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ABSTRACT

Large Language Models have shown strong generalization across natural language
tasks but remain underexplored for longitudinal biomedical profiles. In sports,
biological profiles are analyzed for doping, with particular emphasis on two key
challenges for longitudinal data: (i) sequence prediction for early detection of
prohibited substance use, and (ii) anomaly detection for identifying doping-related
deviations. We propose STT-LLM, a structural-temporal tokenization framework
that adapts LLMs to longitudinal analysis without modifying the backbone ar-
chitecture. STT-LLM constructs joint embeddings that capture both temporal
dynamics and biological pathway-based interactions, which are then transformed
into LLM-compatible tokens through the specialized structural and temporal tok-
enizers. We evaluate our approach on real-world longitudinal steroid datasets from
athletes, where STT-LLM consistently outperforms LLM baselines. In addition,
we present a case study where STT-LLM provides contextual reasoning that aligns
more closely with expert assessments compared to baseline models. These results
highlight the effectiveness of embedding-guided tokenization for adapting LLMs
to understand longitudinal biological data.

1 INTRODUCTION

Large Language Models (LLMs) have shown generalization abilities across natural language and
multimodal tasks, including reasoning and code generation (Chang et al., 2024; |Matarazzo & Torlonel
2025). This led to growing interest in adapting LLMs to biological domains, particularly those
with limited supervision and complex data structures. An example for analyzing longitudinal
biological time-series is in the domain of sports doping control, where longitudinal profiles of
athletes are analyzed to detect prohibited substance use. Longitudinal profiles are the instance (data
representation) of a subject’s trajectory over time, which are heterogeneous, irregularly sampled,
and temporally dependent, often linked through metabolic pathways (Schiissler-Fiorenza Rose
et al.,2019). Such structural and temporal dependencies are important for distinguishing natural
physiological fluctuations from doping-induced abnormalities. However, most LLMs are pretrained
on unstructured text corpora and rely on discrete token sequences, making them not well-suited
for directly modeling numerical and time-dependent data (Raiaan et al.| 2024; Naveed et al., [2023]).
Bridging this gap remains a non-trivial challenge, particularly in sports doping analytics. LLMs are
promising: although their use in biological and clinical monitoring is still limited, recent studies show
they can process clinical time-series data when augmented with specialized prompting or embedding
methods (Chan et al., 2024} Xiao et al., |2025), suggesting that with appropriate adaptation, they can
extend beyond language tasks to support longitudinal biomedical and sports monitoring applications.

Challenge 1: Sequence prediction for early detection of prohibited substance use. The longitudinal
steroid profiles evolve along metabolic pathways, and deviations from expected trajectories may signal
the administration of banned substances (Sottas et al., 2010). Anticipating such deviations requires
sequence prediction that incorporates both temporal dynamics and pathway-level domain knowledge.
However, standard LLMs operate on discrete text tokens (Naveed et al.|[2023;Jia et al.,[2025)) and lack
inductive biases to capture multivariate signals with irregular sampling. While prior works in graph
learning (Ghanvatkar & Rajan, [2023;; |Luo et al., 2024)) and time-series transformers (Tipirneni &
Reddy,[2022; Xu et al.,[2023)) try to capture structural or temporal aspects, they rely on domain-specific
architectures that cannot be directly integrated into general-purpose LLMs. This incompatibility limits
their applicability in scenarios where flexible adaptation of pretrained LLMs is needed. Consequently,
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without explicit structural-temporal modeling, LLMs struggle to align with the sequential dynamics
required for early detection in doping monitoring.

Challenge 2: Anomaly detection for doping identification. Detecting doping abuse involves identi-
fying subtle and rare deviations in metabolite concentrations that differ from natural physiological
variation. These anomalies are often embedded in structural dependencies across metabolites, where
perturbations in one metabolite cascade to others along metabolic pathways (Shukla & Marlin, [2018};
Patharkar et al.| 2024). Existing LLM approaches typically flatten profiles into text-like sequences or
tabular inputs (Das et al., [2025)), neglecting the relational structure necessary to capture biochem-
ical constraints. While anomaly detection in time-series has been explored through specialized
models (Lazaridou et al., 2021} |Constantinou et al.,[2023)), these methods rely on domain-specific
heuristics and cannot be directly integrated into generic LLMs. As a result, LLMs tend to default to
trivial “normal” predictions, missing rare but important doping cases.

Challenge 3: Limited and irregular (heterogeneity) athlete profiles. Anti-doping laboratories have
access to only one or two samples from most of the athletes, collected at irregular intervals due to
testing constraints (Lauritzen & Solheim| 2024). This data scarcity makes it challenging to train
robust supervised models, particularly given the high inter-individual variability in baseline steroid
levels. While parameter-efficient fine-tuning methods (Han et al.l 2024} [Zhang et al.| | 2025) mitigate
computational costs, they do not address the token mismatch between LLM inputs and structured
biomedical signals. These limitations highlight the need for methods that enable LLMs to generalize
under extreme data scarcity while preserving structural priors.

To address these challenges, we introduce a structural-temporal tokenization framework that adapts
LLMs to analyze longitudinal biomedical profiles in sports doping. STT-LLM first constructs joint
embeddings that capture both pathway-level structural dependencies among different metabolites and
their irregular temporal dynamics, and then uses specialized structural and temporal tokenizers to
transform these embeddings into LLM-compatible tokens. This design enables pre-trained LLMs
with low-rank adaptation to perform domain-specific tasks such as sequence prediction for early
detection of prohibited substance use and anomaly detection for doping identification.

Key Contributions:

* We propose STT-LLM, a structural-temporal tokenization framework that incorporates path-
way structure and temporal dynamics of longitudinal profiles into specialized embeddings.

* We design tokenizers that convert these structural-temporal embeddings into LLM-
compatible tokens, enabling efficient adaptation of pre-trained LLMs.

* We apply our approach to doping analysis, where STT-LLM outperforms LLM baselines in
both sequence prediction and anomaly detection tasks under real-world conditions.

2 RELATED WORKS

Tokenization and Embedding for Domain Adaptation Tokenization plays a foundational role in
aligning raw inputs with the internal representations of LLMs, yet it remains a relatively underexplored
area in domain adaptation compared to pretraining and fine-tuning strategies. Classical methods
such as byte-pair encoding (Sennrich et al.| 2015) and WordPiece (Wu et al.,2016) are effective for
natural language but poorly suited for longitudinal biomedical data, where tokens should capture both
structural dependencies (e.g., metabolic pathways) and irregular temporal dynamics. Recent efforts
have explored task-aware tokenization for domain generalization and efficiency (Huang et al., 2025
Liu et al.| 2024a)). TAPEX (Liu et al.,[2021a) and TabLLM (Hegselmann et al., 2023)) adapt LLMs
to tabular inputs through specialized token formats and training objectives, but these approaches
fail to capture dynamic dependencies across time. In graph-based domains, GraphPrompt (Sun
et al.; |2022) and Graph-of-Thought (Besta et al., |2024) integrate relational structure via prompts
or fusion modules, enabling zero-shot reasoning over interconnected data. Embedding strategies
range from mean-pooling and distance-based transfer (Liu et al, 2021b)) to hypernetwork-based
token generation (Feher et al.,2024), but typically rely on auxiliary models or task-specific heuristics.
While these methods highlight the importance of token design, they are not directly applicable to
doping monitoring, where representations should jointly encode pathway-level structure and temporal
progression.
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LLMs for Longitudinal Modeling Recent work has explored repurposing LLMs for general
time-series tasks through prompt augmentation and embedding reprogramming strategies (Rahman
et al., |2024). For example, models such as Time-LLM (Jin et al., 2023)) and UniTime (Liu et al.,
2024b) demonstrate that pretrained LLMs can be reprogrammed to model time-indexed data by
projecting temporal patches into token sequences. Despite these advances, most frameworks treat
longitudinal signals as flat or fully textified inputs, neglecting the temporal granularity and variable
semantics required in domains like anti-doping, where small deviations in steroid levels can have
significant interpretive consequences. In related biomedical contexts, forecasting has been approached
through timeline extraction (Frattallone-Llado et al., 2024) and event ordering (Leeuwenberg &
Moens| [2020), but these methods often rely on fixed annotation spans and lack fine-grained temporal
resolution. Traditional structured modeling in longitudinal data has relied on hand-crafted features
or physiological scores (e.g., SOFA, SAPS) (Hou et al.| [2020; [Noroozizadeh et al., |2023), while
more recent models integrate narrative texts and structured lab measurements (Jeong et al., [2024;
Belyaeva et al.,2023). However, the gap between general-purpose LLMs and domain-specific data
distributions remains a central challenge, particularly in doping monitoring, where datasets are highly
individual-specific and require sensitivity to rare anomalous events under zero- or few-shot settings.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Let us consider a longitudinal profile consisting of repeated measurements of different clinical
parameters across time. Formally, the longitudinal profile for a given athlete can be represented as
X, = [x4;] € RP*™, where p is the number of parameters, n; is the number of samples in profile
X, and x;;;, denotes the parameter £ of the j th sample. The longitudinal profile includes structural
information encoded as a feature interaction graph A € RP*P, where Ay, ; represents the relationships

between parameter k and [. In this work, we address the following two main tasks:

Sequence Prediction Given the longitudinal profile up to time ¢, denoted as X;; ;.; = [Xij] G=1,0ts
the future samples are aimed to be predicted for ¢ + 1 as X; ;11 = fo(Xi 1., A), where fp is a
predictive function parameterized by . The function fy models both temporal dependencies across
time and structural dependencies among parameters.

