Random features models: a way to study the success of naive imputation

Alexis Ayme !

Abstract

Constant (naive) imputation is still widely used in
practice as this is a first easy-to-use technique to
deal with missing data. Yet, this simple method
could be expected to induce a large bias for predic-
tion purposes, as the imputed input may strongly
differ from the true underlying data. However, re-
cent works suggest that this bias is low in the con-
text of high-dimensional linear predictors when
data is supposed to be missing completely at
random (MCAR). This paper completes the pic-
ture for linear predictors by confirming the intu-
ition that the bias is negligible and that surpris-
ingly naive imputation also remains relevant in
very low dimension. To this aim, we consider a
unique underlying random features model, which
offers a rigorous framework for studying predic-
tive performances, whilst the dimension of the
observed features varies. Building on these theo-
retical results, we establish finite-sample bounds
on stochastic gradient (SGD) predictors applied
to zero-imputed data, a strategy particularly well
suited for large-scale learning. If the MCAR as-
sumption appears to be strong, we show that simi-
lar favorable behaviors occur for more complex
missing data scenarios.

1. Introduction

Missing data appear in most real-world datasets as they arise
from merging different data sources, data collecting issues,
self-censorship in surveys, just to name a few. Specific
handling techniques are required, as most machine learn-
ing algorithms do not natively handle missing values, with
the notable exception of tree-based methods Stekhoven &
Biihlmann (2012); Chen & Guestrin (2016); Perez-Lebel
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et al. (2022). A common practice consists in imputing miss-
ing entries. The resulting complete dataset can then be
analyzed using any machine learning algorithm.

While there exists a variety of imputation strategies (sin-
gle, multiple, conditional, marginal imputation ; see, e.g.,
Bertsimas et al., 2018, for an overview), mean imputation is
definitely one of the most common practices. Such a proce-
dure has been largely criticized in the past as (single) mean
imputation distorts data distributions by lowering variances,
which can lead to inconsistent parameter estimation. Indeed,
a large part of the literature on missing values focuses on
inference in parametric models, such as linear (Little, 1992;
Jones, 1996) or logistic models (Consentino & Claeskens,
2011; Jiang et al., 2020). From an empirical perspective,
benchmarks of imputation techniques (WoZnica & Biecek,
2020) indicate that simple imputation, such as the mean,
induces reasonable predictive performances, compared to
more complex imputation techniques such as MICE (Perez-
Lebel et al., 2022).

On the contrary, a recent line of work (Josse et al., 2024)
aims at studying the predictive performances of impute-then-
regress strategies that work by first imputing data (possibly
with a very simple procedure) and then fitting a learning
algorithm on the imputed dataset. Whereas mean imputa-
tion leads to inconsistent parameter estimation, Josse et al.
(2024) and Bertsimas et al. (2021) show that impute-then-
regress procedures happen to be consistent if the learning
algorithm is universally consistent. Le Morvan et al. (2021)
generalize the consistency results of mean-imputation by
Josse et al. (2024); Bertsimas et al. (2021) and prove that
for any universally consistent regression model, almost all
single imputation strategies can lead to consistent predictors.
Therefore, the impact of a specific imputation strategy has
to be analyzed for specific regression models.

Without dispute, linear models are the most classic regres-
sion framework. However, their study becomes challenging
in presence of missing values as they can require to build
2¢ non-linear regression models (one for each missing data
pattern), where d is the number of input variables (Le Mor-
van et al., 2020; Ayme et al., 2022). In the context of linear
models with missing inputs, Le Morvan et al. (2020) estab-
lish finite-sample generalization bounds for zero-imputation,
showing that this strategy is generally inconsistent. How-
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ever, assuming a low-rank structure on the input variables,
Ayme et al. (2023) prove that zero-imputation prior to learn-
ing is consistent in a high-dimensional setting. Note that
the impact of zero-imputation with low-rank inputs has also
been analyzed by Agarwal et al. (2019) in the context of
Principal Components Regression, where the same type of
generalization bounds were established. In this paper, we
want to go beyond the low-rank structure by considering a
(possibly infinite) latent space, and using the random feature
framework.

Related work - Random features First introduced by
Rahimi & Recht (2007), random features are used in non-
parametric regression to approximate, with a few features,
a kernel method where the final predictor belongs to an
infinite-dimensional RKHS. Rudi & Rosasco (2017); Car-
ratino et al. (2018) obtain generalization upper bounds for
kernel regression learned with a small number of features,
leading to computational efficiency. Random features are
also used to describe a one-hidden-layer neural network
(Bach, 2017).

Related work - high-dimensional linear models Linear
models have been widely studied in a fixed design, consid-
ering the input variables are fixed (see, e.g., Hastie et al.,
2015, for an analysis in the high-dimensional case). Quite
notably, few works analyze (high-dimensional) linear mod-
els in the random design setting, a necessary framework
to assess the predictive performance of linear models on
unseen data (Caponnetto & De Vito, 2007; Hsu et al., 2012;
Mourtada & Rosasco, 2022). These works mainly focus on
the statistical properties of the Empirical Risk Minimizer
(ERM) with a ridge regularization using uniform concentra-
tion bounds. On the other hand, (Bach & Moulines, 2013;
Raskutti et al., 2014; Dieuleveut et al., 2017) directly control
the generalization error of predictors resulting of stochastic
gradient strategies, while performing a single pass on the
dataset. The obtained bounds have therefore the advantage
of being dependent on the training algorithm involved.

Contributions In this paper, we analyze the impact of the
classic imputation-by-zero procedure on predictive perfor-
mances, as a function of the input dimension. To this aim,
we consider a latent space from which an arbitrary number
of input variables are built. The output variable is assumed
to result from a linear transformation of the latent variable.
Such a framework allows us to analyze how predictive per-
formances vary with the number of input variables, inside
a common fixed model. Under this setting, we assume that
all entries of input variables are observed with probability
p € (0,1), within a MCAR scenario, and study the perfor-
mance of a linear model trained on imputed-by-zero data.

* We prove that when the input dimension d is negligible

compared to that of the latent space p, the Bayes risk
of the zero-imputation strategy is negligible compared
to that induced by missing data themselves. Therefore,
naive imputation is on par with best strategies.

* When d > p, both above errors vanish, which high-
lights that neither the presence of missing data or the
naive imputation procedure hinders the predictive per-
formances.

* From a learning perspective, we use Stochastic Gra-
dient Descent to learn parameters on zero-imputed
data. We provide finite-sample generalization bounds
in different regimes, highlighting that the excess risk
vanishes at 1/4/n for very low dimensions (d < p)
and high dimensions (d > (1 — p)v/n/p).

» Two different regimes arise from the finite dimension
of the latent space. To move beyond this disjunctive
scenario, we consider a latent space of infinite dimen-
sion and analyze predictors built on d zero-imputed
input variables. We prove that the corresponding Bayes
excess risk is controlled via the excess risk of a kernel
ridge procedure, with a penalization constant depend-
ing on p and d. A finite-sample generalization bound
on the SGD strategy applied on zero-imputed data is es-
tablished and shows that zero-imputation is consistent
in high-dimensional regimes (d >> \/n).

* The MCAR assumption considered throughout the pa-
per, and often in the literature, can be attenuated at
the cost of weaker theoretical results but which allows
to show that naive imputation is relevant in high di-
mension even for non-trivial Missing Not At Random
(MNAR) scenarios.

Notations. For n € N, we denote [n] = {1,...,n}. We
use < to denote inequality up to a universal constant. We
use ¢ for observations, and j for features.

2. Imputation is adapted for very low and
high-dimensional data

2.1. Setting

We adopt the classical regression framework in which we
want to predict the value of an output random variable
Y € R given an input random variable X € X = R? of
dimension d. More precisely, our goal is to build a predictor
f : X — R that accurately estimates the regression function
f* (also called Bayes predictor) defined as a minimizer of
the quadratic risk

R(f)=E (Y - f(X))"], M

over the class of measurable functions f : X — R. When
f is linear, we simply denote R(6) the risk of the linear
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function parameterized by 0, i.e., such that for all = € R4,

f(x)==zT40.

Random features Real datasets are often characterized by
high correlations between variables, or equivalently by a hid-
den low-rank structure (Johnstone, 2001; Udell & Townsend,
2019). The random feature framework (Rahimi & Recht,
2007) constitutes a general and flexible approach for mod-
eling such datasets. We, therefore, assume that the inputs
(Xi)ign)» i.i.d. copies of X, actually result from a random
feature (RF) model. For pedagogical purposes, we start by
restricting ourselves to finite-dimensional latent models.

