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ABSTRACT

We identify significant gaps in the existing frameworks for assessing the faithful-
ness of post-hoc explanation methods, which are essential for interpreting model
behavior. To overcome these challenges, we propose a novel adversarial infor-
mation masking (AIM) approach that enhances in-distribution information mask-
ing techniques. Our study conducts the first quantitative comparison of faith-
fulness assessment frameworks across different architectures, datasets, and do-
mains, facilitating a comprehensive evaluation of post-hoc explanation methods
for deep learning of human electroencephalographic (EEG) data. This work lays
a foundation for further developments of reliable applications of explainable arti-
ficial intelligence (XAI). The code and sample data for this work are available at
https://anonymous.4open.science/t/EEG-explanation-faithfulness-5C05.

1 INTRODUCTION

Recent advances in deep learning (DL) have strengthened the discussion around eXplainable Artifi-
cial Intelligence (XAI) (Zeiler & Fergus| 2014} Samek et al., [2016; Lundberg & Lee, 2017). Since
most deep neural networks operate as “black boxes” that lack direct interpretability (Samek et al.,
20165 |Ancona et al., 2017), XAl is essential for three main reasons. First, it enables effective eval-
uation of Al-assisted decision-making processes (Goodman & Flaxman, 2017). Second, it assists
researchers in debugging and improving DL models (Cadamuro et al., [2016; |Adebayo et al., [2020;
Krishna et al., 2024). Third, XAI reveals information that may be hidden from human perception
(Shrikumar et al.,|2017). Among various XAI methods, model-agnostic approaches that provide in-
sight into what a model has learned are referred to as post-hoc explanations. These explanations can
be categorized based on the level of features they address, ranging from human-interpretable high-
level representations to low-level input features, with the categories termed training point ranking,
concept activation, and feature attribution (Adebayo et al.| 2022). In the field of electroencephalo-
gram (EEG) analysis, the use of DL for decoding task-related patterns has shown significant success,
leading to increased interest in recent years (Roy et al.,2019). In EEG-DL research, feature attribu-
tion methods enhances our understanding of both the EEG data and the models employed through
visualizing saliency of input features (Tjoa & Guan, |[2020; |Pan et al.}|2022; |Bilodeau et al., [2024)).

As the number of feature attribution methods expands, new concerns emerge regarding the quality of
the explanations generated. Quantitative assessment of explanation quality remains a challenge, as
it is often difficult to differentiate between model misbehavior and flaws inherent in the attribution
methods (Sundararajan et al.l 2017)). Nonetheless, criteria for evaluating quality have become more
widespread over the past decade. We summarize the related research in Table [T} which provides
a general overview of the current landscape. Recent efforts have primarily focused on assessing
the effectiveness of explanations in accurately representing the features that significantly influence
model decisions, a quality we will refer to as faithfulness”. As [Shah et al.| (2021) suggested, a
larger feature attribution indicate a higher relevance to model prediction. This can be understood
in two key ways: 1) model decisions can reflect the presence or absence of an input feature, and 2)
perturbations to important features tend to have a more pronounced impact on model decisions, and
vice versa.
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Figure 1: (a) In the context of an EEG-DL recognition, post-hoc explanations provide feature at-
tribution scores that are visualized as saliency maps. These saliency maps allow for the extraction
of domain-specific saliency, facilitating interpretations across the temporal, spectral, and spatial do-
mains. (b) To quantify the faithfulness of a feature attribution method based on generated saliency
maps, information masking removes features following the Most Relevant Features (MoRF) and
Least Relevant Features (LeRF) strategies and imputes them with in-distribution data. The model’s
inference accuracy is then evaluated against the masking ratio. Finally, we assess the faithfulness
of the feature attribution method using metrics based on the areas over the MoRF curve, under the
LeRF curve, and between the two curves.

