
Published as a conference paper at ICLR 2021

NONSEPARABLE SYMPLECTIC NEURAL NETWORKS

Shiying Xionga∗ , Yunjin Tonga, Xingzhe Hea, Shuqi Yanga, Cheng Yangb, Bo Zhua
a Dartmouth College, Hanover, NH, United States
b ByteDance AI Lab, Beijing, China

ABSTRACT

Predicting the behaviors of Hamiltonian systems has been drawing increasing
attention in scientific machine learning. However, the vast majority of the literature
was focused on predicting separable Hamiltonian systems with their kinematic
and potential energy terms being explicitly decoupled while building data-driven
paradigms to predict nonseparable Hamiltonian systems that are ubiquitous in fluid
dynamics and quantum mechanics were rarely explored. The main computational
challenge lies in the effective embedding of symplectic priors to describe the in-
herently coupled evolution of position and momentum, which typically exhibits
intricate dynamics. To solve the problem, we propose a novel neural network
architecture, Nonseparable Symplectic Neural Networks (NSSNNs), to uncover
and embed the symplectic structure of a nonseparable Hamiltonian system from
limited observation data. The enabling mechanics of our approach is an augmented
symplectic time integrator to decouple the position and momentum energy terms
and facilitate their evolution. We demonstrated the efficacy and versatility of our
method by predicting a wide range of Hamiltonian systems, both separable and
nonseparable, including chaotic vortical flows. We showed the unique computa-
tional merits of our approach to yield long-term, accurate, and robust predictions
for large-scale Hamiltonian systems by rigorously enforcing symplectomorphism.

1 INTRODUCTION

A Hamiltonian dynamic system refers to a formalism for modeling a physical system exhibiting
some specific form of energy conservation during its temporal evolution. A typical example is a
pendulum whose total energy (referred to as the system’s Hamiltonian) is conserved as a temporally
invariant sum of its kinematic energy and potential energy. Mathematically, such energy conservation
indicates a specific geometric structure underpinning its time integration, named as a symplectic
structure, which further spawns a wide range of numerical time integrators to model Hamiltonian
systems. These symplectic time integrators have proven their effectiveness in simulating a variety
of energy-conserving dynamics when Hamiltonian expressions are known as a prior. Examples
encompass applications in plasma physics (Morrison, 2005), electromagnetics (Li et al., 2019), fluid
mechanics (Salmon, 1988), and celestial mechanics (Saari & Xia, 1996), to name a few.

On another front, the emergence of the various machine learning paradigms with their particular
focus on uncovering the hidden invariant quantities and their evolutionary structures enable a faithful
prediction of Hamiltonian dynamics without knowing its analytical energy expression beforehand.
The key mechanics underpinning these learning models lie in a proper embedding of the strong
mathematical inductive priors to ensure Hamiltonian conservation in a neural network data flow.
Typically, such priors are realized in a variational way or a structured way. For example, in Greydanus
et al. (2019), the Hamiltonian conservation is encoded in the loss function. This category of methods
does not assume any combinatorial pattern of the energy term and therefore relies on the inherent
expressiveness of neural networks to distill the Hamiltonian structure from abundant training datasets
(Choudhary et al., 2019). Another category of Hamiltonian networks, which we refer to as structured
approaches, implements the conservation law indirectly by embedding a symplectic time integrator
(DiPietro et al., 2020; Tong et al., 2020; Chen et al., 2020) or composition of linear, activation, and
gradient modules (Jin et al., 2020) into the network architecture.

∗shiying.xiong@dartmouth.edu

1

Published as a conference paper at ICLR 2021

Figure 1: Comparison between NSSNN and HNN regarding the network design and prediction
results of a vortex flow example.

.

One of the main limitations of the current structured methods lies in the separable assumption of
the Hamiltonian expression. Examples of separable Hamiltonian systems include the pendulum, the
Lotka–Volterra (Zhu et al., 2016), the Kepler (Antohe & Gladwell, 2004), and the Hénon–Heiles
systems (Zotos, 2015). However, beyond this scope, there exist various nonseparable systems
whose Hamiltonian has no explicit expression to decouple the position and momentum energies.
Examples include incompressible flows (Suzuki et al., 2007), quantum systems (Bonnabel et al.,
2009), rigid body dynamics (Chadaj et al., 2017), charged particle dynamics (Zhang et al., 2016),
and nonlinear Schrödinger equation (Brugnano et al., 2018). This nonseparability typically causes
chaos and instability, which further complicates the systems’ dynamics. Although SympNet in Jin
et al. (2020) can be used to learn and predict nonseparable Hamiltonian systems, multiple matrices of
the same order with system dimension are needed in the training process of SympNet, resulting in
difficulties in generalizing into high-dimensional large-scale N-body problems which are common
in a series of nonseparable Hamiltonian systems, such as quantum multibody problems and vortex-
particle dynamics problems. Such chaotic and large-scale nature jointly adds shear difficulties for a
conventional machine learning model to deliver faithful predictions.

In this paper, we propose an effective machine learning paradigm to predict nonseparable Hamiltonian
systems. We build a novel neural network architecture, named nonseparable symplectic neural
networks (NSSNNs), to enable accurate and robust predictions of long-term Hamiltonian dynamics
based on short-term observation data. Our proposed method belongs to the category of structured
network architectures: it intrinsically embeds the symplectomorphism into the network design
to strictly preserve the symplectic evolution and further conserves the unknown, nonseparable
Hamiltonian energy. The enabling techniques we adopted in our learning framework consist of an
augmented symplectic time integrator to asymptotically “decouple” the position and momentum
quantities that were nonseparable in their original form. We also introduce the Lagrangian multiplier
in the augmented phase space to improve the system’s numerical stability. Our network design is
motivated by ideas originated from physics (Tao, 2016) and optimization (Boyd et al., 2004). The
combination of these mathematical observations and numerical paradigms enables a novel neural
network architecture that can drastically enhance both the scale and scope of the current predictions.

