D
def
= (L− L+

√
c
n )
(
1− 1

r

)
− L+

√
c
n

√
1− 1

r . Assume the conditions of Theorem 2 hold.

Then, if D ≥ 0, then the communication complexity of Algorithm 1 is minimized when K = 1.
Conversely, if D < 0, the optimal choice of K is r.

Proof. Given the assumption that g0i = ∇fi(x0) for all i ∈ [n], and in accordance with Theorem 2,

the algorithm EF21 requires a minimum of T =
2(f(x0)−f∗)

(
L+L+

√
c
n

(
1+

√
1−α

α −1
))

ε iterations to

ensure 1
T

T−1∑
t=0
∥∇f(xt)∥2 ≤ ε. In the same way, as presented in Lemma 1, the communication

1We suppose the initial gradient estimate gi0 equals ∇fi(x
0) as a part of preprocessing step. This zeroes out

the second term of Theorem 2 in (Richtárik et al., 2021).

14
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complexity of the algorithm can be expressed as the product of the number of iterations and the cost
associated with each iteration. Our objective is to solve the optimization problem defined as:

2(f(x0)− f∗)
(
L+ L+

√
c
n

(
1+

√
1−α
α − 1

))
ε

·K · n

α=K
r⇐⇒ min

α

{
ξ(α)

def
=

(
L+ L+

√
c

n

(
1 +
√
1− α

α
− 1

))}
· α.

To simplify the expression, let us introduce the notation B
def
= L+

√
c
n . Thus, we have ξ(α) =

Lα+B(1− α+
√
1− α). The derivative ξ′(α) is given by L−B − B

2
√
1−α

. Notably, the second

derivative ξ′′(α) = −B
4 (1−α)−

3
2 is negative over the entire interval, implying that the function ξ(α)

is concave. Consequently, the minimum is achieved at one of the endpoints of the interval
[
1
r , 1
]
.

We observe that ξ(1) = L, and ξ
(
1
r

)
= L

r +B
(
1− 1

r +
√
1− 1

r

)
. The difference between these

values is ξ(1)− ξ
(
1
r

)
= (L−B)

(
1− 1

r

)
−B

√
1− 1

r = D. Hence, if ξ(1)− ξ
(
1
d

)
≥ 0, then the

minimum communication complexity is attained at the minimum α, and if it is negative, then the
optimal parameter α equals 1.

A.3 REFINING SMOOTHNESS WHEN SPARSITY IS PRESENT

Lemma 7. If Assumption 2 holds, then for every i ∈ [n], we have∑
j:(i,j)/∈Z

((∇fi(x))j − (∇fi(y))j)2 ≤ L2
i

∑
j:(i,j)/∈Z

(xj − yj)
2, ∀x, y ∈ Rd. (18)

Proof. Given any i ∈ [n] and any x, y ∈ Rd, we know that∑
j:(i,j)/∈Z

((∇fi(x))j − (∇fi(y))j)2 =

d∑
j=1

((∇fi(x))j − (∇fi(y))j)2

= ∥∇fi(x)−∇fi(y)∥2

≤ L2
i ∥x− y∥2 , (19)

where the last inequality follows from Assumption 2. Let x′ and y′ be formed from x and y by
replacing the coordinates j for which (i, j) ∈ Z by zeros. That is,

x′
j =

{
xj (i, j) /∈ Z
0 (i, j) ∈ Z , y′j =

{
yj (i, j) /∈ Z
0 (i, j) ∈ Z . (20)

Applying inequality (19) with x← x′ and y ← y′, we obtain∑
j:(i,j)/∈Z

((∇fi(x′))j − (∇fi(y′))j)
2 ≤ L2

i ∥x′ − y′∥2

= L2
i

 ∑
j:(i,j)/∈Z

(x′
j − y′j)

2 +
∑

j:(i,j)∈Z

(x′
j − y′j)

2


(20)
= L2

i

 ∑
j:(i,j)/∈Z

(xj − yj)
2 +

∑
j:(i,j)∈Z

(0− 0)2


= L2

i

∑
j:(i,j)/∈Z

(xj − yj)
2. (21)

The result now follows by comparing the left-hand side of (19) and the right-hand side of (21) in
view of the observation that∇fi(x) = ∇fi(x′) and ∇fi(y) = ∇fi(y′).
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A.4 PROOF OF LEMMA 2

Proof. Using Lemma 7, we can now write

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 =
1

n

n∑
i=1

d∑
j=1

((∇fi(x))j − (∇fi(y))j)2

=
1

n

n∑
i=1

∑
j:(i,j)/∈Z

((∇fi(x))j − (∇fi(y))j)2

(18)
≤ 1

n

n∑
i=1

L2
i

∑
j:(i,j)/∈Z

(xj − yj)
2

=
1

n

n∑
i=1

∑
j:(i,j)/∈Z

L2
i (xj − yj)

2

=
1

n

d∑
j=1

∑
i:(i,j)/∈Z

L2
i (xj − yj)

2

=
1

n

d∑
j=1

(xj − yj)
2
∑

i:(i,j)/∈Z

L2
i

 .