Building on the two key points, we categorize existing evaluation strategies for faithfulness into
two main types: “fidelity analysis” (Yeh et al.l 2019) and “robustness analysis” (Hsieh et al.| 2020;
Fang et al., [2024). Fidelity analysis quantifies the discrepancy between perturbations of input fea-
tures based on explanations and the expected changes in model output. Since the absence of an
important feature should result in a significant decline in model performance, a smaller discrep-
ancy between actual degradation and expected change reflects higher fidelity or greater faithfulness
of the explanation. Conversely, robustness analysis examines whether attribution magnitudes are
positively correlated with a feature’s susceptibility to adversarial attacks. Features that are less in-
fluential to model decisions should show greater tolerance to adversarial perturbations, and a faithful
explanation should accurately represent this by identifying such features as unimportant.

However, existing frameworks for assessing faithfulness face several challenges:

* Current evaluations of post-hoc explanation methods rely on suboptimal information mask-
ing techniques, which can result in out-of-distribution imputations when applied to real-
world data.

* Although multiple frameworks have been proposed, there is no standardized methodology
that enables a quantitative comparison among these explanation methods.

The challenges are elaborated in Section 2.1} To address these gaps in the context of EEG-DL
analysis, given the number of studies that have adopted XAl (Tjoa & Guan, 2020} |Sujatha Ravindran
& Contreras-Vidal, [2023), our study proposes comprehensive faithfulness evaluation frameworks
incorporating multi-domain information masking techniques.

Our primary objective is to determine which explanation methods are most suitable for elucidating
EEG-DL models. Our contributions include:

1. We expand the leading in-distribution information masking method, Remove and Debias,
to accommodate multiple domains, including spatial, temporal, and spectral dimensions.

2. We introduce an adversarial information masking (AIM) approach to circumvent issues
related to hand-crafted distribution selection and to enhance in-distribution information
masking for multivariate time series data.

3. We assess the effectiveness of in-distribution information masking through a novel Multi-
Domain Adversarial Robustness (mdAR) framework that includes new normalized faith-
fulness metrics and an evaluation result consistency-based methodology for framework
validation.
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4. We demonstrate assessments of faithfulness for existing post-hoc explanation methods and
their limitations under specific conditions in the context of deep learning interpretation of

human EEG data.

Table 1: Obfuscating articulations of homogeneous explanation quality criteria in referenced studies.

This study focuses on the evaluation of explanation faithfulness.

Terminology Study Removal/Imputation Motifs
Sensitivity-n |Ancona et al.[(2017 -
Completeness Sundararajan et al. -
Sensitivity (a), (b) undararajan et al. - Explanation axioms: Mathematical property or
Linearity undararajan et al. - quantitative relationship with input information that the
Summation to delta hrikumar et al.|(2017 - attributed saliency values should satisfy.
Local Accuracy Lundberg & Lee|(201 -
Missingness undberg & Lee -
Sensitivity Kindermans et al. (2019 - Explanation robustness: How easy it is to distort or
Similarity ebayo et al. |(2 - manipulate attribution result, or the variance of
Sensitivity ch et al. - attributed saliency pattern under fundamentally similar
Robustness Sujatha Ravindran ontreras- Vidal w - generation settings.
Quality Samek et al. Remove
Consistency -
Fidelity Remove
Fidelity Remove
Fidelity Remove
Impoizzzlen/\:ct)c]uracy l}:g‘:;ée Exploénation _guzitgful‘ngx.v: Genuity of saliency‘with
Fidelity / Faithfulness DIffROAR regard to model decision. In most cases contrives a
Fidelit ROAD strategy tolhlandle the interaction of explanation and
ety del decision.
Reliability (20 ROAR mo
Importance Accuracy 023 GOAR
Effectiveness (2023] Corrupt and train
Quality H{gﬁm m AR
Faithfulness ang et al. |(2024] OAR

Sensitivity |Sujatha Ravindran & Contreras-Vidal (2023 Noise Ratio

2 RELATED WORK

In this section, we identify potential issues within evaluation frame-
works, provide a synthesis of key benchmarking approaches, and
offer a concise overview of explanation evaluation in EEG analysis.
Given the diverse terminology employed across the literature, our
focus is on accurately conveying the fundamental concepts rather
than adhering rigidly to the specific language used in individual ref-
erences.