We show a motivational example in Figure 1 by comparing our approach with a traditional HNN
method (Greydanus et al., 2019) regarding their structural designs and predicting abilities. We refer
the readers to Section 6 for a detailed discussion. As shown in Figure 1, the vortices evolved using
NSSNN are separated nicely as the ground truth, while the vortices merge together using HNN due
to the failure of conserving the symplectic structure of a nonseparable system. The conservative
capability of NSSNN springs from our design of the auxiliary variables (red x and y) which converts

2

Published as a conference paper at ICLR 2021

the original nonseparable system into a higher dimensional quasi-separable system where we can
adopt a symplectic integrator.

2 RELATED WORKS

Data-driven physical prediction. Data-driven approaches have been widely applied in physical
systems including fluid mechanics (Brunton et al., 2020), wave physics (Hughes et al., 2019),
quantum physics (Sellier et al., 2019), thermodynamics (Hernandez et al., 2020), and material science
(Teicherta et al., 2019). Among these different physical systems, data-driven fluid receives increasing
attention. We refer the readers to Brunton et al. (2020) for a thorough survey of the fundamental
machine learning methodologies as well as their uses for understanding, modeling, optimizing, and
controlling fluid flows in experiments and simulations based on training data. One of the motivations
of our work is to design a versatile learning approach that can predict complex fluid motions. On
another front, many pieces of research focus on incorporating physical priors into the learning
framework, e.g., by enforcing incompressibility (Mohan et al., 2020), the Galilean invariance (Ling
et al., 2016), quasistatic equilibrium (Geng et al., 2020), the Lagrangian invariance (Cranmer et al.,
2020), and Hamiltonian conservation (Hernandez et al., 2020; Greydanus et al., 2019; Jin et al., 2020;
Zhong et al., 2020). Here, inspired by the idea of embedding physics priors into neural networks, we
aim to accelerate the learning process and improve the accuracy of our model.

Neural networks for Hamiltonian systems. Greydanus et al. (2019) introduced Hamiltonian
neural networks (HNNs) to conserve the Hamiltonian energy of the system by reformulating the
loss function. Inspired by HNN, a series of methods intrinsically embedding a symplectic integrator
into the recurrent neural network was proposed, such as SRNN (Chen et al., 2020), TaylorNet (Tong
et al., 2020) and SSINN (DiPietro et al., 2020), to solve separable Hamiltonian systems. Combined
with graph networks (Sanchez-Gonzalez et al., 2019; Battaglia et al., 2016), these methods were
further generalized to large-scale N-body problems induced by interaction force between the particle
pairs. Jin et al. (2020) proposed SympNet by directly constructing the symplectic mapping of system
variables within neighboring time steps to handle both separable and nonseparable Hamiltonian
systems. However, the scale of parameters in SympNet for training N dimensional Hamiltonian
system is O(N2), which makes it hard to be generalized to the high dimensional N-body problems.
Our NSSNN overcomes these limitations by devising a new Hamiltonian network architecture that is
specifically suited for nonseparable systems (see details in Section 5). In addition, the Hamiltonian-
based neural networks can be extended to further applications. Toth et al. (2020) developed the
Hamiltonian Generative Network (HGN) to learn Hamiltonian dynamics from high-dimensional
observations (such as images). Moreover, Zhong et al. (2020) introduced Symplectic ODE-Net
(SymODEN), which adds an external control term to the standard Hamiltonian dynamics.

3 FRAMEWORK

3.1 AUGMENTED HAMILTONIAN EQUATION

We start by considering a Hamiltonian system with N pairs of canonical coordinates (i.e. N
generalized positions and N generalized momentum). The time evolution of canonical coordinates is
governed by the symplectic gradient of the Hamiltonian (Hand & Finch, 2008). Specifically, the time
evolution of the system is governed by Hamilton’s equations as

dq
dt

=
∂H
∂p

,
dp
dt

= −∂H
∂q

, (1)

with the initial condition (q,p)|t=t0 = (q0,p0). In a general setting, q = (q1, q2, · · · , qN) represents
the positions and p = (p1, p2, ...pN) denotes their momentum. Function H = H(q,p) is the
Hamiltonian, which corresponds to the total energy of the system. An important feature of Hamilton’s
equations is its symplectomorphism (see Appendix B for a detailed overview).

The symplectic structure underpinning our proposed network architecture draws inspirations from the
original research of Tao (2016) in computational physics. In Tao (2016), a generic, high-order, explicit
and symplectic time integrator was proposed to solve (1) of an arbitrary separable and nonseparable

3

Published as a conference paper at ICLR 2021

HamiltonianH. This is implemented by considering an augmented Hamiltonian
H(q,p,x,y) := HA +HB + ωHC (2)

with
HA = H(q,y), HB = H(x,p), HC =

1

2

(
‖q − x‖22 + ‖p− y‖22

)
(3)

in an extended phase space with symplectic two form dq ∧ dp+ dx ∧ dy, where ω is a constant that
controls the binding of the original system and the artificial restraint.

