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Abstract

We propose an end-to-end online multi-object
tracking (MOT) framework with a systematized
event-aware loss, which is designed to control pos-
sible occurrences in an online MOT situation and
compel the tracker to take appropriate actions when
such events occur. Training samples from real can-
didates using a simulation tracker are generated,
and a systematized event-aware association matrix
is constructed for every frame to enable the tracker
to learn the ideal action in a running environment.
Several experiments, including ablation studies on
various public MOT benchmark datasets, are con-
ducted. The experimental results verify that each
event affecting the tracking measure can be con-
trolled, and the proposed method presents optimal
results compared with recent state-of-the-art MOT
methods.

1 INTRODUCTION

Multi-object tracking (MOT) is a fundamental computer
vision task that has been applied to video surveillance, hu-
man–computer interaction, advanced driver assistance sys-
tems, and autonomous driving. Deep convolutional neural
networks (CNNs) have been successfully applied to MOT
methods, particularly in the use of deep features, for accurate
candidate associations by learning similarity measures be-
tween the features. Notwithstanding the benefits of CNNs, a
decline in MOT performance occurs owing to certain events,
such as target missing, target disappearance, false positive
detection, and new target appearance.

In several methods, the deep neural network is trained to
prevent these abnormal events; however, existing methods
only train the subnetworks of the MOT framework, and the
training samples and loss cannot directly reduce the occur-
rence of such abnormal events. Even if each part of an MOT

Figure 1: Discrepancy between GT bounding box (top) and
the public detections provided by MOT benchmark datasets
(bottom): the GT contains boxes for an occluded target, and
the detection box is missing or includes false positives in
the on provided detections.

network is trained effectively, the trained network is not
guaranteed to be optimized for a real running environment.
This is because most MOT methods train their subnetworks
without using a unified network architecture or unified multi-
task loss, which enables end-to-end learning. Another reason
is that MOT networks are typically trained using frame-by-
frame ground-truth (GT) information, without considering
the temporal information and potential diversity that can
occur during real MOT running process. We found the dis-
crepancy between public detections provided by the MOT
benchmark and the GT information, as depicted in Figure
1. The real environment contains incomplete detections that
may cause occlusion and false alarms; inappropriate target
initialization and tracking termination are other potential
problems.

To address these problems, we propose an end-to-end on-
line MOT framework with a systematized event-aware loss.
The systematized event-aware loss is designed to control
every possible abnormal event that can occur in an online
MOT situation and to make the tracker take appropriate ac-
tions when such an event occurs. We systematically analyze
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the entire case of assignment between the target and candi-
date, and we categorize the case into meaningful events. We
first categorize the targets and detection candidates into five
event cases: tracking success, target missing, target disap-
pearance, false positive, and new target appearance. Each
target and candidate is assigned an event-aware loss that
can measure how well the tracker takes the ability of the
tracker to take an appropriate action for each target. The
loss can be back-propagated from the association layer to
the feature extraction layer, which includes the entire MOT
process in a unified framework. Training samples from real
actual tracking candidates using a simulation tracker are
generated and a systematized event-aware association ma-
trix is constructed for every frame to optimize the tracker in
a real environment.

To demonstrate that our proposed method can effectively
improve tracking performance, we compare it with state-of-
the-art trackers and perform an MOT benchmark evaluation
using the MOT2015, MOT2016, and MOT2017 datasets.
For all of the datasets, the tracking performance is improved
by the proposed method, demonstrating its efficacy. We
also conduct ablation studies to identify how and where the
proposed network improves tracking performance, includ-
ing various loss settings and affinity definition. The main
contributions of this study are as follows.

• We propose a systematized event-aware loss that can
successfully train the entire MOT network to deal with
abnormal events.

• We train the MOT networks in an end-to-end man-
ner by using proposed event-aware loss and reduce
the potential error caused by FNs, FPs, and tracking
termination.

