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Abstract

The integration of big data, physical laws, and machine learning algorithms has
shown potential to improve the estimation and understanding of complex real-
world systems. However, effectively incorporating physical laws with uncertainties
into machine learning algorithms remains understudied. In this work, we bridge
this gap by developing the Partial Physics Informed Diffusion Model (PPIDM),
a novel framework that integrates known physical principles through a physics
operator while reducing the impact of unknown dynamics by minimizing related
discrepancies. We showcase PPIDM’s capabilities using ocean surface chlorophyll
concentration data, which are influenced by both physical and biological processes,
while the latter is poorly constrained. Experimental results reveal that PPIDM
achieves substantially improved prediction accuracy and stability, significantly
outperforming baseline methods that either neglect physics entirely or impose
incomplete physical constraints under the assumption of completeness. Code will
be available here.

1 Introduction

Diffusion models generate samples from an unknown data distribution by reversing a forward noising
process applied to clean data. They have demonstrated remarkable success in generating complex
textures, structures, and motion patterns across a wide range of applications, excelling in generative
tasks such as image synthesis [4, 7], video generation [6, 9, 8], and medical analysis [20, 22].

Despite these advances in generating content that is coherent and closely aligned with the under-
lying data distribution, diffusion models still face challenges when applied to scenarios where the
generated data must strictly adhere to specific constraints. This is particularly evident in scientific
and engineering applications, where the generated data must not only mimic real-world examples
but also meet strict specifications and comply with fundamental physical laws. However, training
a diffusion model on a dataset that meets specific constraints does not inherently ensure that the
generated samples will strictly conform to those same constraints. As a result, incorporating explicit
domain knowledge is essential for guiding the model toward a more sophisticated understanding
of the data distribution and its underlying physical principles. Recent studies [1, 2, 5, 11, 17, 18]
have made notable progress in this regard by embedding physical constraints directly into the models.
These approaches typically assume that data can be fully characterized by well-defined constraints.
In practice, however, these constraints are frequently incomplete, either due to the absence of critical
parameter values or because of limited understanding of underlying processes. Consequently, existing
methods such as minimizing the residual to zero [1, 17] or constraining the generated data within
predefined bounds [2] may not guarantee physically consistent generations.
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To address these challenges, we propose the Partial Physics Informed Diffusion Model (PPIDM),
which captures the reliable portions of the governing laws through a physics operator yet remains
flexible to unmodeled or uncertain system components. PPIDM applies this operator to both real
and generated data and penalizes discrepancies between their outputs, while allowing unmodeled
or uncertain components of the system to be learned from data. This approach bridges the gap
between theoretical constraints and data-driven adaptability, resulting in more accurate and physically
consistent generations without compromising the model’s ability to capture unknown or partially
understood dynamics.

We demonstrate the performance of PPIDM on the reconstruction of oceanic chlorophyll (Chl)
concentration, a task that involves infilling temporal gaps and predicting future values. Chl is a widely
used proxy for phytoplankton biomass and oceanic primary productivity. Accurate reconstruction of
Chl is crucial for understanding oceanic biogeochemical processes, monitoring ecosystem health, and
assessing the ocean’s response to climate change. Chl dynamics is governed by both physical and
biological processes, and is often modeled using the Advection-Diffusion-Reaction partial differential
equation (ADR PDE). The advection term of ADR can be well constrained using velocity fields,
while the diffusion and reaction terms are more difficult to observe. In particular, the reaction term,
encapsulating biological processes such as phytoplankton growth, depends on complex factors such
as nutrient availability, light conditions, and community composition which are often intractable.
Therefore, reconstructing models solely constrained by advection are incomplete and inaccurate. To
address this, PPIDM integrates partial physical knowledge with data-driven learning. Our experimen-
tal results on ocean Chl data [21] demonstrate that PPIDM effectively balances domain knowledge
with observational data, outperforming purely data-driven baselines and naive implementations that
assume complete physics.

2 Related Works

2.1 Denoising Diffusion Probabilistic Models

Diffusion models are a class of probabilistic generative models that learn to map samples from the
true data distribution q(x) into pure noise via a forward noising process, and then learn to invert this
process to recover data from noise using a learned model distribution pθ(x) [7, 19, 20].

