

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING DIVERSE TEXTUAL CONTEXTS FOR RO- BUST PERSONALIZATION OF TEXT-TO-IMAGE DIFFU- SION MODELS

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Text-to-image (T2I) personalization aims to adapt pre-trained T2I models based
014 on user-provided example images for customized image generation. In existing
015 personalization approaches, the models are typically trained with a small number
016 of personal concept images captured in limited contexts. This often weakens ro-
017 bustness, resulting in poor alignment between the text prompts and the generated
018 images. Existing approaches tackled this by collecting images, thereby introduc-
019 ing diversity in the personal concept’s context. Despite its effectiveness, this is
020 often impractical, considering the high cost of image collection. To circumvent
021 this limitation, we instead diversify the contexts of the personal concept in *text*
022 *space*. Based on the fact that the T2I personalization method represents personal
023 concepts as text tokens *e.g.*, “[v]”, this diversification can be easily achieved by
024 composing the tokens with various contextual words *e.g.*, “[v] at Eiffel Tower”,
025 offering an efficient alternative to costly manual image collection. During person-
026 alization, we leverage these text prompts for training to learn diversified contexts.
027 However, utilizing diversified text prompts for personalization is not straightfor-
028 ward, as T2I personalization typically requires paired images as learning targets.
029 To achieve learning without requiring images, we propose to learn them within
030 *text space*. Specifically, we leverage masked language modeling (MLM), which
031 operates entirely within *text space*. By leveraging MLM during personalization,
032 diversified contexts are learned without involving any images. We demonstrate
033 the effectiveness of the proposed approach with extensive experimental results
034 to show that diverse context learning with MLM yields notable improvements
035 in prompt fidelity and state-of-the-art results on widely used public benchmarks.
036 Furthermore, we present an analytical study showing how our approach influences
037 representations in text space through cosine distance analysis of text embeddings,
038 and how these effects propagate to image space via cross-attention maps analysis,
039 providing evidence of its effectiveness.

1 INTRODUCTION

041 Diffusion-based generative models (Ho et al., 2020; Song et al., 2020a; Dhariwal & Nichol, 2021;
042 Song et al., 2020b) have made significant progress in image synthesis, achieving improved diversity
043 and expressiveness in generated outputs. Extending these breakthroughs, diffusion-based text-to-
044 image (T2I) models (Rombach et al., 2022; Podell et al., 2023; Balaji et al., 2022; Saharia et al.,
045 2022; Xue et al., 2024) trained on large-scale text-image pairs (Schuhmann et al., 2022) have demon-
046 strated impressive capabilities in translating the text into visual content.

047 More recently, leveraging the strong prior knowledge of the pretrained T2I generative models (Rom-
048 bach et al., 2022; Chen et al., 2024b), various approaches have been proposed to finetune the models
049 for personalization (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Voynov et al., 2023;
050 Avrahami et al., 2023). Typically, these methods leverage 4-5 images capturing personal concepts in
051 limited contexts to fine-tune the T2I model for personalization (Figure 1, (a)). While demonstrating
052 its potential, existing methods often suffer from *overfitting*, causing the customized model to gener-
053 ate images that are highly similar to the training images and fail to faithfully follow the text prompts
during inference (Figure 1, (b)). Some approaches (Chen et al., 2024c; Wang et al., 2025) addressed

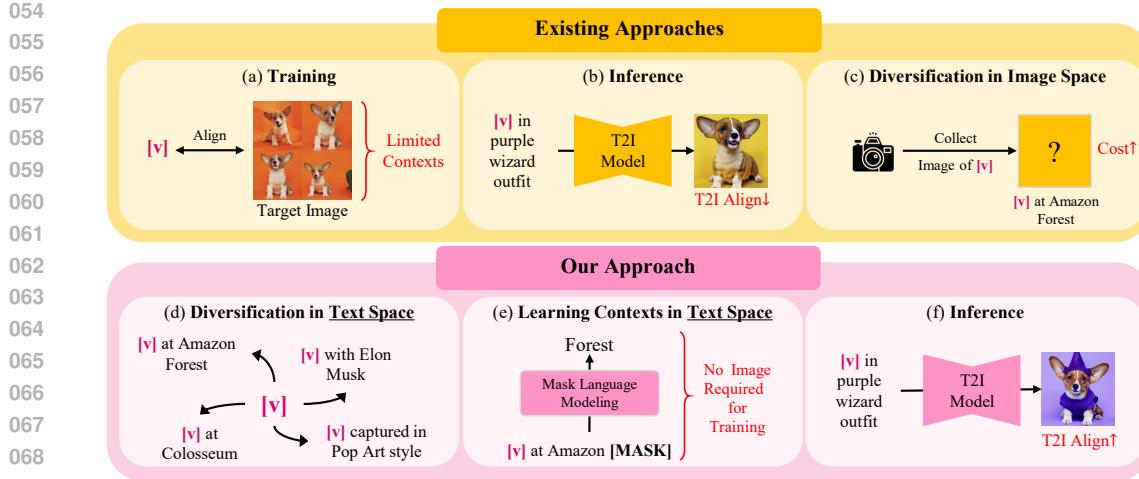


Figure 1: **An Illustrative Comparison Between Existing Approaches and Ours.** (a) In existing approaches, the model is finetuned to align the token “[v]” with target images collected under limited contexts. (b) This often causes overfitting to those limited contexts, resulting in poor text-image alignment. (c) Some approaches tackled this by collecting images captured in diverse contexts; however, this is often impractical due to the high cost of data acquisition. (d) Instead, we diversify the context of the personal concept within *text space*. Since the token “[v]” represents the personal concept, this can be easily done by composing the token with diverse context words. (e) We propose learning these diversified contexts in the *text space* by leveraging masked language modeling (MLM). While personalization typically requires paired images as learning targets, our approach circumvents this requirement, as MLM operates entirely within *text space*. (f) As the personal concept token learns diversified contexts, the model generalizes better to novel contexts during inference, leading to notable improvements in text-image alignment.

this by collecting images; however, this is often impractical, as images captured in diverse contexts are costly to obtain (Figure 1, (c)).

Instead, we propose to diversify the context solely within *text space*. Based on the fact that the personal concept token, *e.g.*, “[v]” corresponds to the personal concept in T2I personalization (Gal et al., 2022; Kumari et al., 2023; Ruiz et al., 2023), this can be easily achieved by combining with diverse context words, *e.g.*, “[v] at Eiffel Tower” (Figure 1, (d)). Utilizing diversified textual contexts, we propose learning them within *text space* using masked language modeling (MLM) (Figure 1, (e)). Unlike typical personalization, which requires paired images as learning targets, our approach circumvents this requirement, as MLM operates entirely within *text space*. By training the model to learn diverse contexts, the model generalizes more effectively to novel contexts during inference, resulting in notable improvements in text-image alignment (Figure 1, (f)).

Later, we show that adopting the MLM objective with a contextually diverse text prompt set during personalization alleviates the overfitting and leads to semantic enhancement in textual representation, which ultimately extends to higher prompt fidelity in image generation.

We conduct extensive experiments to demonstrate the effectiveness of our approach and outperform existing approaches. We summarize our contributions as follows,

- We introduce a novel T2I personalization method that enhances the contextual diversity of personal concepts within *text space*.
- We achieve learning diverse contexts *without requiring images*, by leveraging *textual-space* learning with a masked language modeling objective.
- We provide an analytical study demonstrating that our approach yields semantic enrichment in the textual representation of personal concepts, which in turn improves alignment and fidelity in the image space.
- We conduct extensive experiments validating the effectiveness of our method, showing consistent improvements and superior generation quality compared to state-of-the-art personalization approaches.

108 2 METHOD

109 2.1 PRELIMINARIES

110 **Self-Attention as Linear Combination.** We first would like to highlight the important aspect of
111 attention layers: *the output token of the attention layer is the linear combination of the input tokens*.
112 We elaborate this with the self-attention layer. Let $\mathbf{Q}_l \in \mathbb{R}^{L \times d}$, $\mathbf{K}_l \in \mathbb{R}^{L \times d}$, $\mathbf{V}_l \in \mathbb{R}^{L \times d}$ denote
113 the query, key, and value obtained from the same input token embeddings in the l -th self-attention
114 layer. The attention map is first computed as,
115

116
$$\mathbf{A}_l^{\text{self}} = \text{Softmax}\left(\frac{\mathbf{Q}_l \mathbf{K}_l^\top}{\sqrt{d}}\right), \quad (1)$$

117 which is then multiplied with the value to compute the output, $\mathbf{O}_l = \mathbf{A}_l^{\text{self}} \mathbf{V}_l$. Here, we would like
118 to note that each of the output tokens $\mathbf{O}_l[i, :]$ is a *linear combination* of input token embeddings,
119

120
$$\underbrace{\mathbf{O}_l[i, :]_{i^{\text{th}} \text{ output token}}}_{= \sum_{j=1}^L \mathbf{A}_l^{\text{self}}[i, j] \underbrace{\mathbf{V}_l[j, :]_{\text{input token}}}_{}, \quad (2)$$

121 where attention $\mathbf{A}_l^{\text{self}}[i, j]$ serves as the scalar coefficient of the j -th input token.
122123 **Text-to-Image Personalization.** Text-to-image (T2I) personalization involves fine-tuning a pre-
124 trained T2I model (Rombach et al., 2022) on a small set of personal concept images \mathbf{x} . An encoder
125 \mathcal{V} is adopted to produce latent image $\mathbf{z}_0 = \mathcal{V}(\mathbf{x})$, and a random noise map $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is added
126 to the latent $\mathbf{z}_t = \alpha_t \mathbf{z}_0 + \beta_t \epsilon$, where α_t and β_t denote the noise scheduling coefficients (Ho et al.,
127 2020). Also, a text prompt that includes a personal concept token representing the personal concept
128 (*e.g.*, “*a picture of a [v]*”) is tokenized as sequence of token embeddings $\mathbf{P} = \{p_1, \dots, p_*, \dots, p_L\}$,
129 where $*$ denotes the index of the personal concept token. Utilizing token embeddings, the text em-
130 bedding is obtained with CLIP (Radford et al., 2021) text encoder Γ , $\mathbf{C} = \Gamma(\mathbf{P})$. Leveraging the text
131 embedding and the noisy latent, the T2I model ϵ_θ is fine-tuned to minimize the following objective,
132

133
$$\mathcal{L}_{\text{Custom}}(\mathbf{z}_t, t, \mathbf{C}) := \mathbb{E}_{\mathbf{C}, \epsilon, t, \mathbf{z}} \left[\|\epsilon - \epsilon_\theta(\mathbf{z}_t, t, \mathbf{C})\|_2^2 \right]. \quad (3)$$

134 2.2 LEARNING DIVERSE CONTEXTS IN TEXT SPACE

135 Existing T2I personalization (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Han et al.,
136 2023) typically finetunes the pretrained T2I model on 4–5 images of the personal concept captured
137 with limited contexts *e.g.*, simple background (Figure 1, (a)). This often leads to overfitting, leading
138 to generated results with poor prompt fidelity (Figure 1, (b)). While this can be naively addressed
139 by collecting images captured in diverse contexts, this is often impractical as images are costly to
140 acquire (Figure 1, (c)).
141142 **Context Diversification in Text Space.** Instead of diversifying the context within image space,
143 we diversify the context within *text space* (Figure 1, (d)). Based on the fact that personal concepts
144 are represented as tokens *e.g.*, “[v]”, contextual diversification can be easily achieved within text
145 space by simply combining the personal concept token with diverse contextual words, *e.g.*, “[v] at
146 Amazon Forest”. As manually collecting images of the personal concept in diverse contexts is costly,
147 this provides a highly efficient way to improve the contextual diversity. Accordingly, we construct a
148 prompt set that describes the personal concept token in diverse contexts prior to training (Figure 2,
149 Diverse Contexts). The construction process is detailed in Section A.3.
150151 **MLM for Learning Diverse Contexts.** Diversified contexts are learned within *text space* using
152 masked language modeling (MLM) (Figure 1, (e)). T2I personalization typically requires images
153 corresponding to each prompt for the denoising objective (Equation (3)), hence leveraging diversi-
154 fied text prompts for training is not straightforward. MLM can be an effective way to circumvent
155 this restriction, since MLM operates entirely within *text space*. In MLM, the personal concepts are
156 contextualized with diverse contexts via self-attention. By encouraging the model to predict the
157 correct word, the personal concept is encouraged to be aligned with diverse semantics. The details
158 of the learning process with MLM are elaborated below.
159

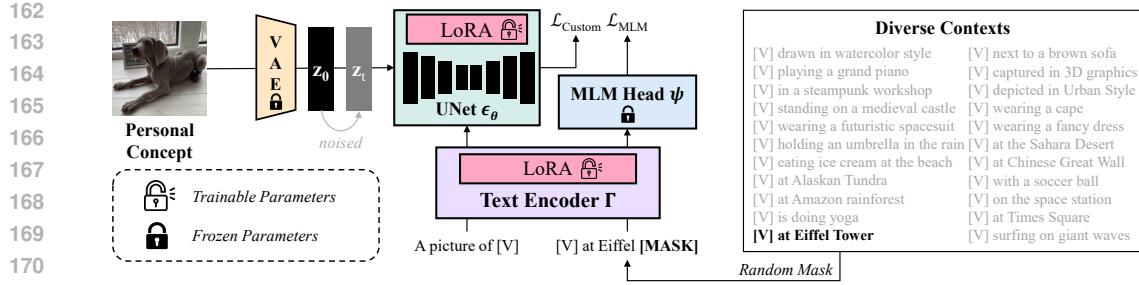


Figure 2: **Method Overview.** For T2I personalization, we fine-tune the model to align the personal concept image and the prompt containing the personal concept token *i.e.*, “*a photo of [v]*”. During T2I personalization, we deploy a prompt set describing the personal concept, *i.e.*, “[v]”, in diverse contexts. Sampling from the diversified prompt set, MLM loss is computed. In this way, diverse context learning can be achieved without requiring the paired image.