Notice that the Hamilton’s equations forH

dq
dt

=
∂H
∂p

=
∂H(x,p)

∂p
+ ω(p− y),

dp
dt

= −∂H
∂q

= −∂H(q,y)

∂q
− ω(q − x),

dx
dt

=
∂H
∂y

=
∂H(q,y)

∂y
− ω(p− y),

dy
dt

= −∂H
∂x

= −∂H(x,p)

∂x
+ ω(q − x),

(4)

with the initial condition (q,p,x,y)|t=t0 = (q0,p0, q0,p0) have the same exact solution as (1)
in the sense that (q,p,x,y) = (q,p, q,p). Hence, we can get the solution of (1) by solving (4).
Furthermore, it is possible to construct high-order symplectic integrators forH in (4) with explicit
updates. Our model aims to learn the dynamical evolution of (q,p) in (1) by embedding (4) into the
framework of NeuralODE (Chen et al., 2018). The coefficient ω acts as a regularizer, which stabilizes
the numerical results (see Section 4).

3.2 NONSEPARABLE HAMILTONIAN NEURAL NETWORK

We learn the nonseparable Hamiltonian dynam-
ics (1) by constructing an augmented system
(4), from which we can obtain the energy func-
tion H(q,p) by training the neural network
Hθ(q,p) with parameter θ and calculate the
gradient∇Hθ(q,p) by taking the in-graph gra-
dient. For the constructed network Hθ(q,p),
we integrate (4) by using the second-order sym-
plectic integrator (Tao, 2016). Specifically,
we will have an input layer (q,p,x,y) =
(q0,p0, q0,p0) at t = t0 and an output layer
(q,p,x,y) = (qn,pn,xn,yn) at t = t0 +ndt.

Algorithm 1 Integrate (4) by using the second-
order symplectic integrator
Input: q0,p0, t0, t, dt; φδ1, φδ2, and φδ3 in (5);
Output: (q̂, p̂, x̂, ŷ) = (qn,pn,xn,yn)

1 (q0,p0,x0,y0) = (q0,p0, q0,p0) n =
floor[(t− t0)/dt] for i = 1→ n do

2 (qi,pi,xi,yi) = φ
dt/2
1 ◦φdt/2

2 ◦φdt
3 ◦φ

dt/2
2 ◦

φ
dt/2
1 ◦ (qi−1,pi−1,xi−1,yi−1);

3 end

The recursive relations of (qi,pi,xi,yi), i = 1, 2, · · · , n, can be expressed by the algorithm 1 (also
see Figure 8 in Appendix A). The input functions φδ1(q,p,x,y), φδ2(q,p,x,y), and φδ3(q,p,x,y)
in algorithm 1 are q
p− δ[∂Hθ(q,y)/∂q]
x+ δ[∂Hθ(q,y)/∂p]

y

 ,
q + δ[∂Hθ(x,p)/∂p]

p
x

y − δ[∂Hθ(x,p)/∂q]

 , and
1

2


(
q + x
p+ y

)
+Rδ

(
q − x
p− y

)
(
q + x
p+ y

)
−Rδ

(
q − x
p− y

)
 , (5)

respectively. Here

Rδ :=

[
cos(2ωδ)I sin(2ωδ)I
− sin(2ωδ)I cos(2ωδ)I

]
, where I is a identity matrix. (6)

We remark that x and y are just auxiliary variables, which are theoretically equal to q and p.
Therefore, we can use the data set of (q,p) to construct the data set containing variables (q,p,x,y).
In addition, by constructing the networkHθ, we show that theorem B.1 in Appendix B holds, so the
networks φδ1,φ

δ
2, and φδ3 in (5) preserve the symplectic structure of the system. Suppose that Φ1

and Φ2 are two symplectomorphisms. Then, it is easy to show that their composite map Φ2 ◦ Φ1 is
also symplectomorphism due to the chain rule. Thus, the symplectomorphism of algorithm 1 can be
guaranteed by the theorems B.1.

4

Published as a conference paper at ICLR 2021

Figure 2: Comparisons of training and validation losses with different ω in the training process. The
solid and dashed lines represent training and validation losses respectively. The networks are trained
by (a) the clean dataset, (b) the dataset with noise ∼ 0.05U(−1, 1), and (c) the dataset with noise
∼ 0.4U(−1, 1).

4 TRAINING SETTINGS AND ABLATION TESTS

We use 6 linear layers with hidden size 64 to model Hθ, all of which are followed by a Sigmoid
activation function except the last one. The derivatives ∂Hθ/∂p, ∂Hθ/∂q, ∂Hθ/∂x, ∂Hθ/∂y are
all obtained by automatic differentiation in Pytorch (Paszke et al., 2019). The weights of the linear
layers are initialized by Xavier initializaiton (Glorot & Bengio, 2010).

We generate the dataset for training and validation using high-precision numerical solver (Tao, 2016),
where the ratio of training and validation datasets is 9 : 1. We set the dataset (qj0,p

j
0) as the start input

and (qj ,pj) as the target with j = 1, 2, · · · , Ns, and the time span between (qj0,p
j
0) and (qj ,pj) is

Ttrain. Feeding (q0,p0) = (qj0,p
j
0), t0 = 0, t = Ttrain, and time step dt in Algorithm 1 to get the

predicted variables (q̂j , p̂j , x̂j , ŷj). Accordingly, the loss function is defined as

LNSSNN =
1

Nb

Nb∑
j=1

‖q(j) − q̂(j)‖1 + ‖p(j) − p̂(j)‖1 + ‖q(j) − x̂(j)‖1 + ‖p(j) − ŷ(j)‖1, (7)

where Nb = 512 is the batch size of the training samples. We use the Adam optimizer (Kingma &
Ba, 2015) with learning rate 0.05. The learning rate is multiplied by 0.8 for every 10 epoches.