2.1 COMMON ISSUES IN EVALUATION FRAMEWORKS

To investigate the causal relationship between the identified
”salient” features and model decisions, an intuitive approach is
to remove those features and observe the model predictive power
degradation on the altered data. For instance, in image models, re-
searchers often apply a mask to the pixels, replacing them with a
fixed value. However, the Remove method raises concerns due to
1) Distribution Shift (Dabkowski & Gall, 2017 [Hooker et al., 2018):

pixel count

.I
pixel count

: Color Intensity
(a) Distribution Shift

Image B
(masked with inferable mask)

(b) Information Leakage

Image A

Figure 2: A cartoon illustrat-
ing common challenges asso-
ciated with information mask-
ing: (a) Distribution shift and
(b) Information leakage.

the masking process introduces artifacts, rendering the modified data out-of-distribution (OOD); and
2) Information Leakage (Rong et all [2022)): the mask can inadvertently reveal class-relevant infor-
mation, as this information may not be confined to the data value alone. These issues further lead

to 3) Ranking Inconsistency (Tomsett et al., [2020; [Rong et all [2022): the explanation evaluation

framework may produce unstable rankings depending on the feature masking order (Most Relevant
First (MoRF) or Least Relevant First (LeRF)), despite such orders theoretically being irrelevant to

the ranking outcome.

Furthermore, frameworks for assessing may lack statistical reliability when applied to diverse

datasets or quality metrics (Tomsett et al] 20205 [Rong et all 2022} [Brocki & Chung} [2022)).
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2.2 Fidelity analysis EVALUATION FRAMEWORKS

RemOve And Retrain (ROAR) [Hooker et al.|(2018) introduced the ROAR evaluation framework
to address the issue of distribution shift. In this approach, after features are removed through fixed-
value imputation, the model is retrained to adapt to the altered data distribution. The faithfulness of
the model is then assessed based on the decline in accuracy of the retrained model.

RemOve And Debias (ROAD) Building on ROAR, Rong et al.|(2022) identified additional chal-
lenges, including information leakage and ranking inconsistency, arising from fixed-value imputa-
tion. Using mutual information theory, they proposed the ROAD framework, which employs Noisy
Linear Feature Imputation. This method minimizes the revelation of class-relevant information with-
out necessitating retraining, resulting in a consistent ranking of explanation faithfulness.

Geometric RemOve And Retrain (GOAR) |Park et al.|(2023) critically examined the ROAR and
ROAD frameworks from a geometric standpoint, highlighting their lack of invariance to coordinate
transformations and neglect of directional information in the data’s geometric structure. To address
these limitations, they proposed the GOAR framework, which incorporates a diffusion model into
the ROAR process to purify the modified dataset, offering a coordinate-independent solution.

2.3 Robustness Analysis EVALUATION FRAMEWORKS

Adversarial Robustness (AR) Deep neural networks are known to be vulnerable to adversarial
perturbation (Goodfellow et al., 2014)), and the EEG-DL models are no exception (Zhang & Wu,
2019). As the common objective of an attack is to maximize the model failure while minimizing
the perturbation scale, |Hsieh et al.| (2020) leveraged this idea and resorted to nuanced adversar-
ial perturbation as an alternative to the brute-force value imputations. Their faithfulness metric is
”Robustness — S”, denoting the maximum perturbation tolerance on the feature subset .S that was
attributed higher importance by the explanation. Although Hsieh et al. did not directly address the
abovementioned issues, we argue that this framework is a capable workaround by exploiting the
imperceptible and model parameter-related nature of adversarial perturbation.

OOD-resistant Adversarial Robustness (OAR) Expanding on the adversarial robustness (AR)
framework, |[Fang et al.| (2024) introduced a novel approach that explicitly accounts for data dis-
tribution by incorporating an out-of-distribution (OOD) reweighting block. This block employs a
variational graph autoencoder (VGAE) that is trained independently on the unmodified data. The
VGAE generates OOD scores for adversarial examples, enabling the reweighting of faithfulness
assessments for each explanation method based on its respective OOD score. However, it is im-
portant to note that the effectiveness of the VGAE training can be compromised in the presence of
significant data variability.