Tokenizing the prompt drawn from the contextually diverse prompt set (*e.g.*, “[v] at Eiffel Tower”), we obtain a sequence of token embeddings $\tilde{\mathbf{P}} = \{\tilde{p}_i\}_{i=1}^L$, where i denotes the index of each token and we denote the \tilde{p}_* as the personal concept token. For MLM, we randomly mask a subset of the tokens, and the mask token is denoted as \tilde{p}_m . At each self-attention layer in the text encoder, the query, key, and value matrices are projected from the same input, denoted as \mathbf{Q}_l , \mathbf{K}_l , and \mathbf{V}_l , all in $\mathbb{R}^{L \times d}$. Attention map $\mathbf{A}_l^{\text{self}}$ is then computed (Equation (1)), which is then multiplied with the value \mathbf{V}_l . As discussed in Section 2.1, the output token is the *linear combination* of the input tokens,

$$\begin{aligned} \mathbf{O}_l[m, :] &= \underbrace{\sum_{j=1}^L \mathbf{A}_l^{\text{self}}[m, j] \mathbf{V}_l[j, :]}_{\text{Output Mask}} \\ &= \sum_{\substack{j=1 \\ j \neq *}}^L \mathbf{A}_l^{\text{self}}[m, j] \underbrace{\mathbf{V}_l[j, :] + \mathbf{A}_l^{\text{self}}[m, *] \underbrace{\mathbf{V}_l[*, :]}_{\text{Personal Concept}}}_{\text{Context}} , \end{aligned} \quad (4)$$

where m denotes the index of mask token, \mathbf{O}_l is the output of the l -th layer, and $\mathbf{V}_l[i, :] \in \mathbb{R}^d$ is the input token. As shown, when computing the output mask token, the personal concept is linearly combined with the context tokens. From contextualized mask token, masked tokens are predicted $\hat{\mathbf{y}} = \psi(\mathbf{O}_l[m, :])$. For correct prediction, the MLM loss is computed,

$$\mathcal{L}_{\text{MLM}} = \mathbb{E}[\text{CrossEntropy}(\mathbf{y}, \hat{\mathbf{y}})], \quad (5)$$

where ψ is the MLM head for masked token prediction. As the CLIP (Radford et al., 2021) text encoder does not support MLM, we train a lightweight transformer network prior to the T2I personalization. The details are provided in Section A.4. Conceptually, minimizing the MLM loss encourages the personal concept embedding to learn the contextual semantics, as the output mask token incorporates the personal concept as a linear combination. The MLM process involving personal concept is illustrated in Figure 3. Note that neither the input nor the label requires *any image*.

Finetuning for Personalization. Our model personalization is based on DreamBooth (Ruiz et al., 2023) with LoRA (Hu et al., 2022) that achieves personalization with $\mathcal{L}_{\text{Custom}}$ (Equation (3)). Utilizing the contextually diverse text prompts, the \mathcal{L}_{MLM} (Equation (5)) is computed. The overall learning objective can be formulated as follows,

$$\mathcal{L}_{\text{Custom}}(\mathbf{z}_t, t, \mathbf{C}) + \lambda \mathcal{L}_{\text{MLM}}(\tilde{\mathbf{C}}_{\text{masked}}), \quad (6)$$

216 where \mathbf{z}_t denotes the noised latent of personal concept image, t denotes the timestep, and λ denotes
 217 the weight for the MLM loss. Note that, as the MLM objective *does not* involve images, the model
 218 fine-tuning can be achieved with diverse contexts without manually collecting the corresponding
 219 images. We provide the illustrative description of the overall training process in Figure 2.
 220

221 **2.3 ANALYSIS**
 222

223 We provide an analysis of our method to explain how the MLM with diverse contexts during model
 224 personalization achieves improvements. We empirically validate that personalization with diverse
 225 contexts leads to enhancement in *textual space*, and this further leads to enhancement in *image space*
 226 with improved prompt fidelity in T2I generation.
 227

228 **Analysis in Textual Space.** Here, we show that the T2I personalization trained with *limited contexts*
 229 leads to suppression of context tokens and dominance of personal concepts. In contrast, our
 230 method customized with *diverse contexts* mitigates this issue, thereby achieving semantic enhance-
 231 ment in textual space. To show this, we validate the following,
 232

- 233 • The semantics of *context tokens* (*i.e.*, non-personal) become *similar* to the *personal concept*
 234 *tokens* when customized with limited contexts.
- 235 • The semantics of the *context tokens* get *distinct* from the *personal concept* token as the
 236 model is customized with diverse contexts.
 237

238 To validate this, we provide a cosine distance analysis of text token embeddings. Specifically, we
 239 measure the cosine distance between the context token c_b , *e.g.*, “*Eiffel Tower*” and the personal
 240 concept token embedding c_* , *e.g.*, “[v]”. The token embeddings are extracted from the output
 241 embedding of the same prompt, *e.g.*, “*a photo of [v] at Eiffel Tower*”, and their cosine distance
 242 $d_{\text{text}} = 1 - \cos(c_b, c_*)$ is measured to see how distinct they are. For validation, we use 100 different
 243 context tokens with 7 different concepts.
 244

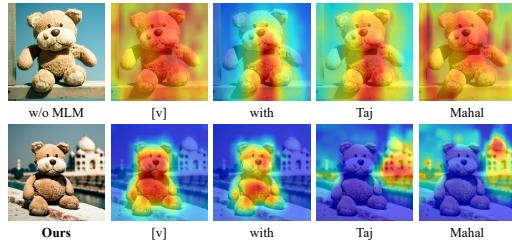
Method	$d_{\text{text}} \uparrow$	$SV_{\text{cross}} \downarrow$
w/o MLM (Limited Contexts)	0.39	23.27
Ours (Diverse Contexts)	0.74	15.18

245 **Table 1: Analysis.** Cosine distance between the personal concept and context token from the same
 246 prompt (d_{text}) is measured. SV_{cross} denotes spatial variance of the cross-attention maps of the context
 247 token.
 248

249 The result in Table 1 shows that the context token embeddings in the model trained without MLM
 250 with limited contexts become highly similar to the personal concept (*low* d_{text}), whereas we observe
 251 the opposite trend for our model trained with diverse contexts (*high* d_{text}). This result suggests that
 252 limited-context personalization induces a collapse of contextual semantics, while diverse contexts
 253 effectively mitigate this, keeping the context tokens semantically distinct.
 254

255 **Analysis in Image Space.** In order to see how
 256 the enhancement in textual space can be trans-
 257 ferred to image space, we provide an analysis
 258 of the cross-attention layers in the diffusion U-
 259 Net, where the interaction between text and im-
 260 age takes place.
 261

262 Let $\mathbf{Q}_{\mathcal{I}} \in \mathbb{R}^{|\text{queries}| \times d}$ and $\mathbf{K}_{\mathcal{T}} \in \mathbb{R}^{L \times d}$ denote
 263 the query and key in the cross-attention layer,
 264 projected from image \mathcal{I} , and text \mathcal{T} , where
 265 $|\text{queries}|$ denotes the number of image tokens,
 266 L denotes the number of text tokens, and d de-
 267 notes the dimension of each image/text token
 268 embedding. In each layer, the cross-attention
 269



270 **Figure 4: Cross-Attention Map Visualization.**
 271 With our approach, attention maps of context to-
 272 kens are more concentrated within relevant re-
 273 gions. More results available in Figures G and H.
 274 16 × 16 map is visualized.
 275

270 map is computed as,
 271

$$272 \quad \mathbf{A}_l^{\text{cross}} = \text{Softmax}\left(\frac{\mathbf{Q}_T \mathbf{K}_T^\top}{\sqrt{d}}\right). \quad (7)$$

$$273$$

$$274$$

275 We visualize the cross-attention map obtained from the model trained without MLM and our model
 276 trained with MLM in Figure 4. For the model trained without MLM, the visualization shows that
 277 the similarities in the text embeddings are transferred to the image space, resulting in cross-attention
 278 maps of the context tokens being dispersed over the image. In contrast, our method with MLM
 279 shows attention maps being more concentrated within the relevant regions that are distinct from
 280 the personal concept. To assess the overall trend of this observation, we analyze cross-attention
 281 maps using the same prompt set as the textual analysis. For this, we compute the Spatial Variance
 282 [Gonzalez \(2009\)](#) (SV_{cross}) of cross-attention map to measure the dispersion of activations around
 283 their centroid,
 284

$$285 \quad \mu_j = \sum_{i,j} j \mathbf{A}_l^{\text{cross}}[i,j], \quad \mu_i = \sum_{i,j} i \mathbf{A}_l^{\text{cross}}[i,j]$$

$$286 \quad \text{Var}_j = \sum_{i,j} \mathbf{A}_l^{\text{cross}}[i,j] (j - \mu_j)^2, \quad \text{Var}_i = \sum_{i,j} \mathbf{A}_l^{\text{cross}}[i,j] (i - \mu_i)^2, \quad (8)$$

$$287$$

$$288 \quad \text{SV}_{\text{cross}} = \frac{1}{2} (\text{Var}_j + \text{Var}_i).$$

$$289$$

290 As shown in Table 1, the model trained without MLM yields higher spatial variance, indicating that
 291 cross-attention is dispersed over the image, aligned with the visualized example in Figure 4. In
 292 contrast, our model trained with MLM yields lower spatial variance, indicating that cross-attention
 293 is more tightly confined to relevant regions, aligned with the visualized example in Figure 4, (“*Taj*
 294 *Mahal*”). This result indicates that semantic enhancement in textual space leads to enhancement in
 295 image space, confirming the effectiveness of the proposed method. Additional cross-attention maps
 296 are visualized in Figures G and H.

297 3 EXPERIMENTS

$$298$$

300 3.1 EXPERIMENTAL SETTINGS

$$301$$

Implementation Details. We fine-tune the pretrained Stable Diffusion ([Rombach et al., 2022](#))
 302 `stabilityai/stable-diffusion-2-1-base` for personalization. For MLM, we ran-
 303 domly mask tokens with 15% chance, following ([Devlin et al., 2018](#)). For fine-tuning with MLM
 304 loss, we *strictly* exclude the benchmark prompts from the training data. We set classifier-free guid-
 305 ance ([Ho & Salimans, 2022](#)) scale of 7.5 with the number of sampling steps 50 for generation. We
 306 set LoRA rank=32, and the AdamW ([Loshchilov, 2019](#)) is adopted as optimizer. All the experiments
 307 are conducted on a single NVIDIA RTX 3090 24GB GPU.

Baselines. We compare our method with Textual Inversion (TI) ([Gal et al., 2022](#)), DreamBooth
 308 (DB) ([Ruiz et al., 2023](#)), XTI ([Voynov et al., 2023](#)), NeTI ([Alaluf et al., 2023](#)), ELITE ([Wei et al.,
 309 2023](#)), BLIP-D ([Li et al., 2023a](#)), CustomDiffusion (CD) ([Kumari et al., 2023](#)), and DisenBooth
 310 ([Chen et al., 2023](#)). We provide details of the baselines in Section A.1.