Taking systemH(q, p) = 0.5(q2 + 1)(p2 + 1) as an example, we carry out a series of ablation tests
based on our constructed networks. Normally, we set the time span, time step and dateset size as
T = 0.01, dt = 0.01 and Ns = 1280.

The choice of ω in (4) is largely flexible since NSSNN is not sensitive to the parameter ω when it is
larger than a certain threshold. Figure 2 shows the training and validation losses with different ω in
the network trained by clean and noise datasets. Though the convergence rates are slightly different
in a small scope, the examples with various ω are able to converge to the same size of training and
validation losses. Here, we set ω = 2000, but ω can be smaller than 2000. The only requirement for
picking ω is that it has to be larger than O(10), which is detailed in Appendix C.

We pick the L1 loss function to train our network due to its better performance. Figure 3 compares
the validation losses with different training loss functions in the network trained by clean and noise
datasets. Figure 3(a) shows that either the network trained by L1 or MSE with a clean dataset can
converge to a small validation loss, but the network trained by L1 loss converges relatively faster.
Figures 3(b) and 3(c) both show that the network trained by L1 with noise dataset can converge to a
smaller validation loss. In addition, we already introduced a regularization term in the symplectic
integrator embedded in the network; thus, there is no need to add the regularization term in the loss
function.

The integral time step in the sympletic integrator is a vital parameter, and the choice of dt largely
depends on the time span Ttrain. Figure 4 compares the validation losses generated by various
integral time steps dt based on fixed dataset time spans Ttrain = 0.01, 0.1 and 0.2 respectively in the
training process. The validation loss converges to a similar degree with various dt based on fixed
Ttrain = 0.01 and Ttrain = 0.1 in 4(a) and (b), while it increases significantly as dt increases based

5

Published as a conference paper at ICLR 2021

Figure 3: Comparisons of validation losses with different training loss functions in the training
process. The red solid and dashed lines represent the networks trained by L1 loss function and
validated by L1 and MSE respectively; the blue solid and dashed lines represent the networks trained
by MSE and validated by L1 and MSE respectively. The networks are trained by (a) the clean dataset,
(b) the dataset with noise ∼ 0.05U(−1, 1), and (c) the dataset with noise ∼ 0.4U(−1, 1).

Figure 4: Comparisons of validation losses with different dt in the training process. (a), (b), and (c)
are trained based on different time spans Ttrain = 0.01, 0.1, and 0.2, respectively.

on fixed Ttrain = 0.02 in 4(c). Thus, we should take relatively small dt for the dataset with larger
time span Ttrain

5 COMPARISONS WITH OTHER METHODS

5.1 METHODOLOGIES

We compare our method with other recently proposed methods, such as HNN (Greydanus et al., 2019),
NeuralODE (Chen et al., 2018), TaylorNet (Tong et al., 2020), SSINN (DiPietro et al., 2020), SRNN
(Chen et al., 2020), and SympNet (Jin et al., 2020). There are several features distinguishing our
method from others, as shown in Table 1. HNN first enforces conservative features of a Hamiltonian
system by reformulating its loss function, which incurs two main shortcomings. On the one hand,
it requires the temporal derivatives of the momentum and the position of the systems to calculate
the loss function, which is difficult to obtain from real-world systems. On the other hand, HNN
doesn’t strictly preserve the symplectic structure, because its symplectomorphism is realized by its
loss function rather than its intrinsic network architecture. NeuralODE successfully bypasses the
time derivatives of the datasets by incorporating an integrator solver into the network architecture.

Embedding the Hamiltonian prior into the NeuralODE, a series of methods are proposed, such as
SRNN, SSINN, and TaylorNet, to predict the continuous trajectory of system variables; however,
presently these methods are only designed to solve separable Hamiltonian systems. Instead of
updating the continuous dynamics by integrating the neural networks in NeuralODE, SympNet adopts
a symplectomorphism composed of well-designed both linear and non-linear matrices to intrinsically
map the system variables within neighboring time steps. However, the parameters scale in the matrix
map for training N dimensional Hamiltonian system in SympNet is O(N2), which makes it hard
to generalize to the high dimensional N-body problems. For example, in Section 6, we predict the
dynamic evolution of 6000 vortex particles, which is challenging for the training process of the
SympNet on the level of O(60002).

6

Published as a conference paper at ICLR 2021

Table 1: Comparison between HNN (Greydanus et al., 2019), NeuralODE (Chen et al., 2018),
TaylorNet (Tong et al., 2020), SSINN (DiPietro et al., 2020), SRNN (Chen et al., 2020), SympNet
(Jin et al., 2020), and NSSNN. X represents the method preserves such property.
Methods NSSNN HNN NeuralODETaylorNet SSINN SRNNSympNet
Solve nonseparable systems X X X X
Solve separable systems X X X X X X X
Preserve symplectic structure X Partially X Partially X X
Utilize continuous dynamics X X X X X X
No need for derivatives in dataset X X X X X X
Long-term predictability X Partially X X X X
Extend to N-body system X X X X X

Figure 5: Comparison of prediction results of (q, p) for the spring system H = 0.5(q2 + p2) from
t = 0 to t = 200 with (q0, p0) = (0,−3). The time span of the datasets are Ttrain = 0.4 (first row)
and Ttrain = 1 (second row). The five columns are five different methods NeuralODE, HNN, IHNN,
HRK, and NSSNN, respectively. The red line denotes the ground truth; the blue line denotes the
prediction, which are perfectly overlapping in NSSNN. The prediction ability of HNN and IHNN
improves significantly with the decreasing of Ttrain of the dataset which however may be hard to
obtain in the actual experimental measurements.