2.4 EXPLANATION EVALUATION IN EEG-DL MODEL INTERPRETATION

With the growing understanding of post-hoc explanations in computer vision, there has been a re-
cent expansion into other fields exploring this topic (Turbé et all [2023 [Fang et al., 2024). To the
best of our knowledge, there are currently a few peer-reviewed studies that proposed systematic
quality evaluations on the subject of post-hoc explanations for DL-based EEG decoders. |Apicella
et al.| (2022)) conducted a removal-based study with a 3-layered fully connected network trained for
an individual subject from an emotion EEG dataset. In the study, they experimented on MoRF and
LeRF removal order from spatial (EEG electrode), spectral (frequency band), and temporal (time
sample) perspectives. |Cui et al.| (2023) also conducted a removal-based study, this time on real
EEG datasets and benchmark EEG-DL models. They designed experiments on spatial domain and
different scaled temporal domain. [Torres et al.| (2023)) applied trial-level ROAR framework on an
autism EEG dataset and its customized CNN. Finally, instead of using removal based method, |Su-
jatha Ravindran & Contreras-Vidall (2023)) utilize an EEG generation toolbox with the concept of
SNR, which is incompatiable with the idea of domain-specific and removal orders. They designed
sensitivity experiments on the synthetic EEG dataset using a toy DL model. However, a fully repro-
ducible explanation evaluation that incorporated the suboptimal evaluation strategies and validated
on open EEG datasets and benchmark EEG decoders is still absent, making it difficult to establish
trust in previous evaluation outcomes (Singh et al., 2021 [Rajpura et al., [2024)).
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3 METHODS

The latest auxiliary model-based frameworks (GOAR, OAR) are underpinned by the auxiliary
model’s ability to impose distribution constraint on the perturbed data. Preserving distribution for
natural multivariate time-series is a non-trivial task, dataset variability for one, the preparatory work
can be computationally exhaustive while remaining biased to the limited dataset on which the model
was trained (Rong et al.[(2022) Appendix B, [Fang et al.|(2024)). Given these difficulties in justify-
ing such framework design on multivariate EEG, we take the ROAD and AR (SimOAR) frameworks
as the cornerstones to develop our explanation faithfulness evaluation framework for EEG, termed
multi-domain ROAD (mdROAD) and multi-domain AR (mdAR).

The primary features of EEG are conventionally explored in the spatial (EEG electrode / channel),
spectral (frequency band), and temporal (time sample) domain. In this work, we denote the multi-
channel EEG sample as z.; with IV channels and IV; time points. S, is the corresponding saliency
map of feature attribution. The imputed EEG data is denoted as x,, ;. In spectral domain, we de-
fine X. ¢ = F.(z.:) as the EEG spectra with Ny frequency bins across channels, where F¢() is
the channel-wise fast Fourier transform (FFT). The feature indices in temporal, spatial, and spec-
tral domain to be removed are represented by ®;, ®., and @, respectively. The spatial domain
explanation S, is constructed by N%Eczgt, the spectral domain explanation S is constructed by

NLCZ rabs(X,y), and the temporal domain explanation S is constructed by N%Zt%,t-

3.1 MULTI-DOMAIN ROAD FRAMEWORK

In the original ROAD study, Rong et al.| (2022 stated that neighboring features are highly correlated,
thus a subtle imputation for a pixel can be constructed using the linear interpolation of its neighbors.
To ensure the linear relationship to not leak class-related information, a small noise € is added to
the computed interpolation, hence the name “Noisy Linear Imputation”. We devised domain-wise
feature imputation methods in the spirit of 1) use neighboring features to ensure in-distribution
imputation and 2) introduce noise when the imputation is at risk of information leakage.

For spatial domain, the target are k electrodes ranked top/last in S.. The imputation result is gen-
erated using weighted interpolation of the target’s neighboring channels according to the actual
electrode montage, the equation can be written as 2..q_, = Wax.ge, +¢, where W stands for a
weight matrix for mixing the signals of remaining channels. Since a complete set of neighboring
channels includes four direct and four indirect neighbors and the weights should sum up to one, we
set wg = 1/6 and w;q = 1/12 as a Laplacian spatial filter commonly used in channel-wise impu-
tation of EEG data (Banville et al.,|2022). In addition, although ®. does not necessary to fall into a
connected region, it is often the case that the target electrodes become connected and the solution is
solved together as a sparse system.