Dataset and Benchmark. We use a mixture of 15 different personal concepts adopted from DB
 311 ([Ruiz et al., 2023](#)), TI ([Gal et al., 2022](#)), and CD ([Kumari et al., 2023](#)). Specifically, we use 11
 312 subjects from DB ([Ruiz et al., 2023](#)) composed, 3 subjects from ([Kumari et al., 2023](#)), wooden_pot],
 313 and 1 subject from ([Gal et al., 2022](#)). We use a benchmark prompt set from DB ([Ruiz et al., 2023](#)).
 314 This prompt set contains 25 prompts for nonliving and living subject categories, and 8 images per
 315 prompt are generated, resulting in a total of 3,000 images. Also, we use a more challenging prompt
 316 set from ([Nam et al., 2024](#)). This prompt set consists of 24 prompts for both nonliving and living
 317 subject categories. We generate 8 images per prompt, resulting in a total of 2,880 images.

Evaluation Metrics. Following the literature ([Ruiz et al., 2023; Gal et al., 2022; Kumari et al., 2023;](#)
 318 [Kim et al., 2024b](#)), we measure: 1) CLIP Text Alignment ([Hessel et al., 2021](#)) (**CLIP**) to measure the
 319 text prompt fidelity, 2) DINO Image alignment (**DINO**) to measure the subject fidelity. We mask the
 320 non-subject regions when computing this, following ([Kim et al., 2024b](#)). Additionally, we evaluate
 321 3) **ImageReward**, which assesses the overall aesthetic and alignment quality of generated images

Method	CLIP \uparrow	DINO \uparrow	ImageReward \uparrow	BLIP-VQA \uparrow
TI	0.682	0.708	-0.769	0.372
NeTI	0.733	0.754	0.010	0.545
ELITE	0.734	0.693	0.069	0.594
BLIP-D	0.745	0.687	0.206	0.607
CD	0.766	0.750	0.569	0.678
DB	0.728	0.744	0.036	0.544
XTI	0.748	0.721	0.414	0.692
DisenBooth	0.771	0.743	0.636	0.640
Ours	0.785	0.760	0.842	0.726

Table 2: **Comparison results on DreamBench prompts.** The best results are denoted in **bold**.

Method	CLIP \uparrow	DINO \uparrow	ImageReward \uparrow	BLIP-VQA \uparrow
TI	0.689	0.705	-0.688	0.377
NeTI	0.735	0.746	-0.092	0.524
ELITE	0.746	0.683	0.064	0.581
BLIP-D	0.741	0.692	0.084	0.571
CD	0.763	0.743	0.414	0.610
DB	0.747	0.740	0.146	0.556
XTI	0.756	0.703	0.269	0.591
DisenBooth	0.767	0.749	0.416	0.587
Ours	0.777	0.759	0.572	0.635

Table 3: **Comparison results on challenging prompts.** The best results are denoted in **bold**.

Figure 5: **Qualitative Comparison in the Ablation Study.** Training the model with diverse contexts with MLM leads to notable improvements in text-image alignment, while preserving the subject identity.

based on human preferences (Xu et al., 2023), and 4) **BLIP-VQA**, a widely used vision-language question-answering metric that verifies the presence of expected attributes in the generated images by answering predefined queries (Huang et al., 2023).

3.2 QUANTITATIVE RESULTS

Comparison with Baseline Method. Across both DreamBench (Table 2) and the challenging prompt set (Table 3), our method consistently achieves the best performance on all four metrics, demonstrating strong robustness and effectiveness. Improvements across both benchmarks further confirm its reliability in handling diverse prompt complexities. Notably, the substantial gain in ImageReward indicates that our approach not only preserves semantic alignment with the prompts but also generates outputs that better match human visual preferences. We also would like to note that this result is completely zero-shot, as we do not involve *any* of the benchmark prompts for the MLM.

3.3 ABLATION STUDY

In this section, we conduct ablation studies to provide deeper insights into our method and validate its effectiveness. For this, we use a subset of eight different concepts.

Impact of Proposed Approach. We first examine the impact of the proposed method. As presented in Table 4, incorporating diverse contexts during training enhances semantic alignment, resulting in substantial gains in ImageReward and BLIP-VQA. We also provide a qualitative comparison to visualize the impact of the MLM in Figure 5. As shown in the results, our approach trained with diverse contexts leads to higher text-image alignment Section B.1.

λ	ImageReward \uparrow	BLIP-VQA \uparrow	DINO \uparrow
w/o MLM	0.562	0.651	0.791
1×10^{-2}	0.728	0.680	0.794
2×10^{-2}	0.781	0.694	0.790
3×10^{-2}	0.751	0.685	0.791
5×10^{-2}	0.862	0.700	0.776

Table 4: **Evaluation results with Varying λ .** Ours choice is **bolded**.

378	Mask Prob. [%]	ImageReward \uparrow	379	# Prompts	ImageReward \uparrow	BLIP-VQA \uparrow
380	w/o MLM	0.562	381	w/o MLM	0.562	0.651
382	1	0.708	383	1	0.418	0.603
384	15	0.759	385	100	0.751	0.678
386	25	0.754	387	300	0.756	0.684
388	45	0.750	389	Ours	0.781	0.694

Table 5: **Ablation Study on Masking Probability.** Table 6: **Ablation Study on Prompt Set Size.**

Impact of λ . We next study the influence of MLM loss weight (Table 4). By adopting the MLM, we observe notable improvements in the ImageReward score. By increasing the value of λ , we observe a general trend of improvement in ImageReward. Besides, an excessive amount of value results in a decrease in subject fidelity, as the model is encouraged to focus more on capturing the semantic relationships of the contexts. We use $\lambda = 2 \times 10^{-2}$ as final choice.

Impact of Masking Probability. We train the model with different masking probabilities and study its impact. Table 5 shows that the performance is relatively insensitive to the masking probability; however, excessively high values lead to degradation. This result validates the importance of contextual information, as excessively high masking value leads to contextual semantics removal.

Impact of Prompt Set Size. We study the impact of prompt set size when applying the MLM objective, by varying their sizes (Table 6). Here, we sample different numbers of prompts from each text prompt category. We observe that a very small prompt set (e.g., size = 1) fails to provide effective contextualization, whereas increasing the prompt size improves the model’s ability to follow the prompts more effectively.

3.4 QUALITATIVE RESULTS

We present the side-by-side comparison results of the proposed method in Figure 6. In general, the baseline method that integrates our approach leads to improvement in prompt fidelity. In these visualization results, the baseline approach shows a higher tendency to neglect the context semantics. We analyze that the baseline approach loses the semantics of the context in textual space, which leads to the loss of semantics of the generated images. In contrast, the adoption of MLM leads to the preservation of the contextual semantics in text embedding, resulting in images with enhanced semantics with higher prompt fidelity. We provide additional qualitative results in Section B.

4 RELATED WORKS

Text-to-Image Generation. The emergence of diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020a;b; 2023; Dhariwal & Nichol, 2021) have shifted the paradigm of generative modeling, with its capabilities demonstrated in a wide range of computer vision applications, including videos (Ho et al., 2022; Jain et al., 2024; Kim et al., 2023; Wei et al., 2024), segmentation (Tian et al., 2024; Peng et al., 2023a;b), and super resolutions (Yang et al., 2024; Xia et al., 2023; Feng et al., 2024). Among them, diffusion-based text-to-image (T2I) generative models (Saharia et al., 2022; Rombach et al., 2022; Balaji et al., 2022; Ramesh et al., 2021; 2022; Ding et al., 2022) have achieved significant success. GLIDE (Nichol et al., 2021) demonstrated that using classifier-free guidance (Ho & Salimans, 2022) can enhance both the photorealism and caption alignment of generated images. Stable Diffusion (Rombach et al., 2022) and its variants (Podell et al., 2023; Esser et al., 2024) proposed a way to improve the efficiency by applying the diffusion process in the lower-dimensional latent space. Several research efforts have been introduced to improve the controllability of T2I generation across various dimensions by incorporating additional input as conditions (Zhang et al., 2023; Li et al., 2024b; Dahary et al., 2024; Li et al., 2023b; Gafni et al., 2022; Tuo et al., 2023; Chen et al., 2024a).

Personalized Text-to-Image Generation. Building on the great success of T2I generation, a line of research works has been proposed to adapt the T2I generative model on user-provided custom images (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Voynov et al., 2023; Han et al., 2023; Liu et al., 2023; Nam et al., 2024; Po et al., 2024; Alaluf et al., 2023). Textual inversion (TI) (Gal et al., 2022) has pioneered a method to convert personal concept images into token embedding. DreamBooth (Ruiz et al., 2023) extended TI by fine-tuning the diffusion U-Net along with the prior preservation loss to prevent the forgetting of prior concepts. Since the introduction of the pioneering

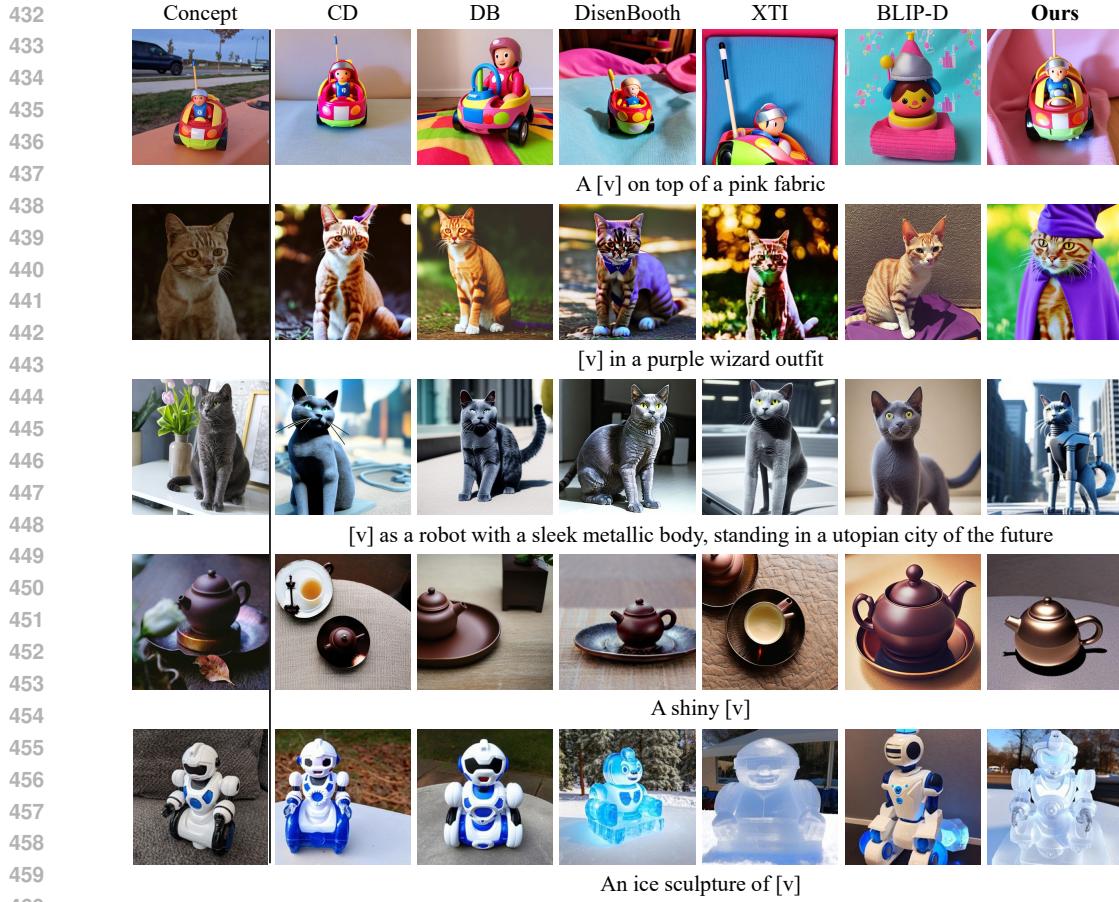


Figure 6: **Qualitative Comparisons Results.** Our method shows clear superiority in text–image semantic alignment and preserves subject identity. In contrast, existing methods often yield low text–image alignment or compromise identity when semantically aligned (e.g., *DisenBooth* and *XTI* in the last row).

works, a line of work has been proposed to make improvements in diverse aspects. Many works (Shi et al., 2024; Gal et al., 2023; Arar et al., 2023; Jia et al., 2023; Li et al., 2024a; Zhang et al., 2024) such as InstantBooth have focused on the fast adaptation of the model without test-time optimization. There is also a growing interest in developing methods specialized for facial images (Peng et al., 2024; Pang et al., 2024; Kim et al., 2024a; Wang et al., 2024; Gu et al., 2024), such as (Yuan et al., 2023) which constructed a set of basis tokens corresponding to celebrities and optimized their weights to synthesize a given image. Our work also has close relations to works that aim to improve the semantic alignment in T2I generation (Kim et al., 2024b; Chen et al., 2023). For example, (Kim et al., 2024b) proposed to make improvements by providing selectively informative captions during training.