• We perform extensive experiments to demonstrate and
verify how the proposed method improves the tracking
performance.

2 RELATED WORK

In this section, we briefly introduce the MOT problem and
related studies. MOT algorithms can be categorized as per-
forming offline or online tracking and as using private or
public detection. Our methods focus on online trackers that
use public detection.

Offline trackers. Offline trackers utilize the entire frame
and detection bounding boxes in a batch to predict a trajec-
tory Kim and Kim [2016]. Therefore, they focus on global
optimization methods, such as network flow Dehghan et al.
[2015] and multiple hypotheses Chu et al. [2016]. Offline
trackers are capable of using future and past information si-
multaneously; however, one limitation is that they cannot be
used in real-time applications, such as real-time surveillance
or automatic warning systems.

Online trackers. Online trackers can only access current
and past frames, and not future frames. Therefore, they make
a decision at every frame, and the trajectory reported in the
current frame cannot be corrected after being reported. The
Hungarian method is frequently used to associate targets
because the linear assignment problem must be solved for
every frame Chen et al. [2017], Fagot-Bouquet et al. [2015].
Deep CNN features have been successfully utilized in online
MOT methods. For example, Chu et al. [2017], Zhu et al.
[2018] used deep CNN features to associate candidates and
long short-term memory (LSTM) to enhance discrimination
features by utilizing temporal information. Recently, the
MOT using graph convolutional neural network is proposed
Papakis et al. [2020].

MOT with a single-object tracker (SOT). The limitation
of association-based tracking-by-detection is that a missing
target cannot be associated with a candidate when there are
no suitable candidates. To overcome this limitation, some
MOT methods, such as Chu et al. [2019], Zhu et al. [2018],
Yin et al. [2020], adopt a SOT to complement missing de-
tection by using the SOT prediction as a new candidate. The
methods in Chu et al. [2017] initialized all detections as
SOT targets and unified an SOT module into a framework.
Some MOT methods, such as Yin et al. [2020], Lee et al.
[2020], integrate SOT and affinity calculations in a unified
network.

MOT with an object detector. Some trackers adopt private
detector to solve MOT problem. Typically, these methods
are referred to as one-shot methods because the tracker con-
tains its own detection network inside the MOT network.
Zhang et al. [2020], Zhou et al. [2020]. For fair comparison,
in the MOT benchmark, an MOT using public detections
cannot use its own detector, which can considerably affect
the performance of the MOT. This means that the internal
detector cannot generate extra target candidates, except for
those provided by the public detections. Recently, Tracktor
Bergmann et al. [2019] used a regression and classification
layer of detection networks without a region proposal net-
work to solve the MOT problem. This method enables the
MOT to take advantage of object detectors, which classify
objects as background or target. Regression is performed
from the previous position to the current frame to determine
the location of the target.

Optimization using matrix-wise loss. The authors of Sun
et al. [2019] proposed a deep affinity network to perform
optimization using matrix loss. This method first proposes
matrix-wise loss to train the network in single frames, but
it does not include the motion model or SOT so that it has
weakness when detection is missing. In DeepMOT Xu et al.
[2020], a deep Hungarian network (DHN) comprised of a
bidirectional RNN that performs the Hungarian algorithm
was proposed. The DHN functions as a bridge between the
affinity calculation and association, thus enabling direct loss
backpropagation after association.
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Figure 2: Overview of tracking method trained using systematized event-aware loss. The tracker can be trained in end-to-end
manner to reduce the occurrence of abnormal event and perform appropriate action if such an event occurs

3 PROPOSED METHOD

In the inference phase, the proposed MOT method consid-
ers an image frame, detection boxes, and targets from the
previous frame as inputs. First, the provided detection boxes
are filtered using classifiers to filter the FP. The remaining
detection boxes are used as target candidates to be initialized
as new targets. Second, each tracking target independently
tracks the target, and the affinity between the tracked target
and candidate is calculated. Using the calculated affinity
matrix, we inference the association matrix through DHN.
Based on this association matrix, the tracker finds the new
target to be initialized and determines whether to maintain
the track or terminate the tracking. The entire association
process is performed in an association network, and tracking
management is performed using the output of the association
network. In the training phase, a ground-truth event-aware
association matrix is constructed by observing two consec-
utive frames, and each target and candidate is categorized
based on the matching cases. Using the event-aware associa-
tion matrix, we obtain a systematized event-aware loss, and
the entire network is trained to prevent abnormal events and
take appropriate action when certain events occur. Figure 2
shows the overall process of the proposed method.