For spectral domain, the target is a consecutive frequency band that takes k % of sample power and
is ranked most/least important in Sy. The bandwidth is determined exhaustively and differs for each
configuration, details are provided in the appendix In addition to the basic concepts of noisy
linear imputation, the spectral feature imputation is also inspired by the “’spectrum interpolation”
method developed for power line noise removal (Leske & Dalal, [2019). Empirical evidence (He
2014) suggest that the EEG spectrum has a 1/f-like aperiodic scale-free background component
caused by the co-fluctuations of different frequencies (Donoghue et al., [2020), with a power law
exponent” falls in [0-3]. To ensure the 1/f-like spectrum structure, the imputation is generated by
a real polynomial of degree 3: P(f) = ¥2_,a;f ¢ fitted onto the sample power spectrum, the
imputation equation can be written as ., = F,'(z/, ;) where x, rew, = P(f). Notably, since
the amplitude and phase cannot be reconstructed from the power spectrum and there is no knowing
how the phase of neighboring frequencies correlate to each other (?), only the frequency amplitude
is consciously maintained as a means of corruption of the linear relationship.

For temporal domain, the target is a time interval of k% of series length whose sum of contribu-
tion is ranked top/last by S, and the temporal feature imputation is emulated using the Multipoint
Fractional Brownian Bridge (MFBB) proposed in [Friedrich et al.|(2020). To briefly touch upon the
context, MFBB is a self-similar stochastic series proposed to interpolate sparsely sampled time se-
ries, parameterized on a Hurst index H, the number of desired timestamps, and more importantly,
conditioned on a set of given observations GG; at time instance ¢;; these properties coincide with our
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goal of generating in-distribution imputation from neighboring features. Hurst index is an estima-
tion of the presence of long-range dependency and its degree in a natural time series (Beran et al.,
2013; Kannathal et al.| |2005)), whose value are concluded to reflect certain tendency of value in a
time-series. For example, H < 0.5 suggests a mean-reverting behavior (Mandelbrot & Van Ness),
1968} [Beran et al., [2013)). We set H = 1le — 05 for the generation of an anti-persistent time series,
and the the size of given observation is 3 (placed at the beginning, center and end of target interval)
for the effect of minimum class information preservation.

Informally, the MFBB is applying constraint on a stochastic process B(t) (Fractional Brownian
Motion (FBM) (Dieker, |2004)), and by definition the imputation function can be written as equation
B(t) is characterized by covariance (B(t1), B(t2)) = 1/2(|t1|*" + |t2|?7 — |t; — t2]?") and
implemented using the method proposed by Davies & Harte (1987). ¢ is a time instance of the
imputation target, and t;, ¢; refers to the time instance of previous and next given observation. o;; is
the derived autocovariance of S. The derivation of the imputation function and more context behind
the definitions are provided in the appendix.
_ 1

Thew, = B() — [B(t) - Giloj (B(1). B(t,)) W

3.2 MULTI-DOMAIN AR FRAMEWORK

The faithfulness measurement in the original AR framework is the minimum perturbation magnitude
required to successfully degrade model performance on a designated feature subset. However, em-
pirically we found an impartial measurement of perturbation tolerance on EEG is infeasible provid-
ing the fact that our experiment incorporated a wide variety of configurations (experiment subjects,
dataset properties, model structures, feature domains), which is in line with the literature (Zhang &
Wul, 2019 Meng et al.| 2023).