5 CONCLUSION

In this paper, we proposed a novel text-to-image (T2I) personalization approach for robust finetuning of the T2I diffusion model. Unlike prior methods that rely on collecting additional images to address the limited contextual diversity, our approach offered an efficient way to achieve this, enhancing the diversity of a personal concept’s context within textual space. We show that this increased diversity in text space can be effectively learned with masked language modeling, demonstrated by extensive experiments with state-of-the-art results on public benchmarks. With further analysis showing that context diversification enhances textual representations and propagates to image space via cross-attention mechanisms, we provided insight into why our approach leads to improved personalization in T2I generation.

486 ETHICS STATEMENT
487

488 Our research investigates customized text-to-image (T2I) generative models. We recognize
489 that such models entail potential risks, including misuse for creating misleading, harmful, or
490 biased content. These risks may manifest in the generation of deceptive imagery, reinforcement
491 of stereotypes, or the production of offensive or inappropriate material in certain contexts.
492 While the primary aim of this work is academic, we acknowledge the broader ethical implica-
493 tions and societal impact associated with advancing and deploying generative AI technologies.
494 We underscore the need for safeguards that promote the safe and ethical use of these models.

495
496 REFERENCES
497

498 Yuval Alaluf, Elad Richardson, Gal Metzer, and Daniel Cohen-Or. A neural space-time representa-
499 tion for text-to-image personalization. *Transactions on Graphics (TOG)*, 2023. 6, 8, 14
500

501 Moab Arar, Rinon Gal, Yuval Atzmon, Gal Chechik, Daniel Cohen-Or, Ariel Shamir, and Amit
502 H. Bermano. Domain-agnostic tuning-encoder for fast personalization of text-to-image models.
503 In *SIGGRAPH Asia*, 2023. 9

504 Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene:
505 Extracting multiple concepts from a single image. In *SIGGRAPH Asia*, 2023. 1

506

507 Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
508 Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
509 an ensemble of expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022. 1, 8

510 Hong Chen, Yipeng Zhang, Simin Wu, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu Zhu.
511 Disenbooth: Identity-preserving disentangled tuning for subject-driven text-to-image generation.
512 *ICLR*, 2023. 6, 9, 14

513

514 Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser:
515 Diffusion models as text painters. *NeurIPS*, 36, 2024a. 8

516

517 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
518 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
519 alistic text-to-image synthesis. *ICLR*, 2024b. 1

520

521 Wenhui Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, and William W
522 Cohen. Subject-driven text-to-image generation via apprenticeship learning. *NeurIPS*, 36, 2024c.
523 1

524

525 Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention
526 for multi-subject text-to-image generation. *ECCV*, 2024. 8

527

528 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
529 bidirectional transformers for language understanding. *NAACL*, 2018. 6

530

531 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*,
532 2021. 1, 8

533

534 Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image
535 generation via hierarchical transformers. *NeurIPS*, 2022. 8

536

537 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
538 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
539 high-resolution image synthesis. In *ICML*, 2024. 8

540

541 Ruicheng Feng, Chongyi Li, and Chen Change Loy. Kalman-inspired feature propagation for video
542 face super-resolution. In *ECCV*, 2024. 8

543

544 Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-
545 a-scene: Scene-based text-to-image generation with human priors. In *ECCV*, 2022. 8

540 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
 541 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
 542 inversion. *arXiv preprint arXiv:2208.01618*, 2022. 1, 2, 3, 6, 8, 14, 17

543 Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
 544 Encoder-based domain tuning for fast personalization of text-to-image models. *Transactions on*
 545 *Graphics (TOG)*, 2023. 9

546 Rafael C Gonzalez. *Digital image processing*. Pearson education india, 2009. 6

547 Jing Gu, Yilin Wang, Nanxuan Zhao, Tsu-Jui Fu, Wei Xiong, Qing Liu, Zhifei Zhang, He Zhang,
 548 Jianming Zhang, HyunJoon Jung, et al. Photoswap: Personalized subject swapping in images.
 549 *NeurIPS*, 2024. 9

550 Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff:
 551 Compact parameter space for diffusion fine-tuning. In *ICCV*, 2023. 3, 8

552 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 553 reference-free evaluation metric for image captioning. *EMNLP*, 2021. 6

554 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 555 *arXiv:2207.12598*, 2022. 6, 8

556 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33,
 557 2020. 1, 3, 8

558 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
 559 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
 560 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022. 8

561 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 562 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 2022. 4, 14

563 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
 564 benchmark for open-world compositional text-to-image generation. *NeurIPS*, 2023. 7, 15

565 Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
 566 via masked-diffusion. In *CVPR*, 2024. 8

567 Xuhui Jia, Yang Zhao, Kelvin CK Chan, Yandong Li, Han Zhang, Boqing Gong, Tingbo Hou,
 568 Huisheng Wang, and Yu-Chuan Su. Taming encoder for zero fine-tuning image customization
 569 with text-to-image diffusion models. *arXiv preprint arXiv:2304.02642*, 2023. 9

570 Chanran Kim, Jeongin Lee, Shichang Joung, Bongmo Kim, and Yeul-Min Baek. Instantfamily:
 571 Masked attention for zero-shot multi-id image generation. *arXiv preprint arXiv:2404.19427*,
 572 2024a. 9

573 Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, and Eunho Yang. Diffusion
 574 video autoencoders: Toward temporally consistent face video editing via disentangled video
 575 encoding. In *CVPR*, 2023. 8

576 Jimyeong Kim, Jungwon Park, and Wonjong Rhee. Selectively informative description can reduce
 577 undesired embedding entanglements in text-to-image personalization. In *CVPR*, 2024b. 6, 9, 14

578 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 579 customization of text-to-image diffusion. In *CVPR*, 2023. 1, 2, 3, 6, 8, 14, 17

580 Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for con-
 581 trollable text-to-image generation and editing. *NeurIPS*, 36, 2023a. 6, 14

582 Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for con-
 583 trollable text-to-image generation and editing. *NeurIPS*, 36, 2024a. 9

584 Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen
 585 Chen. Controlnet ++: Improving conditional controls with efficient consistency feedback. In
 586 *ECCV*, 2024b. 8

594 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 595 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *CVPR*, 2023b. 8
 596

597 Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou,
 598 and Yang Cao. Cones: Concept neurons in diffusion models for customized generation. *ICML*,
 599 2023. 8

600 I Loshchilov. Decoupled weight decay regularization. *ICLR*, 2019. 6
 601

602 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 603 projection for dimension reduction. *arXiv:1802.03426*, 2018. 19

604 Jisu Nam, Heesu Kim, DongJae Lee, Siyoon Jin, Seungryong Kim, and Seunggyu Chang. Dream-
 605 matcher: Appearance matching self-attention for semantically-consistent text-to-image personal-
 606 ization. In *CVPR*, 2024. 6, 8, 17, 18

607 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 608 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 609 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021. 8
 610

611 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 612 In *ICML*, 2021. 8

613 OpenAI. Chatgpt: Gpt-4, 2023. URL <https://openai.com/research/gpt-4>. 15, 17
 614

615 Lianyu Pang, Jian Yin, Haoran Xie, Qiping Wang, Qing Li, and Xudong Mao. Cross initialization
 616 for face personalization of text-to-image models. In *CVPR*, 2024. 9, 20

617 Duo Peng, Ping Hu, QiuHong Ke, and Jun Liu. Diffusion-based image translation with label guid-
 618 ance for domain adaptive semantic segmentation. In *ICCV*, 2023a. 8
 619

620 Duo Peng, Ping Hu, QiuHong Ke, and Jun Liu. Diffusion-based image translation with label guid-
 621 ance for domain adaptive semantic segmentation. In *ICCV*, 2023b. 8

622 Xu Peng, Junwei Zhu, Boyuan Jiang, Ying Tai, Donghao Luo, Jiangning Zhang, Wei Lin, Taisong
 623 Jin, Chengjie Wang, and Rongrong Ji. Portraitbooth: A versatile portrait model for fast identity-
 624 preserved personalization. In *CVPR*, 2024. 9
 625

626 Ryan Po, Guandao Yang, Kfir Aberman, and Gordon Wetzstein. Orthogonal adaptation for modular
 627 customization of diffusion models. In *CVPR*, 2024. 8

628 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 629 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 630 synthesis. *arXiv preprint arXiv:2307.01952*, 2023. 1, 8
 631

632 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 633 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 634 models from natural language supervision. In *ICML*, 2021. 3, 4, 17

635 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 636 and Ilya Sutskever. Zero-shot text-to-image generation. In *ICML*, 2021. 8
 637

638 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 639 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022. 8
 639

640 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 641 resolution image synthesis with latent diffusion models. In *CVPR*, 2022. 1, 3, 6, 8, 14

642 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 643 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *CVPR*,
 644 2023. 1, 2, 3, 4, 6, 8, 14, 17
 645

646 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 647 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 647 text-to-image diffusion models with deep language understanding. *NeurIPS*, 2022. 1, 8

648 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 649 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 650 open large-scale dataset for training next generation image-text models. *NeurIPS*, 2022. 1
 651

652 Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instantbooth: Personalized text-to-image
 653 generation without test-time finetuning. In *CVPR*, 2024. 9
 654

655 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *ICLR*,
 656 2020a. 1, 8
 657

658 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 659 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 arXiv:2011.13456*, 2020b. 1, 8
 660

661 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *ICML*, 2023.
 662 8
 663

664 Junjiao Tian, Lavisha Aggarwal, Andrea Colaco, Zsolt Kira, and Mar Gonzalez-Franco. Diffuse
 665 attend and segment: Unsupervised zero-shot segmentation using stable diffusion. In *CVPR*, 2024.
 666 8
 667

668 Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, and Xuansong Xie. Anytext: Multilingual
 669 visual text generation and editing. *arXiv preprint arXiv:2311.03054*, 2023. 8
 670

671 Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. p+: Extended textual condi-
 672 tioning in text-to-image generation. *arXiv preprint arXiv:2303.09522*, 2023. 1, 6, 8, 14
 673

674 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 675 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 676 2024. 9
 677

678 Xierui Wang, Siming Fu, Qihan Huang, Wanggui He, and Hao Jiang. Ms-diffusion: Multi-subject
 679 zero-shot image personalization with layout guidance. *ICLR*, 2025. 1
 680

681 Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren
 682 Zhou, and Hongming Shan. Dreamvideo: Composing your dream videos with customized subject
 683 and motion. In *CVPR*, 2024. 8
 684

685 Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
 686 visual concepts into textual embeddings for customized text-to-image generation. In *ICCV*, 2023.
 687 6, 14
 688

689 Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang,
 690 and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *ICCV*, 2023. 8
 691

692 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 693 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 694 *NeurIPS*, 2023. 7, 15
 695

696 Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo.
 697 Raphael: Text-to-image generation via large mixture of diffusion paths. *NeurIPS*, 36, 2024. 1
 698

699 Peiqing Yang, Shangchen Zhou, Qingyi Tao, and Chen Change Loy. Pgdiff: Guiding diffusion
 700 models for versatile face restoration via partial guidance. *NeurIPS*, 36, 2024. 8
 701

702 Ge Yuan, Xiaodong Cun, Yong Zhang, Maomao Li, Chenyang Qi, Xintao Wang, Ying Shan,
 703 and Huicheng Zheng. Inserting anybody in diffusion models via celeb basis. *arXiv preprint
 arXiv:2306.00926*, 2023. 9
 704

705 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 706 diffusion models. In *ICCV*, 2023. 8
 707

708 Yuxuan Zhang, Yiren Song, Jiaming Liu, Rui Wang, Jinpeng Yu, Hao Tang, Huaxia Li, Xu Tang,
 709 Yao Hu, Han Pan, et al. Ssr-encoder: Encoding selective subject representation for subject-driven
 710 generation. In *CVPR*, 2024. 9
 711

