GenlR: Generative Visual Feedback for Mental Image
Retrieval

Diji Yang'* Minghao Liu'3*  Chung-Hsiang Lo Yi Zhang' James Davis'
1University of California Santa Cruz
2Northeastern University 2 Accenture
{dyang39, mliu40, yiz, davisje}@ucsc.edu
lo.chun@northeastern.edu
Project Page: https://visual-generative-ir.github.io

Abstract

Vision-language models (VLMs) have shown strong performance on text-to-image
retrieval benchmarks. However, bridging this success to real-world applications
remains a challenge. In practice, human search behavior is rarely a one-shot action.
Instead, it is often a multi-round process guided by clues in mind. That is, a mental
image ranging from vague recollections to vivid mental representations of the
target image. Motivated by this gap, we study the task of Mental Image Retrieval
(MIR), which targets the realistic yet underexplored setting where users refine their
search for a mentally envisioned image through multi-round interactions with an
image search engine. Central to successful interactive retrieval is the capability
of machines to provide users with clear, actionable feedback; however, existing
methods rely on indirect or abstract verbal feedback, which can be ambiguous, mis-
leading, or ineffective for users to refine the query. To overcome this, we propose
GenlR, a generative multi-round retrieval paradigm leveraging diffusion-based
image generation to explicitly reify the Al system’s understanding at each round.
These synthetic visual representations provide clear, interpretable feedback, en-
abling users to refine their queries intuitively and effectively. We further introduce
a fully automated pipeline to generate a high-quality multi-round MIR dataset.
Experimental results demonstrate that GenIR significantly outperforms existing
interactive methods in the MIR scenario. This work establishes a new task with
a dataset and an effective generative retrieval method, providing a foundation for
future research in this direction '.

1 Introduction

Recent Vision-language models (VLMs) have achieved decent results on standard text-to-image
retrieval benchmarks [29, 13]. Despite this progress, transferring these capabilities into real-world
applications remains challenging. One key limitation is that real human search behavior is often not
one-shot or static; it unfolds through a sequence of actions, highlighting the necessity for interactive
information retrieval (IIR) systems [24, 32, 1, 35]. Another limitation is that users frequently initiate
a search to re-find the information they have seen before, which could be partial memory, vague
clues, or vivid recall of the target images [3, 38, 5]. To address this scenario, we define Mental Image
Retrieval (MIR) 2, where users iteratively refine their queries based on mental image (i.e., an image
in mind) to retrieve an intended image from an image database.

*Equal contribution.

'Code and data are available at https://github.com/mikelmh025/generative_ir.

’The term is inspired by the Mental Image Reconstruction task [9] and shares the definition of “mental
image”, though their study purely from Neuroscience side which is different problem from ours.
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Figure 1: Comparison of methods for Mental Image Retrieval task. Top: our generative method,
which reifies the intermediate query using an image generator model and applies image-to-image
search for retrieval. Bottom: Existing approach (ChatIR and PlugIR) which support multi-round
query improvements based on verbal feedback.

Although MIR has not been explicitly formulated as a distinct task previously, as a subset of long-
standing text-to-image IIR task [27, 5], some works have implicitly touched upon similar settings.
ChatIR [12] positions a VLM (or ideally a human) as the active searcher. Seeing the initial query from
the searcher, ChatIR uses Large Language Models (LLMs) to provide system feedback in question
format to the user solely based on the textual dialogue history. The question is then answered by
the searcher who has access to the ground-truth images (i.e., Mental Image). Next, the dialogue
history will be appended with the question-answer pair and then be used as the search query. This
implicitly positions ChatIR within the realm of MIR as a subset of interactive text-to-image retrieval
where the human searcher holds the target image in memory. However, as shown in the bottom
left of Figure 1, ChatIR has only verbal (text-based) feedback with no information from image
space, resulting in generated question-answer pairs that may be redundant or irrelevant to the query
refinement. PlugIR [11], as shown in the bottom right of Figure 1, advances this setup further
by incorporating retrieval context—text captions of retrieved images into the query generation for
subsequent rounds, aiming to produce more contextually relevant feedback and mitigate redundancy.
Nevertheless, the major challenge exists, both methods remain constrained by significant limitations
regarding feedback effectiveness. Even across multiple interaction rounds, these methods rely heavily
on indirect, verbal feedback derived solely from retrieval failures. Such feedback is often abstract and
interpretability-poor, providing users with little actionable insight or potentially misleading clues for
refining subsequent queries. In vision-language embedding spaces, such as CLIP [23], minor textual
edits can cause unpredictable changes in retrieval outcomes, making query refinement inherently
a trial-and-error process. Consequently, the feedback offered by existing conversational retrieval
approaches inadequately expresses the Al system’s current understanding and fails to directly benefit
users toward effective refinements. As ChatIR example shown in Figure 6, the verbal feedback for an
image depicting a person wearing a motorcycle helmet: “a human is not wearing a hat”. Although
literally true, such feedback fails to capture the visual salience of the helmet and may steer the user’s
refinement toward irrelevant details, ultimately misleading the search process for images containing
headwear.

Motivated by the need for more effective and interpretable system feedback, we propose GenlR,
a generative interactive retrieval paradigm designed explicitly to provide clear, interpretable, and
actionable visual feedback at each interaction turn. GenlIR employs a straightforward but powerful
iterative pipeline as shown in Figure 1: first, a text-to-image diffusion model generates a synthetic
image from the user’s current textual query; then, this synthetic image is used for retrieval from a
database through image-to-image similarity matching. Crucially, the generated synthetic image serves
as more than just a query, but acts as an explicit visualization of the system’s internal understanding



(i.e., the representation of the query in the vision-language latent space), enabling users to clearly
perceive discrepancies between their mental image and the system’s interpretation so that can refine
the query for the next round search.

Beyond its utility at inference time, GenlIR also supports dataset construction for studying MIR.
Following the common practice of using VLM to play as the human searcher [12, 11], we create an
automated pipeline based on the GenIR framework. We present a multi-round dataset with each round
consisting of a refined query, a generated synthetic image, and retrieved results with a correctness
label. Our experiments demonstrate that GenIR outperforms existing MIR baselines, highlighting
the significant advantage of using visual feedback over verbal feedback. Furthermore, our study
indicates that our GenIR annotated query can result in better retrieval performance than annotation
from ChatIR under the same retrieval setting. In summary, our contribution is as follows:

» Task: We formally define the Mental Image Retrieval (MIR) task, a subset of the multi-round
interactive text-to-image retrieval task where the searcher has the target image in mind.