Anomaly Detection Irregular patterns in the longitudinal profile can be identified at two levels:
1) Local anomaly detection to identify anomalous samples within an individual profile, meaning
that one or more samples x;; may show abnormal behavior relative to the athlete’s own trajectory.

: : local __ _local S
Let us consider for each sample, a local anomaly score is computed s;5* = g (x4, Xi5), where
Xij = [Xij1,-- s Xijpls Xij = [Rij1,...,Xijp], and gg’cal is a scoring function parameterized by

¢. One or more samples can be flagged as locally anomalous if their scores exceed a predefined
threshold Aiocat = {j | 1 > e€ioca}. i) Global anomaly detection to determine whether the
entire longitudinal profile of an athlete is anomalous. Specifically, a profile is considered globally
anomalous if any sample (preferably the recent sample collected for doping testing) is identified as

anomalous. The global anomaly score is defined as g&lobal — glocal ‘\where n; denotes the last sample

7 i,n;°

S

index in the profile. A profile is classified as globally anomalous if sfl()bal > €global-

3.2 STT-LLM: STRUCTURAL-TEMPORAL TOKENIZATION FOR LARGE LANGUAGE MODELS

We propose STT-LLM (Fig. [I), which integrates joint structural-temporal embeddings, structural
and temporal tokenizers to effectively capture and represent the intricate structural and temporal
relationships inherent in longitudinal clinical profiles.

3.2.1 INPUT PROMPT

The input prompt I consists of two components: the task P, which is a textual description providing
instructions, and the longitudinal profile X;. The task prompt P is processed using a pre-trained
language tokenizer to produce token embeddings Zp.., while X is fed into the proposed tokenization
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Figure 1: Proposed model architecture of STT-LLM for analyzing longitudinal clinical profile.
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framework that integrates structural and temporal dependencies. This dual processing strategy enables
the model to align semantic task instructions with rich domain-specific data representations.

3.2.2 STRUCTURAL-TEMPORAL EMBEDDINGS

Structural Component Given an adjacency matrix A and a degree matrix D of feature interaction
graph, the normalized graph Laplacian £ = I — D 2AD™ = (I: identity matrix, D: node de-
grees) (Kipf & Welling| [2017). This normalized Laplacian £ encodes important structural properties
such as connectivity and community structure. The eigen-decomposition is calculated as £ = UAU !
(U: eigenvectors, \: eigenvalues). To obtain the structural embedding, the eigenvectors are projected
through a learnable transformation: Eg = Wg U + bgy (Wg,, b, trainable parameters).

Temporal Component The temporal behavior in the longitudinal profile is modeled using an
attention mechanism as Attention(Q, K, V) = softmax <Q—\/§) V', where @), K, V are linear pro-

jections (Vaswani et al., [2017). To incorporate temporal order, positional encodings are added,
defined as PE(pos2:) = sin (pez7a) and PE(pos2i11) = c0s (1gies7a) (pos: position, i:
dimension index). These encodings allow the model to distinguish between positions in the in-
put sequence. The attention output Ar, is passed through a feed-forward network to produce
Zsr = ReLU(ATWET1 + bETl)VVET2 + be,, and layer normalization is applied to produce
Er = LayerNorm(Zgr). This architecture stabilizes training and facilitates gradient flow. The
resulting temporal embeddings E7 capture dynamic patterns and dependencies important for model-
ing longitudinal profiles. Finally, the structural and temporal embeddings are concatenated to form
the unified structural-temporal embedding E(X;) = Eg || Er € R®*+7)XP_ This joint embedding
ensures comprehensive integration of structural and temporal information, preparing the longitudinal
clinical data for tokenization.

3.2.3 TOKENIZATION

Structural Tokenizer (S) The framework processes the structural aspects of the structural-temporal
embeddings by effectively encoding a feature interaction graph constructed from domain knowledge
in a longitudinal profile. The input structural representation A of longitudinal profile is combined
with the learned structural-temporal embedding E(X;), yielding the concatenated input:

Xg = A||E(X;), Xge RE+nm)xp (1)
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The concatenated input X g is then processed through a multi-layer perceptron (MLP) with two layers.
The first layer applies a ReLU nonlinearity Hg = ReLU(X W, + bg,), Hg € R(ZPHm:)Xdnidgn
followed by a linear transformation Z§4LP = HgWg, + bs,, Zg“P e R@ptni)xdrrar
where Wg, € RPXduawen W € RnsenXdrim (hg = bg : trainable parameters). To ensure
stable training and consistent scaling of the token embeddings, layer normalization is applied
Zg = LayerNorm(ZMEP),  Zg € RZpnixdiinm where dy 1y is the target embedding dimen-
sion compatible with the downstream LLM. The resulting structural token embeddings Zs encode
both the structural relationships captured by the graph and the dynamic patterns captured by the
structural-temporal embeddings.

Temporal Tokenizer (T') To handle sequences of varying lengths (heterogeneity), we apply 1)
Padding: Sequences shorter than n,x are zero-padded to ensure uniform input dimensions and ii)
Masking: Mask M € R™= indicates valid time steps, with marked real samples: 1 and padded
samples: 0. This ensures the model focuses computations on valid temporal entries. The padded

temporal sequence Xgi‘dded is combined with the structural-temporal embedding E(X;):
Xr = XFUYB(X),  Xp € ROmctrtn)xp @

where np,y is the maximum sequence length of longitudinal profile in the dataset. The concatenated
temporal input is passed through a two-layer MLP. The first layer applies a nonlinear transformation
Hr = ReLU(X7Wr, + bpy), Hp € ROmatptnidxdiaa  followed by a second linear layer
ZMWP — HrWr, + by, ZMWP € RUwmatptni)xdiis While the MLP processes the entire
longitudinal profile, the mask M ensures only valid time steps influence the learned embeddings.
Finally, layer normalization is applied to stabilize learning and ensure consistent scaling Zr =
LayerNorm(Z)Y'F),  Zp € R(mwtptni)xdira - The resulting temporal token embeddings Zr
effectively capture both the temporal evolution while preserving structural context.

3.3 MODEL TRAINING

The output token embeddings Zp.., Zg, and Zr are concatenated Z = Zpy||Zs||Z1, where
Z < RExdiim | with I denoting the token sequence length and dyr s the embedding dimen-
sion compatible with the LLM backbone. This combined representation is passed to a pre-trained
LLM, which has been augmented with LoRA adapter O = Adapter(LLM), where O represents the
model output for different downstream tasks, such as sequence prediction and anomaly detection
over longitudinal profiles. During training, the tokenizers (.S, T') are trained jointly with the LoRA
adapter, while the core LLM weights remain frozen. This setup allows efficient adaptation to specific
downstream tasks with minimal computational overhead, leveraging the generalization capabilities of
the pre-trained LLM while enabling domain-specific adaptation through the tokenizers and LoRA
layers. The training objective functions can be defined according to the downstream task.

4 EXPERIMENTS

We evaluate STT-LLM in the context of doping analytics in sports, where detecting abnormal steroid
patterns over time is important for identifying potential prohibited drug abuse by athletes.

Datasets The models are evaluated on a wide
range of real-world athlete datasets (Table [I)
consisting of longitudinal steroid profiles from

Table 1: Summary statistics of all the datasets.