702 **A ADDITIONAL DETAILS**
703704 **A.1 ADDITIONAL DETAILS OF BASELINES**
705706 **Textual Inversion (Gal et al., 2022).** We train the model for 5,000 iterations with learning rate
707 $2e-2$. We use a batch size of 8 to train the method. Other than the personal concept token embed-
708 dings, no parameters are updated during the training.710 **XTI (Voynov et al., 2023).** We follow the configurations from (Gal et al., 2022). We train the
711 model for 500 iterations with a constant learning rate of $2e-3$. We use a batch size of 4 to train the
712 method. Following the original paper, different special token embeddings are learned for each layer
713 in the UNet.714 **DreamBooth (Ruiz et al., 2023).** For this baseline method, we train the model for 1,000 iterations
715 with a constant learning rate of $1e-6$. We use a batch size of 1 to train the method. Following
716 the original method, the prior preservation loss is adopted during the training. For this, we gen-
717 erate a set of 200 images by prompting SD (Rombach et al., 2022) with “*a picture of [SUBJECT*
718 *CLASS]*”, where ‘[SUBJECT]’ is replaced by the name of the class corresponding to the personal
719 concept. During customization, we update all the parameters including the CLIP text encoder and
720 the diffusion U-Net.721
722 **CustomDiffusion (Kumari et al., 2023).** For this baseline method, we train the model for 500
723 iterations with a constant learning rate of $4e-5$. We use a batch size of 4 to train the method.
724 Following the original method, we adopt prior preservation loss during training. For this, we use the
725 same 200 generated images used for DB. During training, only the Key/Value projection layers of
726 the diffusion U-Net are updated.727
728 **DisenBooth (Chen et al., 2023).** We fine-tune the model for 3,000 iterations with a learning rate
729 of $1e-4$ and a batch size of 1, following the paper. In this method, LoRA (Hu et al., 2022) is
730 adopted for fine-tuning the UNet.731
732 **NeTI (Alaluf et al., 2023).** To customize with NeTI (Alaluf et al., 2023), we fine-tune the model
733 for 250 iterations with a learning rate of $1e-3$ and a batch size of 8, adhering to the original config-
734 uration. The parameters of diffusion UNet remain fixed during fine-tuning.735
736 **ELITE (Wei et al., 2023) & BLIP-D (Li et al., 2023a).** We utilize the official GitHub implemen-
737 tations provided by the authors.738 **Algorithm 1** Customization Process with MLM
739

1: Load parameters θ , ψ , Γ , and \mathcal{V}	$\{\theta: \text{U-Net}, \psi: \text{MLM Head}, \Gamma: \text{text encoder}, \mathcal{V}: \text{VAE}\}$
2: Fix ψ and p_m	$\{p_m: \text{mask embedding}\}$
3: Set λ	$\{\lambda: \text{MLM weight}\}$
4: Initialize LoRA params Θ	
5: repeat	
6: Sample $t \sim \text{Uniform}[0, T - 1]$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$	
7: Encode $\mathbf{z}_0 = \mathcal{V}(\mathbf{x})$, $\mathbf{C} = \Gamma(\mathbf{P})$ and $\tilde{\mathbf{C}} = \Gamma(\tilde{\mathbf{P}})$	
8: Get noised latent, $\mathbf{z}_t = \alpha_t \mathbf{z}_0 + \beta_t \epsilon$	
9: Compute $\mathcal{L}_{\text{Diff}} = \mathbb{E}_{\mathbf{C}, \epsilon, t, \mathbf{z}} \ \epsilon - \epsilon_\theta(\mathbf{z}_t, t, \mathbf{C})\ ^2$	
10: Compute $\mathcal{L}_{\text{MLM}} = \mathbb{E}_{\mathbf{y}, \mathbf{P}_{\text{masked}}} [\text{CrossEntropy}(\mathbf{y}, \Gamma(\mathbf{P}_{\text{masked}}))]$	
11: Gradient descent optimization on $\nabla_\Theta [\mathcal{L}_{\text{Diff}} + \lambda \mathcal{L}_{\text{MLM}}]$	
12: until optimized	

753 **A.2 DETAILS OF EVALUATION METRICS**
754755 **DINO Score.** To evaluate subject alignment, we calculate the DINO image similarity between the
generated image and the reference image. Following (Kim et al., 2024b), we measure the DINO

similarity using the masked foreground region of the subject. This metric is denoted as $I_{\text{DINO-FG}}$. DINO embeddings are obtained from ViT-S/16. Binary segmentation masks are generated using Grounded-SAM, conditioned on the subject’s prior concept name *e.g.*, “*a dog*”. Examples of binary masks and the corresponding masked images are shown in Figure A.

CLIP Score. To evaluate text alignment, we calculate the CLIP image-text similarity between the generated image and the input prompt, denoted as T_{CLIP} . When encoding the text prompt, the personal concept token is removed from the prompt and only the prior concept token is retained, *e.g.*, *a picture of a cat in the snow*. We obtain the CLIP embeddings from ViT-B/32. This measure does not involve the use of segmentation masks.

ImageReward. We employ ImageReward (Xu et al., 2023) to evaluate the aesthetic and semantic quality of generated images. We utilize a reward model pretrained to align human aesthetic preferences, considering factors such as composition, coherence, and prompt fidelity. The reward model processes both the generated image and the corresponding text prompt to output a scalar reward score, which we use as the Image Reward Score. The scores are obtained using the publicly available ImageReward model.

BLIP-VQA. This metric assesses the attribute binding in generated images (Huang et al., 2023). Specifically, the input prompt is broken down into multiple questions, which are then fed into a pre-trained BLIP-VQA model along with the generated images. The model’s probability of responding “yes” serves as the score for each question.

Figure A: Example segmentation results obtained with Grounded-SAM. We present triplets consisting of the input image, the binary mask, and the resulting masked image. The conditioning prompt for Grounded-SAM is indicated below each triplet. The masked images are utilized to compute the subject alignment score, $I_{\text{DINO-FG}}$.

A.3 DETAILS OF TEXT PROMPT SET CONSTRUCTION

We describe the details of the prompt set construction process. The constructed prompts are used for masked language modeling (MLM). The prompt set comprises two types: living object prompts and non-living object prompts. For each prompt type, we predefined five different types of context. For each context type, we define different prompt templates and use different contextual words to diversify the prompt. To construct the corresponding contextual word set, we query the large language model (OpenAI, 2023) and insert it into the template.

Living Object Prompts. The predefined context types for living objects are shown below. In total, we construct a prompt set of size 38,394. During model customization, prompts are evenly sampled from each context type to construct a balanced batch.

810

811 1. **Human Interactive Prompts:** This prompt set includes various interactions involving hu-
812 man subjects. The example template that we use is “[HUMAN SUBJECT] is [INTER-
813 ACTION] [CONCEPT]”. For instance, “*Albert Einstein is watching TV with [v] dog*”. We
814 use 49 human interaction terms and 72 human subject terms to be inserted into the template.
815 In total, we generate 3,528 text prompts.

816 2. **Relative Position Prompts:** This prompt set includes scenarios where the personal con-
817 cept token is combined with various positioning terms, colors, and objects. The example tem-
818 plate that we use is “[CONCEPT] [RELATIVE] a [COLOR] [OBJECT]”. For instance,
819 “[v] dog next to a red vase”. We use 18 relative terms, 24 color terms, and 68 object terms
820 to be inserted into the template. In total, we generate 29,376 text prompts.

821 3. **Background Prompts:** This prompt set includes scenarios where the personal concept
822 token is combined with various background terms. The example template that we use is
823 “[CONCEPT] with the [BACKGROUND] in the background”. For instance, “[v] dog with
824 Eiffel Tower in the background”. We use 138 background terms. In total, we generate 552
825 text prompts.

826 4. **Image Style Prompts:** This set of prompts includes scenarios where the personal concept
827 token is combined with various terms that describe the overall style of the image. The
828 example template that we use is “[CONCEPT] depicted in [STYLE] style”. For instance,
829 “[v] dog in Pop Art style”. We use 126 style terms with 3 different templates. In total, we
830 generate 378 prompts.

831 5. **Attribute Changing Prompts:** This set of prompts includes scenarios where the personal
832 concept token is combined with various outfit terms. The example template that we use is
833 “[CONCEPT] in a [COLOR] [OUTFIT]”. For instance, “[v] dog in a red cowboy outfit”.
834 We use 162 outfit terms with 24 color terms. In total, we generate 4,560 prompts.

835

836 **Non-Living Object Prompts.** The predefined context types for non-living objects are shown be-
837 low. In total, we construct a prompt set of size 34,599. During model customization, prompts are
838 evenly sampled from each context type to construct a balanced batch.

839

840 1. **Human Interactive Prompts:** This prompt set includes various interactions involving hu-
841 man subjects. The example template that we use is “[HUMAN SUBJECT] is [INTERAC-
842 TION] [CONCEPT]”. For instance, “*Einstein is holding a [v] pot*”. We use 58 human
843 interaction terms and 72 human subject terms to be inserted into the template. In total, we
844 generate 4,176 prompts.

845 2. **Relative Position Prompts:** This prompt set includes scenarios where the personal con-
846 cept token is combined with various positioning terms, colors, and objects. The example tem-
847 plate that we use is “[CONCEPT] [RELATIVE] a [COLOR] [OBJECT]”. For instance,
848 “[v] pot on a beige sofa”. We use 18 relative terms, 24 color terms, and 68 object terms
849 to be inserted into the template. In total, we generate 29,376 prompts.

850 3. **Background Prompts:** This prompt set includes scenarios where the personal concept
851 token is combined with various background terms. The example template that we use is
852 “[CONCEPT] with the [BACKGROUND] in the background”. For instance, “[v] pot
853 with forest in the background”. We use 138 background terms. In total, we generate 552
854 prompts.

855 4. **Image Style Prompts:** This set of prompts includes scenarios where the personal concept
856 token is combined with various terms that describe the overall style of the image. The
857 example template that we use is “[CONCEPT] depicted in [STYLE] style”. For instance,
858 “[v] dog in 3D rendering style”. We use 126 style terms with 3 different templates. In
859 total, we generate 378 prompts.

860 5. **Attribute Changing Prompts:** This set of prompts includes scenarios where the personal
861 concept token is combined with various attributes to be bonded, such as colors and shapes.
862 The example template that we use is “a [CONCEPT] in a [ATTRIBUTE] shape”. For
863 instance, “a [v] pot in a triangular shape”. We use 75 attribute terms. In total, we generate
117 prompts.

864 A.4 DETAILS OF MLM HEAD
865

866 As the CLIP (Radford et al., 2021) text encoder does not support MLM, we train a transformer
867 network (MLM Network) ψ prior to the T2I personalization. During the pretraining, the personal
868 concept token is not involved. We only train the mask embedding and the self-attention layers in ψ .
869 The others, including the CLIP text encoder non-mask tokens, remain fixed.