* Method: We propose a novel framework, GenlR, using the generative approach to provide
intuitive, interpretable visual feedback revealing the optimization direction for user during
multi-round query refinement.

» Dataset: We release a dataset with visually grounded feedback annotation, together with a
curation pipeline which can support both MIR and general text-to-image retrieval tasks.

2 Related Works

2.1 Chat-based Image Retrieval

Conversational image retrieval, which use chat-like feedback to improve query for text-to-image
IIR has gained attention as a way to improve search performance [19]. A foundational work,
ChatlR [12], demonstrated improved retrieval accuracy through multi-round chats, where an LLM
poses questions answered by a human with target image access. ChatIR also contributed a multi-round
chat dataset and highlighted the utility of multi-round interaction for retrieval tasks. However, both
the performance of their method and the quality of the curated dataset were limited by feedback
efficiency issue (redundancy or misleading) as we discussed in Section 1. PlugIR [11] advanced this
idea by proposing a plug-and-play image captioning model to collect feedback from retrieved images.
This yielded context-aware and non-redundant verbal feedback [34]; however, both of these works
and their related subsequent works [36, 37] remain fundamentally limited in their capacity to share
nuanced visual representations with users.

In contrast, our work introduces a new modality into the loop: generated images that serve as visual
hypotheses showing the system’s understanding in the image space. Rather than relying on textual
queries alone, our method synthesizes what the system “thinks” the user wants to search, enabling
visual inspection and more precise system feedback.

2.2 Generative Image for Image Retrieval

Diffusion models have achieved great success in image reconstruction, that is, given a target image,
a text encoder is trained to output human-readable language or a latent representation as input to
the diffusion model, aiming to generate an image close to the target image [30, 31, 28]. However,
applying such models directly to MIR is non-trivial, as human users can hardly provide actual images
based on their mental images. A more feasible attempt is Imagine-and-Seek [15], which involves a
one-time process that uses an image captioning model to generate a text description from the target
image and then feeds it into a text-to-image diffusion model to generate a proxy image for retrieval.
Yet, as discussed in the section 1, this single-round approach has been proven by multiple interactive
retrieval works to be inferior in dealing with real-world applications [5, 27].

Apart from existing attempts, our approach uses image generation as a core step in the retrieval
loop itself, not merely to improve retrieval performance for the current round, but to provide visual
feedback to the user to potentially benefit the writing for the next round query. To our knowledge,
this is the first work to integrate text-to-image generation into an interactive retrieval setting, enabling
a closed-loop interaction that unifies generation, retrieval, and feedback within a single framework.



3 GenlR: Generative Retrieval with Visual Feedback

3.1 Task Formulation

We formally define the task of Mental Image Retrieval (MIR) as a subset of the text-to-image
Interactive Information Retrieval [27]. MIR inherits the nature of multi-round interaction from IIR,
while only focusing on the case where the user has an internal mental image that can not be directly
accessed by the retrieval system. From an Information Retrieval theory perspective, MIR does not
consider the Exploratory Search where a searcher has never seen the searching target [18, 32], but
focuses on Known-item Search where the searcher has seen and can recall or partially recall the target
information [33, 20, 2]. To define the task, we denote an image database N, and let 1% represent
the image that the user has in mind. The retrieval task proceeds over multiple interaction rounds
t=1,2,...,T. At each round, the user formulates a textual query q; intended to approximate the
mental representation of '€, Based on the query ¢, the retrieval system returns a candidate image
I E;gﬁeved € N. Additionally, the system provides feedback signals to the user, potentially benefiting

subsequent refinements of the query to bridge discrepancies between the retrieved candidate image
and the user’s mental image. The iterative process continues until the target image is successfully
identified or a predefined maximum number of interaction rounds is reached.

3.2 Generative Retrieval Framework
This section details the GenIR framework and the rationale behind the design as shown in Figure 1.

Query Formulation At the beginning of each interaction round ¢, the human user formulates a
textual query ¢; that represents their current visual intent. This query encapsulates the user’s mental
image description, which may evolve over subsequent rounds based on visual feedback provided.
Users are encouraged to include both high-level descriptions (e.g., scene type, overall composition)
and fine-grained attributes (e.g., color scheme, object details) to ensure comprehensive coverage of
their mental image.

Synthetic Image Generation Central to the GenlR framework is the image generation component,
which reifies textual queries into synthetic images. Specifically, given the user’s query ¢;, an image

generator G produces a synthetic visual representation [ (SZ)" thei — (g;). This visual representation

explicitly captures the retrieval system’s interpretation of the query. Importantly, our framework is
flexible and model-agnostic, allowing the use of various generative models (e.g., diffusion models,
GAN:S, or any other generator). The key benefit of employing visual generation is that it significantly
reduces ambiguity inherent in textual communication, offering an intuitive interface for users to
identify discrepancies and refine their queries precisely.

Image-to-Image Retrieval With the synthetic image I E{)n thetic o enerated, GenIR employs image-

to-image retrieval as the core retrieval mechanism. Specifically, both synthetic and database images
are embedded into a shared visual feature space using a suitable encoder (such as the image encoder
from CLIP). Retrieval is then conducted by selecting the database image I Egt)“eved € N that maxi-

mizes similarity to the synthetic image according to a visual similarity metric, commonly cosine

similarity. Formally, I E:grie"ed = arg maxyec cosine (d)([ (Sfy; theticy (1 )) , where ¢ denotes the image

encoder. The use of image-to-image retrieval enhances retrieval quality by directly leveraging visual
information, thus effectively bypassing limitations associated with purely textual queries.

Feedback Loop Upon viewing the generated synthetic image I Ety; thetic " the user gains valuable

insight into the system’s current interpretation of their query. This visualization allows the user to
identify discrepancies between the generated image and their mental target, such as missing elements,
incorrect attributes, or stylistic deviations. Based on this visual feedback, the user can then refine
their query, guiding the system towards a more accurate retrieval result in the subsequent round. This
iterative refinement loop continues until a stopping criterion is met, typically either a predefined
maximum number of interaction rounds or the target is retrieved. By explicitly incorporating
generative visualization as an intermediate step, GenIR makes the retrieval process interpretable,
intuitive, and highly user-centric, thereby improving overall retrieval effectiveness in interactive
retrieval setting.
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Figure 2: Visual progression of GenIR’s image refinement process. Each row shows the evolution
from initial generation (leftmost), through multiple feedback iterations (middle columns), to final
generated result, alongside the target image (rightmost). Note how generated images progressively
capture more accurate details with each iteration—improving clothing and posture (row 1), facial
features and giraffe positioning (row 2), and dining scene composition (row 3).