Assumption 1 (Gaussian random features). The input vari-
ables (X;);c[n) are assumed to be given by

Xij =2} W;

?

fori € [n]andj € [d] (2)

where the p-dimensional latent variables Z1, ..., Z, are
i.i.d. copies of Z ~ N (0,1,), and where the p-dimensional
random weights W1,... Wy are i.i.d. copies of W uni-
formly distributed on the sphere SP~1, i.e., W ~ U(SP~1).

The latent space in Assumption 1 corresponds to RP. We
have only access to n observations (X;);e[n] of dimension
d that can be seen as random projections using d directions
of the latent features (Z;);c[,]. The total amount of infor-
mation contained in the latent variables (Z;);c[,,) cannot be
recovered in expectation by that contained in the observa-
tions (X;);e[n) if d < p. This no longer holds when d > p,
and the observations (X;);c[,) can be therefore regarded as
low-rank variables of rank p.

Linear models with RF In the following, we present the
model governing the distribution of the output variable Y.

Assumption 2 (Latent linear well specified model). The
target variable Y is assumed to follow a linear model w.r:t.
the latent covariate Z, i.e.,

Y =28 +e, 3)

where the model parameter is denoted by 3* € RP and the
noise € ~ N (0,0?) is assumed to be independent of Z.

Considering such a random feature setting is particularly
convenient when studying the influence of the input dimen-
sion d on learning without modifying the underlying model
(indeed, the distribution of Y —and Z— does not depend on
the input dimension d). Note that a similar model (with
fixed weight (W;);) has already been introduced in Hastie
et al. (2022).

Missing data Often one does not have access to the full
input vector X but rather to a version of X containing miss-
ing entries. On the contrary, the output Y is always assumed
to be observed. To encode such missing information on X,

we introduce, the random variable P € {0, 1}¢, referred to
as the missing pattern (or actually an observation indicator),
such that P; = 1if X is observed and P; = 0 otherwise.
Assuming that all variables are equally likely to be missing,
we define p :== P(P; = 1) forany j € [d], i.e., 1 —pis
the expected proportion of missing values for any feature.
In this paper, we thoroughly analyze the classical Missing
Completely At Random (MCAR) setting, where the missing
pattern P and the complete observation (X,Y") are inde-
pendent. Note that we will extend some of our theoretical
findings for the MCAR case to relaxed missing scenarios in
Section 4.

Assumption 3 (MCAR pattern with independent compo-
nents). The complete observation (X,Y') and the missing
pattern P are assumed to be independent, i.e., (X,Y) 1L P
and such that P follows a Bernoulli distribution B(p)®<,
ie, foranyj € [d, p=PF; = 1), with0 < p <1
denoting the expected proportion of observed values.

Imputation Most machine learning algorithms are not
designed to deal directly with missing data. Therefore, we
choose to impute the missing values (both in the training and
test sets) by zero (or by the mean for non centered inputs).
The imputed inputs in the train and test sets are thus denoted,
for all ¢, by

X, =P, 0 X, )

where © represented the component-wise product. The im-
pact of missing data, and their handling by naive imputation,
in this supervised learning task can be scrutinized through
the evolution of the following key quantities:

» The Bayes risk based on complete random features
(without missing entries):

R*(d) := irf1f]E (Y = £(X))*|Wh,..., W],

where the infimum is taken over all measurable func-
tions.

» The Bayes risk given X, = (X, P) € R? x {0, 1}¢:
R* (d) = H}fE [(Y - f(XmisS))2|le cry Wd] ’

miss
where the infimum is taken over all measurable func-
tions. It has been shown to be attained for a pattern-by-
pattern predictor (Le Morvan et al., 2020). The bias or
deterministic error due to learning with missing inputs
can be characterized as

AmiSS(d) =K [ :niss (d) - R*(d)] .

* The risk of the best linear predictor relying on zero-
imputed inputs:

R’ (d):= inf E[(Y—XT9)2|W1,...,W4.

P 0cRd
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The approximation error associated with this specific
class of predictors, among those handling missing in-
puts, is denoted by

Aimp/miss(d) =E [R:(mp(d) R;uss(d)] :

Note that these three risks decrease with the dimension and
are ordered as follows,
R*(d) < Riiss(d) < R (d). 5)

In what follows, we give a precise evaluation of R*(d) and
R*..(d) and provide bounds for R}, _(d) as well.

mis imp

2.2. Theoretical analysis

Our goal is to dissect the systematic errors introduced by
either the occurrence of missing inputs or their handling via
naive zero imputation. To do so, we start by characterizing
the optimal risk over the class of linear predictors when
working with complete inputs.

Proposition 2.1. Under Assumptions I and 2, the Bayes risk
for linear predictors based on complete random features is

o> + 222 B*13, whend < p,
o? when d > p,

Bl (@] = { 7,

where the expectation is taken over (W;) ie[q)-

Proposition 2.1 highlights that learning with a number d
of random features larger than the latent dimension p is
equivalent to learning directly with the latent covariate Z.
Besides, when d < p, the Bayes predictor suffers from an
increased risk, as learning is flawed by a lack of information
in the (fully observed) inputs. This can be compensated by
increasing the number d of random features, as the explained
variance of Y, i.e., EY? — ER*(d) = %HB*H%, increases
with d for d < p.

Proposition 2.2. Under Assumptions 1 to 3, the Bayes risk
for predictors working with missing data is given by

N B o2 + pi},deB*H% when d < p,
[less( )] - 2 E[(F—B)13<p] * |12
o2 4 Ee=Boselj g2 yhen d > p,

where the expectation is taken over the random weights
(W;)jelq and B ~ B(d, p) (Binomial law of parameters d
and p) . Therefore,

(1— )d”B*HQ when d < p,
Amiss(d) = { M ﬂ*“Q when d > p.
- >

To our knowledge, this result is the first one to precisely
evaluate the error induced by missing inputs when learning
a linear latent model. More specifically, two regimes are

identified. In the first regime d < p, i.e., when working with
random features of lower dimension than that of the latent
model, R}, . takes the same form as R*, where the input
dimension d is replaced by pd. This can be interpreted as
the cost of learning with pd observed features in expectation

instead of the d initial features.

In the second regime, when d > p, the error due to missing
data becomes more and more negligible as d increases, as
the redundancy of the random feature model is sufficient to
retrieve the information contained in the latent covariate of
lower dimension p. Furthermore, if d > (p + 1)%, we
can bound A iss(d) from above and below,

LAt

H B2 < Apiss
% P) ||6 ||2 > mlsb(d)

dp P _Ndjp*)|2
<p(oqts) - nl ||2(,6
)

showing that A ,;ss(d) decays exponentially fast with d in
the high-dimensional regime: the impact of missing data on
learning is therefore completely mitigated in high dimen-
sion.

Theorem 2.3. Under Assumptions 1 to 3, the Bayes risk for
predictors based on zero-imputed random features satisfies

E [Rf,,(d)] — o®

imp
. k 1— k—1) * :
[ B 1 <

st 187113 ifd > p.
(7
Thus, when d < p,
(1 —p)p(d— ) .
Aim miss d < — 8
p/ ( ) p— ,O(d ) ”ﬁ ”2 ®)
p(d 1)
= Al’rllSS d . 9

And, when d > p,

(1-pp

mllﬁ*ll% < Ajp/miss(d) + Amiss(d)  (10)

18515 an

< T

Theorem 2.3 is the first result to provide a complete view
of the impact of naive imputation on learning linear latent
model. In particular, it sheds light on the following low-
dimensional behavior. When pd < p, the error due to naive
imputation appears to be negligible in comparison to the
error Apiss(d) due to missing data. Low-dimensional (miss-
ing) random features are unlikely to be strongly correlated,
thus making imputation before training competitive (com-
pared to the best predictor based on missing values). This is
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all the more true as the expected number of observed entries
pd is negligible compared to p.

In high dimensions where d >> p, both errors Ajy,p /miss ()
and Apiss(d) vanish: neither the occurrence of missing
data, nor their naive handling through imputation, hinder
the learning task. This provides a refined and more rigor-
ous analysis of this favorable behavior already identified
in Ayme et al. (2023). Remark that, contrary to A,ss(d)
(Equation (6)), Ajmp/miss(d) does not seem to decrease
exponentially as d increases, but only as 1/d. Not that,
according to (10), this rate is optimal.