NSSNN overcomes the weaknesses mentioned above. Under the framework of NeuralODE, NSSNN
utilizes continuously-defined dynamics in the neural networks, which gives it the capability to learn
the continuous-time evolution of dynamical systems. Based on Tao (2016), NSSNN embeds the
symplectic prior into the nonseparable symplectic integrator to ensure the strict symplectomorphism,
thereby guaranteeing the property of long-term predictability. In addition, unlike SympNet, NSSNN
is highly flexible and can be generalized to high dimensional N-body problems by involving the
interaction networks (Sanchez-Gonzalez et al., 2019), which will be further discussed in Section 6.

5.2 EXPERIMENTS

We compare five implementations that learn and predict Hamiltonian systems. The first one is
NeuralODE, which trains the system by embedding the network fθ → (dq/dt, dp/dt) into the
Runge-Kutta (RK) integrator. The other four, however, achieve the goal by fitting the Hamiltonian
Hθ → H based on (1). Specifically, HNN trains the network with the constraints of the Hamiltonian
symplectic gradient along with the time derivative of system variables and then embeds the well-
trainedHθ into the RK integrator for predicting the system. The third and fourth implementations are
ablation tests. One of them is improved HNN (IHNN), which embeds the well-trainedHθ into the
nonseparable symplectic integrator (Tao’s integrator) for predicting. The other is to directly embed
Hθ into the RK integrator for training, which we call HRK. The fifth method is NSSNN, which
embedsHθ into the nonseparable symplectic integrator for training.

For fair comparison, we adopt the same network structure (except that the dimension of output layer
in NeuralODE is two times larger than that in the other four), the same L1 loss function and same

7

Published as a conference paper at ICLR 2021

Figure 6: Comparison of prediction results of (q, p) for the Tao’s systemH = 0.5(q2 + 1)(p2 + 1)
from t = 0 to t = 20000 with (q0, p0) = (0,−3). The network is trained by the dataset with noise
∼ 0.05U(−1, 1), and the time span of the dataset is Ttrain = 0.2. The red line denotes the ground
truth; the blue line denotes the prediction, which are perfectly overlapping in NSSNN.

size of the dataset, and the precision of all integral schemes is second order, and the other parameters
keep consistent with the one in Section 4. The time derivative in the dataset for training HNN and
IHNN is obtained by the first difference method

dq
dt
≈ q(Ttrain)− q(0)

Ttrain
and

dp
dt
≈ p(Ttrain)− q(0)

Ttrain
. (8)

Figure 5 demonstrates the differences between the five methods using a spring systemH = 0.5(q2 +
p2) with different time span Ttrain = 0.4, 1 and same time step dt = 0.2. We can see that by
introducing the nonseparable symplectic integrator into the prediction of the Hamiltonian system,
NSSNN has a stronger long-term predicting ability than all the other methods. In addition, the
prediction of HNN and IHNN lies in the dataset with time derivative; consequently, it will lead to a
larger error when the given time span Ttrain is large.

Moreover, the datasets obtained by (11) in HNN and IHNN are sensitive to noise. Figure 6 compares
the predictions of (q, p) for the system H = 0.5(q2 + 1)(p2 + 1), where the network is trained by
the dataset with noise ∼ 0.05U(−1, 1), along with time span Ttrain = 0.2 and time step dt = 0.02.
Under the condition with noise, NSSNN still performs well compared with other methods. Also, we
compare the convergent error of a series of Hamiltonian systems with differentH trained with noisy
data in Appendix D, which generally shows better robustness than HNN does.

6 MODELING VORTEX DYNAMICS OF MULTI-PARTICLE SYSTEM

For two-dimensional vortex particle systems, the dynamical equations of particle positions
(xj , yj), j = 1, 2, · · · , Nv with particle strengths Γj can be written in the generalized Hamilto-
nian form as

Γj
dxj
dt

= −∂H
p

∂yj
, Γj

dyj
dt

=
∂Hp

∂xj
, with Hp =

1

4π

Nv∑
j,k=1

ΓjΓk log(|xj − xk|). (9)

By including the given particle strengths Γj in Algorithm 1, we can still adopt the method mentioned
above to learn the Hamiltonian in (9) when there are fewer particles. However, considering a system
with Nv � 2 particles, the cost to collect training data from all Nv particles might be high, and the
training process can be time-consuming. Thus, instead of collecting information from all Nv particles
to train our model, we only use data collected from two bodies as training data to make predictions of
the dynamics of Nv particles.

Specifically, we assume the interactive models between particle pairs with unit particle strengths
Γj = 1 are the same, and their corresponding Hamiltonian can be represented as network Ĥθ(xj ,xk),
based on which the corresponding Hamiltonian of Nv particles can be written as (Battaglia et al.,
2016; Sanchez-Gonzalez et al., 2019)

Hpθ =

Nv∑
i,j=1

ΓjΓkĤθ(xj ,xk). (10)

We embed (10) into the symplectic integrator that includes Γj to obtain the final network architecture.

8

Published as a conference paper at ICLR 2021

Figure 7: Taylor and Leapfrog vortex. We generate results of Taylor vortex and Leapfrop vortex
using NSSNN and HNN, and compare them with the ground truth. 6000 vortex elements are used
with corresponding initial vorticity conditions of Taylor vortex and Leapfrop vortex.