Specifically, the forward diffusion process introduces Gaussian noise progressively to an initial data
point x0 through a Markov chain across T discrete steps. At each timestep t, noise is injected
according to:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where the noise level is controlled by a pre-defined variance schedule βt ∈ [0, 1]. Due to the Gaussian
nature of each incremental step, the marginal distribution q(xt | x0) at any timestep can be derived
in closed form:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. As t → T , the distribution converges toward a standard
Gaussian N (0, I), making xT essentially pure noise.

The core challenge for diffusion models lies in reversing this noising process to generate samples from
the data distribution q(x0). Ideally, we would sample directly from the true posterior distributions
q(xt−1 | xt). However, since these distributions are analytically intractable, diffusion models
approximate them using parameterized conditional distributions pθ(xt−1 | xt) modeled by neural
networks:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt), (3)

where each conditional is defined as a Gaussian distribution parameterized by learned functions
µθ(xt, t) and Σθ(xt, t). Typically, p(xT ) ≈ N (0, I), enabling an iterative denoising from noise to
the original data. Training maximizes a variational bound on log pθ(x0); under the usual formulation
this reduces to the noise prediction objective [7]:

Lt = Ex0,ϵt

[∥∥ϵt − ϵθ
(
xt(x0, ϵt), t

)∥∥2] , (4)
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where ϵt∼N (0, I). This loss is equivalent to predicting the clean sample,

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt ϵθ(xt, t)

)
. (5)

In this work, we explicitly frame our objective in terms of predicting the clean signal x0, because this
allows for more straightforward integration of physical constraints on the reconstructed state.

2.2 Physics Informed Machine Learning

Diffusion models have recently been extended to incorporate physical knowledge for scientific
modeling. One prominent line of work enforces governing equations directly during training or
sampling. For example, CoCoGen [11] incorporates discretized PDE constraints into the reverse
diffusion process to ensure physically plausible generation. Similarly, PIDM [1] introduce PDE
residual losses into the training objective to align generated samples with known physical laws. These
models offer high fidelity under well-specified physics, but assume the governing equations are both
complete and accurate, which often breaks down in real-world systems. Other methods condition the
diffusion process on physics-derived signals. Projected Diffusion projects the state at every step onto
constraint consistent manifolds that encode physical feasibility [2], whereas DiffusionPDE learns
a joint distribution over coefficients and solutions and performs inference with sparse observations
and physics guided updates [10]. Though effective, these models rely on fully known governing
equations to define constraints or training distributions, and are less suited to settings with incomplete
knowledge.

Beyond diffusion-based approaches, physics-informed machine learning frameworks [13, 14, 15,
16, 17] address partial knowledge by estimating unknown parameters or learning solution operators,
then simulating forward from initial or boundary conditions. Although these methods accommodate
inverse settings and incomplete physics, their primary objective is PDE identification or operator
learning, and they typically yield a single forward trajectory per initial state. Incorporating irregular,
multi-time conditioning at inference such as conditioning on arbitrary subsets of observed frames and
generating ensembles of reconstructions typically requires additional data assimilation or explicit
stochastic modeling beyond the base frameworks. This requirement limits the flexibility of these
methods in real-world scenarios characterized by irregular observations.

In this work, we study diffusion models in which the governing physics is only partially known.
Instead of requiring full equations or simulators, PPIDM introduces a physics operator ϕ that
encodes only the trusted components of the dynamics and couples this partial theory with data-driven
denoising through a physics residual difference. This design extends physics-informed diffusion to
under-specified scientific systems and leverages the generative nature of diffusion to condition on
any subset of observations, enabling the generation of multiple physically plausible reconstructions
without retraining.

3 Partial Physics Informed Diffusion Model (PPIDM)

3.1 Problem Formulation and Physics Operator Construction

We consider a physical system whose true dynamics stem from both known physics and unobserved
biological processes. Concretely, the state variable x(t) evolves according to:

∂x

∂t
= Pknown(x,v) + Bunknown(x), (6)

where Pknown models known processes such as advection with velocity field v, and Bunknown en-
capsulates latent biological effects or other unresolved physics. Our main goal is to reconstruct
the Chl concentration state x0 while preserving consistency with Pknown. The core challenge lies
in enforcing partial physical knowledge without over-constraining the model where full dynamics
remain unknown. Therefore, we define a physics-informed operator:

ϕ : X → Y,

where X denotes the space of original states (e.g., concentration fields or other physical quantities
to be generated) and Y represents the space of physics-informed projections. This operator ϕ is
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Figure 1: Overview of our proposed PPIDM: At each denoising step, the model projects predicted
and ground truth clean signal onto the physics-informed subspace and updates model weights with
the auxiliary physics loss term, guiding the model to learn the partially known physics.

constructed so that applying ϕ to a ground-truth or predicted states enforce and reveal consistency
with the known physical laws. Specifically, for any state x0, ϕ(x0) can be viewed as its projection
into a physics-informed subspace, which is the set of states that are consistent with the known but
incomplete dynamics, or how the system would look if only the known physics governed it. The
exact form of ϕ depends on the level and nature of the available physics knowledge:

Partially Known Parameters: When the governing equation is known in principle but contains
unknown parameters, we selectively remove or omit terms involving those unknowns. We then build
ϕ by applying the remaining or known part of the equation.

Fully Known Subsystem: When a law perfectly describes a partial subsystem and all associated
parameters are certain, ϕ is defined to enforce this subsystem exactly. Even though the law itself is
fully accurate for its domain, it does not address the rest of the system’s dynamics. By applying ϕ to
each sample, we ensure that known subsystems are satisfied, leaving the unknown effects such as
additional or more complex processes to be learned from data.

3.2 Mechanism of the Physics Operator

Let x0 denote a ground truth sample from the data distribution and x̂0 the corresponding model-
generated sample at each step t. In a vanilla diffusion model, one typically minimizes a loss directly
between x0 and x̂0:

Ldata = Ex0,ϵ,t

[
w(t)∥x0 − x̂0(xt, t)∥2

]
, (7)

where w(t) = 1−αt

1−ᾱt
is the weighting function and x̂0(xt, t) is the estimate of original data at each

time step of reverse process utilizing Eq. 5. However, this loss is purely data-driven and does not
incorporate domain knowledge. To leverage the physics operator ϕ, unlike prior work that enforces
ϕ(x̂0) = 0 based on fully known physical laws [1], we recognize that our system evolves under
both Pknown and Bunknown. As such, the true state x0 itself does not strictly satisfy ϕ(x0) = 0, so it
is unreasonable to force the predicted state to satisfy known physics absolutely. Instead, we design
the physics loss to encourage x̂0 to satisfy the known physics to the same extent as the true state x0

does. Formally, we define a physics residual difference that quantifies the discrepancy between the
projection of the predicted state and that of the ground truth:

∆ϕ = Et,x0
[ϕ(x0)− ϕ(x̂0(xt, t))] , (8)

To avoid over-constraining the model at early timesteps when the predicted states are still highly
uncertain, we adopt a progressively enforced constraint following the probabilistic formulation of [1].
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Specifically, we interpret the residual difference ∆ϕ as a realization from a zero-mean Gaussian
distribution with timestep-dependent variance Σt, yielding the following loss:

Lphysics = R(∆ϕ, t) = λ · [− log p (∆ϕ | 0,Σt)] , (9)

where λ is a scalar coefficient that controls the contribution of the physics term. In practice, Σt is
obtained directly from the diffusion model’s posterior variance schedule at timestep t, which naturally
reflects the model’s uncertainty over the denoising trajectory. As the reverse process proceeds and
the posterior variance decreases, the likelihood sharpens, increasingly penalizing deviations from
physical constraints. This construction induces an implicit time-dependent weighting. Early in the
process, when uncertainty is high, the model prioritizes recovering the coarse structure of the data
and allows flexibility in the residual. Later, as predictions become more confident, the loss enforces
stronger adherence to physical consistency.

This formulation is particularly important for systems that combine well-understood components with
poorly constrained processes. Our Eq. 8 explicitly integrates the known physical dynamics captured
in Eq. 6, while treating the unknown or uncertain components as noise.

The training loss of our algorithm is then a combination of the data fidelity and physics residual term
represented as follows:

Ltotal = Ldata + Lphysics, (10)
At inference time, we aim to reconstruct the clean state x̂0 from a noisy initial sample xT using the
standard reverse diffusion process. Notably, while our model incorporates partial physical knowledge
during training through the physics projection operator ϕ, this operator is not applied during inference.
This is because external physical inputs are typically unavailable for frames or timesteps that do not
exist yet (e.g., in prediction or infilling tasks). We generate the unknown frames by sampling from
the learned reverse process while keeping the known frames fixed, following a standard clamping
strategy used in conditional diffusion models [9].