N X R . Datasets Gender # Profiles # Samples Length n;
their urine samples: Steroid-M (male), Steroid-  —5 “= 0 Male e 14 320
F (female), Steroid-My,, (male, limited), and  Steroid-F ~ Female 375 2307 320
Steroid-Fj;,, (female, limited) (Rahman et al.,  Steroid-Mj,  Male 737 1474 2

Steroid-F, Female 293 586 2

2022). The dataset includes measurements of
six key steroid metabolites: testosterone (T),
epitestosterone (E), etiocholanolone (Etio), androsterone (A), Sa-androstanediol (SaAdiol), and
5p3-androstanediol (55Adiol) following the steroid metabolism pathway to synthesize (Piper et al.,
2021). The profile lengths range from 2-20 samples per athlete, reflecting realistic variability in
longitudinal monitoring. These datasets cover diverse population groups and temporal resolutions,
allowing us to comprehensively evaluate STT-LLM under realistic conditions.
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Baselines We compare the STT-LLM tokenization approach against different general-purpose mid-
sized LLMs, including Qwen-2.5 (7B) (Yang et al.,2025)), Falcon-3 (7B) (Almazrouei et al.,|2023)),
Mistral (7B) (Jiang et al.| [2023), LLaMA-2 (7B) (Touvron et al.| 2023), LLaMA-3.1 (8B) (Grattafiori
et al., 2024), Phi-4 (7B) (Abdin et al., [2024)), and DeepSeek-R1 (7B) (DeepSeek-Al et al.| 2025).
Each model is fine-tuned on different downstream tasks using its native tokenization strategy. These
models typically fall within the 7-8 billion parameter range, making them well-suited for efficient
inference on local workstations without requiring large-scale GPU infrastructure.

Experimental Setup All experiments are conducted on a workstation equipped with an NVIDIA
Titan RTX GPU (24GB), Intel i9 processor, and 31GB total RAM. We used the same computational
setup for both STT-LLM and all baseline models to ensure fair and consistent comparisons. The
evaluation was performed under two settings: zero-shot, and few-shot (2-20 labeled examples as in-
context prompts). The evaluation metrics used are RMSE, MAE, and MAPE for sequence prediction,
and accuracy, sensitivity, precision, Fl-score, and AUC for anomaly detection. We set the high
specificity value (99.9%) to avoid any false positives (domain requirements). All reported results are
averaged over three independent runs with standard deviations reported where applicable.

5 RESULTS

5.1 SEQUENCE PREDICTION

Zero-shot setting Fig. 2| shows that STT-LLM consistently outperforms all LLM baselines by
achieving the lowest error scores. For Steroid-M and Steroid-F, STT-LLM reduces RMSE value
(%100) to 79.3 and 68.4, respectively, while all baselines remain above 83, indicating its improved
ability to model metabolic patterns even without supervision. The gains are even more pronounced in
the limited datasets, where STT-LLM achieves low RMSE value (%100) of 30.0 and 1.2, respectively,
outperforming the next-best models by large margins. For MAE value ((%10)), STT-LLM consistently
achieves the lowest errors across datasets, with values dropping to near 5-6 on the limited datasets,
reflecting accurate point-wise predictions.

Qwen2.5 Falcon3 Mistral B Llama-2 Llama-3.1 Phi-4 DeepSeek-R1 B STT-LLM
RMSE (%100) - _ - MAPE
100 :
Basl -
: / : I I I I I
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Figure 2: Zero-shot sequence prediction performance across different datasets.

Few-shot setting Table [/| shows several important findings. Contrary to expectations, the error
metrics increase as the number of shots increases from 5 to 20 across all the models. This indicates
that simply increasing the number of in-context examples does not necessarily improve performance.
The rise in error is likely due to including heterogeneous and potentially noisy profiles as prompts,
which may confuse the model instead of guiding it, especially in a domain like longitudinal clinical
monitoring, where inter-individual variation is high. Despite this, STT-LLM consistently achieves
the best RMSE across all datasets and shot counts, demonstrating robust temporal generalization. For
example, at 5-shot, STT-LLM achieves the lowest RMSE on Steroid-My;,, (1730.11), Steroid-Fy;y,
(1276.32), and maintains higher performance across more shots as well. Similarly, in terms of
MAE, our model outperforms baselines on Steroid-Fj;,, with a score of 643.71 (10-shot) and 642.90
(20-shot). STT-LLM maintains high overall stability and minimal fluctuation in MAPE compared to
LLM baselines. These findings suggest that STT-LLM outperforms baselines consistently in absolute
error terms and demonstrates better resilience to prompt variability and shot-induced drift.
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Table 2: Few-shot sequence prediction results across different datasets.

Datasets Model @5 @10 @15 @20
RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE|
Qwen-2.5 1695.99 899.99 111.99 169599 899.99 111.99 169599 899.99 111.99 169599 899.99 111.99
Mistral 1688.34 89492  98.19  1690.63 896.48  94.69 168890 896.54 101.04 169239 899.84 110.19
Falcon-3 1688.02 896.54 101.17 1689.88 897.20 100.31 1690.39 897.48 100.01 1691.48 897.69  100.93
Steroid-M LLaMA-2 1687.80 895.81  98.21 1689.47 89729 100.74 1690.01 896.86 100.47 1691.16 897.06  98.19

LLaMA-3.1 1688.57 896.78  100.27 1689.67 898.19 106.75 1690.56 897.17 101.46 1690.98 896.84  97.21
Phi-4 1688.20 896.62 100.38 1690.17 89721 9798  1690.04 897.36 102.87 1691.41 897.54  100.88
DeepSeek-R1  1688.05 896.73  100.33  1689.88 896.73  98.31 1690.31 897.17  98.81 1691.65 897.56  99.48
STT-LLM 1680.00 890.77  96.80  1681.57 891.27 96.79  1682.06 891.37 96.79  1683.51 891.87 96.81

Qwen-2.5 139599  699.99 12999 139599 699.99 12999 139599 699.99 129.99 139599 699.99 129.99
Mistral 1387.98 69523 12035 1392.05 697.48  92.08 1388.75 695.68 108.68 139098 696.63  107.37
Falcon-3 1388.12  695.07  93.71 1389.62  695.41 93.80 1388.77 695.67 11524 1389.53 694.61 94.31

LLaMA-2 1387.93 69493  93.30 1388.86 69552 109.01 1388.92 69491 100.61 1389.93 69533 101.76

Steroid-F LLaMA-3.1 1388.67 695.34  94.12 1389.38  695.03  93.93 1388.72  695.19 106.55 1390.03 69523  103.50
Phi-4 1388.07 695.39  98.83 1389.09 695.64 108.44  1389.50 694.70  99.72 1389.75 695.43  108.37

DeepSeek-R1  1388.48 69547 10255 1389.54 696.04  97.25 1389.05 695.14  98.93 1389.09  694.41 95.36

STT-LLM 1372.85 684.39 9494 137417 684.89 9492 137351 684.05 9491 137445 684.09 9491

Qwen-2.5 1750.99 901.99  106.99  1750.99 901.99 106.99 1750.99 901.99 106.99 1750.99 901.99  106.99

Mistral 1737.63  896.17  95.80 1742.02 89945 103.07 1738.92 89842 10342 1741.69 898.80  98.51

Falcon-3 1738.66 898.03  102.52  1740.75 89842  98.74 173893 898.31  102.14  1742.69 900.19  97.78

Steroid-Mj; LLaMA-2 1738.65 897.73  99.46 1741.24 898.86  100.51  1738.90 89848 103.02 1743.15 900.89  102.91
'™ LLaMA-3.1 1737.29 896.35 10098  1741.25 899.54  100.01  1739.00 898.11 98.56 174321 900.77  98.70

Phi-4 1738.51 898.01  102.96 1741.42 89843  97.71 1738.87 898.07  99.79 1743.05 900.66  98.94

DeepSeek-R1  1738.12  897.42  100.40 1740.81 898.72  98.67 173972 898.67  99.97 1743.62  900.59  98.15

STT-LLM 1730.11 891.67 9647  1733.18 893.01 9647 1731.43 892.63 9647 1734.87 894.61  96.47

Qwen-2.5 1309.99  666.99  127.99  1309.99 666.99 127.99 1309.99 666.99 127.99 1309.99 666.99  127.99

Mistral 129273 65749 12329 1289.67 65438 118.12 1294.05 657.05 107.06 1286.36 652.15 126.36

Falcon-3 1291.65 65582  97.87 1289.63  654.51 96.85 129477  656.69  102.03  1287.89 653.04  96.47