The setup of the multi-particle problem is similar to the previous problems. The training time span
is Ttrain = 0.01 while the prediction period can be up to Tpredict = 40. We use 2048 clean data
samples to train our model. The training process takes about 100 epochs for the loss to converge. In
Figure 7, we use our trained model to predict the dynamics of 6000-particle systems, including Taylor
and Leapfrog vortices. We generate results of Taylor vortex and Leapfrop vortex using NSSNN and
HNN and compare them with the ground truth. Vortex elements are used with corresponding initial
vorticity conditions of Taylor vortex and Leapfrop vortex (Qu et al., 2019). The difficulty of the
numerical modeling of these two systems lies in the separation of different dynamical vortices instead
of having them merging into a bigger structure. In both cases, the vortices evolved using NSSNN are
separated nicely as the ground truth shows, while the vortices merge together using HNN.

7 LIMITATIONS

The network with the embedded integrator is often more time-consuming to train than the one based
on the dataset with time derivative. For example, the ratio of training time of the methods HNN and
NSSNN is 1 : 3 when dt = Ttrain, and the training time of the recurrent networks further increases
with the decreasing of dt. Although a smaller dt often has higher discretization accuracy, there is a
tradeoff between training cost and predicting accuracy. Additionally, a smaller dt may potentially
cause gradient explosion. In this case, we may want to use the adjoint method instead. Another
limitation lies in the assumption that the symplectic structure is conserved. In real-world systems,
there could be dissipation that makes this assumption unsatisfied.

8 CONCLUSIONS

We incorporate a classic ideal that maps a nonseparable system to a higher dimensional space making
it quasi-separable to construct symplectic networks. With the intrinsic symplectic structure, NSSNN
possesses many benefits compared with other methods. In particular, NSSNN is the first method
that can learn the vortex dynamical system, and accurately predict the evolution of complex vortex
structures, such as Taylor and Leapfrog vortices. NSSNN, based on the first principle of learning
complex systems, has potential applications in fields of physics, astronomy, and weather forecast, etc.
We will further explore the possibilities of neural networks with inherent structure-preserving ability
in fields like 3D vortex dynamics and quantum turbulence. In addition, we will also work on general
applications of NSSNN with datasets based on images or other real scenes through automatically
identifying coordinate variables of Hamiltonian systems based on neural networks.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This project is supported in part by Neukom Institute CompX Faculty Grant, Burke Research Initiation
Award, and ByteDance Gift Donation. Yunjin Tong is supported by the Dartmouth Women in Science
Project (WISP), Undergraduate Advising and Research Program (UGAR), and Neukom Scholars
Program.

REFERENCES

V. Antohe and I. Gladwell. Performance of variable step size methods for solving model separable
hamiltonian systems. Math. Comput. Model., 40:1245–1262, 2004.

P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for learning about objects,
relations and physics. In Advances in Neural Information Processing Systems, pp. 4502–4510,
2016.

S. Bonnabel, M. Mirrahimi, and P. Rouchon. Observer-based Hamiltonian identification for quantum
systems. Automatica, 45:1144–1155, 2009.

S. Boyd, S. P Boyd, and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

L. Brugnano, C. Zhang, and D. Li. A class of energy-conserving Hamiltonian boundary value
methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci., 60:
33–49, 2018.

S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine learning for fluid mechanics. Annu. Rev.
Fluid Mech., 52:477–508, 2020.

K. Chadaj, P. Malczyk, and J. Frączek. A parallel Hamiltonian formulation for forward dynamics of
closed-loop multibody systems. Multibody Syst. Dyn., 39:51–77, 2017.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations.
In Conference on Neural Information Processing Systems, pp. 6571–6583, 2018.

Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic recurrent neural networks. In International
Conference on Learning Representations, 2020.

A. Choudhary, J. F. Lindner, E. G. Holliday, S. T. Miller, S. Sinha, and W. L. Ditto. Physics enhanced
neural networks predict order and chaos. arXiv:1912.01958, 2019.

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural networks.
arXiv:2003.04630, 2020.

D. DiPietro, S. Xiong, and B. Zhu. Sparse symplectically integrated neural networks. In Advances in
Neural Information Processing Systems, 2020.

Z. Geng, D. Johnson, and R. Fedkiw. Coercing machine learning to output physically accurate results.
J. Comput. Phys., 406:109099, 2020.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pp. 249–256, 2010.

S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In Conference on Neural
Information Processing Systems, pp. 15379–15389, 2019.

L. N. Hand and J. D. Finch. Analytical mechanics. Cambridge University Press, 2008.

Q. Hernandez, A. Badias, D. Gonzalez, F. Chinesta, and E. Cueto. Structure-preserving neural
networks. arXiv:2004.04653, 2020.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan. Wave physics as an analog recurrent
neural network. Sci. Adv., 5:6946, 2019.

10

Published as a conference paper at ICLR 2021

P. Jin, A. Zhu, G. E. Karniadakis, and Y. Tang. Symplectic networks: intrinsic structure-preserving
networks for identifying Hamiltonian systems. arXiv:2001.03750, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

A. N. Kolmogorov. On the conservation of conditionally periodic motions under small perturbation
of the Hamiltonian. Dokl. Akad. Nauk SSSR, 98:527–530, 1954.

John Lee. Introduction to topological manifolds, volume 202. Springer Science & Business Media,
2010.

Y. Li, Y. He, J. Niesen Y. Sun, H. Qin, and J. Liu. Solving the vlasov–maxwell equations using
hamiltonian splitting. J. Comput. Phys., 396:381–399, 2019.