3.3 Advantages of Visual Feedback in GenIR

GenlIR’s key advantage lies in its explicit visual feedback mechanism, addressing the limitations of
existing systems that rely solely on ambiguous textual feedback. Text-based systems encode queries
into a vision-language space, but this internal representation, the AI’s interpretation or “visual belief”,
remains hidden from the user, making iterative refinement a challenging trial-and-error process.

GenlR alleviates this problem by using image generation to visualize the system’s understanding of
the textual query. This synthetic image serves as a direct projection of the query’s meaning within
the vision-language space into an interpretable visual form. Although the diffusion process does
not provide additional information compared to using text to retrieve directly in the vision-language
space, it reifies all the representations in an intuitive way. Consequently, users directly observe the
model’s internal visual belief (or “what the system thinks”), rather than navigating ambiguous textual
interpretations, so as to intuitively identify discrepancies and refine their queries with knowledge of
the details beyond text only.

Moreover, GenlR transitions the retrieval process from cross-modal matching (text-to-image) to same-
modal matching (image-to-image). This allows subsequent search steps to leverage well-established
visual similarity metrics that can capture spatial relationships and visual attributes that might be
difficult to express precisely in text.

Figure 2 demonstrates this progression, showing how the generated images progressively improve
with each iteration. Appendix A.3 contains a detailed version with the corresponding text queries that
produced these refinements.

4 Experiment

4.1 Setting

Task Definition Ideally, our approach would involve a human-in-the-loop. However, as a first
step exploration along this direction, and considering the cost, we follow the standard setting of
previous work [12, 11] to use a VLM to replace the individual who engages the mental image retrieval
process. Specifically, we use a good-performing open-sourced VLM Gemma3 [25] to issue queries
and improve the next round of queries based on the visual feedback provided by the image generator.

Datasets We evaluate our method across four datasets with distinct visual domains to demonstrate
the robustness of our approach. (1) MS COCO [16]’s 50k validation set, featuring common objects



in everyday contexts, provides a challenging testbed for retrieving images with complex scenes and
multiple object interactions. (2) FFHQ [8], comprising 70,000 high-quality facial portraits, represents
the human-centric domain where fine-grained attributes (expressions, accessories, age) drive retrieval
outcomes. (3) Flickr30k [21] contains 31,783 diverse real-world photographs showcasing people
engaged in various activities across different environments. (4) Clothing-ADC [17], with over
1 million clothing images, introduces a specialized commercial domain extremely fine-grained
subclasses (12,000 subclasses across 12 primary categories), enabling evaluation on highly specific
attribute-based retrieval tasks. This domain diversity—spanning everyday objects, human faces,
diverse activities, and fashion items—allows us to thoroughly evaluate how our generative retrieval
approach performs across fundamentally different visual content types and retrieval challenges.

Evaluation Metrics Following previous works in interactive image retrieval [12, 11, 5], we adopt
Hits@ K as our primary evaluation metric, which measures the percentage of queries where the target
image appears within the top-K retrieved results. Specifically, we report Hits@10 to align with
established benchmarks in the field. This metric effectively captures the practical utility of retrieval
systems, as users typically examine only the top few results.

4.2 TImplementation Details

We compare our proposed GenlR approach against several baselines to evaluate the effectiveness of
generative visual feedback in Mental Image Retrieval:

Verbal Feedback Methods (Baseline) We tested two Verbal-feedback baselines. The first one is
ChatIR[12], which employs a human answerer for MSCOCO and ChatGPT to simulate a human
for Flickr30k, with BLIP [14] serving as the questioner model. Second, we develop an enhanced
version of ChatIR by replacing both sides with Gemma3 (in 4B or 12B parameter configurations),
representing a stronger VLM-based baseline. Both methods operate without explicit visual feedback,
relying solely on multi-round dialog for query refinement.

Prediction Feedback (Baseline) This baseline incorporates visual feedback by showing the user
(simulated by Gemma3) the top-1 retrieved image at each interaction round. The user examines this
retrieved result and provides textual feedback describing discrepancies between the retrieved image
and their mental target image. This approach represents a traditional interactive retrieval method [27]
that leverages real images from the database but lacks the interpretability advantages of our generative
approach.

GenlR Configuration (Ours) GenlR provides explicit visual feedback through synthetic images
generated from the user’s textual query. To evaluate the sensitivity of our approach to generator
quality, we test five state-of-the-art text-to-image diffusion models: Infinity [6], Lumina-Image-2.0
[22], Stable Diffusion 3.5 [4], FLUX.1 [10], and HiDream-I1 [26]. For all diffusion models, we use
the default inference parameters as specified in their original works to ensure a fair comparison. Each
model transforms the user’s textual query into a synthetic image that visually represents the system’s
current understanding, which is then used for image-to-image retrieval through BLIP-2 [14].

4.3 Results and Analysis

Performance on MSCOCO Figure 3 presents a comprehensive evaluation of our GenIR approach
against traditional conversational retrieval baselines on the MSCOCO dataset, measured by Hits@ 10
percentage across increasing dialog lengths. All experiments were conducted using the full 50,000-
image validation set as the search space, representing a challenging large-scale retrieval scenario.

The left graph demonstrates that our proposed GenIR method substantially outperforms all baselines,
achieving approximately 90% retrieval accuracy even at the initial query and reaching nearly 98% by
the tenth interaction round. This represents a significant improvement over the Prediction Feedback
method (blue line), which reaches only 92% after ten rounds, and the Verbal Feedback baselines
using Gemma3-12b (red line) and ChatIR (green line), which achieve 92% and 73% respectively.
The substantial performance gap highlights the effectiveness of our visual feedback approach in
providing clear, interpretable guidance for query refinement.
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Figure 3: Performance Comparison on MSCOCO Dataset (Hits@10, 50k search space). Left:
Our GenlR approach with Infinity diffusion model (Yellow) significantly outperforms all baselines,
including Prediction Feedback (blue), Verbal Feedback with Gemma3-12b (red), and ChatIR (green).
Right: Comparison of different text-to-image diffusion models within our GenIR framework, showing
consistent performance advantages across all generators, with Infinity and Lumina achieving the
best results after 10 interaction rounds.

The right graph further examines the impact of different text-to-image diffusion models on our
method’s performance. While all models demonstrate effective performance improvement over
dialog rounds, Infinity and Lumina consistently outperform others, suggesting that higher-quality
image generation contributes to more effective visual feedback. Notably, even with the lowest-
performing generator (HiDream), our approach still achieves superior results compared to traditional
feedback methods, demonstrating the robustness of our generative retrieval paradigm across different
implementation choices.