3.1 CANDIDATE CLASSIFIER

Several MOT methods adopt candidate classifiers to filter
detection bounding boxes because the provided detection
bounding boxes contain several FP boxes. FP candidates
are a significant problem in MOT because they generate
continuous false trajectories when initialized as new targets,
making association confusing. These FP candidates can be
filtered by applying an additional classifier, as discussed in
Long et al. [2018], Bergmann et al. [2019]. The authors of

Bergmann et al. [2019] adapted the classification network of
a faster R-CNN detector Ren et al. [2015] with ResNet-101
He et al. [2016] as a backbone network. The pooled features
corresponding to each detection candidate were classified
into the background and object classes. The difference be-
tween candidate classifier and object detection is that the
tracker cannot generate additional candidates that are not in-
cluded in the given detection candidate. This means that the
tracker can only classify the target from the given detection,
not from the anchor boxes.

In contrast to existing candidate classifiers, which are pre-
processing networks trained independently using 2-class
samples, in our network, the candidate classifier is inte-
grated into a unified network architecture. Therefore, we
train the network in an end-to-end manner using real candi-
date boxes obtained from the simulation tracker, which can
be optimized using the proposed event-aware loss.

In our proposed method, the set of filtered candidates in
the t-th frame is denoted as Dt = {dt}, where each detec-
tion box is denoted as dt =

{
dxt , d

y
t , d

w
t , d

h
t

}
. The features

of an input image frame It are extracted using the back-
bone network, and the classification scores corresponding
to each candidate are calculated by applying a classification
network for each candidate. Then, candidates with classifi-
cation scores higher than the threshold are used in the next
tracking step.

3.2 EVENT CATEGORIZATION USING TARGET
STATE TABLE

Before defining the event-aware loss, all event cases are
categorized based on the target state table obtained from
consecutive frames. First, we find target matching between
ground truth boxes and detection boxes on frames t− 1 and
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Figure 3: Process of assigning event for each detection box by associating it with ground-truth boxes. If the ground-truth
box is undetected in the previous frame, we do not consider such a box. If the box is detected in the previous frame and
undetected in the current frame, it is considered a missing target. If the target appears in the current frame, it is considered a
new target appearance. The disappeared target in the ground-truth at the current frame is considered a disappeared target.
The remaining detections that are not associated whether in the previous and current frame are treated as false positives
(FPs).

t, respectively. The set of detections at t− 1, and Dt−1 and
set of ground-truth boxes Gt−1 are associated using the IoU
measure, and the ID from the ground truth is assigned to the
matched detection boxes. The matched target is assigned as
the detected target, and the unmatched target is assigned as
an undetected target. To distinguish them from undetected
boxes, we denote the GT boxes whose IDs do not appear in
the current frame as the absent state. Next, we perform the
same process for the detection and GT at frame t with Dt

and Gt and determine whether the targets are detected or
undetected. Subsequently, we obtain the target state table of
the t− 1 frame and t frame for all targets.

We precisely analyze the entire case of states and categorize
all possible states into event groups.

Case 1. Success If the box is detected on both t− 1 and t,
we assign the same ID to each detected box, and categorize
them into a successful case.

Case 2. Undetected If the box is undetected in the previ-
ous frame, we do not consider such a box because it denotes
that the ground-truth box cannot be detected by the detector,
and this target cannot be initialized.