J. Ling, R. Jones, and J. Templeton. Machine learning strategies for systems with invariance properties.
J. Comput. Phys., 318:22–35, 2016.

A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov. Embedding hard physical constraints
in convolutional neural networks for 3D turbulence. In International Conference on Learning
Representations, 2020.

P. J. Morrison. Hamiltonian and action principle formulations of plasma physics. Phys. Plasmas, 12:
058102, 2005.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems, pp. 8026–8037, 2019.

Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. Efficient and conservative fluids using bidirectional
mapping. ACM Trans. Graph., 38:1–12, 2019.

D. G. Saari and Z. Xia. Hamiltonian dynamics and celestial mechanics. American Mathematical
Society, 1 edition, 1996.

R. Salmon. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech., 20:225–256, 1988.

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia. Hamiltonian graph networks with
ODE integrators. arXiv:1909.12790, 2019.

J. M. Sellier, G. M. Caron, and J. Leygonie. Signed particles and neural networks, towards efficient
simulations of quantum systems. J. Comput. Phys., 387:154–162, 2019.

Y. Suzuki, S. Koshizuka, and Y. Oka. Hamiltonian moving-particle semi-implicit (hmps) method for
incompressible fluid flows. Comput. Method. Appl. M., 196:2876–2894, 2007.

M. Tao. Explicit symplectic approximation of nonseparable Hamiltonians: algorithm and long time
performance. Phys. Rev. E, 94:043303, 2016.

G. H. Teicherta, A. R. Natarajanc, A. Van der Venc, and K. Garikipati. Machine learning materials
physics: Integrable deep neural networks enable scale bridging by learning free energy functions.
Comput. Methods Appl. Mech. Engrg., 353:201–216, 2019.

Y. Tong, S. Xiong, X. He, G. Pan, and Bo Zhu. Symplectic neural networks in Taylor series form for
Hamiltonian systems. arXiv:2005.04986, 2020.

P. Toth, D. J. Rezende, A. Jaegle, S. Racaniére, A. Botev, and I. Higgins. Hamiltonian generative
networks. In International Conference on Learning Representations, 2020.

R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He, and J. Xiao. Explicit symplectic algorithms based on
generating functions for charged particle dynamics. Phys. Rev. E, 94:013205, 2016.

Y. D. Zhong, B. Dey, and A. Chakraborty. Symplectic ODE-Net: learning Hamiltonian dynamics
with control. In International Conference on Learning Representations, 2020.

11

Published as a conference paper at ICLR 2021

Figure 8: (a) The forward pass of an NSSNN is composed of a forward pass through a differentiable
symplectic integrator as well as a backpropagation step through the model. (b) The schematic diagram
of NSSNN.

B. Zhu, R. Zhang, Y. Tang, X. Tu, and Y. Zhao. Splitting k-symplectic methods for non-canonical
separable hamiltonian problems. J. Comput. Phys., 322:387–399, 2016.

E. E. Zotos. Classifying orbits in the classical hénon–heiles hamiltonian system. Nonlinear Dynam.,
79:1665–1677, 2015.

A NETWORK ARCHITECTURE

Figure 8(a) shows the forward pass of NSSNN is composed of a forward pass through a differentiable
symplectic integrator as well as a backpropagation step through the model. Figure 8(b) plots the
schematic diagram of NSSNN. For the constructed network Hθ(q,p), we integrate (4) by using
the second-order symplectic integrator (Tao, 2016). Specifically, The input layer of the integrator
is (q,p,x,y) = (q0,p0, q0,p0) at t = t0 and the output layer is (q,p,x,y) = (qn,pn,xn,yn)
at t = t0 + ndt. The recursive relations of (qi,pi,xi,yi), i = 1, 2, · · · , n, are expressed by the
algorithm 1.

B SYMPLECTOMORPHISMS

One of the most important features of the time evolution of Hamilton’s equations is that it is a
symplectomorphism, representing a transformation of phase space that is volume-preserving. In the
setting of canonical coordinates, symplectomorphism means the transformation of the phase flow of
a Hamiltonian system conserves the symplectic two-form

dq ∧ dp ≡
N∑
j=1

(dqj ∧ dpj) , (11)

where ∧ denotes the wedge product of two differential forms. The rules of wedge products can be
found in Lee (2010). In the two-dimensional case, (11) can be understood as the area element of the
surface. In this case, the symplectomorphism can be interpreted as the area element of the surface is
constant. As proved below, our constructed network structure intrinsically preserves Hamiltonian
structure.

Theorem B.1. For a given δ, the mapping φδ1, φδ2, and φδ3 in (5) are symplectomorphisms.

Proof. Let

(tqj , t
p
j , t

x
j , t

y
j) = φδj(q,p,x,y), j = 1, 2, 3. (12)

12

Published as a conference paper at ICLR 2021

Figure 9: Comparison of different ω (from left to right columns) with (a) and (e) ω = 0, (b) and
(f) ω = 0.8, (c) and (g) ω = 0.9, (d) and (h) ω = 10 in the symplectic integrator for nonseparable
Hamiltonian H = (q2 + 1)(p2 + 1)/2. The upper row: projection of a trace [q(t), p(t), x(t), y(t)]
with [q(0), p(0), x(0), y(0)] = (−3, 0,−3, 0) onto the q − p plane. The bottom row: deviation
ε = ‖(q, p)− (x, y)‖2 between (q, p) and (x, y).

.