870 **Architecture.** The MLM Head consists of four blocks of a self-attention layer and a feed-forward
871 layer, followed by a layer normalization layer, where each block learns the residuals of the input
872 with the residual connection. We set the hidden dimension as 768 for all layers.
873

874 **Training.** To train the MLM Head, we use a merged set of COCO caption datasets and the prompt
875 set that we constructed. For the manual prompt set, we replace the personal concept token with the
876 personal concept token to the corresponding prior concept token. During training, we set the ratio of
877 the batch of the two prompt sets to be 70 to 30. No personal concept token embeddings are involved
878 during the contextualization pretraining. The MLM Head is pretrained for 100K iterations with a
879 learning rate of $1e-4$, and batch size 150. We use the AdamW optimizer for training. The detailed
880 pretraining procedure is described in Algorithm 2.
881

882 **Algorithm 2** Training Procedure of MLM Head

1: Load parameters Γ	$\{\Gamma: \text{CLIP text encoder}\}$
2: Initialize ψ, p_{mask}	$\{\psi: \text{MLM Head}, p_{\text{mask}}: \text{mask embedding}\}$
3: Set ρ_{mask}	$\{\rho_{\text{mask}}: \text{masking probability}\}$
4: repeat	
5: Sample \mathbf{t} from rich prompt set, $\mathbf{P} = \text{Tokenize}(\mathbf{t})$	
6: $\mathbf{P}_{\text{masked}}, \mathbf{y} = \text{RandomMask}(\mathbf{P}, \rho_{\text{mask}})$	$\{\mathbf{y}: \text{masked token label}\}$
7: Compute $\mathcal{L}_{\text{MLM}} = \mathbb{E}_{\mathbf{y}, \mathbf{P}_{\text{masked}}} [\text{CrossEntropy}(\mathbf{y}, \psi(\Gamma(\mathbf{P}_{\text{masked}})))]$	
8: Optimize $\nabla_{\psi, p_{\text{mask}}} \mathcal{L}_{\text{MLM}}$ with gradient descent	
9: until convergence	

893 A.5 DETAILS OF ANALYTICAL STUDY

894 We provide additional details of the analytical experiment we described in Section 2.3.
895

896 **Prompt Set Construction for Analytical Study.** The prompt set for our analysis consists of 100
897 text prompts for each of the 7 concepts, totaling 700 prompts. We use two templates: *a picture of [SUBJECT] with the [CONTEXT] in the background*” and *a picture of [SUBJECT] with the [PREPOSITION] [OBJECT]*”. Here, ‘[SUBJECT]’ is replaced by the personal concept token;
898 [PREPOSITION] is a spatial relation (e.g., *next to*); and [OBJECT] is an object name. We obtain
899 a list of 50 background terms by querying a large language model (OpenAI, 2023) and substitute
900 [CONTEXT] with these terms. The remaining 50 prompts per concept are generated directly by the
901 language model. The complete list of prompts appears in Figure F. This prompt set is used for all
902 experiments reported in Table 1 of Section 2.3.
903

904 A.6 DETAILS OF DATASETS

905 **Personal Concepts.** We use a mixture of 15 different subjects adopted from DB (Ruiz et al., 2023),
906 TI (Gal et al., 2022) and CD (Kumari et al., 2023). Specifically, we use 11 subjects from DB (Ruiz
907 et al., 2023) composed of: [backpack, backpack_dog, cat, cat2, dog3, dog6, duck_toy, poop_emoji, rc_car, teapot, pushie_teddybear], and we use 3 subjects from CD (Kumari et al., 2023): [pet_cat1, pet_dog1, decoritems_woodenpot].
908 Finally, we use 1 subject from TI (Gal et al., 2022): [cat toy].
909

910 **Benchmark Prompts.** For generations, we utilize a benchmark prompt set from DreamBench (Ruiz
911 et al., 2023), and (Nam et al., 2024). DreamBench contains 25 prompts for nonliving and living
912 subject categories. The prompt set for non-living objects comprises 20 contextualization prompts
913 and 5 property modification prompts. The prompt set for living objects contains 10 contextualization
914 prompts, 10 accessorization prompts, and 5 property modification prompts. We generate 8 images
915

Figure B: **Qualitative Results on Face Images.** The proposed method effectively personalizes fine-grained face-concept images.

Figure C: **Failure Cases.** Failure cases obtained from (a) composition, (b) negation, and (c) relation. Each prompt is shown with output from a non-personalized model (prior), illustrating that the failures in the personalized results stem from the base model.

per prompt, yielding a total of 3,000 images. (Nam et al., 2024) provides more challenging prompts, containing 24 prompts for both living and non-living objects. The prompt set consists of 10 prompts for large displacements, 10 prompts for occlusion, and 4 prompts for novel-view synthesis.

B ADDITIONAL RESULTS

B.1 ADDITIONAL QUALITATIVE EXAMPLES

Face Images. We present personalization results for face images in Figure B. The results indicate that the proposed method is effective not only for coarse-grained subjects but also for capturing fine-grained individual traits while preserving overall visual quality. The personalized outputs appear natural and remain coherent with the input prompt.

Failure Cases. We report failure cases of our personalized concept model when evaluated on compositional, relational, and negation prompts. In our analysis, objects included in compositional prompts often fail to appear *e.g.*, no lamp in Figure C, or in the negation prompt, the negative objects still appear in the generation, *e.g.*, the negative object, tools still appear in the image or in the relation prompt, the subjects are generated in an incorrect relation to other objects, *e.g.*, a dog is on the chair,

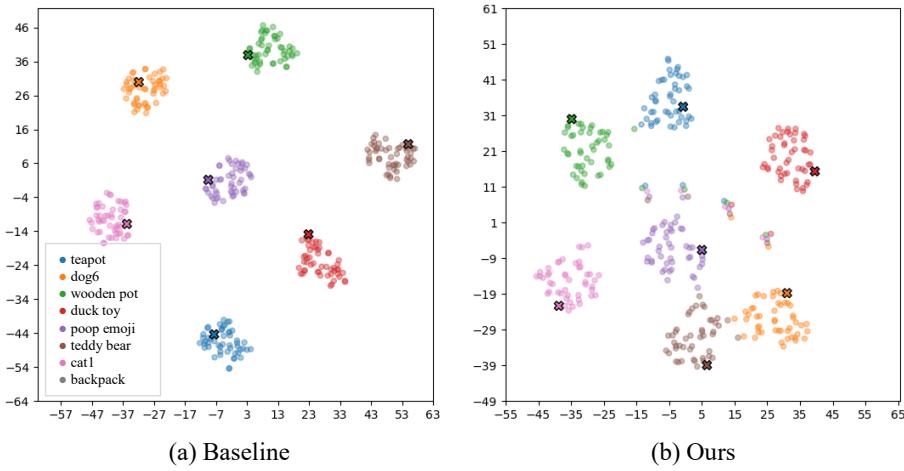


Figure D: **Visualization of the prompt embedding distribution.** Each point denotes an embedding of a prompt that combines the personal concept token, *e.g.*, “[v]”, with different context words *e.g.*, “*a [v] dog at Eiffel Tower*”. The marker ‘X’ denotes the prompt without context *e.g.*, “*a [v] dog*.” As shown, the baseline yields a concentrated distribution around the prompt without contextual words, whereas our method yields a more dispersed distribution. The concentration in baseline results reflects representation collapse, where embeddings remain similar despite changes in contextual words. In contrast, our method effectively mitigates this collapse, thereby enhancing textual representation.

not on the right. For each prompt, we also provide its comparison to a non-personalized model, *i.e.*, *prior*, showing that the errors stem from this non-personalized-based model.

Additional Qualitative Ablation Study. We provide additional qualitative comparisons to visualize the impact of the proposed MLM on image generation in Figure E. Incorporating the proposed MLM during customization reduces suppression of contextual tokens, leading to their inclusion in the image or reinforcing associated attributes.

Additional Cross-Attention Visualization. We provide additional cross-attention visualization to visualize the impact of the proposed approach in Figures G and H.

Additional Qualitative Comparison with Baselines. We provide additional qualitative results of our approach in Figures I to L.

C ADDITIONAL ANALYSIS

C.1 INTERPRETABLE EVIDENCE OF ENHANCEMENT IN TEXT SPACE

We provide additional interpretable evidence demonstrating the effectiveness of the proposed method. Specifically, we visualize the prompt embeddings derived from prompts including personal concept and different contextual words *e.g.*, “*a [v] dog at Eiffel Tower*”. We project these embeddings into 2D space using UMAP (McInnes et al., 2018) and compare the results between the baseline and our method (Figure D). The analysis is conducted using 8 different concepts. As shown in Figure D (a), the prompt embeddings obtained from the baseline form a highly concentrated distribution around the prompt without contextual words *e.g.*, “*a [v] dog*”. This concentration reflects textual representation collapse, where the semantics of the prompts remain similar despite variations in contextual words. In contrast, our method trained with MLM yields a dispersed prompt distribution (Figure D (b)), indicating that the representation collapse has been effectively addressed, and the representations are enhanced. Furthermore, we validate this observation by quantifying the overall concentrations of prompt embeddings in Table A. Specifically, we measure the average pair-wise cosine distance within each concept’s prompt-embedding set. The results show that the baseline

1026
1027
1028
1029

Method	Pair-wise Dist. \uparrow
Baseline	0.1268
Ours	0.2784

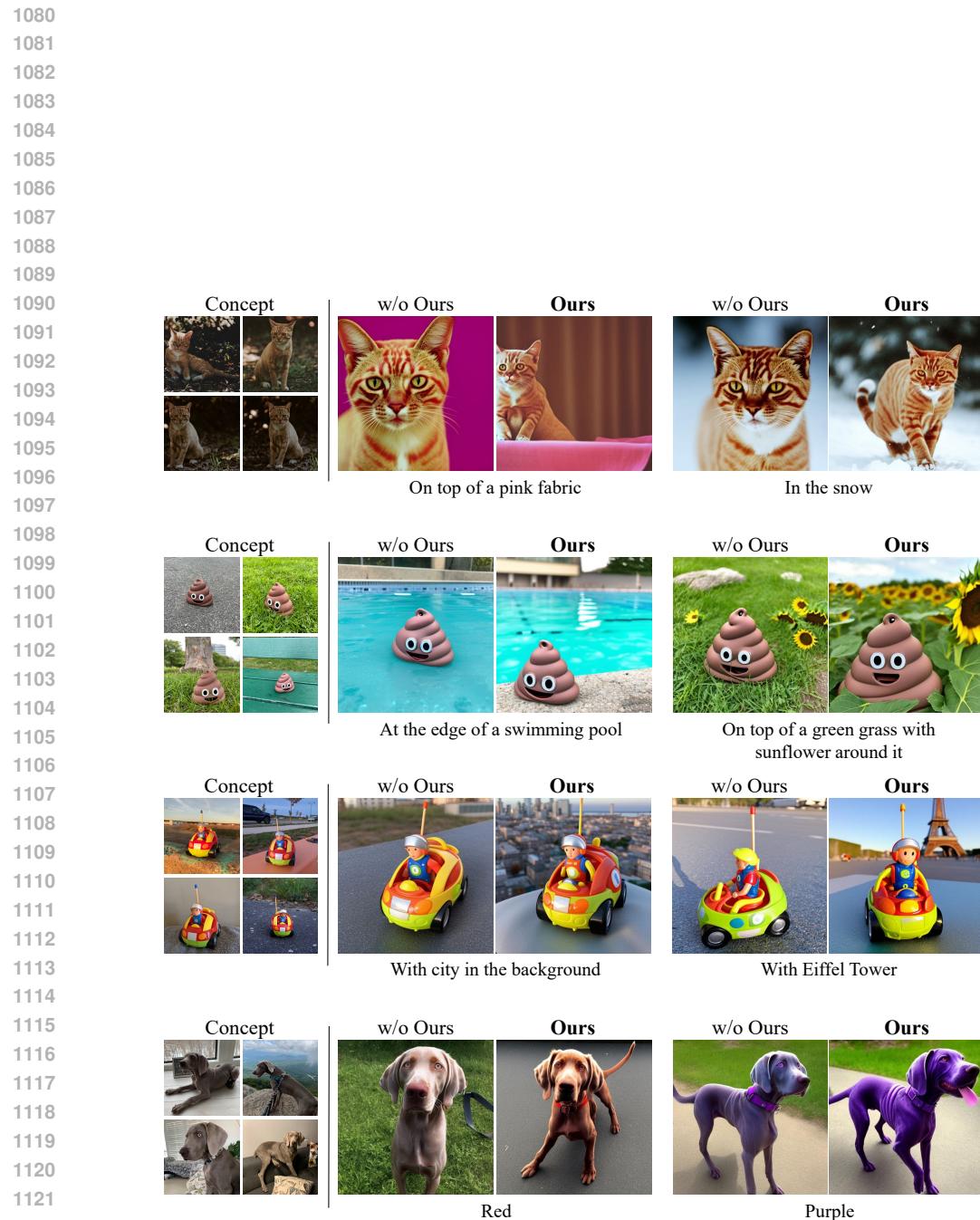
1030
1031
1032
1033
1034
1035
Table A: **Analysis of prompt embedding distribution.** Average pair-wise cosine distances are
measured within each concept’s prompt-embedding set. The baseline exhibits substantially lower
distances compared to our method, indicating a highly concentrated distribution with collapse. The
results are consistent with the visualization shown in Figure D.1036
1037
1038
exhibits substantially lower distances compared to our method with MLM, further confirming that
it forms a collapsed embedding distribution, which is consistent with the visualization denoted in
Figure D.1039
1040