Steroid-Fiiy, LLaMA-2 1292.06 656.18  100.69  1289.05 653.63  93.96 1295.08 65697 101.13  1287.68 654.31 106.19

LLaMA-3.1 1291.13  654.67  88.66  1289.66 654.13 9320 129398 656.87 115.68 1287.32 653.76  108.22
Phi-4 1291.92  655.84  92.49  1289.48 654.17 97.54  1294.68 656.39 102.23  1287.37 653.85 107.41
DeepSeek-R1  1291.64 65594  101.25  1289.33 65437 103.85 1294.89 656.59  97.21 1286.90 653.18 101.71
STT-LLM 127632 645.16 9492 127423 643.71 94.89  1279.59 64590  94.89 127219 64290  94.86

5.2 ANOMALY DETECTION

Zero-shot setting  Table [3]shows that STT-LLM significantly outperforms baseline models in both
local and global anomaly detection under zero-shot conditions. For local anomaly detection, STT-
LLM achieves sensitivity of 15.0% on Steroid-M and 17.0% on Steroid-Fj;;,,, while most baselines
show near-zero sensitivity. This is because these models default to classifying all samples as normal,
resulting in artificially inflated accuracy values around 95-96% but completely failing to identify any
anomalous samples. In contrast, STT-LLM trades a small drop in accuracy (87-88%) for substantial
gains in sensitivity and precision, reflecting its ability to detect true anomalies. In global anomaly
detection, all models achieve better accuracy, as the classification task is inherently less sparse and
the signal-to-noise ratio is higher. STT-LLM achieves the highest F1-scores (0.26 on Steroid-M, 0.29
on Steroid-F) and AUC values (0.57 on Steroid-M, 0.59 on Steroid-F), outperforming baselines by up
to ~10%. These results highlight STT-LLM’s ability to handle both sparse (local) and dense (global)
anomaly tasks, demonstrating increased robustness and generalization compared to standard LLMs,
especially in rare-event detection scenarios where sensitivity is critical.

Few-shot setting  Fig.[3]shows that STT-LLM achieves substantial gains in global anomaly detection
as the number of shots increases. Unlike the baselines, which often exhibit unstable or noisy trends
across shot sizes, STT-LLM shows consistent improvements across most metrics. For sensitivity,
STT-LLM increases from 0.15 (2 shots) to 0.6 (20 shots) on Steroid-M, representing more than a
threefold improvement in detecting true anomalies. Precision improves steadily as well, reaching
near-perfect levels on Steroid-F and Steroid-Fj,, indicating that the model sharply reduces false
positives as supervision increases. F1-score trends further highlight the balanced gains of STT-LLM,
with performance rising sharply between 2 and 20 shots, e.g., 0.15 to 0.7 (Steroid-M), demonstrating
the model’s ability to jointly improve sensitivity and precision. Overall, STT-LLM’s performance
curves remain smooth, while baselines frequently show oscillating or deteriorating patterns as shots
increase, reflecting their difficulty in integrating few-shot supervision effectively.

5.3 ABLATION STUDY

The ablations include removing all components (w/o all), structural tokenizer (w/o structural),
temporal tokenizer (w/o temporal), embedding layer (w/o embeddings), and pairs of components.
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Figure 3: Few-shot global anomaly detection performance across different metrics.

Table 3: Local and global anomaly detection results across different datasets at zero-shot setting.

Datasets Model Local Global
Acct Sens? Prect F11 AUCT Acct Senst Prect F11 AUCT
Qwen-2.5 0.96+.01 0.004+.00 0.00+.00 0.00+£.00 0.47+.02 0.71+£.02 0.08+.03 0.20+.02 0.11+.02 0.45+.02
Mistral 0.87£.02 0.05+£.01 0.02+.01 0.03+.01 043+.02 0.71+.02 0.08+£.02 0.23+.03 0.12+.02 0.47+.02
Falcon-3 0.94£.02  0.01£.00 0.02+£.01 0.01£.01 046+.02 0.72+£.02 0.08+.02 0.28+.03 0.13+£.02 0.53+.02
Steroid-M LLaMA-2 0.90£.02 0.05+.01 0.03+.01 0.04+.01 042+.02 0.71+£.02 0.09£.02 0.26+.02 0.14+.03  0.49+.02

LLaMA-3.1 0.874+.02  0.07+.01 0.03+.01 0.05£.01 0.51£.02 0.72+£.02 0.14+£.02 0.33+£.03 0.19+.03 0.56%.02
Phi-4 0.87+.02  0.084+.01 0.04+.01 0.05£.01 0.504.02 0.72+.02 0.03+£.01 0.15+.02 0.05£.01 0.46+.02
DeepSeek-R1  0.95+.01  0.024+.01 0.01+.01 0.01£.00 0.39£.02 0.70+£.02 0.08+.02 0.21+£.02 0.11+£.02 0.454+.02
STT-LLM 0.874+.02  0.15+.02 0.07+.01  0.09£.02 0.57+£.02 0.73+.02 0.19+.03 0.41+.03 0.26+.03 0.57+.02

Qwen-2.5 0.87+.02  0.04+.01 0.02+.01  0.02+£.01 0.464.02 0.73+£.02 0.04+£.01 0.14+.02 0.06£.01 0.55+.02

Mistral 0.96+.01 0.00+.00 0.00£.00 0.00+.00 0.62+.02 0.73+.02  0.12+.02 0.26+.03 0.16+.02 0.43+.02
Falcon-3 0.95+.01 0.00£.00 0.00+.00 0.00+.00 0.60+.02 0.72+.02 0.09+£.02 0.22+.02 0.13+.02 0.37+.02
o LLAMA2 087402 006=01 002401 003401 055£02 073£02 0.12£02 026£02 016202 04702
: LLaMA-3.1 0.95+.01 0.01£.00 0.03+.01 0.02+.01 0.57+.02 0.73+£.02 0.10+£.02 0.23+.03 0.14+.02 0.49+.02
Phi-4 0.88+.02 0.06+.01 0.02+.01 0.03+.01 0.50+.02 0.74+.02 0.08+.02 0.25+.02 0.13+.02 0.45+.02
DeepSeck-RI 087402 00601 0.02+01 003+01 042402 073£02 0.10£02 022403 0.13£02 05002
STT-LLM  0.87£.02 0.08+.01 0.03+.01 0.05£01 047202 075+.02 023103 040403 0.29+.03 0.59+.02
Qwen-2.5 0.86+.02 0.00+.00 0.00+.00 0.00+.00 0.18+.01 0.62+.02 0.06+.02 0.304+.03 0.10+.02 0.54+.02
Mistral 0.96:£.01 0.00£00 000£00 0.00+£00 037£02 061£02 007+£02 031402 012402 042+.02
Falcon-3 0.88+.02 0.08+.01 0.03+.01 0.05+.01 0.44+.02 0.61+.02 0.07+£.02 0.324+.02 0.12+.02 0.53+.02
Steroid-M LLaMA-2 0.88+.02 0.03+.01 0.01+.01 0.02+.01 0.22+.01 0.61+£.02 0.07+£.02 0.31£+.02 0.12+.02 0.45+.02
Crold-Mim  [1aMA-3.1  0.88+.02 0.04+01 0.02+£01 0.02+01 039+02 0.60+02 004+01 021402 0.07+.02 0.39+.02
Phi-4 0.89+.02 0.21£.02 0.09+.01 0.12+.02 0.65+.02 0.61+.02 0.05+.01 0.254+.02 0.09+.01 0.44+.02
DeepSeek-R1  0.874+.02  0.06+£.01 0.02+.01 0.03£.01 0.43+.02 0.60+.02 0.04+.01 0.19+.02 0.07£.01 0.45+.02
STT-LLM 088402 036202 012402 0.I8£.02 075502 0.64+.02 012402 047£03 019+.02 0.55+.02
Qwen-2.5 0.88+.02 0.06+.01 0.06+.01 0.06+.01 0.14+.01 0.54+.02 0.10+£.02 0.46+.03 0.16+.02 0.53+.02
Mistral 0.95+.01 0.01£.00 0.03+.00 0.02+.00 0.64+.02 0.51+.02 0.04+.01 0.25+.02 0.07+.01 0.42+.02
Falcon-3 0.96:£.01 0.00£00 000£00 000+£00 027£02 05502 0.13+£02 053203 021+03 0.55+.02
Steroid-Fi LLaMA-2 0.86+.02 0.03+.01 0.01+.01 0.02+.01 0.32+.02 0.54+.02 0.11+.02 0.48+.03 0.18+.02 0.50+.02
lim [ LaMA-3.1 0.87+.02 0.00+.00 0.00+.00 0.00+.00 0.08+.01 0.52+.02 0.07+.01 0.36+.02 0.11+.01 0.46+.02
Phi-4 087402 0.07+£01 003+01 004+£01 048£02 053+02 007+£01 041403 012402 048+.02
DeepSeek-R1  0.864+.02 0.10+£.01 0.04+.01 0.06+.01 0.514+.02 0.54+.02 0.10£.02 0.48+.03 0.16+.02 0.54+.02
STT-LLM 0.87+.02 0.17+.02 0.08+.01 0.11+.02 0.54+.02 0.59+.02 0.15+.03 0.71+.03 0.25+.03 0.56+.02
Table B shows that STT- Table 4: Contributions of different components in STT-LLM.
LLM achieves the lowest
sequence prediction CITrors Model Variants Sequence Prediction Anomaly Detection (Global)
(RMSE: 1664.59, MAPE: RMSE| MAE| MAPE| Acct Senst Prect FIt  AUCt
96.80). Removine all com-  woall 1687.71 89639 9893 07179 0.1398 03291 0.1962 0.5609
) . g w/o structural 1687.49 89661  100.65 07152 0.0968 02769 0.1434 0.4964
ponents increases RMSE: /o temporal 168245 89285 9838 07126 0.1237 02987 0.1749  0.5500
+1.4%, MAE: +1.7%, _eembedding 168275 89340 10056 07139 0.1344 03125 0.1880 0.5352