4 Experiments

4.1 Data Preparation and Training

We train our PPIDM on the Chl concentration and velocity field data from the Biogeochemical
Southern Ocean State Estimate dataset [21]. The dataset spans 2008 to 2012, with a spatial resolution
of 1/6° and a temporal resolution of 3 days. The data consists of time, latitude, longitude and other
attributes, and can be visualized as temporal continuous images in the Southern Ocean. Given the
approximately log-normal distribution of Chl measurements [12], we apply a logarithmic transform
during preprocessing. We gather the Chl data along with the corresponding velocity field data on
the horizontal directions u and v of the ocean surface at each timestep. We segment each image into
64 × 64 patches with a sliding window, discarding any tiles containing landmass. This cropping
expands the number of training samples while maintaining the essential oceanic regions. During
sampling, the complete image at a given timestep can be reconstructed by independently sampling
each image patch and assembling them into a full frame.

Additionally, we organize the training data by slicing across the time dimension, allowing the model
to learn temporal dependencies. Specifically, for each 64× 64 region, we build training sequences
{(xn,xn+1, ...xn+T−1), (xn+1,xn+2, ...,xn+T ), . . .}, where xn represents the Chl state at time
index n, and T represent the length of the window for training. Sliding windows that extend beyond
the available temporal boundaries are discarded. The test set is designed to be the first T timesteps of
each spatial region, with a 2T timestep buffer following these test frames excluded from training to
ensure independence of spatial patterns between the sequences used in training and testing. Notably,
inference can be performed on a sequence of any lengths. For consistency, we set T = 20 for training
and inference in all experiments. We train all models on a single NVIDIA RTX 4090 GPU. We set
the number of data loading workers to 16, the batch size to 64, and the learning rate to 1× 10−4.

4.2 Experiment Setup

We consider two representative scenarios to evaluate the model’s ability to integrate partial physical
knowledge, following section 3.1. These scenarios reflect common situations in many research areas,
including oceanography, where only certain aspects of the underlying dynamics are known.
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(a) Region A reconstruction MSE (b) Region B reconstruction MSE

Figure 2: The reconstruction MSE with different weights of physics operator for different regions.
Loss types have format <op><λ>, where op ∈ {pde, back} and λ ∈ {0.001, 0.01, 0.1, 1} (pde: ADR
PDE physics operator; back: backtrack physics operator). Given frames 1 and 20, reconstruct frames
2-19, and repeatedly sample for 20 times to form the box plot. Different regions favor different
operator-weight pairs, reflecting inter-region variability in physics dominance.

Case 1: Partially Known ADR Parameters. Chl dynamics at the ocean surface is modeled using
the ADR PDE:

∂x(t)

∂t
+∇ ·

(
u(t)x(t)

)
= ∇ ·

(
D(t)∇x(t)

)
+R

(
t
)
, (11)

where the advection term is well specified, but the diffusion D(x, t) and reaction R(·) terms remain
poorly constrained. We train our model with a constraint derived from a physics operator ϕ consisting
of the local change rate and advection terms (i.e., material derivative). This operator is applied to the
x̂0 as follows:

ϕ(x̂0) =
∂x̂0(t)

∂t
+ ∇ ·

(
u(t) x̂0(t)

)
. (12)

An analogous transformation ϕ(x0) is computed for the ground-truth field x0. Minimizing the
discrepancy between ϕ(x0) and ϕ(x̂0) encourages the model to learn predictions consistent with the
known advection portion of ADR PDE, leaving diffusion and reaction terms to be inferred from data.
We denote this as the pde physics operator.