To validate these quantitative findings with real users, we conducted a human evaluation study which
found that 86% of the generated visual feedback was useful for query refinement; these human-
annotated evaluations will be released alongside our dataset and code. Details of this study are
provided in Appendix D.

Cross-Domain Evaluation (FFHQ, Flickr30k, Clothing-ADC) Figure 4 demonstrates GenIR’s
robust performance across three diverse visual domains. Our approach consistently outperforms
all baselines regardless of domain characteristics, with particularly striking advantages in FFHQ
(70% vs. 52% Hits@10 for the next best method) and ClothingADC (73% vs. 50%). Notably,
ClothingADC represents an especially challenging scenario with over 1 million images in its search
space—more than 20 times larger than the MSCOCO test set—yet GenlIR maintains its substantial
performance advantage. Even on Flickr30k, which shows higher baseline performance overall, GenIR
maintains a clear 8-15% advantage throughout all interaction rounds. These results confirm GenIR’s
domain-agnostic effectiveness, especially with fine-grained visual details that text struggles to capture.
Our consistent performance advantage across diverse domains and search space sizes demonstrates
the approach’s practical versatility.

Effect of Vision-Language Model Size Figure 5 examines the impact of VLM parameter scale
(Gemma3-4b vs. Gemma3-12b) across different feedback methods on MSCOCO and FFHQ datasets.
While larger models predictably deliver superior performance in all settings, the performance gap
between model sizes is notably smaller with our Fake Image Feedback approach compared to
alternative methods. Most significantly, our GenlIR approach with the smaller 4b model consistently
outperforms both Prediction Feedback and Verbal Feedback methods even when those methods utilize
the larger 12b model. This finding demonstrates that visual feedback provides inherent advantages
independent of model scale, enabling more efficient deployment without sacrificing retrieval quality.

Prediction feedback is not always better than verbal As shown in Figure 4, prediction feedback
initially outperforms Verbal-feedback approaches but plateaus after 2-4 rounds, eventually being
surpassed by text-only methods in longer dialogues. This suggests prediction feedback can trap the
retrieval process in local minima, where iterative refinements based on a single retrieved image become
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Figure 5: Analysis of vision-language model scale effects across feedback methods on MSCOCO
(top) and FFHQ (bottom). While 12b models outperform 4b counterparts as expected, our GenIR with
the smaller 4b model consistently surpasses alternative approaches even when using larger models.

increasingly incremental. In contrast, our generative approach provides a consistently improving
trajectory by visualizing the system’s understanding rather than showing database-constrained results.

Generator-Agnostic Performance Figure 3 (right) shows that performance differences between
generators are minimal compared to the substantial gap between GenlIR and baselines. This confirms
our method’s effectiveness derives from the visual feedback mechanism itself, not generation quality,
enabling deployment with even simpler diffusion models.

5 Dataset Contribution

As a byproduct of our experimental framework, we construct a multi-round dataset for MIR task.
Algorithm 1 describes our automated curation pipeline where the VLM formulates an initial query
from the target image, then at each round: (1) a synthetic image is generated (Line 6); (2) the
closest database image is retrieved (Line 7); (3) correctness is labeled (Line 8); and (4) the VLM
refines the query based on visual discrepancies (Line 10). Unlike ChatIR, our dataset centers on
visual feedback where both parties share understanding through images, reducing redundancy and
misleading information.

Formally, the constructed dataset comprises a series of structured interaction rounds. At each round
t, the data instance includes four key elements: a textual query ¢;, a synthesized feedback image
I5¥mthetic 4 retrieved image from the database I7¢7¢ved_and a binary label y, indicating whether
the retrieved image correctly matches the target mental image. The dataset spans multiple domains



Algorithm 1 Data Annotation Pipeline
1: Notation: N: image pool
Z: the set of ground-truth target images
sim: Similarity search

2: Initialize dataset D as empty.

3: for each target image l;qrger € Z do

4 qo = VLM(Itarget) // Query formulation
5: fort=1to7 do

6: Itsy”memc = Diffusion Generator(g;) /I Synthetic Image Generation
7 Iretrieved — aremax, e sim(I5V"€0C ) ) // Tmage-to-Image retrieval
8: yp < N[I7etrieved = Liarget) // Assign correctness label
9: D append (qq, I7¥"hetic, I[etrlje”ed, yt) // Record tuple in dataset
10: Q41 = VLM(Itmget, Itsymhem) /I Refine query based on visual feedback
11:  end for
12: end for

13: return dataset D

(i.e., general, clothing, and human face), and each data point explicitly captures the shared visual
grounding and query refinement trace. As a result, our dataset yields better query quality than
ChatIR’s, as experimentally validated in Appendix A.2. Furthermore, it uniquely provides a mid-step
generated image for each retrieval round. It may serve as a testbed for studying MIR tasks and
research problems such as visual feedback-driven retrieval and multi-round query refinement.

6 Limitation

Our study has two primary limitations: First, our VLM simulation assumes users have a clear, fixed
target image in mind, whereas real users often begin with only partial or fuzzy mental representations.
Second, our framework doesn’t account for how mental images naturally evolve and clarify during
the search process itself, as retrieval attempts often help users refine their own memory. Addi-
tionally, while visual feedback is useful in the majority of cases, generated images can sometimes
mislead refinement through hallucinations or detail misalignments (detailed failure mode analysis
in Appendix D.5). Future work should include human studies that capture these dynamic aspects
of memory retrieval to validate GenlIR’s effectiveness in more naturalistic search scenarios. We
leave more discussion on limitations and future work, including opportunities for RL-based system
optimization, to Appendix E.