Hlustration We illustrate the bounds obtained in Propo-
sition 2.1, Proposition 2.2 and Theorem 2.3 in Figure 1. In
particular, we remark that the upper bounds (7) represented
in (a) decrease with the number of features d but is loose
for d close to and smaller than p. Indeed, for this regime,
features are not enough isotropic to say that imputation by
the mean (here by 0) is relevant, and not enough correlated
to exploit shared information between features. Figure (b)
illustrates the shift point in p for Ry;s and Ripp/mis and
the difficulties to learn with missing values (imputed or not)
around d = p.

2.3. Learning from imputed data with SGD

We leverage on our analysis of the Bayes risk of impute-then-
regress strategy to propose a learning algorithm based on an
SGD strategy. Our algorithm is computationally efficient,
as it requires only one pass over the dataset, and shown to
have theoretical guarantees. Note that due to missing data,
the model becomes miss-specified (see Ayme et al., 2023),
a challenging study case that can still be handled by SGD
procedures.

SGD estimator. An averaged stochastic gradient descent
(SGD) on the imputed dataset (Xi),;e[n] is performed to
directly minimize the theoretical risk 6 — Rjyp(60) over
R?. The algorithm starts from §, = 0 with a step-size

~ > 0, then follows the recursion
o= [1-2X X0+ iX, (2

and outputs after n iterations the Polyak-Ruppert averaging
0 = n%_l > i1 04, used to estimate 6%, . This algorithm
(performing one pass over the training data) is optimal in
terms of computational complexity. Note that the choice
of the step size should depend intimately on the input di-
mension, with a slight variation, according to whether the
setting is low or high-dimensional (see, Dieuleveut & Bach,
2016, for example).

Theorem 2.4. Under Assumptions 1 to 3, ford < p — 1,
the SGD recursion with Polyak-Ruppert averaging and step

size y = 3§ satisfy
. 5 o p(l - p)d(d — 1)
E[Rimp(0) — Riyiss(d)] S o —pld—1) - 2)

d d * (|2 d 2 * 12
13)

18113

For d > p, the choice v = ﬁ leads to

N ok 1p 2 D 2
El Ry (0)— B (@) S 5 18" 3+ 52— 1671
o’ +[18*113
—

NG

Regardless of the regime, these generalization upper bounds
are composed of three terms. The first one encapsulates the
(deterministic) error due to the imputation of missing val-
ues. The last two are stochastic errors inherent to learning,
corresponding respectively to the initial condition and the
variance of the SGD recursion.

+ (14)

When d < p — 1, the learning error

d d

pn (p—p(d—1) - 2)
decreases fast with the number n of observation. How-
ever, the error due to the imputation of missing data
p(1 — p)%”ﬁ*”% becomes negligible only for
extremely low-dimensional regimes (d < p) and remains
significant when d < p. Therefore, for such a regime, even
with a lot of observations, the imputation produces a large
bias, and we recommend using other methods natively ca-
pable of handling missing values. In particular, tree-based
methods (Stekhoven & Biihlmann, 2012; Chen & Guestrin,
2016) have demonstrated their effectiveness in addressing
this specific regime.

* d *
18415 + 5 (o + 18*1)

In the regime d >> p, the error %g Hﬁ*||§ due to missing
data and the zero-imputation procedure is low. Besides, the
learning error —5 L~ 18*112 + ‘#L\/g*“g decreases at a
(slow) rate 1/+/n. This slow rate of learning error is due
to the fact that the covariance matrix of the imputed data
Yimp = E[XXT] has a rank equal to d and eigenvalues
lower bounded by p(1 — p). Hence imputed data are not of
low rank, even for d > p. However, the upper bound (14)
becomes dimension-free for the regime d > p(1—p)4/n. In
this case, the bias due to missing data and zero imputation is
negligible compared to the learning error. This gives a clear
practical recommendation: if the observed rate is such that
p(1—p) < d/+/n, then zero-imputation does not deteriorate
the learning procedure for d large enough.

Overall, we have fully characterized the inherent error due
to missing values in learning linear latent models, and pro-
posed an efficient predictor based on SGD strategies. This
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Figure 1. Evolution of different risks w.r.t. the number d of random features, with p = 100, ||3*|| =1, p = 0,8 and o = 0.

section outlines that naive imputation thus remains a compet-
itive and relevant technique not only for high-dimensional
models but also for extremely low-dimensional ones, a fa-
vorable regime that was not identified so far in the literature.
Note in passing that for the latter, the error bound (13) of the
SGD predictor enjoys both a fast rate and a negligible ap-
proximation error, which can only be marginally improved.
However, the analysis conducted so far relies on strong
assumptions (finite-dimensional latent model with Gaus-
sian random features and uniform weights, linear model).
In the next section, we propose an extension of our high-
dimensional results to a more general framework.

3. Extension to infinite-dimensional latent
space

In this section, we analyze the influence of missing data
in learning, when the random feature model involves an
infinite-dimensional latent space.

3.1. The extended random feature framework

Consider a latent space Z (taking the place of RP), possibly
of infinite dimension. We denote by (Z;);c[y i.i.d. latent
variables, distributed as a generic random variable Z € Z.
We only observe the variables (X;);c[,, i.i.d. copies of
X € X = RY, resulting from the following transformation
of the latent variables.

Assumption 4 (General random features). The input vari-
ables are assumed to be given by

Xij = ’L/)(Z,“I/VJ)7 foralli e [n] and j € [d], (15)
where the weights W1,... , Wy € W are i.i.d. drawn ac-
cording to a distribution v, and where 1 : Z x VW — R.

Furthermore, we assume that 1(Z;,.) € L*(v), and there
exists L > 0 such that E[1)(Z, W)?|W] < L? almost surely.

Assumption 4 is an extension of Assumption 1 considering
Z=W =RP,¢(Z;,W;) = Z] W, v the uniform distri-
bution on SP~! and L? = 1. But, such a setting of general
random features encompasses many more scenarios, and
has been extensively studied (Rahimi & Recht, 2007).

In this framework, we aim to study the linear prediction of
an output Y given X, i.e., to build a prediction function of
the form g(X) = X "6 with § € R%. Note that this type of
prediction can be also obtained as a function of the (latent)
variable Z, indeed,

d
9(X) =" 0,0(2,W;) = f(Z). (16)

Jj=1

We can therefore define the corresponding class of functions
with input space Z as

d
Fld) = {f 2R f(2) =D 0;0(= W), 0 € Rd}
j=1

Note that the class ]-‘5“” is random because the weights
(W) je[m) themselves are random. When the number d of

random features tends to infinity, we can define the set F, l(,oo)
of functions which take the form:

f(2) = / ap(wp(Z wydv(w),  (7)

for any ay € L?(v). The associated norm is given by

2 . 2
= f d
2= ot [ law) i)

st. VzeZ, f(z) = /a(w)l/}(z,w)du(w). (18)

This norm corresponds to an RKHS norm, we refer the in-
terested reader to Bach (2017) for further details. We denote
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by R*(00), the risk of the best predictor belonging to the
class 757 ie., R*(c0) = inf oz E (Y — f(2))?].

The setting considered in this section includes, for instance,
Fourier random features (Rahimi & Recht, 2007; Rudi &
Rosasco, 2017).

Example 3.1 (Fourier random features). Consider Z € Z
where Z is a compact subset of R?, W = (A, B,C) €
W=RP xR x {—1,1} and fix

Y(Z,W) = cos(A" Z + B) + 2C,

with A ~ N(0,1), B ~ U([0,27]) and C ~ U({-1,1}).
Note that Assumption 4 holds here with L? = 3. The result-
ing function class ]-",SOC) described by these random features
is dense for || - || in the space of continuous functions.

As shown in this example, with a proper choice of v and

1), the class ]-'500) can approximate any function that makes
the following assumption feasible.

Assumption 5. The Bayes predictor f*(z) = E[Y|Z = Z]
belongs to ]__lgoo).

Under Assumption 5, the model Y = f*(Z) + ¢, is well
defined, i.e., E[¢]Z] = 0. Remark that Assumption 5 can be
seen as a natural extension of linear model Assumption 2.
Indeed, under Assumptions 1 and 2, F.° is the set of linear
functions of Z.

3.2. Impact of missing data and imputation in the RF
framework

The general random features (X;);c[,,) are assumed to be
corrupted by MCAR entries, whether during training and
test phases. Our goal is to study the quantity R}, (d). Note
that (5) can be rewritten here as

R*(c0) < R*(d) < R},

miss

(d) < Rip(d).

imp

Thus, introducing the quantity

ALY (d) == ER},y, (d) — R*(o0)

= Amiss(d) + Aimp/miss (d) + ER* (d) - R*(OO)7 (19)

we encapsulate (i) the error ER*(d) — R*(oc0) due to learn-
ing from a finite number of random features, (ii) the error
Amiss(d) due to learning with missing inputs and, (iii) the
approximation error A, /miss(d) due to the imputation by
zero.