(22)

To further advance our analysis, we proceed by determining the maximum value in each individual
sum term.

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2
(22)
≤ 1

n

d∑
j=1

(xj − yj)
2
∑

i:(i,j)/∈Z

L2
i


≤ 1

n

d∑
j=1

(xj − yj)
2 max

j

 ∑
i:(i,j)/∈Z

L2
i




=
maxj

{∑
i:(i,j)/∈Z L2

i

}
n

d∑
j=1

(xj − yj)
2

=
maxj

{∑
i:(i,j)/∈Z L2

i

}
n

∥x− y∥2 .

Based on the preceding inequality, it can be deduced that L2
+ ≤

maxj{∑i:(i,j)/∈Z L2
i}

n . Furthermore,

maxj

{∑
i:(i,j)/∈Z L2

i

}
n

≤
maxj

{∑
i:(i,j)/∈Z maxi L

2
i

}
n

=

(
maxi L

2
i

){
maxj

∑
i:(i,j)/∈Z 1

}
n

(9)
=

(
maxi L

2
i

)
c

n
,

and
maxj

{∑
i:(i,j)/∈Z L2

i

}
n

≤
maxj

{∑n
i=1 L

2
i

}
n

=

∑n
i=1 L

2
i

n
.

This concludes the proof of the lemma.

A.5 PROOF OF LEMMA 3

Proof. Choose i ∈ [n] and x ∈ Rd
i . If |Ji| = d, the statement turns into the standard contraction

property of TopKi on Rd, and hence it holds2. Assume therefore that |Ji| < d. If x = 0, inequality
2The standard contraction property says that ∥TopKi(x)− x∥2 ≤

(
1− Ki

d

)
∥x∥2, for all x ∈ Rd.
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(13) clearly holds. Therefore, let us assume that x ̸= 0. Notice that supp(x) def
= {j ∈ [d] : xj ̸=

0} ⊆ Ji. Hence,
s

def
= |supp(x)| ≤ |Ji| < d.

Since neither the left nor the right hand side of (13) changes if we permute the coordinates of x, we can
w.l.o.g. assume that |x1| ≥ |x2| ≥ · · · ≥ |xd|. Notice that |xs| > 0 and that |xs+1| = · · · = |xd| = 0.
Let y = TopKi(x), and notice that yj = xj for 1 ≤ j ≤ Ki, yi = 0 for j > Ki, and yj = xj = 0
for s+ 1 ≤ j ≤ d. If Ki ≥ s, then yj = xj for all j, which means that the left-hand side in (13) is
equal to zero. Therefore, inequality (13) holds. If Ki < s, then

∥y − x∥2 =

Ki∑
j=1

(yj − xj)
2
+

s∑
j=Ki+1

(yj − xj)
2
+

d∑
j=s+1

(yj − xj)
2

=

Ki∑
j=1

(xj − xj)
2
+

s∑
j=Ki+1

(0− xj)
2
+

d∑
j=s+1

(0− 0)
2

=
s∑

j=Ki+1

x2
j . (23)

Because x2
1, x

2
2, . . . , x

2
d is non-increasing, we have

1

s

s∑
j=1

x2
j ≥

1

s−Ki

s∑
j=Ki+1

x2
j .

Plugging this estimate into (23), we get

∥y − x∥2 ≤ s−Ki

s

s∑
j=1

x2
j =

(
1− Ki

s

)
∥x∥2 .

It remains to apply the bound s ≤ |Ji| and use the identity Ki = min{Ki, s} = min{Ki, |Ji|}.