7 Conclusion

This paper introduced Mental Image Retrieval (MIR), a task modeling realistic interactive image
search guided by users’ internal mental images. Recognizing the limitations of verbal feedback, we
proposed GenlR, a novel generative framework that employs an image generator to provide explicit
and interpretable visual feedback. Notably, we expect GenlIR to be a model-agnostic framework,
allowing for the integration of various text-to-image generators (beyond diffusion models) and
image-to-image retrieval models or algorithms. This plug-and-play capability enables leveraging
any good-performing pre-trained models within the framework. Complementing the framework,
we present an automated pipeline for curating a multi-round MIR dataset. Extensive experiments
across diverse datasets demonstrate that GenlR significantly outperforms existing MIR approaches,
highlighting the critical advantage of visual feedback for effective multi-round retrieval. Furthermore,
evaluations under traditional text-to-image retrieval setting shows that queries refined by GenlIR yield
superior retrieval performance compared to those refined with purely verbal feedback (e.g., ChatIR),
validating the quality and utility of our dataset for studying the general text-to-image retrieval task.
This work provides a foundational step for future research into intuitive and interpretable interactive
multimodal retrieval systems, encouraging further exploration of human-Al interaction dynamics and
the role of generative vision models in enhancing interactive information retrieval.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions:
(1) defining the Mental Image Retrieval (MIR) task, (2) proposing GenlR as a generative
approach using diffusion models for visual feedback, (3) introducing a dataset creation
pipeline, and (4) demonstrating performance improvements across multiple datasets. These
claims are supported by the experimental results shown throughout the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation section explicitly discusses limitations, noting that the VLM
simulation assumes users have clear mental images, while real users often have partial
representations. The paper acknowledges the framework doesn’t account for how mental
images evolve during search, and suggests human studies for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is primarily empirical and method-focused, without theoretical
results requiring formal proofs. It presents an algorithm and methodology rather than
theoretical guarantees.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes datasets (MSCOCO, FFHQ, Flickr30k, Clothing-ADC),
models used (Gemma3, various diffusion models), and evaluation metrics (Hits@ 10). Hy-
perparameters will be included in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We currently present all code (GenIR framework and data curation pipeline)
and dataset in an anonymous repository, which will be fully released to the research commu-
nity when the paper is published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides experimental settings including datasets, models, and
evaluation framework. Hyperparameters will be included in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments follow standard evaluation protocols in the image retrieval
literature by reporting Hits@ 10 metrics on large-scale benchmark datasets (MSCOCO 50k
images, FFHQ 70k images, Flickr30k 31.7k images, and Clothing-ADC 1M+ images).
Statistical significance is ensured through the large sample sizes used in each dataset,
consistent with common practice in the field.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: The paper doesn’t explicitly mention conforming to the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a broader impacts section in the appendix that thoroughly
discusses both potential benefits (enhanced user experience, accessibility improvements,
creative applications, educational uses) and potential risks (algorithmic bias, computational
resource requirements, privacy considerations).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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11.

12.

13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper doesn’t appear to release models with high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Cited, rules followed.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Well documented on how to generate, and the generation code will be released.
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Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper uses VLM simulation rather than human subjects for experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects research is conducted.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper doesn’t mention using LLMs in the research methodology itself
(though it does use VLMs as part of the experimental setup).

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional results

A.1 Limitations of Verbal-Only Feedback

Figure 6 illustrates a limitation of verbal-only feedback in interactive image retrieval. In this ChatIR
example, when asked "is he wearing a hat?", the answer is "no," which is technically correct since
the motorcyclist is wearing a helmet, not a hat. However, this verbal exchange could mislead
the retrieval system by implying the person’s head is uncovered, when in fact they are wearing
protective headgear—an important visual attribute. Such semantic gaps in verbal feedback can lead
to suboptimal query refinement.

Visual feedback approaches like GenlR potentially address this limitation by providing a synthetic
image that would show the helmet, allowing users to immediately identify this discrepancy. This
example demonstrates how visually grounded feedback can complement verbal descriptions by
capturing visual details that might otherwise be lost in text-only exchanges, potentially leading to
more accurate query refinement.

Dialogue:

"a man sits on a motorcycle next to
a very blue body of water"

"can you see any people? just 1"
"is it a male or female? male"

"i he facing the camera? yes"

"is he happy? don’t know"

"is he wearing a hat? mno"

"what color is his hair? can’t see
hair"

"is it daytime? yes"

"is it sunny? yes"

; \ ¥ ] "can you see the sky? mno"

! / : ' "any animals? no"

£

Figure 6: Example from ChatIR showing misleading verbal feedback. The highlighted question-
answer pair demonstrates how verbal feedback can be technically correct but misleading—the person
is not wearing a hat but is wearing a motorcycle helmet, a critical visual detail that verbal-only
feedback fails to capture appropriately, potentially degrading retrieval performance.

A.2 Comparative Analysis of GenIR Dataset Utility

To demonstrate the utility of our dataset, we conducted a comparative analysis between three different
retrieval approaches: (1) GenIR Synthetic Images - using our generated synthetic images for image-
to-image retrieval, (2) GenIR Text - using text queries generated through our GenIR framework for
text-to-image retrieval, and (3) ChatIR Text - using verbal feedback-based text queries for text-to-
image retrieval. Table 1 presents the Hits@ 10 performance on MSCOCO across dialog lengths. The
results clearly demonstrate the superiority of visual feedback, with GenIR Synthetic Images achieving
89.71% even at initialization and 98.01% after 10 rounds. Notably, even the text queries generated
through our GenlR framework significantly outperform ChatIR’s verbal feedback approach (92.33%
vs. 73.64% at round 10), confirming that the GenIR dataset contains higher-quality annotations that
better capture user intent compared to purely text-based interactions.

A.3 Visualization of Query and Image Refinement Process

The effectiveness of GenlIR stems from its ability to provide explicit visual feedback that guides
query refinement. Figure 7 illustrates this progressive refinement through multiple interaction rounds,
highlighting how both textual queries and generated images evolve toward better alignment with the
target mental image.

As shown in the figure, the initial queries tend to be verbose and contain extraneous details, resulting in
generated images that capture the general scene composition but miss critical details or relationships.
For example, in Round 0, the system generates an image showing two giraffes instead of the intended
scene with one giraffe interacting with a person.

21



Table 1: Comparison of retrieval approaches across dialog lengths (Hits@ 10%)

Dialog Length ChatIR Text GenlR Text GenIR Synthetic Images

0 60.56 7447 89.71
1 65.26 79.09 93.11
2 68.36 83.41 95.00
3 70.06 85.69 95.97
4 71.32 87.63 96.51
5 72.14 88.79 96.85
6 72.63 89.71 97.14
7 72.97 90.39 97.48
8 73.26 90.98 97.67
9 73.50 91.75 97.72
10 73.64 92.33 98.01

Through subsequent rounds of feedback and refinement, the queries become increasingly precise
and focused on the key visual elements that distinguish the target image. By Round 3, the query has
been simplified and clarified to explicitly mention "a giraffe head near a man’s face," resulting in a
generated image that better captures the spatial relationship between the human and animal subjects.