Case 3. Target missing If the box is detected in the previ-
ous frame and undetected in the current frame, it is assigned
"target missing." In this case, we add the GT bounding box
corresponding to the missing target into the association can-
didate at t. This is because the tracker should be trained to

find the proper location when the detection loss (FN) occurs.

Case 4. New target appearance If the target appears and
is detected only in the current frame, it is assigned to a new
target appearance.

Case 5. Disappeared target If the target ID exists in t−1
and not in t, we assign that target as the disappeared target.

Case 6. False positives The remaining detection candi-
dates that are not matched on both t− 1 and t are treated as
false positives.

To train the tracker regression network more precisely, we
replace the detection boxes at t with the corresponding GT
boxes. Consequently, even if the target is initialized using
noisy detection box, it could refine the bounding box during
tracking. Figure 3 shows the whole possible case of target
state and corresponding event categorization.

3.3 GROUND-TRUTH EVENT-AWARE
ASSOCIATION MATRIX CONSTRUCTION

In this section, we describe the construction of a ground-
truth event-aware association matrix using a simulation
tracker and event-assigned bounding boxes. In the simu-
lation tracker environment, we assume that t − 1 is the
initial frame, and initialize the tracking targets Xt−1 with
Dt−1. Each initialized tracking target follows the assigned
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Figure 4: Process of constructing an event-aware ground-truth association matrix from categorized ground-truth bounding
box and given categorized detection bounding boxes.

label of the previous detection box Dt−1. Subsequently, we
perform motion tracking for all targets using a regression
network and obtain new track bounding boxes Xt. Using
the obtained new track positions, we construct an affinity
matrix Ft between Dt and Xt using the following affinity
function:

f(dt, xt) =
GIoU(dt, xt) + (ψ(dt) ⋆ ψ(xt))

2
(1)

where the affinity feature encoding layer is denoted as ψ (·)
and the cosine similarity is denoted as ⋆.

In contrast to Bergmann et al. [2019], a combination of
appearance affinity using the Siamese network and position
affinity using generalized intersection over union (GIoU)
Rezatofighi et al. [2019] is used.

The affinity matrix Ft is fed into the DHN to perform the
association task. Consequently, we obtain the soft associ-
ation matrix At. Each column and row of At represents
the tracked targets xt and detections dt. Because we have
pre-categorized all targets and detections, we can assign the
ground-truth value on each element of matrix.

We propose a principle that is effective for tracking scenar-
ios. If the target and detection are matched successfully, the
association value should be higher than that of any other
target. Therefore, we assign one to both the ground-truth
table for matched target and detection and for the missed
target. This is because we the ground truth boxes for the

missed target have been added in the previous step to make
the tracker regress into an appropriate box in frame t. If the
detection is categorized into FP detection or newly appeared
target, the box should not be associated with any targets.
Subsequently, we assign the values of the entire column
corresponding to these detections to zero. Similarly, from
the target perspective, if the target is initialized with FP or
the disappeared target, the target should not be associated
with any detections. We assign the values of the entire row
corresponding to these target IDs to zero. Figure 4 illustrates
the process of constructing a ground-truth event-aware asso-
ciation matrix. In the next section, we describe the processes
involved in training the MOT network using this constructed
ground-truth association matrix.

3.4 END-TO-END TRAINING USING
SYSTEMATIZED EVENT-AWARE LOSS

We define the systematized event-aware loss by comparing
the ground-truth association matrix G and the obtained as-
sociation matrix A. First, the matching loss Lm is defined
as the difference between the GT value and the obtained
association value for matched target. We denote the set of
matched targets as M , and the matching loss is defined as

Lm =
∑

d∈M,x∈M

|Gij −Aij |
|M |

(2)



where i denotes the column index of d and j denotes the row
index of x. Next, the FP loss is defined as the normalized
distance between false positive targets Xfp and detections
Dfp, disappeared target E, and newly appeared target N .