A.6 HELPING LEMMA ON ORTHOGONALITY

Lemma 8. Let u1, . . . , un ∈ Rd. Let us write ui = (ui1, . . . , uid) ∈ Rd, and define sets Sj
def
= {i :

uij ̸= 0} for j = 1, 2, . . . , d. Then∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥
2

≤
(
max

j
|Sj |

)
×

n∑
i=1

∥ui∥2 . (24)

Proof. First, we rewrite the left-hand side of (24) into the form∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥
2

=

d∑
j=1

(
n∑

i=1

uij

)2

=

d∑
j=1

∑
i∈Sj

uij

2

. (25)

Let ξ def
= maxj |Sj |. Notice that by Jensen’s inequality, we have∑

i∈Sj

uij

2

≤ |Sj |
∑
i∈Sj

u2
ij ≤ ξ

∑
i∈Sj

u2
ij (26)

for all j ∈ [d]. By combining the above observations, we can continue as follows:∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥
2

(25)+(26)
≤ ξ

d∑
j=1

∑
i∈Sj

u2
ij = ξ

d∑
j=1

n∑
i=1

u2
ij = ξ

n∑
i=1

d∑
j=1

u2
ij = ξ

n∑
i=1

∥ui∥2 .
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A.7 PROOF OF LEMMA 4

Proof. Let Sj
def
= {i : uij ̸= 0} for j ∈ [d]. Since

Sj = {i : uij ̸= 0} = {i : uij = 0}c ⊆ {i : (i, j) ∈ Z}c = {i : (i, j) /∈ Z},
we have

max
j
|Sj | ≤ max

j
|{i : (i, j) /∈ Z}| (9)

= c.

It remains to apply Lemma 8.

A.8 GRADIENT ESTIMATE gi STAYS WITHIN ITS ACTIVE SUBSPACE

Lemma 9. Choose any i ∈ [n], Ki ∈ [d] and x ∈ Rd. If gi ∈ Rd
i , then the vector

g+i
def
= gi + TopKi(∇fi(x)− gi) (27)

also belongs to Rd
i .

Proof. Let us note that the complement set of Ji, as indicated by the definition of Ji in Equation (7),
is given by

J ∁
i = {j ∈ [d] : (i, j) ∈ Z}.

We define li = |J ∁
i |, which represents the cardinality of J ∁

i . It is now observed that the lemma’s
statement is equivalent to demonstrating that [g+i ]J ∁

i
= 0li . In order to prove this, we further note

that
[g+i ]J ∁

i

(27)
= [gi + TopKi(∇fi(x)− gi)]J ∁

i
= [gi]J ∁

i
+ [TopKi(∇fi(x)− gi)]J ∁

i
, (28)

where the last equality follows from basic arithmetic principles. Since gi ∈ Rd
i , it holds that

[gi]J ∁
i
= 0li . Regarding the argument of TopKi, we can express it as

[∇fi(x)− gi]J ∁
i
= [∇fi(x)]J ∁

i
− [gi]J ∁

i
= 0li − 0li = 0li ,

since ∇fi(x) ∈ Rd
i for any x ∈ Rd. It remains to recall that the TopKi operator either retains the

element of a vector or maps it to zero. Thus, the zero sub-vector [∇fi(x) − gi]J ∁
i

is mapped to a
zero sub-vector. Consequently,

[g+i ]J ∁
i

(28)
= [gi]J ∁

i
+ [TopKi(∇fi(x)− gi)]J ∁

i
= 0li + 0li = 0li ,

what concludes the proof.

A.9 PROOF OF LEMMA 5

Proof. By assumption, g0i ∈ Rd
i . By repeatedly applying Lemma 9, we conclude that gti ∈ Rd

i for all
t ≥ 0. Since ∇fi(xt) belongs to Rd

i , so does the vector ut
i

def
= gti −∇fi(xt). We now have

∥∥gt −∇f(xt)
∥∥2 =

∥∥∥∥∥ 1n
n∑

i=1

(
gti −∇fi(xt)

)∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥
n∑

i=1

ut
i

∥∥∥∥∥
2

≤ c

n2

n∑
i=1

∥∥ut
i

∥∥2 ,
where in the last step we applied Lemma 4.

A.10 NEW DESCENT LEMMA

Lemma 10. Let Assumption 1 hold. Furthermore, let g0i ∈ Rd
i for all i = 1, 2, . . . , n. Let

xt+1 = xt − γgt

be the EF21 method, where gt = 1
n

∑n
i=1 g

t
i , and γ > 0 is the stepsize. Then

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

c

n
Gt. (29)
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We start with a standard result (Li et al., 2021).

Fact 1. Suppose Assumption 1 holds, and let xt+1 = xt − γgt, where gt ∈ Rd is any vector, and
γ > 0 any scalar. Then

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥gt −∇f(xt)
∥∥2 . (30)

Proof. Lemma 10 follows by plugging the inequality from Lemma 5 into the inequality described by
Fact 1.