Case 2: Fully Known Particle-Tracking Law. We next consider a situation where the advection
of Chl parcels itself is precisely known. We can track the positions of existing parcels backward
in time based on measured horizontal velocities, but parcel emergence and disappearance due to
biological processes remain untractable. Specifically, for each point (x, y), velocities u = (u, v), and
small increments ∆t, ∆x, ∆y, the law for backtracking particle positions is:

xback = x− udata(x, y, t)∆t∆x,

yback = y − vdata(x, y, t)∆t∆y,
(13)

where xback, yback denotes the backtracked position of parcels at time t − ∆t. To formalize this
known transport mechanism, we define a physics operator ϕ that maps any field x(x, y, t) to its
backtracked value:

ϕ
(
x(x, y, t)

)
= x(xback, yback, t−∆t). (14)

This operator is applied to both predicted and ground-truth fields. By encouraging alignment between
ϕ(x̂0) and ϕ(x0), the model is guided to produce predictions that are physically consistent with
known particle dynamics, while still allowing flexibility to capture unresolved biological influences.
We denote this as the backtrack physics operator.
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Table 1: Overall evaluation results on test set.
Model Infilling Prediction

RMSE MAE RMSE MAE
PIDM 0.538 0.493 0.491 0.446
CoCoGen 0.460 0.371 0.309 0.250
vanilla 0.410 0.330 0.306 0.245
DPS 0.393 0.311 0.298 0.238
PPIDM (ours) 0.270 0.208 0.268 0.202

4.3 Results

To evaluate the performance of PPIDM, we establish four baseline comparisons of different physics
integration paradigms: (i) a vanilla diffusion model trained only with data fidelity loss, (ii) a physics-
informed diffusion model (PIDM) [1] that incorrectly enforces the advection term as the complete
PDE to the training loss, (iii) a model following diffusion posterior sampling (DPS) [3] that injects
advection information for posterior refinement only during sampling, and (iv) a model following the
CoCoGen [11] framework which also uses a vanilla diffusion model and injects physics only during
the last sampling steps but assumes the advection itself fully describes the system dynamics. This
design of baselines isolates the effects of constraint timing of training versus sampling and physical
completeness handling. We evaluate model performance using standard numerical metrics including
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE),
which directly quantify deviations from the ground truth. Metrics designed to assess perceptual
quality are not suitable for our task.

Physics Operators and Weights To demonstrate the different effects of the physics operators with
varying weights, we perform a long-range infilling task across multiple spatial regions in the test
set. Two representative regions are shown in Figure 2. Notably, the optimal weight and the best
choice of operator varies between regions, which reflects underlying differences in local dynamics.
Region B achieves more accurate and stable reconstructions under strong advection constraints,
which suggests that advection strongly dominates the dynamics in this region. In contrast, region
A shows better reconstruction under moderate physics guidance, likely due to more complex or
biologically modulated dynamics such as phytoplankton activation or unresolved biogeochemical
processes. Therefore, to achieve a more accurate reconstruction of a given region, region-specific
calibration is needed. To ensure consistency, we use the pde operator with a fixed weight of 0.1 in all
reported PPIDM results.

Comparisons of Model Performance To provide an overview of model performance, we report
the mean RMSE and MSE across the entire test set, excluding standard deviation due to spatially
heterogeneous dynamics (Table 1). To illustrate the stability of model generation, we select one
representative region to sample for 20 times and report the mean and standard deviation (Tables 2 3).
We focus on two core tasks: long-range spatiotemporal infilling and future-frame prediction.

To demonstrate the consequences of treating incomplete physics as fully known, the PIDM-derived
baseline which minimizes the PDE residual to zero during training results in the highest reconstruction
errors. By forcing the model to satisfy an oversimplified physics constraint during training, the method
introduces conflicting gradients. The data fidelity term pulls solutions toward the true manifold Mdata,
while the physics loss restricts them to an incorrect subspace Mphy = {x : ϕ(x) = 0}. This conflict
corrupts the learned distribution, producing solutions that neither align with observations nor respect
latent dynamics. Similarly, the CoCoGen-based method [11] treats partial physics as complete during
inference, injecting advection constraints in the last 30% of the denoising steps. Although the early
generation process is unaffected, its final reconstruction with false physics assumptions misaligns
with the true dynamics. This results in globally plausible layouts but locally inconsistent details.

The purely data-driven baseline achieves moderate performance. However, without physics con-
straints, the model generates results that only align with the learned data distribution from the limited
training samples. While the model occasionally produces plausible solutions, its high variance reflects
unreliable adherence to physical laws.
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Table 2: Infilling performance of baseline models and our model when given only the 1st and 20th
frame as input to reconstruct the intermediate 18 frames (frames 2–19). Due to space constraints,
only partial frames are shown. PPIDM achieves smooth transitions that aligns best with the ground
truth (GT) frames.