Theorem 3.2. Under Assumptions 3 and 4,
)\imp 2
w2 12,

. 2 . .
With Aimp = %. In particular, under Assumption 5,

)y < i
Ay (d) < fel.;l,;f‘x’)

{r(r) - (o) +

0o Aim *
Al (d) < ZZ2 £

imp

: (c0)
Theorem 3.2 provides an upper bound on A; - (d) for gen-

eral random feature models. In particular, the latter can be
compared to a ridge bias when performing a kernel ridge
regression in ]-‘V(°°> , and choosing the penalization strength
of the order of Ainp,/d. Furthermore, under Assumption 5
(well-specified model), this bias converges to zero with a
rate of ||f*||l2, /(pd). By applying this result to a finite-
dimensional latent model under Assumptions 1 and 2, and
remarking that || f* ||i =plB* ||§, we recover the same rate
p/(pd) ||B* ||§ exhibited in Theorem 2.3. According to The-
orem 2.3, this rate cannot be improved in general. More
globally, missing data in RF models become harmless when
learning with a large number of random features. It should
be noted that when Assumption 5 does not hold anymore,
one can still conclude that the bias Ai(;op) tends to zero but at
an arbitrarily slow rate. Regarding Assumption 4, it remains
a mild requirement; in particular, it does not require centered
inputs. This underlines that there is no need to impute by the
mean to obtain Ai(;og converging to 0 in high-dimensional
regimes.

3.3. SGD generalization upper bound

In this section, we assess the generalization performance of
the SGD iterates when working with an underlying general
random feature model.

Assumption 6. There exists £ > O such that, almost surely

E[(Z, W)*[W] > £2.

This assumption holds when features are renormalized (i.e.,
when £ = L = 1) or in the case of random Fourier features
(see Example 3.1) with £ = 1.

Assumption 7. Assume that almost surely,

(2, W) < kL2,

This assumption is satisfied in Example 3.1 with x = 2 and
L? =3.

Theorem 3.3. Under the general framework covered by
Assumptions 4 to 7 with MCAR data (Assumption 3), the
SGD recursion with Polyak-Ruppert averaging and step size

~v = 1/(kd+/n) satisfy
E[Rimp(8) — B (00)] < 2 17712
1mp ~ pd v

kL*EY?

—n

L? L?

* 112
+72W”f I, +

(20)

Theorem 3.3 outlines that, even for very general random
features model (with possibly a latent space of infinite
dimension), the impact of (i) the finite number of fea-
tures, (ii) the missing data, and (iii) the imputation by 0,
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represented by the quantity ;‘—2 IIf* Hi, remains negligible
in high dimension Similarly to (14), the learning error

L2 L IEY
Yo p) e g IIf* || £ =2 decreases with a slow rate.

More premsely, when d >> 72 p(l — p)+/n, the upper bound

is dimension free and the bias Al(m) due to imputation

becomes completely negligible. Note that, for renormal-
ized features (L? = [?> = 1), the transition from a low-
dimensional regime to a high-dimensional one is given by
d = p(1 — p)+/n (as for Theorem 2.4), which is very easy
to evaluate.

4. Beyond the MCAR assumption

To go beyond the MCAR missing data framework used in
the previous section, we now consider missing not at random
(MNAR) data, in which the missingness indicator of any
variable can depend on the (possibly missing) value of the
variable. In particular, we assume that the missing patterns
(P;); depend on the latent features (Z;);, which results in a
MNAR scenario.

Assumption 8. Suppose that P and Y are indepen-
dent. Furthermore, consider that there exists an i.i.d.
sequence (W) jcia) i.i.d. drawn according to some dis-
tribution p supported on a set W' and assume that
Py, ..., Py|Z,W{,...,W) are independent. We assume
that the sequences (W) jc(q) and (W) jc(a) are indepen-
dent and that

P (Pj |Z, E;)

= $(Z.W}), forall j € [d),

where ¢ : Z x W' — (0,1] is a continuous function.

The following result shows that the asymptotic property of
R, in a MCAR setting (Theorem 2.3) remains valid in
the MNAR setting of Assumption 8.

Theorem 4.1. Under Assumption 8, consider one of the

following settings:

(1) (finite-dimensional latent space) Under Assumptions 1
and 2, assume the distribution of the missing mech-
anism to be given for W' = (W[, W') € R x R4,
by ¢(Z,W') = ®(ZTW' + W{) with ® a Lipschitz
function. Additionally, 0 is required to belong to the
support of W',

(ii) (general latent space) Under Assumptions 4 and 5,
assume in addition that Z is compact, f* continuous
and F¥) dense in the space of continuous functions
equipped with the norm || - || so.

Then, almost surely,

lim R

d— o0

d) = R*(c0).

1m(
P

Asa consequence,

imp

lim A () () = lim Auiss(d) = Iim Amissnp (d) = 0.

This result shows that the benign impact of missing data and
imputation on predictive performances in high dimension
holds true outside the MCAR assumption, even for missing
scenarios (MNAR) often considered as more challenging.
Let us consider two non-trivial examples.

Example 4.2 (Gaussian random features with logistic model).
Consider the finite-dimensional latent model of Assump-
tions 1 and 2, where Z = RP and W) = (W(,;,W)) €
R x R%, and assume that the conditional distribution of the
missing patterns P; is given by

1

/
}P’(P]|Z,w]) 1+6W(;j+WJ{TZ

= d(Wy; + W' 2) =
In this example, the features X; are assumed to be missing
according to a logistic model on the latent variables Z. In
this setting, we can show that Theorem 4.1 (4) applies, since
in particular, 0 belongs the support of W’ Note that, if
W’ = 0 almost surely then this model corresponds toa
MCAR scenarios but with different proportion of missing
values for each feature. The model is no longer MCAR as
soon as random variable WJ’ is not exactly equal to 0.

Example 4.3 (Fourier random features for any function ¢).
Let us consider the framework of Example 3.1 with a con-
tinuous function f*. Then Theorem 4.1 (%) applies for any
continuous function ¢ (in particular, we can consider the
logistic model of Example 4.2 without any condition on
w.

For these two MNAR examples,

lim AL (d) = lim Auiss(d) = lim Aissimmp (d) = 0,
which means that missing values and imputations vanishes
with the dimension.

5. Discussion and conclusion

Discussion on assumptions The random features model
offers a way to capture independence in low dimensions and
correlation in high dimensions. Specifically, mean imputa-
tion is the most effective approach when data are uncorre-
lated, which is typically more prevalent in low-dimensional
settings than in high-dimensional ones. Such an indepen-
dence assumption can be easily validated by examining the
empirical covariance matrix. On the contrary, random fea-
ture models are more likely to hold in high-dimensional
datasets, since strong correlations between input variables
are often encountered in these settings. Verifying this as-
sumption about dependence is made possible by observing
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the empirical covariance matrix. In very large dimensions,
Principal Component Regression (PCR) can be employed
as an automatic method to demonstrate that datasets are
approximately of low ranks.

Insights for practitionners This article aims to show that
employing a simple imputation technique (in this case, zero
imputation) can result in a highly effective predictor in vari-
ous regimes, as discussed in Section 2. By combining zero
imputation with stochastic gradient descent (SGD) recur-
sion, we obtain an optimal algorithm both in terms of gen-
eralization capacity and complexity, requiring just a single
pass through the data. Therefore, we strongly recommend to
evaluate this approach before resorting to more costly meth-
ods. This technique is not only computationally efficient,
but also readily available in major software packages.

Summary of theoretical results Thanks to the rigorous
framework of random features models, we prove that naive
imputation is relevant both in high- and low-dimensional
regimes. In particular, the bias induced by imputation is
negligible compared to the one induced by missing data,
therefore showing that zero-imputation strategies may lead
to near-optimal predictors. Following this analysis, we
prove that an SGD procedure trained on zero-imputed data
reaches near-optimal rate of consistency in low-dimensional
regimes, but still suffer from slow rates in high-dimensional
ones. Obtaining fast rates for the latter setting is still an
open and interesting question. Whilst our analysis extends
beyond the MCAR scenario, rates of consistency for SGD
procedures remain to be derived for such settings.