A.11 BOUNDING THE GRADIENT ESTIMATE ERROR

Lemma 11. The iterates of the EF21 method satisfy

Gt+1
i ≤ (1− θ)Gt

i + β
∥∥∇fi(xt+1)−∇fi(xt)

∥∥2 , (31)

and
Gt+1 ≤ (1− θ)Gt + βL2

+

∥∥xt+1 − xt
∥∥2 , (32)

where θ
def
= 1−

√
1− α, β

def
= 1−α

1−
√
1−α

, α
def
= mini αi and αi

def
= min{Ki,|Ji|}

|Ji| .

Proof.

Gt+1
i

(14)
=

∥∥gt+1
i −∇fi(xt+1)

∥∥2
Step 7 of Alg 1

=
∥∥gti + TopKi(∇fi(xt+1)− gti)−∇fi(xt+1)

∥∥2
=

∥∥TopKi(∇fi(xt+1)− gti)− (∇fi(xt+1)− gti)
∥∥2

(13)
≤ (1− αi)

∥∥∇fi(xt+1)− gti
∥∥2

≤ (1− α)
∥∥∇fi(xt+1)− gti

∥∥2
= (1− α)

∥∥∇fi(xt)− gti +∇fi(xt+1)−∇fi(xt)
∥∥2

≤ (1− α)(1 + ζ)
∥∥∇fi(xt)− gti

∥∥2 + (1− α)(1 + ζ−1)
∥∥∇fi(xt+1)−∇fi(xt)

∥∥2 ,
where ζ > 0 is arbitrary. By choosing ζ = 1√

1−α
− 1, we obtain (31). To establish (32), we only

need to observe that

Gt+1 (14)
=

1

n

n∑
i=1

Gt+1
i

(31)
≤ 1

n

n∑
i=1

(
(1− θ)Gt

i + β
∥∥∇fi(xt+1)−∇fi(xt)

∥∥2)
= (1− θ)

1

n

n∑
i=1

Gt
i + β

1

n

n∑
i=1

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2

(11)+(14)
≤ (1− θ)Gt + βL2

+

∥∥xt+1 − xt
∥∥2 .

A.12 AUXILIARY RESULT ON CONNECTION BETWEEN
√

β
θ AND α

Lemma 12. Let θ
def
= 1−

√
1− α and β

def
= 1−α

1−
√
1−α

, where α ∈ (0, 1]. Then,√
β

θ
=

√
1− α+ 1− α

α
.
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Proof. It immediately holds from the following arithmetical operations:√
β

θ
=

√
1− α

(1−
√
1− α)2

=

√
1− α

1−
√
1− α

=

√
1− α(1 +

√
1− α)

(1−
√
1− α)(1 +

√
1− α)

=

√
1− α+ 1− α

α
.

A.13 CONVERGENCE RATE IN THE FULLY SEPARABLE CASE

If c = 1, we can express the problem (1) in a more concise form:

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(xi)

]
, (33)

where each function fi has a support of size di, and the sum of all di values equals d. We will now
establish the following claim.

Lemma 13. Let Assumption 2 hold. Then Assumption 1 holds for (33) with L = maxi Li

n .

Proof. For the sake of clarity and ease of presentation, we make the assumption that function f is
twice differentiable. We observe that the Hessian matrix of f(x) is a block-separable matrix, given
by∇2f(x) = 1

n

∑n
i=1∇2fi(xi) for any x ∈ Rd. To establish the main claim of the lemma, we aim

to show that
∥∥∇2f(x)

∥∥ ≤ maxi Li

n (Nesterov et al., 2018).

Let v ∈ Rd such that ∥v∥2 = 1. We represent the vector v = [v⊤1 v
⊤
2 . . . v⊤n ]

⊤. It follows that

v⊤∇2f(x)v =
1

n

n∑
i=1

v⊤i ∇2fi(xi)vi,

due to the block-separable structure of the Hessian matrix. We proceed to

v⊤∇2f(x)v =
1

n

n∑
i=1

v⊤i ∇2fi(xi)vi ≤
1

n

n∑
i=1

∥∥∇2fi(xi)
∥∥ ∥vi∥2 ≤ 1

n

n∑
i=1

Li ∥vi∥2 =

n∑
i=1

∥vi∥2·
Li

n
,

(34)
where the first inequality follows from the definition of the operator norm, and the second inequality
follows from the second-order definition of the function smoothness (Nesterov et al., 2018).