GT Frame Models
PIDM [1] CoCoGen [11] vanilla DPS [3] PPIDM (ours)

2

8

13

19

RMSE 0.654 (0.0005) 0.461 (0.173) 0.460 (0.165) 0.413 (0.138) 0.270 (0.011)
MAE 0.608 (0.0006) 0.374 (0.146) 0.373 (0.143) 0.333 (0.117) 0.208 (0.016)

Table 3: Prediction performance of baseline models and our model when given the first 10 frames to
predict the next 10 future frames (frames 11–20). PPIDM achieves the best result in preserving the
dynamics.

GT Frame Models
PIDM [1] CoCoGen [11] vanilla DPS [3] PPIDM (ours)

11

14

17

20

RMSE 0.615 (0.0002) 0.360 (0.051) 0.348 (0.022) 0.344 (0.041) 0.266 (0.027)
MAE 0.571 (0.0002) 0.308 (0.047) 0.295 (0.015) 0.292 (0.039) 0.209 (0.022)
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DPS-based approaches [3] incorporate partial physics during the sampling step. Our finding confirms
that integrating physics in the early diffusion steps yields poor reconstruction results, because applying
deterministic PDE constraints to noisy latents produces destabilizing gradient signals. As a result, we
follow the setup of CoCoGen [11] and restrict the integration of physics to the last 300 denoising
steps. The results improve slightly compared to the vanilla diffusion model. However, we still observe
suboptimal performance, as the denoising trajectory is already misaligned with the physics manifold
by the time guidance begins, and structural errors have accumulated that a post-hoc operator cannot
correct. In contrast, our PPIDM have significant improvements compared to the baseline models. It
achieves the lowest average MSE by guiding the reconstructions into physical solution manifolds.
Although the standard deviation is moderately higher than that observed when enforcing a complete
PDE, this is reasonable because using only partial physics leaves room for unknown processes and
does not strictly constrain the solution.

(a) Sampling step MSE for frame near the known
frame(s)

(b) Sampling step MSE for frame far from the known
frame(s)

Figure 3: Reconstructing frames far from the known frames benefit more from the injected partial
physics knowledge (Task: given only the 1st and 20th frame as input to infill the intermediate 18
frames).

Finally, we demonstrate another key advantage of PPIDM: its robustness in reconstructing frames that
are temporally distant from known reference frames, which is a setting common in long-sequence
infilling and prediction tasks. In such cases, reconstruction quality typically degrades due to the
limited information propagated from the observed frames. As shown in Figure 3, the difference in
performance becomes more pronounced with temporal distance, which suggests that partial physics
guidance becomes increasingly beneficial when generative uncertainty is high.

5 Conclusion and Future Work

In this paper, we present PPIDM, a framework that extends physics-informed machine learning by
integrating partially known physical constraints into the training of diffusion models. Our preliminary
experiments demonstrate that PPIDM outperforms both vanilla diffusion models and existing physics-
informed baselines that incorrectly assume complete physical knowledge. Given the prevalence
of uncertain physical knowledge across various fields, PPIDM offers a generalizable approach for
incorporating such knowledge into diffusion models.

Currently, PPIDM is trained on complete time series datasets without observation noise or missing
values. The method is sensitive to input data quality, so we recommend that practitioners assess data
fidelity before deployment and skip missing frames when loading data rather than performing naive
temporal interpolation. Future work can focus on extending the framework to accommodate systems
with uncertain or incomplete observations, such as large-scale satellite-based remote sensing data
of the global ocean, which often contain substantial spatiotemporal gaps. In addition, future work
may explore the design of more sophisticated operators for more nuanced enforcement of physics
constraints, particularly in multi-physics settings involving coupled PDEs or interacting physical
subsystems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contribution of integrating partially known physics laws
into diffusion models for more rigorous reconstruction of Chl in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are included in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Theory assumptions and proofs are included in section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the information in sections 3 and 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Code will be released directly after acceptance of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the data acquisition and preprocessing information in section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present box plots and report standard deviations to demonstrate the stability
of generation for each model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the computation details in section4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper enhances the performance of scientific diffusion models in systems
where only partial knowledge is known, which is common in real-world systems. The
negative impacts of our work are minimal.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risks of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The dataset used is properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assests.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

17



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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