Impact Statement

This paper is mainly theoretical and presents work whose
goal is to advance the field of Machine Learning. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Notations

For two vectors (or matrices) a, b, we denote by a®b the Hadamard product (or component-wise product). [n] = {1,2,...,n}.
For two symmetric matrices A and B, A < B means that B — A is positive semi-definite. The symbol < denotes the
inequality up to a universal constant. Table 1 summarizes the notations used throughout the paper and appendix.

Table 1. Notations

l|ul|2, u " Mu the semi-norm induced by a positive matrix M
| M |3, The Frobenius norm of M

Tr(M) The sum of diagonal elements of M

M + A Abuse of notation for M + I,

Mt The Moore-Penrose pseudoinverse of M

Sp The unit sphere of RP

Span(uy, j € [k])  The linear span induced by (u;);e[x]

P The mask

w (Wi,...,Wy) " the matrix of weights

R(6) the risk of linear predictor 6 on complete data
Rimp(0) the risk of linear predictor 6 on imputed data
0* Best linear predictor on complete data

Onp Best linear predictor on imputed data

2 E[XXT|W]

Aj eigenvalues of X

U eigendirections of X

p Theoretical proportion of observed entries
L3(v) The set of two square v integrable functions

B. Preliminary results - random matrices

We provide here a reminder on singular values decomposition and Moore-Penrose pseudoinverse. We can found these results
and more on linear algebra in Giraud (2021, appendix).

Theorem B.1. Any n x p real-valued matrix of rank r can be decomposed as

-

_ T

A= E ojuv;
Jj=1

where

cor =220 >0,

e (01,...,0,) are the nonzero eigenvalues of A" A and AAT, and
e (u1,...,u,) and (vi,...,v,) are two orthonormal families of R™ and R, such that AATu; = szuj and AT Av; =
0'32‘1)]'.

Furthermore, the Moore-Penrose pseudo inverse defined as

T
t_ -1, T
Al = o vjuj
j=1

satisfied

1. At A is the orthogonal projector on lines of A,

2. AA' is the orthogonal projector on columns of A,

11
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3. (AO)" = OT AT for any orthogonal matrix O.

For any function f : R —— R, and any positive matrix A € R?*¢ with the following spectral decomposition A =
ijl AjU; va, we denote by f(A) the matrix corresponding to the spectral decomposition

F(A) =) FA)vgof.

j=1
Theorem B.2 (Jensen inequality for random positive matrix, see Theorem 2.10 in (Carlen, 2010)). Let A be a random
positive matrix. For all convex functions f, we have

Tr(f(EA)) < ETr(f(A)).

Proposition B.3. Let A = Zj:1 Z;Z} with Zy, ..., Zq i.id. random vector of R? with || Z,||3 < 1 almost surely and
EZZT = oly, then, for all A > 0

p

P <RTr (A+A)) < (1+ YN

da+ X~

21

Proof of Proposition B.3. This result is a direct application of Mourtada & Rosasco (2022, Lemma 2) considering =
1
<A
d

O

Lemma B.4. Let M € RP*P be a random symmetric matrix, such that for all vectors u,v € SP~!, Law(u' Mu) =
Law(v' Mw). Then, for all B € R?,
ETr(M
B [57 0] = B3,

This is in particular satisfied if. for any orthogonal matrix O, OMO has the same law as M.

Proof. By assumption, for all u,v € S !, Eu" Mu = Ev" Mv. Thus, there exists a such that, for all v € S%,
v'EMv = Ev" Mv = o, which entails that EM = ol by characterization of symmetric matrices. Therefore, ETr(M) =

Tr(EM) = pa, and EM = ]ETrTEM)I. Hence, for all 5 € RP

B [57M8] = FTEMS = |BIR e

The last point easily follows, see for example Page Jr (1984, Proposition 2.14) for the case of invariant distributions by
orthogonal transforms.

O

The following result is inspired by the result of Cook & Forzani (2011), that is an adaptation of that of Von Rosen (1988).
Lemma B.5. Forall0 < d < p — 1, let W € RP*? such that columns of W are i.i.d. and uniform over SP~!, then

d—1
EWHE =d {1+ ——].
Wi =a(1+ 451

Proof. Up to a polar coordinate change of variable, one can show that the distribution of the columns of W corresponds to
that of normalized Gaussian vectors, i.e., for all j € [d],

G

W, = e,
TG
where (G;) are i.i.d. of law N(0, I,,). Note that the columns of W are the rows of M = W . As d < p,

MM = 1,

12
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because the rows of M are almost surely linearly independent. For all j € [d], we let [; be the j-th row of M, and ¢;
the j-th column of M. Therefore, for all k # j, [} ¢; = 0, then ¢; € Span(ly, k # j)*. Note, that Span(l;, j € [d]) =
Span(c;, j € [d]) by property of Moore-Penrose pseudoinverse (Theorem B.1). Thus, ¢; as the form,

Cj = 0ijlj,

where P; is the orthogonal projection on Span(ly, k # j)=*. Besides, l;rcj = 1 gives us that

1
KT S
Thus,
= Y el =3 5 @)
j j 2712
Asl; =W; = Hgﬁ’ we can write
1 1G513

12513 ~ 156513
Using that |G, 3 = [P G, 13 + [[(Z, — P,)G, 13, we have

; =1+ w
1751513 PG5

Conditioning by (G}) with k # j, and using Cochran theorem (I, — P;)G;|G, k # j and P;G,|Gy, k # j are two
independent standard normal vector of respective dimensions p — (p —d + 1) =d — 1 and p — d + 1. Thus,

1

1
Guak | = 1+ E[I(Ly ~ PIGIBIGH k2 J] B e ol Gk # 3)
17525113 [t = PG5l } 175G 13
d—1
-1+ 2 24
* p—d—1’ (24)
because E [||(I, — P;)G;|3|Gr,k # j] =d—1and E {mmk, k # j} = ——g—1 s the expectation of an inverse-
chi-squared of parameter p — d + 1 > 2 (with d < p — 1). Then, taking the expectation of (22) leads to the result,
d(d—1)
E|MT)2 =d+ ———=.
L
O

Lemma B.6. Let A, B,V three symetrics non-negative matrix, if A < Bthen AV X BOV.

Proof. Let X ~ N(0,V) and § € R,

13
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105y =0T AG VO
=0" (EXXT)® A)0
=E [9T (XXT) @A)

=E Ze (XXT)©4), .9

=E Y 0:X,X;A; 0,

i

=E [ (0:X,) (0;X;) A

=E[IX 0 0/%]

<E|[|IX ©0l3]

2
= ||9||B@v

C. Proof of Section 2

The following result, established by Ayme et al. (2023), is used to derive an expression of Apyissing + Aimp /miss-

Lemma C.1 (Proposition 3.1 of (Ayme et al., 2023)). Forall § € RY,
Rimp(0) = R(p0) + p(1 = p)10]|3iag(x)-
Recalling that
Amiss + Aimp/miss = E [Rl*rnp(d) - R*(d)] )

we deduce from Lemma C.1 that

1—p
|w@wm}

Additionally, when diag(3) = I, (in particular for model (1)), by optimization, we obtain,

B+ Bimpmim = B it { RO) — () +

Amiss + Aimp/miss = AEHH*H%(/\IJrZ)*l

with A = 22,
Lemma C.2. Under Assumption 3,

ER; e (d EIP FER" (k).
where B is a binomial random variable of parameters d and p.

Proof. Using the decomposition of the Bayes predictor from Le Morvan et al. (2020), we have

R = Y PB(P=m)R;,

me{0,1}4
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(25)

(26)

27

(28)

(29)
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where
R:, = iI}fIE (Y — f(Xobs(m)))? [P =m, Wi, ..., W],

is the local Bayes risk given (P = m). Using MCAR assumption (Assumption 3), and Gaussian assumption, according to
Le Morvan et al. (2020), each local Bayes predictor are linear, thus

R;, =infE (Y = 07 Xopsm)))?|Wj, j € obs(m)] .

As (W;) are i.i.d. (and independent of Y), Ry, has the same law as R*(|m|) where |m/| is the number of observed
components of m. Thus,

ERbi(d) = Y B(P=m)ER"(|m|)). (30)
me{0,1}4
Grouping the missing patterns of the same size, we conclude that,
d
ER}(d) = > P(B = k)ER*(k),

miss
k=0

where B is a binomial law of parameters d and p.