Since 1 = ∥v∥2 =
∑n

i=1 ∥vi∥
2, we can interpret (34) as a convex combination of n positive numbers.

As the convex combination never exceeds the value of its maximum term, we finally obtain

v⊤∇2f(x)v
(34)
≤

n∑
i=1

∥vi∥2 ·
Li

n
≤ maxi Li

n
,

which concludes the proof.

We observe that applying Algorithm 1 to the problem (33) is equivalent to performing n independent
runs of Algorithm 1 in a single-node scenario, where each run pertains to its own i-th block. Each

individual run requires O
(

Li(1+
√

β
θ )

δ

)
iterations to achieve an accuracy of δ (Richtárik et al., 2021).

Consequently, when considering all n runs, the total number of iterations T ′ required to attain

δ-accuracy by each client is given by T ′ = O
(

maxi Li(1+
√

β
θ )

δ

)
in a parallel computing setting.

Since the functions fi are effectively independent of each other, after T ′ iterations, the function f(x)
satisfies ∥∥∥∇f(xT ′

)
∥∥∥2 =

∥∥∥∥∥ 1n
n∑

i=1

fi(x
T ′

i )

∥∥∥∥∥
2

=
1

n2

n∑
i=1

∥∥∥∇fi(xT ′
)
∥∥∥2 ≤ δ

n
= ε.
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Consequently, to achieve an accuracy of ε for the function f(x), each parallel run should be executed
for

O

maxi Li(1 +
√

β
θ )

εn

 Lemma 13
= O

L+ maxi Li

n

√
β
θ

ε


iterations, which aligns with the convergence result presented in Theorem 2.
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B PROOF OF THEOREM 2

Proof. Define the Lyapunov function

Ψt def
= f(xt)− f∗ +

γc

2θn
Gt. (35)

By straightforward arguments, we get

Ψt+1 (35)
= f(xt+1)− f∗ +

γ

2θn
Gt+1

(10)
≤ f(xt)− f∗ − γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γc

2n
Gt +

γc

2θn
Gt+1

(32)
≤ f(xt)− f∗ − γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γc

2n
Gt

+
γc

2θn

(
(1− θ)Gt + βL2

+

∥∥xt+1 − xt
∥∥2)

= f(xt)− f∗ +
γ

2

( c
n
+ (1− θ)

c

θn

)
Gt − γ

2

∥∥∇f(xt)
∥∥2

−
(

1

2γ
− L

2
−

γβcL2
+

2θn

)
︸ ︷︷ ︸

≥0

∥∥xt+1 − xt
∥∥2

≤ f(xt)− f∗ +
γ

2

( c
n
+ (1− θ)

c

θn

)
Gt − γ

2

∥∥∇f(xt)
∥∥2

= f(xt)− f∗ +
γc

2θn
Gt − γ

2

∥∥∇f(xt)
∥∥2

(35)
= Ψt − γ

2

∥∥∇f(xt)
∥∥2 .

Unrolling the inequality above, we get

0 ≤ ΨT ≤ ΨT−1 − γ

2

∥∥∇f(xT−1)
∥∥2 ≤ Ψ0 − γ

2

T−1∑
t=0

∥∥∇f(xt)
∥∥2 , (36)

and the result follows.
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C ADDITIONAL DETAILS OF EXPERIMENTS

C.1 LINEAR REGRESSION ON SPARSE DATA

In our synthetic experiments, we consider the minimization of the function

f(x) =
1

n

n∑
i=1

fi(x),

where fi(x) =
1

m
∥Aix− bi∥2 + ϕ(x) and and we choose ϕ ≡ 0. Therefore,

∇fi(x) =
2

m

(
A⊤

i Aix−A⊤
i bi
)
.

The function f(x) satisfies Assumption 4. The statement follows from since for all x, y ∈ Rd, we
have

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 =
1

n

n∑
i=1

∥∥∥∥ 2

m
A⊤

i Aix−
2

m
A⊤

i Aiy

∥∥∥∥2
=

1

n

n∑
i=1

4

m2

∥∥A⊤
i Ai(x− y)

∥∥
= (x− y)⊤

[
4

m2n

n∑
i=1

(A⊤
i Ai)

2

]
(x− y)

≤ L2
+ ∥x− y∥2 .

From this we can conclude that for this problem functions f1(x), . . . , fn(x) satisfy Equation (11)
with:

L2
+ =

4

m2n
λmax

(
n∑

i=1

(A⊤
i Ai)

2

)
.