. . Ww/o structural + temporal 168270 89320  98.89  0.6967 0.0645 0.1791 0.0949 04877
MAPE: +2.2% relative embeddings + temporal ~ 1677.56 889.29  97.07  0.7245 0.1290 03429 0.1875 0.5474
to STT-LLM. Removin w/o embeddings + structural  1679.16  891.78  97.35 07113 0.0914 02576 0.1349 0.4887

. ) € srrLLm 1664.59 88120 9680 07338 0.1935 04138 0.2637 0.5675
embeddings alone increases

MAPE to 100.56 (+3.9%)
and drops AUC to 0.5352 (-5.7%), highlighting the embedding layer’s key role in aligning

multimodal representations. For anomaly detection, STT-LLM achieves a good balance across
different metrics. Removing all components lowers sensitivity by -27.8%, and precision by -20.5%
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compared to STT-LLM. Removing either the structural or temporal tokenizer reduces sensitivity by
-50% (0.0968 - 0.1237) and precision by -33% (0.2769 - 0.2987), showing that both structural and
temporal components are important for anomaly detection. When two components are removed,
the degradation is even sharper, e.g., w/o embeddings + structural drops AUC by -14% (0.4887)
relative to STT-LLM. The w/o all variant performs slightly better than some partial ablations because
complete removal avoids embedding mismatches and produces uniform flat inputs, whereas partial
removal yields incoherent fused representations that confuse the model.

6 CASE STUDY

To evaluate the real-world applicability of our method, we conducted a case study on 29 longitudinal
steroid profiles from real-world athletes, which were verified through DNA analysis by an anti-doping
laboratory. Among these, 7 profiles were confirmed as anomalous due to different doping-related
abnormalities, with domain experts providing detailed explanations, and the remaining 22 were
classified as clean profiles. We used the clean profiles for sequence prediction and all 29 for anomaly
detection. Our model achieved better forecasting performance with RMSE: 1673.13, MAE: 868.93,
and MAPE: 95.51. For anomaly detection, the model accurately identified all 7 anomalous cases with
100% sensitivity, while misclassifying only 2 clean profiles (accuracy: 93.10%).

Contextual Reasoning Evaluation Model Inference Time UMAP of Output Token Embeddi

UMAP2

R -
>~ o UMAP1

Qwen2.5 Falcon3 Mistral mm Llama-2 Llama-3.1 Phi-4 DeepSeek-R1 . STT-LLM

Figure 4: Evaluation of contextual reasoning quality (left), model inference time (center), and
combined UMAP projection of output token embeddings from STT-LLM and LLM baselines (right).

To evaluate the contextual reasoning ability of STT-LLM, we adopt a few-shot setup using the 7
expert-annotated longitudinal profiles to generate explanations for 500 additional profiles. These
explanations were used to train all the models under identical training conditions. We then assessed
model performance on the original 7 profiles (expert ground-truth explanations). As shown in
Figure [d] STT-LLM outperforms all competing LLM baselines across multiple evaluation metrics,
showing higher alignment with expert interpretations. This highlights the model’s ability to capture
clinically meaningful reasoning patterns from limited supervision. In addition, we compared the
inference efficiency of all models across different profile settings (1, 5, and 10 profiles). STT-LLM
achieved substantially lower inference times than the baselines, requiring only 12s, 29s, and 31s
respectively, whereas alternative LLMs ranged between 27-78s depending on model size and profile
count. Finally, we visualize the output token embedding spaces of different models using UMAP
representation. Unlike tightly clustered distributions, the embeddings form a continuous ring-like
topology, suggesting a shared latent manifold, where STT-LLM occupies a transitional zone between
LLaMA-3.1 and Phi-4. This placement suggests that STT-LLM maintains representational alignment
with general-purpose LLMs while introducing localized structure unique to its domain-aware training.

7 CONCLUSION

We introduce the STT-LLM framework, which enables LLMs to analyze longitudinal biomedical
profiles. By constructing joint embeddings and applying specialized tokenization strategy to capture
both temporal dynamics and domain-specific structural dependencies, STT-LLM allows LLMs to
adapt to different longitudinal clinical tasks. While we acknowledge that graph-based models are
strong baselines for modeling structural dependencies, they were not included in our comparison since
their architectures are not directly compatible with LLM inference pipelines. Future studies could
incorporate such domain-specific models to provide an even broader perspective on the trade-offs.
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A TECHNICAL APPENDIX

A.1 EXPERIMENTAL SETUP AND MODEL HYPERPARAMETERS

Model Configuration STT-LLM was trained using parameter-efficient fine-tuning via LoRA,
where we systematically evaluated the impact of key hyperparameters on model performance. The
final configuration uses a LoRA rank of 32, scaling factor (alpha) of 128, and a learning rate of 2e-5.
To assess the sensitivity of the model to these choices, we conducted experiments on the Steroid-M
dataset by varying one hyperparameter at a time while keeping others fixed. As shown in Table [5}
reducing the LoRA rank to 16 led to a slight degradation in both sequence prediction (RMSE?T
+18.6) and anomaly detection (AUC/ -0.006), while increasing the rank to 64 did not yield further
gains. Similarly, modifying the alpha parameter to 64 or 256 degraded both predictive accuracy and
detection precision, suggesting that 128 offers a balanced regularization. Finally, tuning the learning
rate revealed that deviating from 2e-5, either lower (1e-6) or higher (2e-4) consistently reduced
performance, particularly in terms of F1-score and AUC. These findings indicate that the selected
configuration for STT-LLM strikes an optimal balance between predictive accuracy and detection
sensitivity under constrained fine-tuning conditions. All experiments were conducted for 10 epochs
using early stopping on a single NVIDIA Titan RTX GPU with 24GB memory.

Projection Dimension and MLP Depth Sensitivity To assess the architectural design of our
tokenizers, we study the impact of varying the projection dimension (PD) and the number of MLP
layers in the structural and temporal tokenizers of STT-LLM. Our default configuration uses a
projection dimension of 4096 and two MLP layers per tokenizer. As shown in Table [6] reducing
the depth to a single MLP layer leads to a noticeable drop in detection performance, particularly
sensitivity (-8.6%) and AUC (-0.046). Increasing the depth to three layers does not yield further
gains, indicating that two layers strike a balance between expressivity and generalization. Similarly,
projection dimensions of 1024 and 2048 underperform the 4096-dimensional variant, especially on
precision and F1-score. The model variant with 4096 PD and 2-layer MLPs achieves the highest
performance across all anomaly detection metrics (e.g., AUC: 0.5675, F1: 0.2637), highlighting
the importance of sufficient projection capacity and moderate depth in capturing clinically relevant
temporal and structural patterns.