C.1. Proof of Proposition 2.1
By definition,
R*d)=E[(XT0* —Y)*|Wy,..., Wy
=E[(XT0" - ZTB* —e)?|Wh,..., Wy (using (2))
= +E[(XT0* - ZTB*)*|W1,..., W],
using that € is an independent noise of variance 0. We have X '0* = Z T 3 ; 07W;. Then,
T 2

d
R*(d) =0 +E SNow; - | Z| [Wi,... W
j=1

2
d
=t i
j=1 9
by isotropy of Z (Z ~ N(0,1,) and thus EZZ " = I). Using that E?Zl 0> W; belongs to Span(W1, ..., W), we get that
ijl 0% W; = Pyf* where P is the orthogonal projection on Span(W7, ..., W). Then,

R(d) = o + |[(I = P))B*|3 = 0® + (8") T (I — Pa)B".

Remark that P, is a random matrix (since W7, ..., Wy are random). Denoting by W the matrix admitting W7y, ..., Wy as
rows, the projection matrix can be rewritten as P; = WTW. Thus, for all orthogonal matrix O, OP,0" = (WOT)TWOT.
The matrix WO has rows O T W7,...,OTW,, which is an i.i.d. sequence of random vectors on the unit sphere (since

OT is an orthogonal). Indeed, WOT and W have the same distribution, in consequence P and OP;0O have the same
distribution too. Thus, by Lemma B .4, if d < p,

1
ER*(d) =0 + ;HB*H%]ETT(I — Fa)
—d
e
p
using that Tr(I — P;) = rank(] — P;) = p — d. Besides, if d > p, P; = I,, and ER*(d) = o°.

15
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C.2. Proof of Proposition 2.2

Using Lemma C.2, we have

d
ER}(d) = Y _P(B = k)ER"(k),
k=0

where B is a binomial random variable of parameters d and p. Using Proposition 2.1, we have

o? + %Hﬁ*\\%, when k& < p,
o2 when k > p.

Bl ()] -

Combining the two previous equalities, we obtain that

E[(p — B)lp<y]

ER:,.(d) = o® +
p

miss

15*13-

In the case where d < p, 1 p<;, = 1 almost surely, and we obtain

miss

. p—pd, o,
ER (d):UQ‘f‘THﬁ 13-

C.3. Proof of Theorem 2.3
C.3.1. PRELIMINARIES

In the rest of the proof, we denote by W = (Wy,..., W,) T € R4*P the weight matrix that admits the weight vectors
W; ~ U(SP~1) for rows. Wecall ¥ = E [X X7 |W] the covariance matrix of an input X € RY given the weight matrix
‘W. Recall that the latter, resulting from a random feature model, is such that X = WZ, for Z € RP? the corresponding
latent vector.

Lemma C.3. Under assumptions of Theorem 2.3,

MELET: (4 A10)7Y) ifd<p

Aim miss T Amiss - *
/s {WETr (WTW +AL)"1) ifd > p,
with \ = 1=£.

p

Proof. One has for § € RP,
RO) =0 +E[(ZTB* - 0" X)*|W].

Using that X = W Z, we have

R(0) = 0> +E {((5* ~wTo)' 2)2 |w}

— 0% 4|8 = WTe[2,

by isotropy of Z. Since 8* minimizes the risk R, 6* minimizes the least-squares criterion above. Therefore, in the case
where p > d (the “design” W T being long), 6* is unique and given by 6* = (WW )~"'W3*. In the case where
d < p (the design matrix W T being fat), there exists an infinite number of minimizers (all are solutions of the system
B* = W '), but one can look at the solution of minimal ¢2-norm. Then, KKT conditions provide the particular solution
6* = W(W TW)~13* In both cases, #* can be written in the following unified way:

0* = (WT)T ﬁ*~
Futhermore,

Y=E[XX'|W|=E[WZ(W2)'|W|=E[WZZ'W'|W|=WW'.

16
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Then, using (28),

Aimlo/miss + Amiss = AE HG*HZ(E-&-AU !

= AE||(WT)! s

WWT (WWT4AI)-1

= A || 8* [ rww ™ (Ww s a1 (Wt
A *
”5 A8 N gy (WiwwT(wWwT a0~ (w)'),
using Lemma B.4 remarking that, for all orthogonal matrix O € RP*P
OWWWT(WWT + A1)~ (W) 0T = owtwoTow " (woTowT + a0~ (W) oT
= (WO)I'WOoT (WO )T (WO (WO )T + A1)t (Wo)"),

by orthogonality of O (OTO = I,,). Then, OWIWWT(WWT + \I)~! (WT)Jr OT has the same distribution as
WIWWT(WWT + A1)~ (WT)T, since WOT 2" W,

Consider the singular value decomposition (SVD) of W,

where r = p A d is the rank of W, (u;) is an orthonormal basis of R%, and (v;) is an orthonormal basis of R?. The SVD
of its pseudo-inverse is therefore
=205 vy
j=1

Then, we obtain

WIWW T (WWT + )~ Z U
j=1 J
Thus,
T (WIWWT(WWT A1)~ (WT)T) = Z o
O’

We recognize (A + 07) ¢, as the eigenvalues of X + Ay = WW T + A when d < p and rank(W) = d, or as the
eigenvalues of WTW + A, when d > p and rank(W) = p. Hence,

AP ETY (5 + M)~ ifd < p

Aim miss T Amiss =
/s {*'B LRt (WTW +AL,)"1) ifd>p.

C.3.2. PROOFOF (7) (d <p—1)

(First step) Decomposition of lep( ). Note that for > 0 (to be chosen later), one has
Ry (d) < Rimp(20%) < R(xp0*) + p(1 — p)||26* |13 = R(xp0*) + p(1 — p)a®||0*]13,

using Lemma C.1. Then,
Riyp(d) — R*(d) < R(zp0*) — R*(d) + p(1 — p)a||0*]3-

imp

17
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Note that,

R(apt*) — R*(d) = xpt* — 0*|1%
= (1 —zp)?(|0"]3-
Thus, we have

Ripnp(d) = R*(d) < (1= 2p)?|0* % + 2°p(1 — p)[|6*13. GD

(Second step) Calculus of E||6*||2. Since 0* = (W T)T5*,

E60*]3 =EST (WH(WT)N)B.

Again, for an orthonormal matrix O, OWT(WT)TOT = (WO T)T((WOT)T)" has the same law as that of WT(W T)T
given that WO has the same law of W. Using Lemma B 4,

X ETr (WHTWT
B0°)2 (8122 )

E| W3,
= BlI3——,

by definition of the Frobenius norm. Then, by Lemma B.5, we obtain

d d
Ef0*]3=-(1+ —— 3. 32
o1 =2 (14 == ) 1813 62)

(Third step) Calculus of E[|6*[|4. By definition, R*(d) = E [(X T6* — Y)?|W1,..., W], therefore by optimality of 6*,
Fermat’s rule gives that E[(X T 0* — Y) X|W] = 0, and thus

EY? = ||6*||% + R*(d).

Using that EY? = 62 + || 3|3, and taking the expectation, we obtain
o’ + 187|153 = E[|6* |3 + ER*(d).

Furthermore, by Proposition 2.1,

* p—= d *

ER*(d) = o> + —||5*|3.
p

Thus, we obtain

* d *
Ell6*1% = ];HB 13- (33)

(Fourth step) Conclusion. Putting things together, one gets

E [Riyp(d) = R*(d)] < (1 —2p)E[|6*[|% + 2?p(1 — p)E[|6*]|3
= gHﬁ*IIS ((1 —ap)® +a2*(1 - p)p (1 + pd;l1)> '

The bound on the right hand side can be optimized with respect to x. It corresponds to a strongly convex function of the
form f : x — (1 —ax)?+bz? We have f'(x) = —2a(1 — ax) + 2bz, so that the only critical point is 2* = leading

tomin f = f(z*) = %er Therefore,

_a
a’+b’

18
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* _ px El * (1_p ( )
E [Riyy(d) — R*(d)] Sp”ﬁ H2p +(1fp)p<1+p d11>

g =0 (14 55)
= Sli813

p P‘*‘(l_P)(l"’pfdfr)
:gHB*HQ (1_p)(p_2)

P Pplp—d-1)+(1-p)(p-2)

_d ( )(p 2)

_ Az (1 _p=2)—(p—pd—1)—-2)
—p||5|2(<1 p)+(1-0) e

p—=
R P S Clat) B
— (-1l (14 A=)

which leads to the desired result. We obtain also (8) and (9) using the equality obtained in Proposition 2.2.