Considering our objective of domain specific information masking, we designed domain-wise impu-
tations with adversarial example instead of conducting domain-specific attacks, which is beyond the
scope of this study. Our method is conceptually similar to CutMix augmentation (Yun et al.| 2019)
in which a region from one sample is removed and patched using another sample. In our case, the
target features will be imputed with the corresponding features from its adversarial example 4.
Theoretically, this procedure should imperceptibly move the class-relevant features toward the ir-
relevant direction along the explanation-based region and degrade the model performance (Fawzi
et al.l 2017). The adversarial examples in this study were generated with untargeted Projected Gra-
dient Descent (PGD) attack, which is a multi-step first-order attack method proven to be effective in
several scenarios (Madry et al.l |2017; |Meng et al., [2023). The PGD formula and parameter setting
are presented in the appendix. For mdAR framework, the imputation target selection is identical to
mdROAD framework, and the imputation functions for spatial, spectral and temporal domain can be

: ! Adv l Adv ! Adv :
written as Tocq <~ Tolg,» Xfea, & Xfpéo, and Ticg, < Tily, , respectively.

4 EXPERIMENTAL SETUP

4.1 EEG DATASETS AND DECODING NEURAL NETWORKS

EEG datasets harbor distinctive task-related characteristics, and differently structured decoders have
strength in certain feature domains. To support the generalizability of the proposed framework, we
cooperated three well-studied public EEG datasets and three lightweight CNN-based models for this
study.

Open Multivariate EEG datasets We selected one time-asynchronous and two time-synchronous
multivariate EEG datasets, referred to as sensory motor rhythm (SMR) dataset, event-related neg-
ativity (ERN) dataset and steady state visual evoked potential (SSVEP) dataset according to the
BCI paradigm they represented. The time-asynchronous SMR dataset comes from BCI Competi-
tion Dataset 2A Brunner et al| (2008)), containing EEG desynchronization of imaged movements
in sensorimotor cortex. ERN dataset comes from “BCI-challenge” on Kaggle (Jérémie Mattout &
Kanl 2014), reflects time-locked EEG amplitude change elicited by oddball events. SSVEP datasets
comes from MAMEM SSVEP experiment 2 (Martinez et al., 2007)), the EEG recording around
occipital region synchronizes with given visual stumli at specific frequencies. Detailed dataset in-
formation and the dataset preprocessing procedures are described in the appendices.
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EEG decoding neural networks Convolutional Neural Networks (CNN) operation mimics con-
ventional spatial or temporal filtering in EEG feature extraction, hence CNN-based model structures
are often adopted for EEG decoding. EEGNet (Lawhern et al |2018) is a compact model with a
temporal convolution layer, a depthwise convolution layer, and a separable convolution layer. The
model has been tested on abundant EEG research. SCCNet (Wei et al.l 2019) was proposed for
the SMR dataset, later utilized to analyze different datasets (Pan et al., 2022). It features a spatial
convolution layer followed by a spatio-temporal convolution layer. InterpretableCNN (Cui et al.,
2022)) was proposed for EEG drowsiness recognition, it consisted of a pointwise convolution layer
and a depthwise convolution layer. Unlike the common EEG-DL model structure, its batch nor-
malization layer tracks batch moments rather than running moments. To alleviate the influence of
individual EEG variability, all of our models are trained in a subject specific manner, the implemen-
tation and training settings are provided in the appendices. Average accuracies of the three models
are {72.80%, 70.86%, 72.21%} on the SMR dataset, and {72.36%, 60.59%, 72.23%} on the SSVEP
dataset; the roc-auc score is {87.81%, 87.72%, 88.77%} on the ERN dataset.

4.2 FEATURE ATTRIBUTION METHODS

The vast literature has concluded their takes on the quality of different explanation methods, how-
ever, the results are diverse as a product of varying data characteristics and evaluation strategies. Re-
gardless of previous faithfulness evaluation results, we selected 6 common back-propagation based
feature attribution methods. Concerning whether the sign of explanation holds class-relevant infor-
mation, a crude consensus is that it depends on the underlying data characteristics (Bach et al., 2015
Smilkov et al., 2017; |Ancona et al.l [2017). Since this matter was never discussed in the context of
EEG, we decided to investigate signed explanations and their absolute values as two different ex-
planations. Altogether, 6+4 methods will be evaluated along with a Random baseline, namely Gra-
dient w/wo absolute (GD/GDA) (Simonyan et al., 2013), Gradient x Input w/wo absolute (GI/GIA)
(Shrikumar et al., [2017), Smoothgrad w/wo absolute (SG/SGA) (Smilkov et al., 2017), Smoothgrad
Squared (SG) (Hooker et al.,[2018), Vargrad (VG) (Adebayo et al.| 2018)), and Integrated Gradient
with canonical baseline 0 w/wo absolute (IG/IGA) (Sundararajan et al., 2017). The implementation
details are provided in the appendices.