C.2 IMPACT OF TEXTUAL ENHANCEMENT TO CROSS-ATTENTIONS

1041
1042
1043
1044
1045
1046
In Figure 4, cross-attention maps are visualized, where baseline results with collapsed textual rep-
resentation lead to dispersed activations with low T2I alignment. We have validated and confirmed
this observation in Table 1 of Section 2.3, where the baseline yields contextual tokens to become
highly similar to the personal concept (lower d_{text}), and cross-attention maps to be dispersedly dis-
tributed (higher SV_{cross}). Here, we provide further explanation on *why* the textual collapse leads to
dispersion in cross-attentions.1047
1048
1049
1050
1051
1052
1053
Norms of personal concept tokens remain constant. We first would like to note that the norms of
the personal concept tokens remain constant after personalization. This constant trend has been re-
ported in (Pang et al., 2024); however, we have further validated this in our own setting. Specifically,
we compared the norms of personal concept tokens and contextual tokens in the encoded prompts for
both the baseline and our method. We measured their ratio and found it to be approximately 1.005
in both methods, indicating that the norms of personal and contextual tokens are mostly identical.1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
Collapsed text embeddings lead to similar cross-attention scores. We explain why the similarity in text tokens impacts the cross-attention maps distribution. Let $\mathbf{Q} \in \mathbb{R}^{L_1 \times d}$ be the input image,
and $\mathbf{K} \in \mathbb{R}^{L_2 \times d}$ be the input text tokens to cross attention layers in UNet, where L_1 denotes the
number of image tokens and L_2 denotes the number of text tokens. The correlation $\mathbf{M} \in \mathbb{R}^{L_1 \times L_2}$
between image and text is computed as $\mathbf{M} = \mathbf{QK}^\top$. We would like to note that, when the cosine
similarity between token embeddings become similar, *i.e.*, $\mathbf{K}[:, i] \approx \mathbf{K}[:, j]$ for $i \neq j$, where i de-
notes the i -th the token embedding, $\mathbf{K}[:, i] \in \mathbb{R}^d$, the corresponding correlation also become similar,
i.e., $\mathbf{M}[:, i] \approx \mathbf{M}[:, j]$. Note that, since the norms of text tokens are mostly identical, the similarity
between the correlations $\mathbf{M}[:, i]$ and $\mathbf{M}[:, j]$ are determined by $\cos(\mathbf{K}[:, i], \mathbf{K}[:, j])$. Intuitively, if all
input text tokens are identically similar, then the resulting attention $\mathbf{A} \in \mathbb{R}^{L_1 \times L_2}$,

1064
1065
$$\mathbf{A} = \text{Softmax}(\mathbf{Q}/\sqrt{d}),$$

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
becomes uniform, as the $\mathbf{M}[k, :]$ becomes a evenly valued vector for all pixel k ’s in the image.
Note that the softmax is computed per-pixel, and the input tokens are competing at each pixel location.
Therefore, textual representation affects how the cross-attentions are distributed, and collapsed
representation leads to a dispersed cross-attention map distribution. Notably, we have validated
in Table 1 that MLM effectively mitigates textual collapse with higher d_{text} , which leads to more
concentrated and meaningful cross-attention estimates with lower SV_{cross} , and in turn improves gen-
eralization in image generation.



1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1. a photo of a {} with the Taj Mahal in the background
2. a photo of a {} with the Amazon rainforest in the background
3. a photo of a {} with the Antarctic ice field in the background
4. a photo of a {} with the Caribbean beach in the background
5. a photo of a {} with the Egyptian pyramid in the background
6. a photo of a {} with the Eiffel Tower in the background
7. a photo of a {} with the Grand Canyon in the background
8. a photo of a {} with the Great Wall of China in the background
9. a photo of a {} with the Hollywood movie set in the background
10. a photo of a {} with the Mount Everest base in the background
11. a photo of a {} with the North Pole in the background
12. a photo of a {} with the Renaissance chapel in the background
13. a photo of a {} with the Roman Colosseum in the background
14. a photo of a {} with the Sahara Desert in the background
15. a photo of a {} with the San Francisco cable car in the background
16. a photo of a {} with the Times Square in the background
17. a photo of a {} with the Tokyo skyline in the background
18. a photo of a {} with the Venetian canal in the background
19. a photo of a {} with the ancient Egyptian tomb in the background
20. a photo of a {} with the ancient Greek agora in the background
21. a photo of a {} with the botanic garden in the background
22. a photo of a {} with the coral reef in the background
23. a photo of a {} with the craft brewery in the background
24. a photo of a {} with the crumbling ancient ruins in the background
25. a photo of a {} with the cutting-edge Silicon Valley startup in the background
26. a photo of a {} with the electric rock concert in the background
27. a photo of a {} with the energetic Brazilian carnival in the background
28. a photo of a {} with the enigmatic Stonehenge in the background
29. a photo of a {} with the fairy tale castle in the background
30. a photo of a {} with the industrial Detroit factory in the background
31. a photo of a {} with the industrial manufacturing zone in the background
32. a photo of a {} with the international space station in the background
33. a photo of a {} with the legendary Wild West saloon in the background
34. a photo of a {} with the lively street market in the background
35. a photo of a {} with the lush vineyard in the background
36. a photo of a {} with the majestic European cathedral in the background
37. a photo of a {} with the major city public library in the background
38. a photo of a {} with the medieval castle in the background
39. a photo of a {} with the modern art museum in the background
40. a photo of a {} with the mythical underwater Atlantis in the background
41. a photo of a {} with the old European cobblestone street in the background
42. a photo of a {} with the refined art gallery in the background
43. a photo of a {} with the secluded Himalayan monastery in the background
44. a photo of a {} with the serene city park in the background
45. a photo of a {} with the sleek modern office in the background
46. a photo of a {} with the spacious old warehouse in the background
47. a photo of a {} with the steep mountain pass in the background
48. a photo of a {} with the thick deep forest in the background
49. a photo of a {} with the urban chic rooftop in the background
50. a photo of a {} with the utopian space colony in the background
51. a photo of a {} with a screwdriver
52. a photo of a {} in front of a laptop
53. a photo of a {} beside a stack of books
54. a photo of a {} with a coffee cup
55. a photo of a {} with sunglasses
56. a photo of a {} by a window
57. a photo of a {} near a bicycle
58. a photo of a {} with a smartphone
59. a photo of a {} on a chair
60. a photo of a {} next to a painting
61. a photo of a {} in a garden
62. a photo of a {} beside a piano
63. a photo of a {} with a newspaper
64. a photo of a {} by a car
65. a photo of a {} with a backpack
66. a photo of a {} in front of a door
67. a photo of a {} beside a globe
68. a photo of a {} with a notebook
69. a photo of a {} on a sofa
70. a photo of a {} near a fountain
71. a photo of a {} with a pen
72. a photo of a {} with headphones
73. a photo of a {} in front of a brick wall
74. a photo of a {} beside a guitar
75. a photo of a {} with a water bottle
76. a photo of a {} at a bus stop
77. a photo of a {} near a bookshelf
78. a photo of a {} with a camera
79. a photo of a {} on the floor
80. a photo of a {} with a suitcase
81. a photo of a {} near flowers
82. a photo of a {} beside a whiteboard
83. a photo of a {} with an umbrella
84. a photo of a {} at a desk
85. a photo of a {} on a staircase
86. a photo of a {} near a street sign
87. a photo of a {} with a tablet
88. a photo of a {} beside a chalkboard
89. a photo of a {} with a dog
90. a photo of a {} by a tree
91. a photo of a {} with a hat
92. a photo of a {} with a cup of tea
93. a photo of a {} on a bridge
94. a photo of a {} beside a mirror
95. a photo of a {} in a park
96. a photo of a {} with a cat
97. a photo of a {} beside a lamp
98. a photo of a {} by the ocean
99. a photo of a {} near a campfire
100. a photo of a {} against a wall

1177

1178

Figure F: The list of 100 prompts used for analytical experiments in Section 2.3.

1179

1180

1181

1182

1183

1184

1185

1186

1187

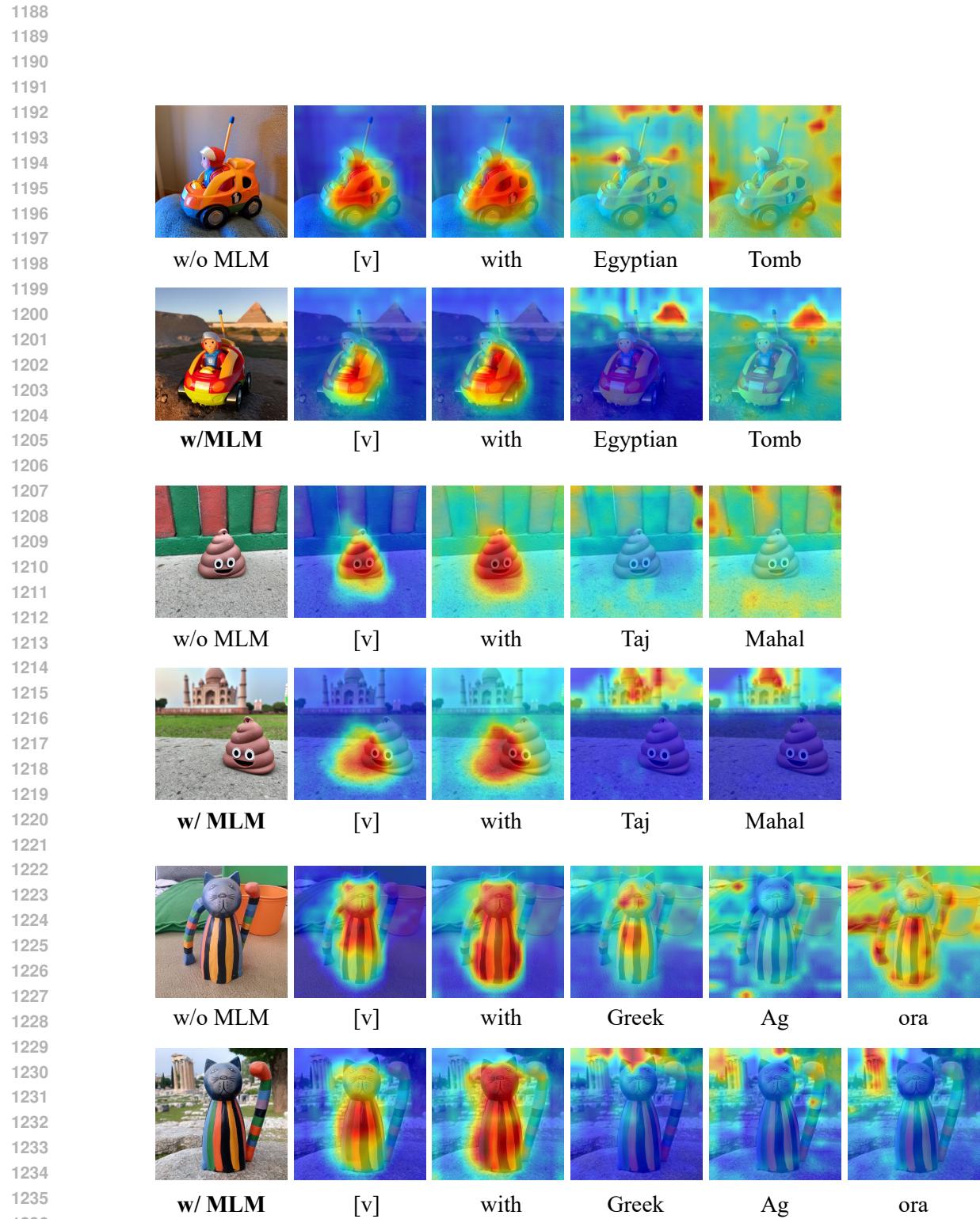
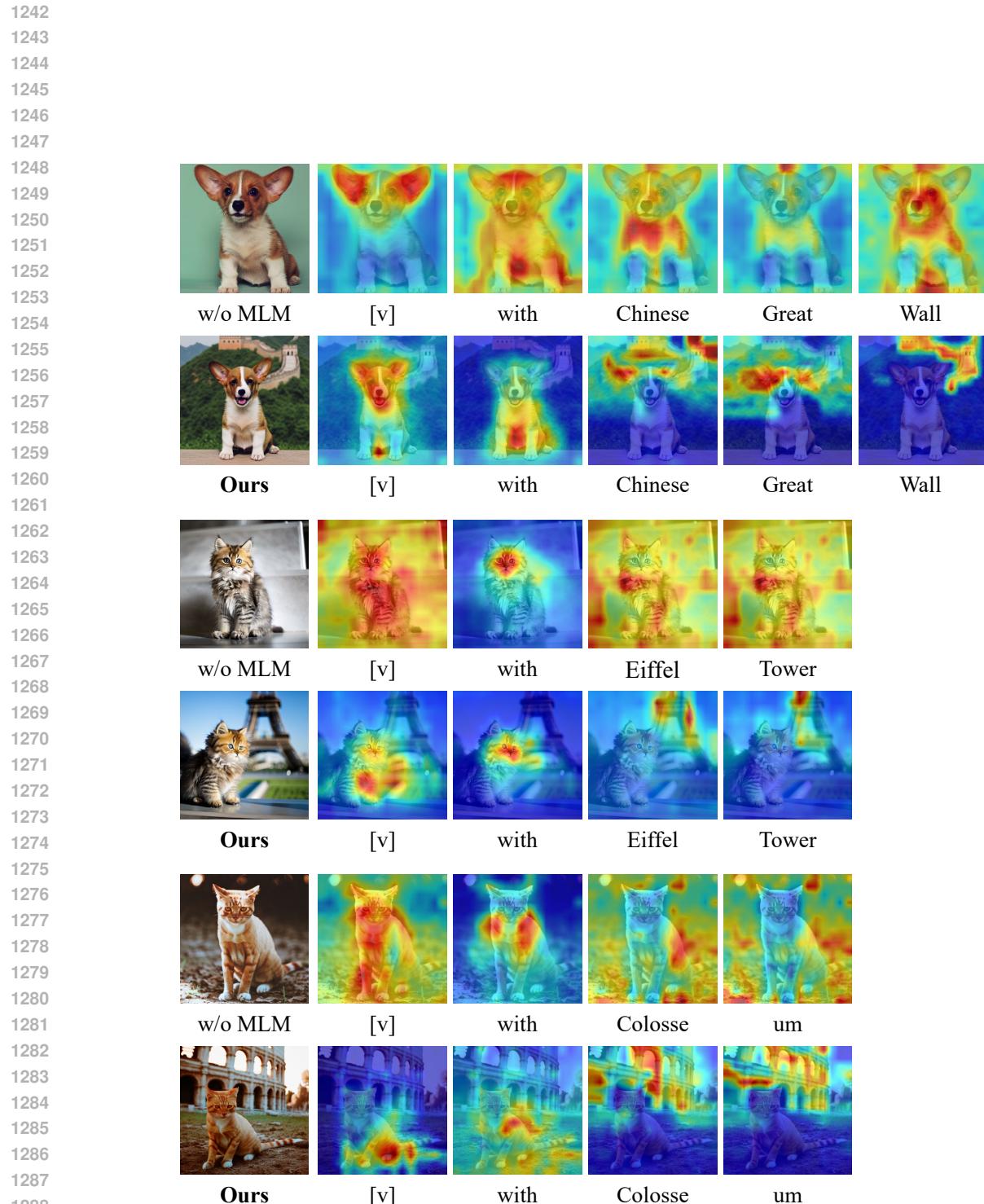