C.3.3. PROOF OF UPPER AND LOWER BOUNDS (10) (11) (d > p)

Using Lemma C.3, we have

<112
Al ”2]Err (WIW +AL,) ™)
P

Aimp/miss + Amiss =
Remark that WTW = E?Zl WjoT. Furthermore, note that when Wy ~ U(SP~1), forany 1 < k < p, W =
W1y, Wik, - Wlp) has the same distribution as (W11, ..., —Wig, .. Wlp) . Therefore, forall 1 < k # k' < p,
EW1 W] = —E[WlkVVlk/] leading to E[W1,W1i/] = 0. Furthermore E[Wll—i- +W1p] EWE]+.. +E[WZ] =
1, so that by exchangeability, for all 1 < k < p, E[W2] = 1/p and finally EW; W, = ; 1.

Applying Proposition B.3, we obtain

AMBHls
D d/p A < Aimp/miss + Apiss <

(+ 1N 72

X813
P

and
p

* p *|I2
ﬁ 2 l—p)———— < Aim miss T Amiss < B I (1 — A\
18122 - ) o 181 =

pd+(1—p)p

D. Proof of Section 3
D.1. Proof of Theorem 3.2

Start by writing

ALY = ERf, () — R*(c0)

- Aimp/miss + Amiss + ER*(d) — R*(OO)

1—p
+ ||9|(2;1iag(2)}7

using (27). Considering Assumption 4, diag(X) < L?I,, which leads to

—E inf, {R(e) — R*(c0)

AL < E inf {R(e) — R*(c0 )+L2 |9||2}

19
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Fixing A = L? 1_7”, we aim at providing an upper bound for

Ay :=E inf {R(0) - R* A6z}
V= E inf, (R(9) — " (o0) + MoI2)
Let f € 75°°) admitting o € L2(v) as a representer. We set (®) € R? such that for all j € [d], 9](-0‘) = La(W;). We have

Ay + R (o) = E inf, {R (0) + AE [||9|\§ |W} }

<E [R (6) +xE [HQ(‘”‘) Z |W”

2
2} ’
First term.  Remark that by definition of random features (15), X6 = Zj 19](a W(Z,W;) =

2 Z] L a(W;)y(Z, W;). In consequence, E [XTG(Q)|Z} = [a(W)Y(Z,W)dv(W) = f(Z). Then,

—ER (9@) +AE [Hma)

o (o) =5 e[ (x7o ) ]
F :E (XTH(Q) ) |ZH using Fubini’s theorem
:E:E (X760 — 1(2)+1(2) - )2|2H
=E :JE (XTe ))2+ (f(2) —Y)2|Z” using E [XTQ(Q)|Z} _ 2
= [v[xTe \Z]] +R(f).

Then,

v [XW‘*) \Z}
j=1

1 d
aZa )|Z]

= v, a(W)u(z. W) 2] (W) being i.id

IN
QU —

By [a(W)*0(2,W)?|Z]
Then using Fubini’s theorem,
V [XT0@] < ZE [E [a(W)26(2,W)2W]] = éIE [a(W)2E [(2, W)2|W]] .

Under Assumption 4,

Thus,



Random features models: a way to study the success of naive imputation

Second term.

d
(a) _ 2
E [Ha 2] =E | Y6}
j=1
d
1 1 9
j=1
= ZE [a(W)’]
d )
using that (W;); are ii.d..
Conclusion. Combining these two terms, we have
. A+ L?
Ay + R*(00) < R(f) + TE” [a(W)?].
This result is valid for any f and «, thus
o . . i A+ L?
ALY+ R*(00) < Ay + R*(00) < inf {R(F)+ 2= |12 ¢
P feF® d

E. Proof of error bounds for SGD estimators
E.1. Proof of Equation (13) of Theorem 2.4

In this section, we apply results from the SGD literature, in particular, Bach & Moulines (2013, Theorem 1), to our

framework.

6%, and when d < n, we have
- d d
Rinp0) = R (@) S S 0pll3 + =02

imp imp

Theorem E.1. In the framework of Section 2, for v =
(34
with o2, i= 02 + p~ (Ri,,(d) — R*(d) + |6*]3).

imp

Proof. The proof of this theorem consists of verifying that assumptions of Bach & Moulines (2013, Theorem 1) hold in our

s 12
case. Assumptions (A1-5) are easily satisfied. Let us show that E [X X7 HX H2 |W] < R2Eimp. Indeed,
s -2 s
E {XXT HXH W] <E [XXTHXHg\W},
2

~ 112 ~ ~
using that HXH2 < ||XH§, and 0 < XX . Then,
E|XXT|X)3 W] = EE [XXT || X3P, W]
— EE [PPT o XXT||IX|2|P, w]
T 2
—E[Zp 0 XX X3 W]
=zpo (E[XXT X5 W]).
X is Gaussian vector, thus E [XXT ||XH§} =< R%Y with R? = 3d, and Lemma B.6 lead to
-~ ~ 112
E {XXT HXM < R’Sp O F = RS

21
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Define €imp =Y — X105, = X 10" +e— X 0% .

. 2
. First, we have e?mp <3 (62 + (XTH.* ) + (XTQ*)Q), then

B[, £X7] <3E[2XXT] +3E [(;m.* )2)25(1 4 3E {(XW*)QXXT} . (35)

imp mp
Using that € is an independent noise, E {GZXXT} = 0% Yimp- Let u, v in RY, note that
N2 . N2 2
UTE[(UTX) XXT} v=FE {(uTX) (JX) ]
T2 (LT
<E | X)" (v7X)

< pE [(u—'—X)2 (vTX)2]

< oy fE [T &[0T 2],
using the Cauchy-Schwarz inequality. Then, by the kurtosis boundedness of Gaussian vectors, we have E [(uTX )4} <

3 [lull’ and E [(ﬂx)ﬂ < 3|v|/%. Then,

N2 ~ -~
vTE [(uTx) XXT} v = 3p|full? ]|

— 2
<3p7 " lulls, [lv]

2
Zimp
This shows that )

E [(uTX) XXT} < 37! )% Simp. (36)
Using similar arguments,

E [(uTx)2 XXT} < 37 )% Simp. (37)

These two above equations can be used when w is equal to 67, ) and 6*, to transform (35) into

E [62 XXT} < (302 + 9071 || mp||Z + 907 16%11%) Siinp-

imp
Remarking, that |6}, H; < 2||6f,, — 9*“22 +2 ||0*H§ = 2(Rf,(d) — R*(d) + ||9*H§3), we get

imp imp imp

— 2 — —
807 + 997! [|0plls + 90710715, S 0% + p 7 (Rinp(d) — R (d) + 1167115,

imp
leading to the desired results. O
Lemma E.2. Under assumptions of Theorem 2.4. The norm of 03, the best predictor working with imputed by 0 inputs,
satisfies
R W T 18113, whend>p—1.
Proof. Let’s begin by,
p(L = p)165p 13 < R(p8) — R(p0™) + p(1 — p) |65 13- (38)

because R(6*) < R(p0;,

imp). Using, Lemma C.1, we obtain

p(l - p)EHG:(mpH% < Amiss + Aimp/miss (39)

22
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First case: d < p — 1. In this, case

d p(d—1)
Amiss + Aimp /miss < (1 —p)=1|8 2 (1 + ) )
p/ ( P)p” Hz p—pld—1)—2

We obtain, using (39),

d p(d—1) P2, 00 —1
E||6%, §52<1+ >§ B :
16550113 ppll 112 P pld—1)—2 > | ||2p_p(d_1)_2

Second case: d > p — 1. In this case,

Amlss + A1mp/mls§ = HB*HQ < 7”5*H2

d+( p)p

We obtain, using (39),
p * (12
E||6: < - .
|| 1mp||2 — p2(1 —p)d”ﬂ HQ

Proof of (13).

Rimp(0) — R*(d) = Rimp(0) — Riyyp(d) + Ripyp (d) — R*(d)

Using Theorem E.1 to bound the first term, we find

Ring(®) = R(@) 5 (14 ) (Riny (@) = RY@) + 103,11+ 2% + 1012

Thus, taking the expectation,

B R 0) ~ R@] S (1+ 2 ) (B + Boic) + SEW 3 + 50 + D)
Note that E[|6%,, 13 < =575 (Aimp/miss + Amiss) (using (39)) and E [|6* |3, = 4 ||3*3 (using Proposition 2.1). Thus,
E[Rimp(0) — R*(d)] < (1 + i - (ld)) (Aimp/miss + Amiss) + g <02 + g IIB*S)
S (1 + (l—dp)pn) (Aimp/miss T Amiss) + % (02 + g ||5*§) :
Thus,
E[Rimp(0) — Riyies(d)] < Aimpmiss ,;in + (1_dp>pn(Aimp/miss + Amniss) + % (02 + g |ﬁ*||§>
<= p)gllﬁHSp - Z)EZ: B 2" (1 —dp)pnzI/Bngp(i;(fi)fplgz)? " % (U " P 18 ”2>
2 2 _
S ooz (e ) e
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E.2. Proof of Equation (14) in Theorem 2.4 and proof of Theorem 3.3

Let’s start with a result of Ayme et al. (2023) for the deterministic case (without random features).