The FP loss is defined as

Lfp =
∑

d∈(Dfp∪N)

||Gi −Ai||2
|Dfp|+ |N |

+
∑

x∈(Xfp∪E)

||Gj −Aj ||2
|Xfp|+ |E|

.

(3)

The FN loss is defined as the difference of the GT value on
lost target S as

Lfn =
∑

d∈S,x∈S

|Gij −Aij |
|S|

. (4)

Finally, the overall loss, which is the sum of these losses is
defined as :

L = Lm + αLfp + βLfn (5)

where α and β are the weighting factor.

In summary, we categorize all detections and targets into
event groups using a target state table. Based on the cate-
gorization, all detection boxes should be included in one of
the four following sets: the matched detection and targets
pairs M , FP detections Dfp, newly appeared targets N , or
lost targets and recovered detection pairs S. In additions,
all targets should be included in one of the four following
sets: the matched targets and detection pairsM , disappeared
targets E, false positive tracking targets Xfp, or lost targets
S. d denotes an element in the detection set, and x denotes
an element in the target set. G is the GT association matrix,
and A is the predicted association matrix. The size of matrix
G and X is |D|x|X| where |D| is the number of whole
detections and |X| is the number of whole targets. The sub-
script i denotes the column index term of d in G and A. The
subscript j denotes the row index term of x in G and A.
The goal of our training is to make A exactly same with G.
Because the number of targets and detections are different
for each frame, the size of the matrix is also different. We
want to assign different weight to each element in the matrix
to categorize each element into event groups, separate the
detection and targets.

With the help of the deep hungarian network proposed in
Xu et al. [2020], the proposed systematized event-aware
loss can be back-propagated through the affinity network,
classification and regression network, and feature extraction
network, which contains the entire MOT network. This is
to ensure that the tracker can be optimized to reflect the
usefulness of the end-to-end training.

3.5 TRAINING DATA GENERATION

We randomly cropped the training sequences into a single
sample sequences with overlap. Each sample contains the
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Tracker

Frame
GT

Detection
Frame

GT

Detection

Initial frame

… Frame
GT

Detection

Figure 5: Illustration of the generation of the simulation data:
the training sequences are composed of the frame image,
corresponding GT bounding boxes, and provided detection
boxes. We randomly crop the sequences to produce training
data, which is used to training the tracker.

consecutive image frames, ground truth bounding boxes, and
detection bounding boxes. The training sequences includes
MOT2015 and MOT2017 training sets. For each sample,
we initialize the simulation tracker using given initial frame
information of each sample, and run the simulation tracker
until end of the sample sequence. The frame length of train-
ing data is set to random values between 10 to 20 frames.
It is important to note that all tracker are initialized with
the given detections of first frame in one sample as same
with inference phase. The generation of simulation data is
illustrated in Figure 5.

3.6 NETWORK ARCHITECTURE

We used an R-FCN architecture with SqueezeNet as the
backbone network for the MOTDT baseline, and used the
Faster R-CNN detector with ResNet-101 and feature pyra-
mid networks (FPNs) Lin et al. [2017] as the backbone
network for the Tracktor baseline. The regression network
performs bounding box regression based on the location of
previous frames to the location of subsequent frames. This
network comprises a 1x1 convolutional network and 2 fully
connected layers (FCs) and generates the relevant offset of
each bounding box: dx, dy, dw, and dh. The association net-
work for MOTDT uses GoogLeNet for the association fea-
tures, and the association network for the Tracktor baseline
was implemented based on the Siamese CNN architecture
trained on TriNet Hermans et al. [2017] using ResNet-50.
We followed the same tracking management strategy base-
line tracker excluding the association and training steps. The
detailed network architectures are illustrated on Figure6.