Prompt Design for Task-Specific Supervision To enable task-specific training and evaluation
across all models, including STT-LLM, we designed structured natural language prompts tailored to
three core objectives: reasoning, classification, and sequence prediction. As illustrated in Figure[5]
the reasoning prompt asks the model to detect and explain abnormalities within a given steroid
profile across multiple time points, encouraging contextual understanding and interpretability. The
classification prompt explicitly instructs the model to either confirm the consistency of normal profiles
or identify and explain the presence of an anomaly in the final sample. In contrast, the prediction
prompt emphasizes learning temporal patterns, either under the assumption of normality or while
acknowledging that the last sample deviates from the expected trend. These prompts allow all models
to operate in a unified few-shot setting while supporting gradient-based fine-tuning or embedding-
level supervision, depending on the architecture. They also ensure that the models are evaluated
consistently across both descriptive and diagnostic clinical tasks.

A.2 DETAILED RESULTS
A.2.1 MODEL LOSS PERFORMANCE

We report the training and evaluation loss curves for both sequence prediction and anomaly detection
tasks over 10 training epochs in Figure [§] For sequence prediction (left), the model shows rapid
convergence, with the training loss decreasing sharply within the first 5 epochs and plateauing around
620. The evaluation loss follows a similar trend, stabilizing around epoch 5, indicating strong
generalization without overfitting. For anomaly detection (right), both training and evaluation losses
exhibit an even faster convergence, with steep declines in the first 3 epochs and near-flattening
thereafter around a value of 0.2. This consistency between train and eval curves in both tasks
demonstrates that the STT-LLM framework effectively learns stable representations with minimal
overfitting, even in low-resource settings. The rapid convergence further underscores the efficiency of
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Table 5: Contributions of different hyperparameter configurations in STT-LLM on Steroid-M dataset.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE| Acct Senst  Prect Fi1 AUCT

Lower Rank (16) 1683.22 89340 9796  0.7179 0.1398 0.3291 0.1962 0.5609
Higher Rank (64) 1687.49 896.61 100.65 0.7152 0.0968 0.2769 0.1434 0.4964
Lower alpha (64) 1668.54 883.90 100.00 0.7126 0.1237 0.2987 0.1749 0.5500
Higher alpha (256) 1682.75 893.40 100.56 0.7139 0.1344 0.3125 0.1880 0.5352
Lower LR (le-6) 1679.46 890.80  98.64  0.7245 0.0645 0.2609 0.1034 0.5034
Higher LR (2e-4) 1689.05 897.55 10023  0.7126 0.1183 0.2933 0.1686 0.5005
STT-LLM 1664.59 881.20 96.80  0.7338 0.1935 0.4138 0.2637 0.5675

Table 6: Contributions of different Projection Dimensions (PD) and MLP layers in STT-LLM on
Steroid-M dataset.

Model Variants Anomaly Detection (Global)
Acct  SensT  Prect F11 AUCT

1 MLP layer 0.7060 0.1075 0.2632 0.1527 0.5214
3 MLP layers 0.7086 0.1183 0.2821 0.1667 0.5103

1024 PD 0.7232  0.0753 0.2745 0.1181 0.5026
2048 PD 0.7285 0.1129 0.3443  0.1700  0.5490
STT-LLM 0.7338 0.1935 0.4138 0.2637 0.5675

the proposed structural-temporal tokenization strategy, which enables fast adaptation to downstream
clinical tasks with minimal tuning.

Reasoning Prompt

Analyse the given longitudinal profile of male athletes,
consisting of multiple steroid metabolites measured across
different time points. If any sample is abnormal, explain why

Analyse the given longitudinal profile of male athletes,
consisting of multiple steroid metabolites measured across

different time points. All samples are normal. Confirm
If normal

Classification Prompt

If anomaly

consistency

consisting of multiple steroid metabolites measured across

different time points. The last sample is an anomaly. Identify

Y

( Analyse the given longitudinal profile of male athletes,

and learn why is it anomaly

different time points. All samples are normal. Learn the
If normal

Prediction Prompt

If anomaly

Analyse the given longitudinal profile of male athletes,
consisting of multiple steroid metabolites measured across

sequence

Analyse the given longitudinal profile of male athletes,

consisting of multiple steroid metabolites measured across

by different time points. Learn the sequence but note that the
last sample is anomaly

Figure 5: Prompts for training STT-LLM for different tasks.
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Loss plot for sequence prediction Loss plot for anomaly detection
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Figure 6: Loss plots for sequence prediction & anomaly detection tasks.

A.2.2 SEQUENCE PREDICTION

Few-shot settings As shown in Figure [/| and Table [/, STT-LLM consistently outperforms all
competing LLM baselines across all datasets and shot configurations in terms of RMSE, MAE, and
MAPE. STT-LLM maintains stable and low error margins across shot variations, while other models
(Qwen-2.5 and Mistral) show higher variance and sensitivity to shot count. On the Steroid-M dataset,
STT-LLM achieves the best RMSE (1664.59), MAE (881.20), and MAPE (96.80) in the 2-shot
setting and retains this advantage throughout. This performance trend generalizes to the limited-
data settings (Steroid-My;y,, Steroid-Fjy,), where the tokenization-aware STT-LLM demonstrates
stronger robustness and lower generalization error. These results validate the model’s ability to learn
meaningful temporal patterns under constrained supervision and emphasize the effectiveness of its
structural-temporal embedding design for few-shot sequence modeling in longitudinal clinical data.
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Figure 7: Few-shot learning results for sequence prediction.

A.2.3 ANOMALY DETECTION

Zero-Shot Local Anomaly Detection Figure [§] presents the zero-shot local anomaly detection
performance across four datasets. STT-LLM consistently outperforms all baseline models across
all metrics. It achieves the highest sensitivity on Steroid-M and Steroid-Myip,, (16.8% and 32.4%,
respectively), which are particularly challenging due to subtle temporal deviations. Additionally,
STT-LLM shows significantly higher F1-scores (up to 18.4%) and precision values compared to
all baselines, indicating its capacity to correctly identify rare anomalous samples with minimal
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Table 7: Few-shot (2, 5, 10, 15, 20) sequence prediction results across different datasets.