By the final round (Round 10), the refinement process has successfully addressed the most important
details—the giraffe’s posture ("lowers its head towards him"), the man’s appearance ("glasses and
an orange shirt"), and the proper spatial arrangement. This progression demonstrates how GenIR’s
visual feedback mechanism enables users to identify discrepancies and iteratively align the system’s
representation with their mental image.

’ Round O ‘ \ Round 3 ‘ ’ Round 6 ’ Round 10 ‘ ’ Target Image

Round 0 Close-up shot, giraffe head and human face side by side, bright sunny day, clear blue sky
background, lush green trees and foliage blurred in the distance, low angle perspective...
Round 3 Close-up of a giraffe head near a man’s face on a sunny day with a clear blue sky. The

giraffe has a patterned coat of dark brown spots on a light tan base and long eyelashes.
The man, wearing glasses and an orange shirt, smiles as he looks up at the giraffe...

Round 6 A person smiles while standing near a giraffe, both viewed in a close-up shot. The giraffe
has distinctive spots and a calm expression, its face partially touching the man’s shoulder.
The man wears glasses and an orange shirt...

Round 10 A man wearing glasses and an orange shirt smiles as a giraffe lowers its head towards him
outside. The giraffe has distinctive brown spots and a calm expression, its muzzle close to
the man’s ear. A clear blue sky forms the backdrop...

Figure 7: Visual progression of GenIR’s image refinement process across multiple rounds. The top
row shows generated images evolving from initial generation (left) through intermediate rounds to
final output (right), alongside the target image (far right). Below, the corresponding query texts show
how descriptions become more precise and focused with each iteration. Note how the generated
images progressively capture more accurate details—the spatial relationship between man and giraffe,
facial features, lighting conditions, and background elements.
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B Additional Experimental Details

B.1 Hyperparameters

We provide the hyperparameters used for each of our experimental settings to ensure reproducibility:

B.1.1 Diffusion Models Inference

Table 2: Hyperparameters for diffusion model inference

Model Inference Steps Guidance Scale Image Resolution
Infinity N/A 3.0 1024 x 1024
Lumina-Image-2.0 50 4.0 1024 x 1024
Stable Diffusion 3.5 28 35 1024 x 1024
FLUX.1 5 3.5 1024 x 1024
HiDream-I1-Fast 16 0.0 1024 x 1024

B.1.2 HiDream-I1 Model Adaptation

For our experiments with the HiDream-11 model, we utilized a modified version compared to the
original implementation available on GitHub. The standard HiDream-I1 model, which incorporates
flow matching with dual CLIP encoders, TS5, and Llama3.1-8b with 128 text tokens, requires approxi-
mately 55GB of VRAM for inference. Since our experiments were conducted on NVIDIA A6000
GPUs with 48GB VRAM, we employed the HiDream-I1-Fast variant with 4-bit quantization using
the BitsAndBytesConfig approach. Following the implementation strategy by Hykilpikonna [7], we
applied torch.bfloat16 precision and set low_cpu_mem_usage=True for all model components. This
optimization reduced the memory footprint to under 30GB, enabling inference while maintaining
reasonable generation quality. We observed that this quantized model preserved the essential char-
acteristics needed for our visual feedback experiments, with minimal impact on the final retrieval
performance.

B.1.3 Image Retrieval Pipeline
For all image-to-image retrieval experiments, we used BLIP-2 with the following configuration:
* Feature dimension: 256

 Similarity metric: Cosine similarity

¢ Normalization: L2

B.1.4 Vision-Language Models

For Gemma3 (both 4B and 12B variants), we used the following parameters:

e Temperature: 0.7

» Top-p: 0.9

* Max tokens: 500

* Repetition penalty: 1.1

* Sampling method: Greedy with temperature

B.2 Compute Resources

All experiments were conducted using 4 NVIDIA A6000 GPUs with 48GB of VRAM each. The
diffusion model inference for image generation was the most computationally intensive component of
our pipeline, taking approximately 20 seconds per image generation at 1024 x 1024 resolution. The
complete experimental suite, including all datasets and interaction rounds, required approximately
200 GPU hours to complete.
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C Broader Impacts

C.1 Potential Benefits

* Enhanced User Experience: By providing visual feedback, GenIR makes image retrieval
more intuitive and aligns with how humans naturally think, potentially reducing frustration
in search tasks.

* Accessibility Improvements: People who struggle with articulating precise textual queries
(including those with language barriers or linguistic challenges) may find visually-guided
search more accessible.

* Creative Applications: Artists, designers, and content creators could more effectively find
visual references that match their mental concepts, enhancing creative workflows.

» Educational Uses: Teachers and students could more efficiently locate visual materials that
align with conceptual understanding rather than relying solely on keyword matching.

C.2 Potential Risks

* Algorithmic Bias: The diffusion models used for image generation may reproduce or
amplify biases present in their training data, potentially leading to unfair representation in
search results.

¢ Computational Resource Requirements: The use of generative models increases com-
putational demands, which has both accessibility implications (requiring more powerful
hardware) and environmental considerations (increased energy consumption).

* Privacy Considerations: As systems become better at representing users’ mental images,
questions arise about what information about user preferences and thinking might be inferred
or stored.

Our approach aims to maximize the benefits while mitigating these potential risks through ongoing
research and refinement of the methodology.

D Human Evaluation of Visual Feedback Utility

D.1 Motivation

While our main experiments utilize VLM simulation (Gemma3) to evaluate the GenlIR framework,
we acknowledge that this approach cannot fully capture the nuanced ways humans form and refine
mental images during search. VLM simulation, while effective for large-scale evaluation, may not
accurately reflect how real users would interpret and benefit from visual feedback.

D.2 Human Annotation Study

To address this limitation, we conducted a small-scale human evaluation study with the following
methodology:

* Dataset: We selected 100 datapoints from our GenIR dataset. The evaluation primarily
focused on comparing the ninth-round generated images with the actual target images.

* Round Selection Rationale: We specifically chose the ninth round because earlier rounds
(1-6) typically captured broad image content but lacked significant details, while later rounds
(7-9) produced more stable and detailed images. As the ninth round represents the final
iteration in our framework, it provides the most refined visual representation for evaluation.

* Annotation Task: One human annotator evaluated each pair and classified whether the
generated image was helpful for potential query refinement (binary classification: useful/not
useful).

* Evaluation Criteria: The annotator assessed whether the synthetic image provided visual
cues that would be valuable for further query refinement, focusing on whether the differences
between generated and target images revealed actionable refinement opportunities.
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D.3 Results

Our human evaluation revealed that in 86% of cases, the synthetic images were judged as useful
for query refinement. This strongly aligns with our quantitative results showing improved retrieval
performance with visual feedback. Key observations include:

* Visual feedback was particularly helpful for refining fine-grained attributes (e.g., specific
colors, textures, and spatial relationships) that are difficult to express precisely in text.