In our experiments, we fixed the dimension d = 500 and the number of clients n = 100. For the
analysis, we designed a controlled way to generate instances of synthetic quadratic optimization
problems with a desired sparsity pattern. The generation of an instance of optimization problems
is driven by the main meta parameter c/n, and the auxiliary meta-parameter v which affects the
distribution of Li.

Ensuring L2
+ ≪ L̃2. To fully demonstrate the efficacy of the new theoretical results, it is desirable

to enforce a significant difference between L2
+ and L̃2. The standard theory assumes that L2

+ =

L̃2 (Richtárik et al., 2021), but the refined Lemma 2 allows for the reduction of L2
+. Assuming that

maxi L
2
i is attained at index j′, if we modify Li for i ̸= j′ such that Li ≤ Lj′ , the left-hand side of

the expression

min

{√
cmaxi L2

i

n
,

√∑n
i=1 L

2
i

n

}
.

remains unaffected, while the second term, equal to L̃, is influenced. Clearly, for a fixed value of
maxi L

2
i = L2

j′ , in order to maximize L̃, we need to select Li = Lj ,∀i ∈ [n]. The instances of a
quadratic optimization problem with such a property demonstrate the greatest advantage of the new
theory.

On the other hand, if we ask the question when our analysis does not bring a big improvement over
the standard EF21 analysis, this is the case when maxi L

2
i =

∑n
i=1 L

2
i . This situation is attained

when Lj′ is constant and Li = 0 for i ̸= j′.
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Main meta parameter c/n. From Lemma 2, we see that c
n plays an important role in the multiplier

in Lemma 2 and comes into the denominator of the stepsize in Theorem 2. Firstly, we can observe
from Equation (9) that the minimum possible value of c

n = 1
n , and the maximum possible value of

c
n = 1 is attained for c = n. So c

n ∈
[
1
n , 1
]
. We provide a controllable way to specify this parameter.

The main intuition behind this parameter is the following. As c
n is smaller, it is more advantageous

for our method compared to the standard EF21. And in this case, there is a serious hope to observe in
practice that our strategy of selecting the step size demonstrates better results

Auxiliary parameter v. The meta-parameter v ∈ [0, 1] allows selecting between two extreme
distributions of Li in context of Lemma 2. One extreme point is when all Li attains the same constant
values Lc (can be selected arbitrarily, but we have selected Lc = 20.0). This distribution of Li

corresponds to v = 0 (and is preferable for our analysis).

Another extreme point is where L1 = 10.0 and Li = 0,∀i ̸= 1. This distribution of Li corresponds
to v = 1 (and is not preferable for our analysis). Finally, in the case of using values v ∈ (0, 1)
the distribution of Li across clients will be linearly interpolated between these two distributions
corresponding to the two cases described above.

In our experiments, we set v = 0.1.

Controlling the sparsity parameter c. The process of dataset generation starts with constructing
a matrix S with n rows and d columns with Si,j ∈ {0, 1}. We set Si,j = 1 when client i ∈ [n]
depends on the coordinate j ∈ [d], otherwise we Si,j = 0. The filling of S happens column-wise.
The columns sj ∈ Rn of the matrix S are filled with values 1 in positions corresponding of a random
subset of [d] of cardinality c chosen uniformly at random. If after processing all columns there exists
a client that depends on 0 coordinates, the strategy of filling is restarted. In the logic of our generation
algorithm, we use 5 attempts to create a valid filling. If the dataset sparsity generation procedure fails
after all attempts, we report the failure of the dataset generation process.

Generating datasets. Each client has a loss function fi(x) : Rd → R. However, due to the
previous construction of the sparsity pattern, the client i depends on the coordinates {j : Si,j = 1}.
After renaming variables and ignoring variables that fi(x) does not depend on, we define fi(z) as:

fi(z)
def
=

1

ni
∥Ai · x(z)− bi∥2 .

Next, we generate a uniform spectrum [1.0, 20.0] and fill Ai in such a way that the spectrum
λ
(

2
ni
A⊤

i Ai

)
is represented by a linear interpolation controlled by the meta parameter v from the

uniform spectrum [1.0, 20.0] to [Lc, 0.0, . . . , 0.0]. After constructing Ai, we set bi
def
= Ai ·xsolution+

noisei. The xsolution plays the role of a prior known solution, and noisei ∼ U[−1,1] · p is additive
noise in the linear model, where p ∈ R is a fixed constant. In our experiments, p = 2.0. It plays
the role of a perturbation that scales the standard deviation of the zero mean r.v. noisei. It helps to
escape the interpolation regime, i.e. situation in which∇fi(x∗) = 0,∀i ∈ [n].