4 EXPERIMENTS

We conducted extensive experiments to determine the effec-
tiveness of the proposed network on three MOT benchmark



Table 1: Tracking Performance on the MOT2015 benchmark test set. Best in bold.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
SCEA (Hong Yoon et al. [2016]) 29.1 37.2 8.9 47.3 6060 36912 604
MDP (Xiang et al. [2015]) 30.3 44.7 13.0 38.4 9717 32422 680
AP (Chen et al. [2017]) 38.5 47.1 8.7 37.4 4006 33203 586
KCF (Chu et al. [2019]) 38.9 44.5 16.6 31.6 7321 29501 720
DeepMOT (Xu et al. [2020]) 44.1 46.0 17.2 26.6 6085 26917 1347
GNNMatch (Papakis et al. [2020]) 46.7 43.2 21.8 28.2 6643 25311 820
MOTDT (Long et al. [2018]) 33.1 44.3 9.1 46.2 6806 36226 616
SEAT (MOTDT) 35.3 45.8 12.9 45.9 8217 29209 472
Tracktor++ (Bergmann et al. [2019]) 44.1 46.7 18.0 26.2 6477 26577 1318
SEAT (Tracktor++) 45.2 47.4 20.8 27.0 6943 25373 1339
Tracktor++v2 (Bergmann et al. [2019]) 46.6 48.3 18.2 27.9 4624 26896 1290
SEAT (Tracktor++v2) 47.0 48.4 22.2 26.5 6654 24632 1275

Table 2: Tracking Performance on the MOT2016 benchmark test set. Best in bold.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
STAM (Chu et al. [2017]) 46.0 50.0 14.6 43.6 6895 91117 473
DMAN (Zhu et al. [2018]) 46.1 54.8 17.4 42.6 7909 89874 532
AMIR (Sadeghian et al. [2017]) 47.2 46.3 14.0 41.6 2681 92856 774
KCF (Chu et al. [2019]) 48.8 47.2 15.8 38.1 5875 86567 906
UMA (Yin et al. [2020]) 50.5 52.8 17.8 33.7 7587 81924 685
DeepMOT (Xu et al. [2020]) 54.8 53.4 19.1 37.0 2955 78765 645
GSM (Liu et al. [2020]) 57.0 58.2 22.0 34.5 4332 73573 475
GNNMatch (Papakis et al. [2020]) 57.2 55.0 22.9 34.0 3905 73493 559
MOTDT (Long et al. [2018]) 47.6 50.9 15.2 38.3 9253 85431 792
SEAT (MOTDT) 48.2 50.7 14.1 37.1 8869 84784 838
Tracktor++ (Bergmann et al. [2019]) 54.4 52.5 19.0 36.9 3280 79149 682
SEAT (Tracktor++) 54.9 54.9 21.3 36.1 4683 76953 590
Tracktor++v2 (Bergmann et al. [2019]) 56.2 54.9 20.7 35.8 2394 76844 617
SEAT (Tracktor++v2) 57.2 57.6 24.5 33.9 4208 73215 574

Table 3: Tracking Performance on the MOT2017 benchmark test set. Best in bold.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
PHD_GSDL (Fu et al. [2017]) 48.0 49.6 17.1 35.6 23199 265954 3988
AM_ADM (Yoon et al. [2018]) 48.1 52.1 13.4 39.7 25061 265495 2214
DMAN (Zhu et al. [2018]) 48.2 55.7 19.3 38.3 26218 263608 2194
HAM_SADF (Yoon et al. [2018]) 48.3 51.1 17.1 41.7 20967 269038 1871
FAMNet (Chu and Ling [2019]) 52.0 48.7 19.1 33.4 14138 253616 5318
UMA (Yin et al. [2020]) 53.1 54.4 21.5 31.8 22893 239534 2251
DeepMOT (Xu et al. [2020]) 53.7 53.8 19.4 36.6 11731 247447 1947
GSM (Liu et al. [2020]) 56.4 57.8 22.2 34.5 14379 230174 1485
GNNMatch (Papakis et al. [2020]) 57.0 56.1 23.3 34.6 12283 228242 1957
MOTDT (Long et al. [2018]) 50.9 52.7 17.5 35.7 24069 250768 2474
SEAT (MOTDT) 51.7 51.8 19.7 33.2 30755 238813 3223
Tracktor++ (Bergmann et al. [2019]) 53.5 52.3 19.5 36.6 12201 248047 2072
SEAT (Tracktor++) 54.5 55.0 23.4 34.3 19453 235500 1975
Tracktor++v2 (Bergmann et al. [2019]) 56.3 55.1 21.1 35.3 8866 235449 1987
SEAT (Tracktor++v2) 57.3 58.2 26.2 33.4 15832 223051 1873
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Figure 6: Network architectures of proposed methods.