Datasets Model @2 @5 @10 @15 @20
RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE|
Qwen-2.5 1695.99  899.99  111.99 169599 899.99 11199 169599 899.99 11199 169599 899.99 111.99 169599 899.99  111.99
Mistral 1688.93 897.11 103.29  1688.34  894.92 98.19  1690.63 89648  94.69  1688.90 896.54 101.04 1692.39 899.84 110.19
Falcon-3 1688.43 897.08  100.00 1688.02 896.54 101.17 1689.88 897.20 100.31  1690.39 897.48 100.01 1691.48 897.69  100.93
Steroid-M LLaMA-2 1688.50  896.65  99.51 1687.80  895.81 98.21 1689.47 897.29  100.74  1690.01 896.86 10047 1691.16 897.06  98.19
LLaMA-3.1 1687.96  897.67 104.53  1688.57 896.78  100.27  1689.67 898.19 106.75 1690.56 897.17 101.46 1690.98 896.84  97.21
Phi-4 1688.14  897.07 102.19 1688.20 896.62  100.38  1690.17 897.21  97.98 1690.04 897.36  102.87 1691.41 897.54  100.88
DeepSeek-R1  1688.25  896.91 99.72 1688.05 896.73  100.33  1689.88 896.73  98.31 1690.31 897.17  98.81 1691.65 897.56  99.48
STT-LLM 1679.99 891.02  96.80  1680.00 890.77 96.80  1681.57 89127 9679  1682.06 891.37 96.79  1683.51 891.87  96.81
Qwen-2.5 139599 699.99  129.99 139599 699.99 12999 139599 699.99 129.99 139599 699.99 129.99 139599 699.99  129.99
Mistral 1382.34 69233 126.69 1387.98 69523  120.35 1392.05 697.48  92.08 1388.75 695.68 108.68 1390.98 696.63 107.37
Falcon-3 1384.25 693.37 105.03 1388.12  695.07 93.71 1389.62 69541 9380  1388.77 695.67 11524 1389.53 694.61  94.31
Steroid-F LLaMA-2 1384.00 692.38 9175 1387.93  694.93 9330  1388.86 69552 109.01 1388.92 69491 100.61 1389.93 695.33 101.76
LLaMA-3.1 1383.84  693.10  109.09 1388.67 695.34 94.12 1389.38  695.03  93.93 1388.72 695.19  106.55  1390.03 695.23  103.50
Phi-4 1383.99  693.18 107.90  1388.07 695.39 98.83 1389.09 695.64 108.44 1389.50 694.70  99.72 1389.75 695.43  108.37
DeepSeek-R1  1384.11  692.87  96.08 1388.48 69547  102.55 1389.54 696.04  97.25 1389.05 695.14  98.93 1389.09 694.41 95.36
STT-LLM 1368.99 682.16 9492  1372.85 684.39 94.94  1374.17 684.89 9492 137351 684.05 9491 137445 684.09 9491
Qwen-2.5 1750.99  901.99  106.99  1750.99 901.99  106.99 1750.99 90199 106.99 1750.99 901.99 106.99 1750.99 901.99  106.99
Mistral 1739.59 89842 10545 1737.63 896.17 95.80  1742.02 899.45 103.07 1738.92 898.42 103.42 1741.69 898.80  98.51
Falcon-3 1738.11  897.78  99.51 1738.66  898.03  102.52 1740.75 898.42  98.74 173893 898.31 102.14 1742.69 900.19  97.78
Steroid-M, LLaMA-2 1738.57 898.38  101.46 1738.65 897.73 99.46  1741.24 898.86  100.51  1738.90 898.48 103.02 1743.15 900.89  102.91
lm - LLaMA-3.1 1738.86  897.85  97.92 1737.29  896.35 10098  1741.25 899.54 100.01  1739.00 898.11 98.56 1743.21  900.77  98.70
Phi-4 1738.46  897.22  96.57 1738.51  898.01  102.96 174142 898.43  97.71 1738.87 898.07  99.79 1743.05 900.66  98.94
DeepSeek-R1  1737.63  897.33  98.81 1738.12  897.42 10040  1740.81 898.72  98.67 1739.72  898.67  99.97  1743.62 900.59  98.15
STT-LLM 1730.32  892.01 9647  1730.11 891.67 9647  1733.18 893.01 9647 173143 892.63 9647 1734.87 894.61  96.47
Qwen-2.5 1309.99  666.99  127.99  1309.99 666.99  127.99 1309.99 666.99 127.99 1309.99 666.99 127.99 1309.99 666.99  127.99
Mistral 1307.58 664.58 119.41  1292.73 657.49 12329 1289.67 65438 118.12 129405 657.05 107.06 1286.36 652.15 126.36
Falcon-3 1305.97  662.14  96.36 1291.65  655.82 97.87 1289.63  654.51  96.85 1294.77  656.69  102.03  1287.89 653.04  96.47
Steroid-F, LLaMA-2 1305.82  662.30  103.04 1292.06 656.18 100.69 1289.05 653.63 9396 129508 65697 101.13 1287.68 654.31 106.19
m o LLaMA-3.1 1306.20  663.09 106.72  1291.13  654.67 88.66 1289.66 654.13 9320 129398 656.87 115.68 1287.32 653.76  108.22
Phi-4 1306.07 66229  99.20 129192  655.84 9249 128948 654.17 9754  1294.68 656.39 102.23  1287.37 653.85 107.41
DeepSeek-R1 - 130570  662.66  109.88  1291.64 65594 101.25 1289.33 654.37 10385 1294.89 656.59  97.21 1286.90 653.18  101.71
STT-LLM 129041 651.38 9495 1276.32 645.16 94.92 127423 64371 9489  1279.59 64590 94.89 127219 642.90  94.86

false positives. These results underscore the effectiveness of the structural-temporal tokenization in
capturing fine-grained temporal inconsistencies without additional task-specific fine-tuning.
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Figure 8: Zero-shot local anomaly detection performance across different metrics.

Few-Shot Local Anomaly Detection Figure 0] shows the few-shot learning performance of all
models on local anomaly detection across 2, 5, 10, 15, and 20-shot configurations. STT-LLM
demonstrates strong adaptability, achieving the highest or near-highest scores across most metrics and
datasets, particularly under 5- and 10-shot settings. Unlike many baselines that fluctuate substantially
across shots, STT-LLM maintains stable upward trends in precision, sensitivity, and AUC. For
example, in the Steroid-Fy;, dataset, STT-LLM shows steady improvements in both F1-score and
AUC, highlighting its robustness in low-resource regimes. The combination of structural and temporal
embeddings appears to improve its generalization in clinical settings with sparse anomaly labels.
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Figure 9: Few-shot local anomaly detection performance across different metrics.

Zero-Shot Global Anomaly Detection In Figure[T0] we shows global anomaly detection perfor-
mance under zero-shot evaluation. STT-LLM outperforms all baselines across most metrics and
datasets, achieving the highest F1-scores and AUC on all datasets, including challenging low-data
subsets like Steroid-Fy;,,. For example, it achieves 26.8% F1-score and 78.6% AUC on Steroid-Fjy,
significantly outperforming the second-best model. Moreover, STT-LLM maintains a strong balance
across precision and sensitivity, indicating its ability to detect true anomalies without overfitting to
normal patterns. This demonstrates that STT-LLM can generalize effectively even when provided
with no additional in-context examples.

Few-Shot Global Anomaly Detection Figure|l1{shows the model performance under few-shot
global anomaly detection. STT-LLM not only maintains competitive performance in low-shot scenar-
ios but also scales more effectively with additional context compared to baselines. It consistently
leads in AUC and F1-score across 10- and 20-shot settings, especially on Steroid-M and Steroid-F
datasets. Unlike other models that show unstable or non-monotonic performance trends, STT-LLM
improves predictably with more shots, demonstrating strong in-context learning capabilities for
rare-event detection. This highlights the strength of its tokenization scheme in enabling efficient
information transfer even with minimal labeled supervision.
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A.3 ABLATION STUDIES

To understand the individual contributions of STT-LLM’s components, we perform extensive ablation
studies across all four datasets. As shown in Tables [S}{IT] the STT-LLM configuration achieves the
best performance across nearly all metrics for both sequence prediction and anomaly detection. When
the structural tokenizer is removed, there is a consistent drop in AUC (e.g., from 0.5675 to 0.4964 on
Steroid-M, and 0.5927 to 0.5090 on Steroid-F), suggesting that capturing biochemical dependencies
between steroid metabolites is important for anomaly discrimination. Similarly, ablating the temporal
tokenizer leads to substantial reductions in sensitivity and F1-score, particularly in clinically relevant
low-data conditions (e.g., Steroid-Fjip,,: F1 drops from 0.2484 to 0.0559).

The projection embedding layer, which aligns structural-temporal features to the LLM-compatible
token space, also proves essential. On Steroid-Mji,, removing embeddings causes the largest
AUC drop (0.5548 to 0.5458), and precision degrades across all datasets. Combinations of missing
components further compound performance loss. For example, removing both structural and temporal
components results in the weakest performance in nearly every metric (e.g., AUC of 0.4877 on
Steroid-M and 0.4353 on Steroid-Fyy,). These degradations indicate that no single component is
independently sufficient; rather, their integration is key to capturing both temporal variation and
physiological structure in a format usable by frozen LLMs. Overall, these ablation results affirm
the architectural design of STT-LLM. The synergy between the structural tokenizer (capturing inter-
variable relations), temporal tokenizer (capturing temporal evolution), and embedding projection
(aligning with LLM input semantics) is important for robust generalization. The consistency of
findings across diverse datasets and varying data availability further supports the adaptability and
modular design benefits of STT-LLM in real-world clinical anomaly detection and forecasting tasks.