C.2 LOGISTIC REGRESSION WITH ADAPTIVE STEPSIZE

In this section, we provide additional numerical experiments in which we compare EF21 under the
standard analysis and our analysis. We address the problem of training a binary classifier via a logistic
model on several LIBSVM datasets (Chang and Lin, 2011).

Computing and software environment. We used the Python software suite FL_PyTorch
Burlachenko et al. (2021) to simulate the distributed environment for training. We trained logistic
regression across n = 300 clients in the experiments below. We ran the experiments on a compute
node with Ubuntu 18.04 LTS, 251 GBytes of DRAM memory, and 48 cores of Intel(R) Xeon(R)
Gold 6246 CPU @ 3.30GHz. We used single precision (FP32) arithmetic.

Experiment setup. We conducted distributed training of a logistic regression model on A9A,
MUSHROOMS, W5A, PHISHING datasets. This setting is achieved by specifying for Equation (1) the
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functions fi(x) as:

fi(x)
def
=

1

ni

ni∑
j=1

log
(
1 + exp(−yij · a⊤ijx)

)
, (aij , yij) ∈ Rd × {−1, 1}.

The initial shifts for EF21 are g0i = 0,∀i ∈ [n]. All datasets are randomly reshuffled and spread
across clients in such a way that each client stores the same amount of data points ni; the residual is
discarded. The initial iterate x0 is initialized as U

[−
√

1/D,
√

1/D]
according to the default initialization

of a linear layer in PyTorch 3. For standard EF21 we used the largest step size allowed by its theory.

Reasons of sparse features. In addition to what we have already mentioned in Section 4 we would
like to highlight reasons of appearing rare features in the training based on our experience:

First, when the input for ML models is a categorical value from a finite set S, not a real number, a
special conversion is needed. If S has no natural order, the conversion usually maps each s ∈ S to a
one-hot vector s̃ ∈ Rk, where s̃ has only one non-zero element. This conversion has drawbacks, such
as introducing an artificial partial order in Rk. It is used for models that cannot handle categorical
inputs directly without conversion. Examples of models are Neural Nets and Linear Models.

Second, some features may be inherently sparse vectors in the application. For example, if a encodes
a voxel grid of solid geometrical physical objects, it will be a sparse vector in most applications.

Third, during the modeling stage, there may be a specific pattern called "feature template", which
defines how a family of close-by features is evaluated. This technique is often used in applications
where ML is applied for complex tasks that require defining the input features as part of the problem,
and they are not given in advance, e.g. because there is no established practice for specific tasks.

Practical applicability of our analysis for a case when c = n. The LIBVSM datasets are mostly
sparse datasets. As we explained above, this is not an unrealistic assumption. However, in practice,
the Definition 9 may be too strict. According to this definition, adding a bias (or intercept) term to
the Machine Learning model during training leads to c = n. We visualize the sparsity patterns in
A9A, MUSHROOMS, PHISHING, W5A in Figure 5. This representation is obtained after uniformly
shuffling the original train datasets and splitting them across n = 300 clients.

In this experiment, we consider the setting where the Master executes Algorithm 1, but with a varying
step size γt in Line 4.

In our modification, we use the maximum theoretical step size from Theorem 2, but we define the
parameter c based on Lemma 5 because it reflects the original notion of c when training Machine
Learning models with intercept terms that lead to c = n. Moreover, we define the quantity L+ based
on Lemma 2. We summarize the rules for executing the adaptive version of EF21 as follows:

ct
def
=
∥gt −∇f(xt)∥2

Gt/n
,

L+
def
= min

{√
ct maxi L2

i

n
,

√∑n
i=1 L

2
i

n

}
,

γ
def
= γt def

=
1

L+ L+

√
ct

n

√
1−α+1−α

α

. (37)

The system of rules defined in system of equations (37) raises several questions:

1. How can we estimate the quantity ct? To estimate ct from this definition, we need to be able to
estimate ∥gt −∇f(xt)∥2 in the master, but the vector ∇f(xt) is not available in the master.

2. How can we analyze the convergence of Ψt when ct varies? If we allow ct to change during the
optimization process, then the Lyapunov function from Equation (35) also changes over time.
And varying c will make it very hard to analyze the behavior of Ψt.