4.3 EXPLANATION FAITHFULNESS MEASUREMENTS

The faithfulness metric within the notion of deficiency between performance degradation and fea-
ture perturbation should be able to capture it through different levels of explanation-based feature
masking. Instinctively, the model performance of MoRF order should have a sharp decrease right
after masking begins, and the decrease in LeRF performance should be modest (Hooker et al.,[2018).
According to such expectation of accuracy-ratio curve behavior, mainstream qualitative metrics are
area-centric as equation E] (Tomsett et al., [2020; |Apicella et al., [2022; |Brocki & Chung [2022; |Cui
et al.} [2023). Each post-hoc explanation method will correspond to two performance curves of dif-
ferent masking order in one framework-dataset-model-domain configuration. Taking into account
one or both strategies, we proposed three normalized area metrics: Area Over Curve (AOC), Area
Between Curve (ABC), and Area Under Curve (AUC).

ce(z®) — Ace
AOC 1/K+1 Zk 0 ACC $0)) /CEass|)
K Ace(at) — Ace(zy)

ABC = 1/K+1 Zk 0[ Ace(x /\Class\ (2)

(z°) —
AUC = VKHZk | CEOEE; 1/\011155\}

Ace(x l/\Clas.s\

where xf, (zF) denotes the input with most (least) important k percent features masked, K is the
maximum masking ratio. Acc(z) stands for the classification power of model on input z. Higher
measurements indicate that the curves’ behavior aligns more closely with expectations, reflecting
greater faithfulness. An illustrated example of the metrics is displayed in Figure[I]b.
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4.4 FRAMEWORK CONSISTENCY ON MASKING ORDER

We use Spearman’s ranking correlation coefficient to quantify the consistency of framework re-
sults in different masking orders. We first rank the explanation methods based on their impact on
model performance at varying masking ratios, where a greater decrease in performance results in a
higher ranking for Most Relevant Features (MoRF) and a lower ranking for Least Relevant Features
(LeRF), with ranks ranging from 1 (best) to 11 (worst). Next, we calculate the ranking correla-
tion coefficients for each ratio up to 50%. The average correlation coefficient across these ratios
reflects the framework’s consistency across various combinations of domains, datasets, and models.
The Spearman’s ranking correlation coefficient p measures the monotonic correlation between two
ranks, the possible range is [-1,1], with positive (negative) results suggest the degree of similarity
(dissimilarity). For two ranks R, Ry, the correlation coefficient pr,, r, is defined as E} cov, o
denotes the covariance and standard deviation of the rankings, respectively.

cov R]W,RL
pRJu,RL = ¥' (3)
ORnm>ORL

5 EXPERIMENTS

In this section, we first report the evaluation results using our proposed frameworks, before vali-
dating the frameworks quantitatively and qualitatively. We also address the possible issue of using
unsigned explanation methods for data in signal format with visualized examples.

Table 2: Comparison of faithfulness scores for various feature attribution methods, averaged across
different dataset-model configurations. Higher values indicate greater faithfulness. Highlighted
cells represent the "most faithful” method, and the superscripts mark the top-3 highest faithfulness
measurement within each column.
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5.1 FAITHFULNESS EVALUATION RESULTS

The faithfulness measurements of the 6+4 explanation methods are presented in table[2] The faith-
fulness of Random baseline explanation is trivially the worst, aligning with the assumption that it’s
supposed to carry no class-related information. Additionally, methods with absolute are generally
measured to be more faithful in spatial and temporal domain than their without absolute counter-
parts. Considering EEG data characteristics where relative changes are often more meaningful, this
result is not at all surprising. As for the with/without absolute comparison in spectral domain, the
without absolute methods turn out to achieve superior faithfulness measurements than with absolute
methods, we address this phenomenon in section[5.3]