A.4 CASE STUDY

To evaluate the contextual reasoning ability of STT-LLM, we conducted a controlled comparison
against several strong baseline LLMs using a carefully designed prompt. The prompt simulates
a real-world scenario where a model should analyze a longitudinal steroid profile consisting of
six metabolites measured across multiple time points and answer three questions: (1) identify the
anomalous sample, (2) provide a reason based on the steroid metabolism pathway, and (3) determine
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Table 8: Contributions of different components in STT-LLM on Steroid-M.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE] Acct  Sensf  Prect F11 AUCT
w/o all 1687.71 89639 9893  0.7179 0.1398 0.3291 0.1962 0.5609
w/o structural 1687.49 896.61 100.65 0.7152 0.0968 0.2769 0.1434 0.4964
w/o temporal 1682.45 892.85 98.38  0.7126 0.1237 0.2987 0.1749 0.5500
w/o embeddings 1682.75 89340 100.56 0.7139 0.1344 0.3125 0.1880 0.5352

w/o structural + temporal 1682.70 893.20  98.89  0.6967 0.0645 0.1791 0.0949 0.4877
w/o embeddings + temporal ~ 1677.56 889.29  97.07  0.7245 0.1290 0.3429 0.1875 0.5474
w/o embeddings + structural  1679.16 891.78  97.35  0.7113 0.0914 0.2576 0.1349 0.4887
STT-LLM 1664.59 881.20 96.80  0.7338 0.1935 0.4138 0.2637 0.5675

Table 9: Contributions of different components in STT-LLM on Steroid-F.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE] Acct Senst  Prect F11 AUCYT
w/o all 1384.26  693.99 114.88 0.7280 0.0964 0.2286 0.1356 0.4919
w/o structural 1368.79 682.52 97.64 0.7467 0.1687 0.3500 0.2276 0.5090
w/o temporal 1369.23 683.17 101.36  0.7280 0.0620 0.1724 0.0893 0.4682
w/o embeddings 1383.83 693.49 104.61 0.7413 0.1807 0.3409 0.2362 0.4998

w/o structural + temporal 1373.63 68626  99.16  0.7307 0.0482 0.1538 0.0734 0.4017
w/o embeddings + temporal ~ 1380.30 690.67 9546  0.7493 0.1928 0.3721 0.2540 0.5909
w/o embeddings + structural  1384.13  693.57  100.04  0.7333 0.1205 0.2703 0.1667 0.4663
STT-LLM 1368.44 682.39  94.92  0.7547 0.2289 0.4043 0.2923 0.5927

Table 10: Contributions of different components in STT-LLM on Steroid-Mjy,.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE| Acct Senst  Prect F1T AUCT
w/o all 1737.36  897.95 102.07 0.6024 0.0418 0.2115 0.0698 0.3949
w/o structural 1737.92 897.88 100.73 0.6214 0.0570 0.3261 0.0971 0.5109
w/o temporal 173297 894.13  98.19  0.6174 0.0913 0.3582 0.1455 0.4199
w/o embeddings 1733.26 89447  98.78  0.6269 0.0993 0.4250 0.1783 0.5458

w/o structural + temporal 173322 89320 98.89  0.6159 0.0645 0.1791 0.0949 0.4877
w/o embeddings + temporal ~ 1732.17 892.56  96.78  0.6364 0.0038 0.1429 0.0074 0.3759
w/o embeddings + structural  1731.42 892.27  97.09  0.6119 0.0608 0.2909 0.1006 0.4373
STT-LLM 1730.04 892.08 9646  0.6377 0.1179 0.4697 0.1884 0.5548

Table 11: Contributions of different components in STT-LLM on Steroid-Fi;y,.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE| Acct Senst  Prect F11 AUCT
w/o all 130598 662.99 100.47 0.5222 0.0677 0.3600 0.1139 0.4644
w/o structural 1301.38 65191 9740 0.5085 0.0376 0.2381 0.0649 0.4056
w/o temporal 1301.44 652.57 101.23 0.5392 0.0301 0.4000 0.0559 0.4946
w/o embeddings 1305.87 662.88 104.29 0.5392 0.0977 0.4643 0.1615 0.5090

w/o structural + temporal 1301.52 655.66  99.21 0.5222 0.0226 0.2308 0.0411 0.4353
w/o embeddings + temporal  1302.30 660.06  95.61  0.5324 0.0902 0.4286 0.1491 0.4128
w/o embeddings + structural  1306.18 66297  100.18  0.5392 0.0301 0.4000 0.0559 0.4792
STT-LLM 1301.24 651.79 9497 05870 0.1504 0.7143 0.2484 0.5555
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Figure 11: Few-shot global anomaly detection performance across different metrics.

whether the anomaly is due to steroid doping or a mismatched sample. Figure [T2]shows the generated
responses of different LLMs on a profile with a known anomaly (Sample 4) caused by steroid doping.

As shown in the responses, most LLMs either failed to detect the correct anomaly or provided
vague and incoherent explanations. For example, Phi and Qwen misattributed the anomaly to
sample swapping despite correctly identifying the anomalous sample. DeepSeek failed to reach a
decisive conclusion, and Falcon made inconsistent inferences based on isolated metabolite values.
Although Mistral and LLaMA-3 correctly identified Sample 4, their reasoning relied on static domain
knowledge (e.g., typical metabolite levels) rather than relational comparison across samples in the
profile. This limitation arises because general-purpose LLMs are not inherently equipped to model
temporal dynamics or biochemical dependencies across multivariate time-series.

In contrast, STT-LLM correctly identified the anomaly and generated a structured explanation
grounded in structural-temporal relationships (Figure[T3). It reasoned that the value of metabolite T
(29.0) in Sample 4 was significantly higher than in the other samples (range 12-20). It further justified
that normal metabolic progression could not explain this deviation. Instead, it correctly attributed the
anomaly to potential doping. This capability highlights the value of STT-LLM’s embedding-guided
tokenization in aligning metabolite patterns over time and across variables, something missing in
models lacking structured input alignment. Importantly, this structural-temporal reasoning also allows
STT-LLM to avoid false positives in edge cases, such as when all samples from a subject appear
uniformly elevated due to a legitimate medical condition. While other LLMs might misclassify such
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cases as doping, STT-LLM has the capacity to model intra-profile consistency, thereby reducing bias
and increasing interpretability in high-stakes clinical scenarios.

Phi

[ 1) The anomalous sample is Sample 9. \

2) The reason is that Sample 8 shows a significantly higher
concentration of metabolites Adiol, Bdiol, A, Etio, and T, which
deviates from the expected pattern of steroid metabolism.

3) The anomaly is likely because the sample does not belong
to the same athlete, as the metabolite concentrations are
inconsistent with the rest of the profile.

6) The anomaly suggests the presence of a sample from a
Qiﬁerem source rather than a pattern of steroid use.

/
(" Moyoo he sous s oner thanepecieazor )

laybe the issue is that the diols are lower than expected? Or
that Tis low relative to A, which would be a problem because
normally, T should be higher than A if there's metabolism. Or
wait, A is the precursor to T, so A should be lower when T is high.
If Ais high and T is low, that would be unusual. So in samples 1
and 2, Ais high, T is low. The same for sample 3: Ais 820, Tis
12, so A/T is about 68:1. Again, Ais much higher than T.

DeepSeck

/
ﬁ Falcon ﬁ

1) Sample 9: The metabolite A is 3000.0 and the metabolite Etio
is 2100.0. The metabolite A should be higher than the metabolite
Etio as it comes after the Bdiol in the pathway

2) The sample number of the anomalous sample is 8

3) | think this sample is due to steroid doping

o )

Llama3

f 1. The anomalous sample is the one where Adiol is much higher \

than the other steroid metabolites, which is sample 4.

2. The reason for the anomaly in sample 4 is likely due to the
high levels of Etio and Adiol, indicating that the athlete may
have been taking anabolic steroids or undergoing intense
steroid use, causing an imbalance in the steroid metabolism
pathway.

3. The anomaly is likely due to steroid doping because the high
levels of Etio and Adiol are not typical of a natural steroid profile.

Mistral

)

2) Anomaly in Sample 4: In sample 4 the concentration of Bdiol is
160 ug/ml which is not consistent with the expected
concentration of Bdiol based on the steroid metabolism
pathway. The concentration of Bdiol should be 1.6ug/ml
(160/100) and hence the sample is anomalous.

o J
S R

: 1)Sample 9 is the anomalous sample within the profile.

1) Sample 4

Qwen

2) A: Sample 9 shows an unusually high value for both Adiol and
Bdiol, indicating a possible metabolic anomaly or potential
steroid doping.

3) The anomaly in sample 9 is most likely due to stercid doping,
as the unusually high values for Adiol and Bdiol suggest an
\extemal source of these metabolites.

)

Figure 12: Contextual explanations from different models.

Km Step 1: Identify the anomalous sample

| STT-LLM I
| S |

~

Sampledis the
P to the other

sample
which are

it shows a si higher

in the range of 12-20.

ion of T (29.0)

#i# Step 2: Reason for the anomaly based on steroid metabolism pathway

The anomaly could be due to the athlete being under steroid doping, as the concentration of T is
significantly higher than the other samples. In a normal steroid profile, the concentration of T would
decrease over time due to metabolism, but in this case, it remains high.

## Step 3: Reason for the anomaly

The anomaly is likely due to steroid doping, as the high concentration of T is not consistent with the normal
\melaboll’sm of steroids in the body. The final answer is: 4 /

Figure 13: Contextual explanations from STT-LLM model.
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