Figure G: Additional Cross Attention Visualizations.

Figure H: **Additional Cross Attention Visualizations.**

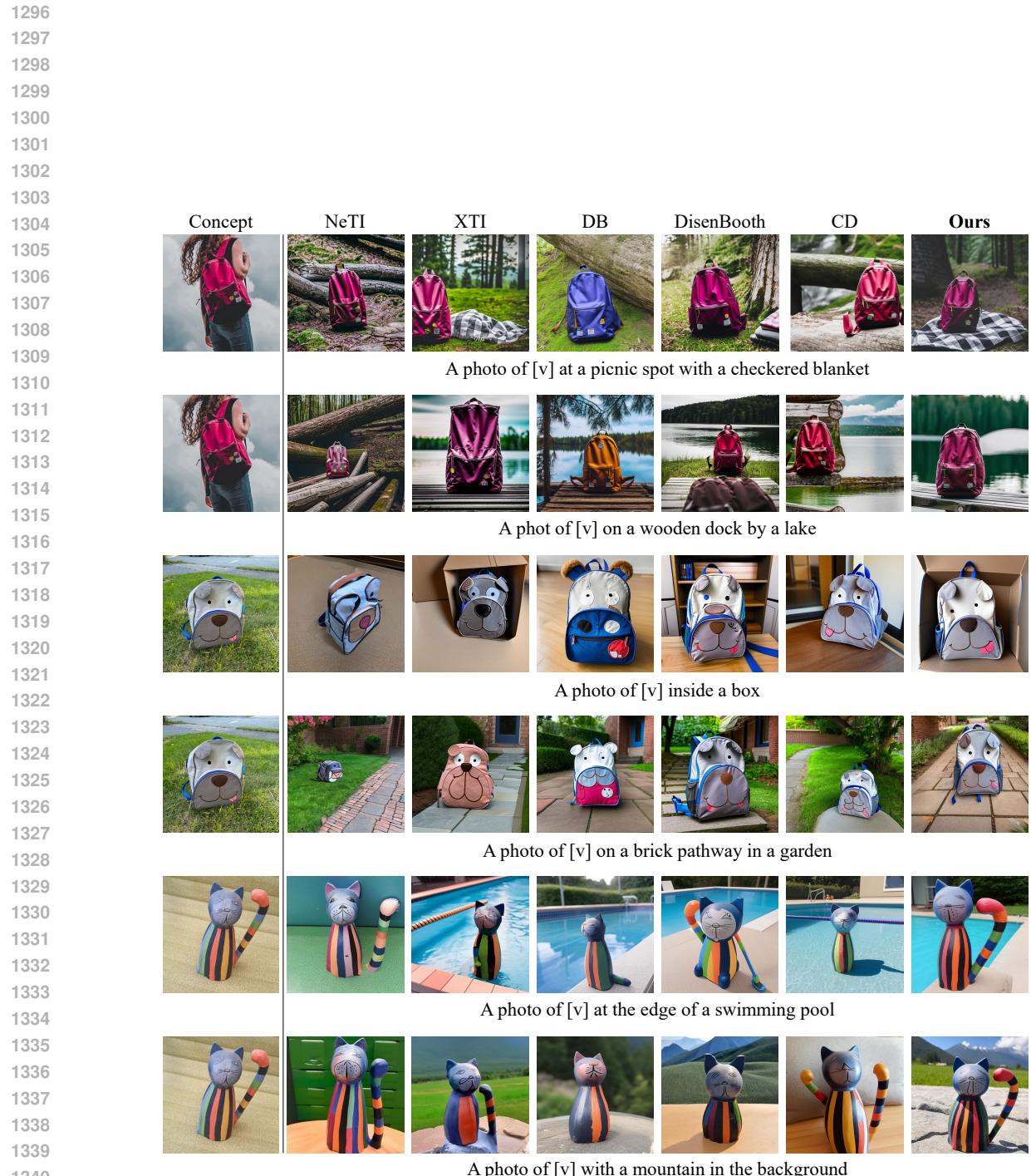


Figure I: Additional qualitative comparisons results.

1350
1351
1352
1353
1354
1355
1356
1357
1358

1359

NeT

XTI

DR

DisenBooth

CD

Ours

Shiny [v] teapot

1365
1366
1367
1368
1369

[v] teapot On a cobble stone street

1371
1372
1373
1374
1375

A horizontal collage of seven photographs featuring a brown teddy bear. The images show the bear in different pool environments: sitting on a white surface, sitting on a blue tiled edge, lying on a green tiled edge, sitting on a blue tiled edge, sitting on a blue tiled edge, sitting on a blue tiled edge, and sitting on a blue tiled edge. The backgrounds include green foliage and a white building.

[v] teddy at the edge of a swimming pool

1377
1378
1379
1380
1381

A horizontal collage of seven images showing various teddy bears wearing different colored scarves (blue, red, and purple). The bears are of different sizes and are positioned in different settings, such as on a wooden surface or a green background.

[v] teddy wearing a scarf

1382
1383
1384
1385
1386

A collage of seven images showing a clay pot with intricate carvings, including a face and a cross, being decorated with a yellow fabric (scarf).

[v] pot nestled among rocks

1388
1389
1390
1391
1392

A collage of seven images. From left to right: 1. A close-up of a small, intricately carved wooden vase with a textured, organic pattern. 2. A carved wooden vase with a detailed, multi-layered floral or geometric design, resting on a wooden dock. 3. A small, round wooden vase with a textured, organic pattern, resting on a wooden dock. 4. A large, round wooden vase with a textured, organic pattern, resting on a wooden dock. 5. A large, round wooden vase with a textured, organic pattern, resting on a wooden dock. 6. A small, round wooden vase with a textured, organic pattern, resting on a wooden dock. 7. A large, round wooden vase with a textured, organic pattern, resting on a wooden dock. The background of the images shows a calm lake with green trees and a clear blue sky.

[y] net on a wooden dock by a lake

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure J: Additional qualitative comparisons results.

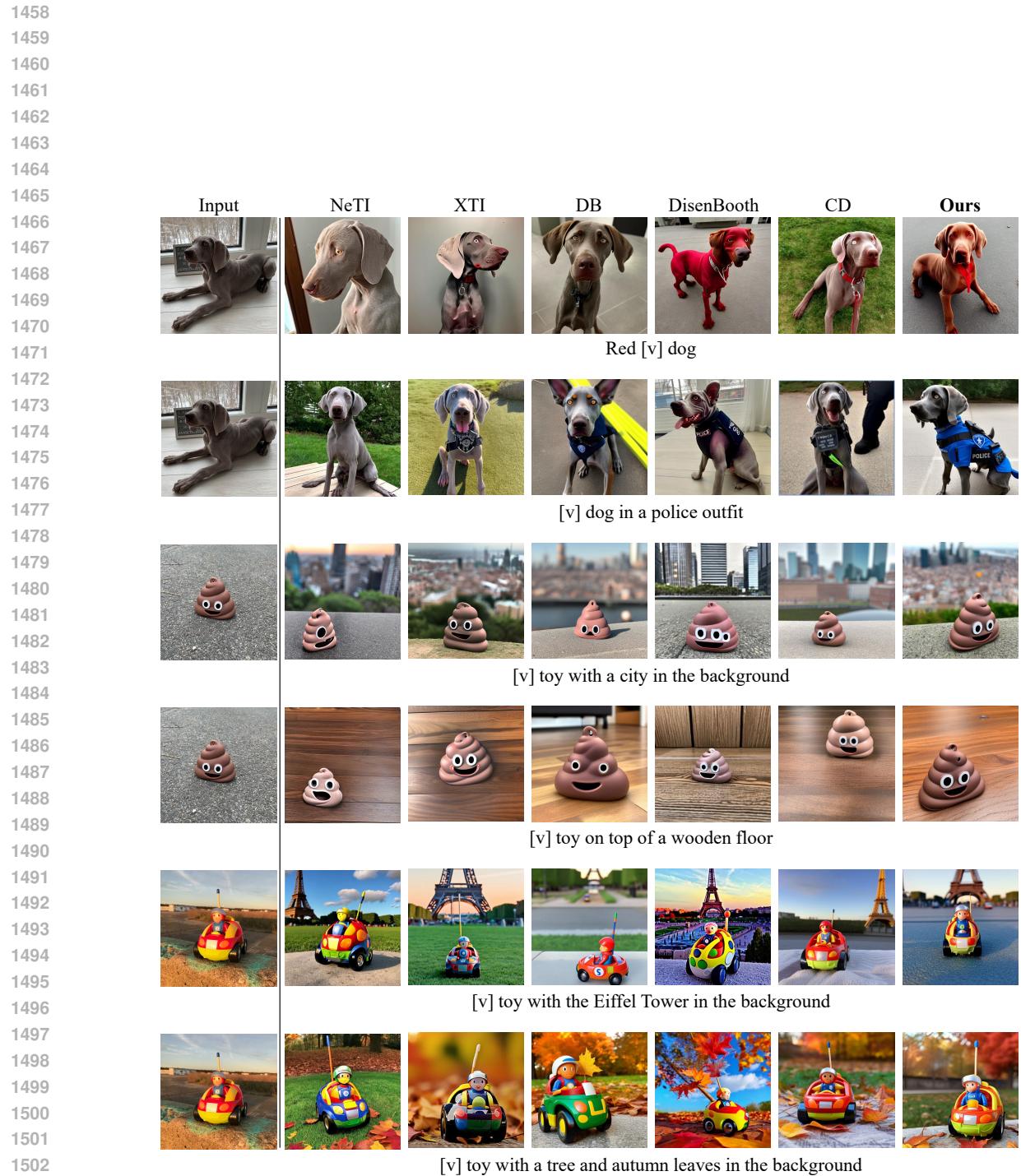


Figure L: Additional qualitative comparisons results.