datasets: MOT2015, MOT2016, and MOT2017 Milan et al.
[2016]. The results of the other trackers and the proposed
method were evaluated using the official MOT challenge
benchmark score board1.

4.1 IMPLEMENTATION DETAILS

The proposed method was implemented using PyTorch and
tested on a six-core Intel i7@3.60 GHz CPU and NVIDIA
Titan Xp GPU environment. We used the Faster R-CNN
detector with ResNet-101 as the backbone network for the
baseline tracker. The minimum threshold value for filtering
candidates was set to 0.4. The network was trained using
stochastic gradient descent over 30 epochs with learning
rates ranging from 10−3 to 10−5. We generated training
samples from the 2D MOT2015 and MOT2017 training
sets and split them seven-fold to train the network. The
classification threshold for target initialization was set to 0.3
and the maximum lost time for termination was set to 40
frames.

The training requires 4.6 GB GPU memory storage and
approximately 22-hours for 30 training epochs using a single
Titan XP GPU. The inference requires a maximum of 900
MB memory storage for the backbone and target appearance
model. More implementation details are provided in the
supplementary material.

4.2 EVALUATION ON MOT BENCHMARKS

The proposed method was evaluated on MOT2015,
MOT2016, and MOT2017 test datasets from an official

1https://motchallenge.net

website. We adopted the CLEAR MOT metrics Bernardin
and Stiefelhagen [2008] to evaluate the performance of the
tracker on the MOT datasets and compared it with other
state-of-the-art trackers. The representative metric was the
multiple object tracking accuracy (MOTA), which reflects
the false negatives (FN), false positives (FP), and identity
switches (IDS). Other metrics have also been reported, in-
cluding identity F1 scores (IDF1), percentage of mostly
tracked targets (MT), and mostly lost targets (ML). We de-
noted our proposed tracker as SEAT(Online Systematized
Event-Aware Tracker).

The 2D MOT2015 test dataset consists of 11 video se-
quences obtained from various scenes with ACF detection
results. The tracking performance evaluated on MOT2015
test dataset is listed in Table 1. The MOT2016 test dataset
contains seven videos that were entirely disjointed with the
training set with DPM detection results. The tracking per-
formance evaluated on MOT2016 test dataset is listed in
Table 2. The MOT2017 test dataset contains the same video
sequences as the MOT2016 dataset; however, different de-
tections were provided. This dataset focused on evaluating
trackers based on various detection results. Three types of
detectors were used in this dataset: DPM, SDP, and Faster-
RCNN. The results of the MOT2017 test dataset are listed in
Table 3. We evaluated the proposed tracker using the same
network model and hyperparameters throughout the testing
process.

The proposed method also achieves excellent results in terms
of MOTA, ML, and FN compared to existing state-of-the-art
MOT methods, including offline methods that can utilize
global optimization. In particular, our method significantly
reduced FNs. The experimental results demonstrate the re-
markable performance of the proposed SEAT.

Note that we did not report on the trackers using an exter-
nal detector and trained on supplemental training datasets
in addition to MOT datasets. This is because the tracking
performance can be dominated by the performance for the
detector in such cases.