From the first equation of (5), we have

dtq1 ∧ dtp1 + dtx1 ∧ dty1

=dq ∧ d
[
p− δ ∂Hθ(q,y)

∂q

]
+ d

[
x+ δ

∂Hθ(q,y)

∂p

]
∧ dy

=dq ∧ dp+ dx ∧ dy + δ

[
∂Hθ(q,y)

∂q∂y
− ∂Hθ(q,y)

∂y∂q

]
dq ∧ dy

=dq ∧ dp+ dx ∧ dy.

(13)

Similarly, we can prove that dtq2 ∧ dtp2 + dtx2 ∧ dty2 = dq ∧ dp+ dx∧ dy. In addition, from the third
equation of (5), we can directly deduce that dtq3 ∧ dtp3 + dtx3 ∧ dty3 = dq ∧ dp+ dx ∧ dy.

Suppose that Φ1 and Φ2 are two symplectomorphisms. Then, it is easy to show that their composite
map Φ2 ◦ Φ1 is also symplectomorphism due to the chain rule. Thus, the symplectomorphism of
algorithm 1 can be guaranteed by the theorem B.1.

C DETERMINING COEFFICIENT ω

To further elucidation, the HamiltonianHA+HB without the binding, i.e.,H with ω = 0, in extended
phase space (q,p,x,y) may not be integrable, even if H(q,p) is integrable in the original phase
space (q,p). However,HC is integrable. Thus, as ω increases, a larger proportion in the phase space
for H corresponds to regular behaviors (Kolmogorov, 1954). For H(q, p) = (q2 + 1)(p2 + 1)/2,
shown in Fig. 9, we compare the trajectories starting from [q(0), p(0), x(0), y(0)] = (−3, 0,−3, 0)
calculated by the symplectic integrator (Tao, 2016) with different ω, where the calculation accuracy
is second order accuracy and the time interval is 0.001. As Figs. 9(a), (b), (c), and (d) shown, the
chaotic region in phase space is significantly decreasing until forming a stable limit cycle. We define
ε = ‖(q, p)− (x, y)‖2 as the calculation error of this system, shown in Figs. (e), (f), (g), and (h) that
the error is decreasing with ω increasing, which fits the quantitative results of phase trajectory well.

13

Published as a conference paper at ICLR 2021

Table 2: Comparison of Prediciton error and Hamiltonian deviation between NeuralODE, HNN and
NSSNN

Prediciton error Hamiltonian deviation
Problems NeuralODE HNN NSSNN NeuralODE HNN NSSNN
Pendulum 3.4× 10−2 3.1× 10−2 2.6× 10−2 1.5× 10−2 1.3× 10−2 7.4× 10−3

Lotka-Volterra 2.2× 10−2 3.9× 10−2 2.7× 10−2 7.4× 10−3 8.8× 10−3 7.5× 10−3

Spring 2.1× 10−2 2.1× 10−2 1.6× 10−2 9.3× 10−3 6.7× 10−3 6.7× 10−3

Hénon–Heiles 1.0× 10−1 9.4× 10−2 8.4× 10−2 3.7× 10−2 4.0× 10−2 3.5× 10−2

Tao’s example 3.7× 10−2 2.6× 10−2 2.2× 10−2 1.4× 10−2 1.1× 10−2 8.2× 10−3

Schrödinger 8.7× 10−2 5.9× 10−2 5.7× 10−2 3.8× 10−2 2.3× 10−2 2.0× 10−2

Vortex (2 particles) 2.1× 10−2 7.7× 10−3 3.4× 10−3 1.5× 10−2 2.8× 10−3 2.1× 10−3

Vortex (4 particles) 3.4× 10−2 9.4× 10−3 6.9× 10−3 8.2× 10−2 1.4× 10−2 3.4× 10−3

D OTHER EXPERIMENTS

We consider the pendulum, the Lotka–Volterra, the Spring, the Hénon–Heiles, the Tao’s example
(Tao, 2016), the Fourier form of nonlinear Schrödinger and the vortex particle systems in our
implementation. The Hamiltonian energies of these systems (except vortex particle system) are
summarized as follows:

Pendulum system: H(q, p) = 3(1−cos(q))+p2. Lotka–Volterra system: H(q, p) = p−ep+2q−eq .
Spring system: H(q, p) = q2 + p2. Hénon–Heiles system: H(q1, q2, p1, p2) = (p21 + p22)/2 + (q21 +
q22) + (q21q2 − q32/3)/2. Tao’s example (Tao, 2016): H(q, p) = (q2 + 1)(p2 + 1)/2. Fourier form of
nonlinear Schrödinger equation: H(q1, q2, p1, p2) =

[
(q21 + p21)2 + (q22 + p22)2

]
/4−(q21q

2
2 +p21p

2
2−

q21p
2
2 − p21q22 + 4q1q2p1p2).

The network is trained by the dataset with noise∼ 0.1U(−1, 1). The training time span, integral time
step, and validation time span are 0.01, 0.01, and 0.1, respectively. Table 2 compares the Hamiltonian
deviation εH = ‖H(qtruth,ptruth)−H(qpredict,ppredict)‖2/‖H(qtruth,ptruth)‖2 and the prediction error
εp = ‖qtruth − qpredict‖1 + ‖ptruth − ppredict‖1. It is clearly from the Table 2 that NSSNN either
outperforms or has similar performances as NeuralODE and HNN do.

14

	Introduction
	Related works
	Framework
	Augmented Hamiltonian equation
	Nonseparable Hamiltonian Neural Network

	Training settings and ablation tests
	Comparisons with other methods
	Methodologies
	Experiments

	Modeling vortex dynamics of multi-particle system
	Limitations
	Conclusions
	Network architecture
	Symplectomorphisms
	Determining Coefficient
	Other experiments