3Information about initialization linear layer torch.nn.Linear
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(a) A9A, 32561 datapoints, d = 125.
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(b) PHISHING, 11055 datapoints, d = 70.
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(c) MUSHROOMS, 8124 datapoints, d = 114
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(d) W5A, 9888 datapoints, d = 302.
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Figure 4: Training Logistic Regression model across n = 300 client. Dimension of problem d is
presented in the plots, ct is the behavior of modified notion of variable c, γ is the value of used step
size. Computation is carried out in FP32. Full client participation. The step size used for standard
EF21 and GD are theoretical. Used client compressors for EF21 algorithms are Top1.

We will not address these questions in our experiment below. We believe that a deep understanding
of these questions is the subject of future research. The purpose of this experiment is to demonstrate
that the notion of ct can open new opportunities for research in this direction.

Results and Conclusion. We present the results in Figure 4. In datasets A9A (a), PHISHING (b),
MUSHROOMS (c), we can increase the step size by a factor of 10x using our proposed scheme. In
dataset W5A (d), we can only increase the step size by a small factor of 1.35x, which suggests the
need for more refined analysis. In all experiments, the EF21 with our approximate scheme performs
better than the standard EF21. We do not observe any convergence or stability issues in any of the
experiments. We also show the behavior of ct, which is not exploited by the standard EF21. We hope
this experiment will inspire future research in the direction of adaptive ct.
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Figure 5: Sparsity patterns of datasets for training Logistic Regression model across n = 300 clients.
An empty cell indicates that a specific client does not have any data for a specific trainable scalar
variable xi. The plots show the set [n]× [d]\Z ′ from Section 4.
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Figure 6: Comparison of the performance of EF21 + Top1 with the standard approach proposed
by Richtárik et al. (2021) and a newly proposed stepsize (see Theorem 2) on the linear regression
problem and GD for non convex case. The sparsity pattern c/n is changing in controlled way.
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Figure 7: Comparison of the performance of EF21 + Top1 with the standard approach proposed by
Richtárik et al. (2021) and GD on the linear regression problem. The optimization objective is convex.
The sparsity pattern c is controlled by manipulating the sparsity of the data.

D ADDITIONAL EXPERIMENTS

D.1 LINEAR REGRESSION ON SPARSE DATA WITH NON-CONVEX REGULARIZATION

In this experiment, we consider the minimization of the function f(x), which has the following form:

f(x) =
1

n

n∑
i=1

(fi(x) + ϕi(x),

fi(x) =
1

ni
∥Aix− bi∥2 ,

ϕi(x)
def
= λ ·

d∑
j=1

x2
j

x2
j + 1

· Iij ,

Iij
def
=

{
1, if fi(x) depends on xj

0, otherwise

The term ϕ(x) is a non-convex regularizer, with eigenvalues in the set
[
− 1

2 , 2
]
. We use the dataset

generation algorithm described in Section C.1. It also explains the main meta-parameter that controls
the generation of optimization problem instances such as c/n. After the generation process, the
quadratic part depends only on a subset of variables (x1, . . . , xd). Unlike in Section C.1, we also
restrict ϕi(x) to depend only on that subset of variables. This is why we include indicator variables
Iij in the general formulation. We set the regularization coefficient α = 3 ·max(Lfi) to make fi(x)
non-convex smooth functions.

We present the results for varying c/n in Figure 6. As we can see, c/n plays a crucial role in the
convergence of EF21. Specifically, as c/n goes to zero, our new analysis allows us to increase the
step size of EF21. As c/n goes to one, the step size of EF21 becomes more similar to the standard
one. We use the meta-parameter v = 0.1, which enforces the condition from Lemma 2 and which is
favorable for our algorithm and analysis in the context of Main Theorem 2.
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D.2 EF21 VERSUS GD ON CONVEX OBJECTIVE

In Section 6.1 we have observed that we gain improvements for EF21 with our analysis compared to
standard analysis. In this section, we add a comparison of these algorithms in addition to GD. For all
algorithms, we have used theoretical step size. Results presented in Figure 7.

As we see GD behaves better compared to the classical analysis of EF21 and our proposed analysis if
do not tune step sizes. An important caveat is that EF21 is an algorithm for non-convex optimization
and this setting is convex. In conclusion, we see to apply EF21 in a convex setting with theoretical
step sizes there is room for future research.

E LIMITATIONS

We acknowledge that the practical applicability of our results is limited because, firstly, many real-
world datasets are not sparse enough to enjoy a significantly small c/n ratio, and secondly, the
complex architecture of deep neural networks already has non-zero weights on the second layer,
independent of the initial dataset’s sparsity, further increasing the value of c.
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