4.3 DISCUSSION OF TIME CONSUMPTION

The strength of our proposed network is that we can share
all subnetworks for all targets and detections. The only
additional burdens of additional targets is cosine similar-
ity calculation and the Hungarian algorithm, whose time
complexity is O(n3). By the speed measure, the MOT17
contains a frame that has 8 to 70 people, but the inference
speed of our method is only from 7.2 Hz to 9.5 Hz, which
is scalable. Note that the baseline ran on 8.6 Hz on aver-
age, and the proposed method ran on 8.1 Hz on average,
demonstrating a minor additional time burden.



Table 4: Ablation study based on various tracker versions and loss definitions.

Baseline Training loss MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Tracktor++

Base 67.4 66.7 39.9 17.2 848 35412 332
Lm 67.9 67.7 41.5 17.3 909 34715 390

Lm + Lfp 67.1 67.5 38.4 17.2 741 35711 464
Lm + Lfn 68.4 69.1 44.1 16.1 2259 32883 348

Lm + Lfn + Lfp 68.8 69.2 44.0 17.0 1511 33223 318

Tracktor++v2

Base 68.2 68.5 42.5 17.3 1036 34304 361
Lm 67.8 66.0 43.7 16.1 2771 32955 425

Lm + Lfp 68.1 68.1 42.3 17.4 1007 34432 371
Lm + Lfn 69.0 70.1 45.0 16.7 1904 32522 305

Lm + Lfn + Lfp 69.3 71.8 45.6 16.5 2108 32078 297

Table 5: Ablation study based on various affinity function.

Function MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
Appearance 66.5 66.3 37.9 17.2 1168 36004 884
IoU 68.9 70.3 43.9 16.3 1737 32832 336
GIoU 69.1 71.3 46.1 16.3 2381 31970 300
IoU + Appearance 69.2 71.0 45.4 16.5 1995 32272 303
GIoU + Appearance 69.3 71.8 45.6 16.5 2108 32078 297

4.4 ABLATION STUDY

We performed additional experiments for ablation studies by
using various versions of the proposed tracker to determine
the effect of loss on tracking performance and verify the
effectiveness of the proposed approach. The experiments
for the ablation studies were performed on a subset of the
MOT2017 training dataset that was not used in the training
phase. This is because the corresponding testing dataset did
not provide ground truth labels for validation. We evaluated
the SDP sequences from the MOT2017 dataset.

Ablation Study of Various Loss Definition. We trained
the two versions of the trackers using the baseline associa-
tion network and the versatile affinity network. The ablation
study showed the effect of loss on each term of the eval-
uation results. When we used only the matching loss Lm,
the performance was poor and further degraded at the base-
line. The addition of FP loss Lfp can reduce the number of
false positives; however, the entire performance is not opti-
mized. In contrast, the addition of FN loss Lfn can reduce
the number of false negatives and simultaneously improve
the entire performance. This is because the influence of
FN is relatively high. Finally, using all the systematized
event-aware loss, we could obtain optimal results compared
with the baseline tracker. The results are shown in Table
4. Additional experimental results using various weighting
factors for each loss term are reported in the supplementary
material.

Ablation Study of Various Affinity Functions. We also
tested the proposed tracker using various affinity functions
to compute affinity matrix. Note that we fixed the trained
weight of the affinity network and performed tracking eval-
uation by applying a different affinity function during test
time. The result showed that appearance features alone are
not sufficient to calculate the affinity. The results of affinity
using GIoU were relatively good compared to the one using
IoU. The results are shown in Table 5.

5 CONCLUSIONS

We developed a novel end-to-end online MOT framework
with a systematized event-aware loss that is trained to pre-
vent possible abnormal events and compel the tracker to
take appropriate actions when such events occur. The pro-
posed loss reflects a systematized tracking event, including
missing targets, target disappearance, false alarms, and new
target appearances. The experimental results showed that
the proposed method outperformed state-of-the-art online
MOT methods, and systematized event-aware loss can suc-
cessfully train the entire MOT network to deal with the
occurrence of abnormal events.
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