* In cases where the initial query was vague, the synthetic image helped clarify the system’s
interpretation, allowing for more targeted refinements.

* The instances where visual feedback was deemed unhelpful typically involved significant
distortions or misinterpretations in the generated image that confused rather than clarified
the search intent.

D.4 Limitations and Future Work
This human evaluation, while informative, has several limitations:

 Limited scale (100 samples) and a single annotator

* The controlled setting differs from real-world search scenarios where users may have
incomplete mental images

* The study does not capture the dynamic evolution of mental images during search

These limitations highlight the need for more comprehensive human-in-the-loop studies in future
work. We plan to conduct larger-scale user studies with diverse participants to better understand how
different user groups interact with and benefit from visual feedback in mental image retrieval tasks.

D.5 Failure Mode Analysis of Visual Feedback

While our evaluation demonstrates that visual feedback is useful in 86% of cases (Section D), it
is important to understand the failure modes where generated images can mislead the refinement
process. We conducted a focused analysis of cases where GenlR failed to retrieve the target image,
categorizing errors into three primary types based on how the generated visual feedback provided
incorrect cues.

Table 3 presents our failure mode taxonomy with descriptions and representative examples from the
MSCOCO dataset:

Table 3: Failure Mode Taxonomy: Categories of visual feedback errors that can mislead query
refinement in GenIR

Error Type

Description

Example (MSCOCO)

Limited Improvement

The generated image shows minimal visual
change from the previous round despite query
refinement, providing no new information to
guide further refinement.

Image 000000004952: Gener-
ated images from rounds 8 and
9 are nearly identical, stalling
the refinement process.

Hallucination Content

The generated image contains objects or scene
elements that were not part of the user’s intent,
diverting the refinement process toward irrele-
vant details.

Image 000000020415: The 8th-
round generated image halluci-
nates a shower head on the right
side, an element entirely absent
in the ground-truth, misguiding
subsequent queries.

Retrieval-Detail ~ Mis-

alignment

The generated image misrepresents details that
are crucial for retrieval but may be perceived
as trivial by observers, creating a gap between
visual feedback and retrieval objectives.

Image 000000026494: A long
wooden bench in the ground-
truth is incorrectly rendered as
a single wooden chair. While
seemingly minor, this detail is
critical for accurate retrieval.
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Analysis of Failure Patterns Limited Improvement (stagnation) typically occurs in later rounds
(rounds 7-10) when the model has exhausted its capacity to refine the generation based on incremental
textual changes. This suggests a limitation in the diffusion model’s sensitivity to subtle query
modifications.

Hallucination Content represents the most problematic failure mode, as it actively misleads users
by introducing false visual elements. These hallucinations often stem from the diffusion model’s
tendency to complete scenes with common co-occurring objects, even when not specified in the
query.

Retrieval-Detail Misalignment highlights a fundamental challenge: what appears visually acceptable
to humans may miss crucial details that distinguish the target in the retrieval space. This suggests the
need for retrieval-aware image generation that prioritizes discriminative details.

Visualizations Figure 8 illustrates representative examples of each failure mode with visual com-
parisons between ground-truth targets and problematic generated images:

These visualizations demonstrate the current limitations of visual feedback generation and suggest
future directions for improving feedback quality, such as retrieval-aware generation objectives or
confidence-based hybrid feedback strategies.

D.6 Computational Cost vs. Performance Analysis

While our GenIR approach demonstrates significant performance improvements over traditional
feedback methods, it’s important to consider these gains in relation to the computational overhead
introduced by the generative process. This section provides a cost-benefit analysis of our approach
compared to baseline methods.

D.6.1 Comparative Computational Analysis

Table 4 presents a comparison of computational requirements between our GenIR approach and
baseline methods. As expected, the integration of diffusion-based image generation introduces
additional computational overhead compared to text-only methods like Verbal Feedback and text-
based prediction feedback.

Table 4: Computational requirements comparison per interaction round

Method Compute Relative Hits@10
Time (s) GPU Memory at Round 5
Verbal Feedback (Gemma3-12b) 2 1.0x 89.97%
Prediction Feedback 2.5 1.2x 90.70%
GenlR (Infinity) 16 3.0x 96.85%
GenlR (FLUX.1) 12 2.5% 95.10%
GenlR (Stable Diffusion 3.5) 26 2.2% 96.02%
GenlR (HiDream-FAST) 17 2.1x 94.62%
GenlR (Lumina-Image-2.0) 27 1.3x 96.55%

Our analysis shows that GenIR with Infinity requires approximately 8 times more computation
time per interaction round compared to the Verbal Feedback baseline. However, this computational
investment yields a 6.9% absolute improvement in Hits@ 10 on the MSCOCO dataset by the fifth
interaction round.

D.6.2 Hybrid System: Balancing Performance and Efficiency

To address latency concerns while maximizing performance gains, we explored a hybrid approach
that intelligently selects between fast Verbal Feedback and more powerful Visual Feedback. Our
analysis shows that Visual Feedback uniquely succeeds in 22.3% of cases where Verbal Feedback
fails, presenting an opportunity for strategic deployment.

Table 5 presents performance comparisons across different hybrid scenarios on MSCOCO:

* Verbal Feedback: Baseline using text-only feedback (fastest, 2s/round)
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Case 1: Limited Improvement (Image 04952)

i \\ W, NN //

Round 8 Generated Round 9 Generated
Case 2: Hallucination Content (Image 20415)

Ground Truth Round 8 Generated
Case 3: Retrieval-Detail Misalignment (Image 26494)

\ B

Ground Truth (bench) Round 9 Generated (chair)

Figure 8: Visual examples of GenlIR failure modes. Top: Stagnation between rounds 8-9. Middle:
Hallucinated shower head. Bottom: Bench misrepresented as chair.
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¢ Visual Feedback (Ours): GenIR with visual feedback (slower, 16s/round)
* Hybrid Oracle: Perfect selection of when to use Visual vs. Verbal feedback

* Random Select: Random selection using Visual Feedback for 22.3% of queries

Table 5: Hybrid System Performance: Comparison of Verbal Feedback, Visual Feedback, and Hybrid
approaches (Hits@10%). The hybrid system uses Visual Feedback for 22.3% of queries and Verbal
Feedback for 77.7%.