Assumption 9. There exist 0 > 0 and R > 0 such that E[ XX T ||X||§] =< R%Y and E|é? ||XH§] < 0?R?, where
e=Y - XTo,

Theorem E.3. (Ayme et al., 2023) Under Assumption 9, choosing a constant learning rate v = W leads to

2 o* 2
O
v :

) is the best linear predictor for complete (resp. with imputed missing values) case.

E [Rimp (Bimp)] — R(0%) < noolls +

5; 105, (d) - R*(d),

*

where 0™ (resp. 0!

imp

Proof of (14) of Theorem 2.4. By using the Gaussianity of X, we obtain that E {XXT HX||§} < R?Y with R? = 2d.

Furthermore, in the case p < d, we have X To* = ZTB* ande =Y — X T6* thus the noise and X are independent and
E[e? ||XH§] < ¢%Tr(X). Then, Assumption 9 is satisfied with x = 3. Taking the expectation in Theorem E.3, we found

Tr(%) o’ + E|6*]l5
vn vn

Recall that R(6*) = o almost-surely, ||0*H2Z = || 3|3 almost surely and Tr(3) = d. Then,

E [Rinp (Bimp)] — ER(0%) S — =2 |65, |12 +

imp

+ Aimp/miss + Amiss-

d c o2, o2+ 18113
E [Rimp (fimp)] — 0?5 ﬁE ||01H1PH2 + 7,12

f + Aimp/miss + Arniss~

Then applying (39),

o>+ 11813

_ d
E [Rimp (eimp)] - 02 ,S (1 + p(> (Aimp/miss + Amiss) + \/ﬁ

1—p)vn
Applying (11), we finally get

i d pl8*|2 o® + 813
E Rim eim —0o? S )
[Rimap (Bienp)] — 0 ~(1+p(1p)ﬁ>pd+(1—p)p+ Vi
d ) p|15*1I5 Ll

S (1 ) s

Proof of Theorem 3.3. Under Assumption 7, || X [|3 < ~L2d almost surely, then E[X X T || X ||2] < xL2dX. And,
E[e? | X|3] < E[e?]sL%d = R*(c0)kL2d.
Thus we can applied Theorem E.3, that gives us,

R*(00) L + |03,
NG

kL%d
Vn

E [Rimp (éimp)] - R(e*) 5 Hel*mpnz +

+ Rip(d) — R*(d).

Note that,
Afm = ER,(d) = R (o)
= Aimp/miss + Amiss + ER*(d) - R*(OO)
Thus taking the expectation,
kL?d
vn

2
RA(o)RL? + [0, A0

E [Rimp (eimp)} - R*(OO) Sz \/ﬁ imp *

. 2
]EHQimsz +
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Under Assumption 6, it holds that /2 < diag(Y), and

2ot = p)E[85pl; < p(1 = DB 8o s
< Aimp/miss + Amiss
<AL

imp °

Then,

_ kL2d R*(c0)k + |02
E im 011’1’1 - * < o 4 N (OO) Z A(OO)
[Rimp (Oimp)] — R*(0) S p(1— p)/n P + Jn + Rimp

2
< <1 " wL2d > A(OO) R*(OO)/QL2 + ||9*||2

Cp(1—p)y/n) P NG
Recall that using Theorem 3.2,

imp —

Nmp |1 ox L? .
Al < SR = g 1711

and [|0*||%, < EY?2 almost-surely. Thus,

) L2d 12 R* EY?2
© [ )] =005 (14 i ) 501+ S

L% o , EY?
— 1 L .
)+ ) 2

< (i v

F. Proof of Theorem 4.1 (under MNAR assumption)

First step (bias-variance decomposition) We denote by W' the matrix of E; Letf € RP,
. 2
Rimp(6) = EE {(Y - XTe) 1Z, W, W’}
- 2 -
— E4E {(Y _E [XT9|Z,W,W’D |Z,W,W’} +E,V {XT0|Z,W,W’} :

using a classical bias-variance decomposition. Futhermore,
} d ) d
E[XT012W,W| =3 0 | X127, W, W'| =3 0,0(2,W))u(2, W)
j=1 j=1

and

d

v {XT0|Z’W7W,} = ;G?V {X”Zv W]’wz}
d
= 076(Z, W))(1 = &(Z,W)))b(Z, W),
j=1
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Let o € L?(u ® v), and define 69 € R such that Hgd) = a(W;,W})/d. We have

Riap(d) < Rip (0

imp
2

d
1
=Ez [|Y - az_: (W, W) (2, W) (Z, W)

1 d

+Ez |5 Y oWy, WH)2e(Z, W5)(1 — ¢(Z, W) (Z,W;)?

d2
Jj=1

Convergence of the variance term Using that ¢(Z, W/)(1 — ¢(Z,W))) < 1 almost-surely, we have

1< 1<
;Z (W, W))e(Z, Wj) (1 = 6(Z, W) (Z,W;)* | <E ;Z (W, W))*(Z, W;)?

a(W;, W) Bz (Z, W;)?

|
S|~
‘M&

1

J

<

-
1=

Il
—

a(WJ7w;)2L2
J

Using that (a(Wj, E})Q)j are an i.i.d. sequences of integrable random variables, we obtain that

d— o0

d
lim diz (W5, WH)e(Z, W)L~ $(Z. W) (Z.W;) | =0,

almost-surely.
Convergence of the bias term Note that o(W;, W’ )¢(Z, W) (Z, W;) is integrable since |o(W;, W))p(Z, W) <

la(W;, W5)|, and ¢(z, W;) € L*(v). Then, using Kolmogorov’s law and mapping continuous theorem, we obtain

2

d
lim Ey éz (W, W) b(Z, W) (2, W;) —

d—+o00

Ez

(v = [ atw oz otz w)ins viw o) ] - @0

Thus,

limsup R, (d) <Egz

d—+oo imp

(v - [atw oz w)du@u(w,wvﬂ .

Denoting by G the functions of the form

9(2) = / a(w, 0V $(Z, w1 (Z, w)dp ® v(w, w'),

we obtain that

li Ry, (d) < inf Ez |(Y —g(2))?|.
im sup lmp()_;ggz{( 9 ))}
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Using Fubini theorem, functions of the form

9(2) = /<> W2, w)dv(w /ﬁ (2,0 )dp(w)
— H(2)h(2),

are included in G. In the following, we denote by H the set of functions, of the form

2)= [ Bu)o(Z,w)auw),
with 3 € L?(u). We finally obtain the following bound
limsup R}, < inf E [Y— ZYh(Z))?] . 41
imsup Rl (d) < il By [(V = f(2)1(2) @

Proof for the case where Z is compact, 7 is dense in the set of continuous functions, and f* is continuous First, let’s
show that the risk is continuous for the set of continuous prediction functions. Let f and g be two continuous functions on
B (0, B) (ball for ||||), then

|R(f) = R(9)| = [E[(f(2) = f*(2))* = (9(2) = f*(2))*]|
= [E[(f(2) —9(2)(9(2) + f(Z) = [ (2))]]
<N = glloe Ufllo + 119llae + 1177 Ms0)
< =9lle @B+ 1f"]lo0)-

This shows the continuity of the risk. Then, we consider 3 = 1, thus h(Z) = [ S(w")¢(Z, w')dp(w') > 0 almost-surely
because ¢(Z, w'") > 0 almost surely. Thus considering in (41), f (Z)= ( )/ W(Z ) f is continuous, we conclude using
the continuity of risk and that f € F.

Proof for Gaussian RF In this case ¢(z, (w,w))) = ®(z"w’ + w})). Consider I = | ®(w{)dp and introduce h(z) =
Jiw<e §(Z; (W', wo)dp(w', wo /f|\w'|\<g(b(w0)dﬂ(w wp),

1
[T — he( / |6(0, (0, wp)) = ¢(Z, (w', wo))|dp(w’, wp).
wa’H<e wo)dp(w') Jyjwry<e
Using that that ® is C-Lipschitz, one has
I —he(Z2)] < Cel|Z].
We conclude using h = h, for a decreasing sequence of € and f = f*/I in (41).
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