Dialog Verbal Visual Hybrid Random Verbal Verbal

Length | Feedback Feedback Oracle Select —Oracle —Random
0 74.48 89.71 93.40 77.88 +18.92 +3.40
1 82.73 93.11 95.97 85.06 +13.25 +2.33
2 85.83 95.00 97.43 87.89 +11.60 +2.06
3 87.97 95.97 97.91 89.76 +9.95 +1.79
4 89.13 96.51 98.20 90.81 +9.07 +1.68
5 89.96 96.85 98.30 91.50 +8.35 +1.54
6 90.49 97.14 98.59 91.98 +8.10 +1.49
7 90.98 97.48 98.64 92.42 +7.67 +1.44
8 91.27 97.67 98.79 92.69 +7.52 +1.42
9 91.80 97.72 98.79 93.13 +6.99 +1.33
10 92.33 98.01 98.88 93.62 +6.55 +1.29

Key findings from the hybrid system analysis:
* Even random selection yields meaningful gains (+3.40% absolute improvement at Round
0) with only +3 seconds average latency increase per query on MSCOCO.

* The oracle hybrid system demonstrates the upper bound of performance (+18.92% im-
provement at Round 0), showing significant room for improvement through intelligent query
difficulty estimation.

* In difficult cases where verbal feedback requires many rounds or fails to converge, GenIR’s
ability to succeed in fewer rounds can actually be more time-efficient overall.

This analysis demonstrates that hybrid approaches offer a promising middle ground, providing
substantial performance improvements with manageable latency overhead. Future work could develop
learned policies to intelligently select between feedback modalities based on query characteristics.

D.6.3 Optimizations and Efficiency Improvements

Several strategies can potentially reduce the computational overhead of our approach:
* Model Distillation: Smaller, distilled versions of diffusion models could reduce generation
time with minimal performance degradation.

» Early Stopping: For many queries, acceptable performance can be achieved with fewer
diffusion steps or feedbakc iterations.

* Adaptive Generation: Implementing a policy to skip generation in certain rounds where
minimal refinement is expected could reduce overall computation.

D.6.4 Real-World Deployment Considerations

The computational cost-benefit analysis varies significantly based on deployment context:

* Interactive Search Applications: The improved user experience and reduced number
of interaction rounds may justify the additional per-round computation, especially since
generation can be performed asynchronously while users review results.

» Batch Processing: For offline applications where multiple images need to be retrieved based
on descriptions, the computational overhead may be prohibitive compared to traditional
methods.
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* Specialized Domains: In domains requiring high retrieval precision (e.g., medical imaging,
satellite imagery), the performance improvements may justify computational costs regardless
of application type.

Overall, while GenlIR introduces non-trivial computational overhead, our analysis suggests that for
many interactive retrieval scenarios, the performance gains and improved user experience justify the
additional computational investment. Future work will focus on efficiency optimizations to further
improve the performance-to-cost ratio of our approach.

E Limitation and Future Work

The current study lays the groundwork for Mental Image Retrieval (MIR) using generative visual
feedback, and as such, its scope invites several avenues for future expansion:

User Simulation for Initial Exploration Our use of Vision-Language Models (VLMs) to simulate
user interaction is a deliberate methodological choice for this initial investigation of MIR. This
approach aligns with common practice in pioneering new interactive Al tasks (e.g., as seen in prior
interactive retrieval works [11, 12]), allowing for controlled, scalable, and reproducible exploration
of the core GenlIR framework. While this simulation provides a valuable starting point by assuming
users have a relatively clear and fixed mental target, we recognize that real human users often begin
with more partial or fuzzy mental representations. Future work should build upon our findings by
conducting extensive human-in-the-loop studies. Such studies will be crucial for understanding how
users with varying degrees of mental image clarity interact with GenlIR and for refining the system to
accommodate these more naturalistic scenarios.

Dynamic Mental Image Evolution The dynamic evolution of a user’s mental image during
the search process, where the act of searching and receiving feedback can clarify or alter their
internal representation, is a fascinating and complex aspect of human cognition. While our current
work focuses on establishing the efficacy of generative visual feedback for a given mental target,
investigating these interactive dynamics where the mental image itself co-evolves with system
understanding was beyond the scope of this foundational study. We consider this a significant
direction for future research. Exploring how GenlR can support or even leverage this iterative
refinement of the user’s own memory presents a rich area for subsequent investigation.

Reinforcement Learning-Based System Optimization While our current plug-and-play design
intentionally provides flexibility for researchers to leverage state-of-the-art or domain-customized
models, end-to-end optimization of the GenlIR framework presents exciting opportunities for future
work. We envision optimization from two complementary perspectives: the framework architecture
and the unique dataset it produces.

GenlR as a Multi-Agent System. At its core, GenIR functions as a multi-agent system where the
generator and retriever collaborate to solve retrieval tasks. By introducing explicit visual feedback
into this loop, we create an interactive paradigm potentially amenable to established multi-agent
optimization techniques. The modular design makes GenlIR a flexible testbed where researchers can
investigate how different agent capabilities impact system dynamics and optimization potential.

Trajectory-Rich Dataset for RL. Our dataset provides unique opportunities for system optimization
through its rich, multi-step interaction trajectories:

* Warm-up Training: Successful (query — generated image — retrieval result) trajec-
tories can provide initial supervised training before RL fine-tuning. This warm-up stage,
standard practice for improving RL stability and sample efficiency, is particularly crucial for
navigating the vast action space inherent to large generative models.

* Trajectory-Based Optimization: Full interaction histories enable advanced trajectory-
based optimization through process supervision (e.g., training reward models) rather than
relying solely on delayed final rewards. This allows the system to learn from intermediate
feedback quality, not just final retrieval success.
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» Diagnostic Analysis: Intermediate generated images provide unprecedented insight into
how and why generative models misunderstand queries in task-oriented settings. This offers
direct, actionable guidance for system-level debugging and task-specific optimization.

Optimization Strategy. We envision freezing the retriever while optimizing the image generator
end-to-end. This design choice offers flexibility—the retriever need not be a trainable deep learning
model, allowing use of fixed systems like Google Search or domain-specific rule-based search. For
the generator, successful optimization depends on two objectives: (1) correctly reflecting text queries
visually, and (2) distinguishing between retrieval targets and incorrect candidates in the image space,
ensuring seamless component collaboration.

These outlined possibilities represent starting points for engaging the research community in multi-
agent system optimization. We believe the community will discover many additional opportunities
building on this foundation. Our work provides essential building blocks—a flexible framework and
trajectory-rich dataset—to unlock the full potential of generative visual feedback in interactive Al
tasks.
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