5.2 QUANTITATIVE FRAMEWORK VALIDATION WITH MASKING ORDER CONSISTENCY

Table |3| shows Spearman’s ranking correlation coefficient between masking orders of each
framework-domain-dataset-model configuration. Throughout dataset and model configurations, the
mdAR framework seems to produce more consistent result between masking order when comparing
to the mdROAD framework. At the end of the day, the feature interpolation in the mdROAD are
handcrafted with human knowledge on the EEG data, and we believe such phenomenon is a reflec-
tion of stronger bias enforced in mdROAD framework than in mdAR framework. The complete
ranking of each framework-domain-dataset-model is provided in the appendix
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Table 3: Comparison of the two imputation techniques: Multi-Domain Remove and Debias
(mdROAD) and Multi-Domain Adversarial Robustness (mdAR) regarding framework reliability for
faithfulness evaluation. Reliability is evaluated based on the consistency of rankings for feature
attribution methods derived from the Most Relevant Features (MoRF) and Least Relevant Features
(LeRF) strategies, using Spearman’s p for each framework-domain-dataset-model configuration.
Bold text highlights configurations where there is greater consistency in masking order between the
two frameworks.

SMR ERN SSVEP
Framework D
EEGNet ICNN SCCNet EEGNet ICNN SCCNet EEGNet ICNN SCCNet
Spatial 136+.361  377+£.280 .557+.197 .854+.098 .583+.190 .563+.203 .653+.199 .733£.095  .707+.179
mdROAD Temporal .548+.162 .174+.267 .785+.149 .538+.162 .700+.178 .728+.164 .570+.227 .764+.141  .353+.259
Spectral  .788+.120 .101+.318 .362+.219 .383+.249 .115+.244 .166+.381 .318+.340 .077+.324  .023+.263
Spatial .830+.066 .816+.051 .821+.059 .767+.105 .773+.099 .833+.078 .881+.071 .870+.052 .862+.108
mdAR Temporal .921+.079 .790+.193 .638+.130 .904+.096 .614+.254 .805+.062 .434+.281 .7154+.071 -.040£0.370
Spectral  .813+.117 .7554+.091 .330+.218 .681+.226 .482+.207 .625+.113 .755+.082 .592+.091  .811+.061

5.3 FREQUENCY DISTORTION IN UNSIGNED MODEL EXPLANATION

In explanation faithfulness measurement results, we notice that the relative rank of methods w/wo
absolute in spectral domain are inconsistent with the other two domains, hereby we address this
abnormality with a visualized example. As fig. [3|(a) shows, the period of the absolute explanation
is half of the original signal, in other words, the frequency is doubled, and the power of the cor-
responding double will increase. The signal-like explanations can be visualized in a frequency by
time representation by applying short time Fourier transform, and Fig. [3| (b) shows the transformed
explanation before and after absolute, within which the “significant frequency” clearly shifted to
different multiples of the stimulus frequency. The reason that the shifted band does not manifest
at a perfect double is because of the harmonic frequencies invoked by the visual stimuli and the
interference of other brain activities.

Visual Stimuli 10Hz

To support this reasoning of inconsistent spectral domain |
faithfulness ranking, we conduct an “frequency correc- | | VV VY | .

tion” experiment on SSVEP dataset based on the mdAR  w. i il -
framework. In the experiment, the target ® ; now are fre- . .
quencies whose amplitude were ranked top/last k% in the L N ey
Sy, but the imputation function becomes X , +— X7/’ @ e

for f € ®;. We observed improvements in faithfulness
metrics that take MoRF order into account, the differ-
ence of {AOC, ABC, AUC} on GDA is {+.062, +.045,
-015}, on GIA is {+.067, +.031, -.036}, on SGA is

Figure 3: Frequency distortion observed
in unsigned explanations. (a) Tempo-
ral saliency of Gradient (GD) and Gra-

{+.062, +.049, -.013}, and on IGA is {+.063, +.023, -
.030}. However, due to the frequencies being mixed non-
linearly in EEG, the perfect frequency correction for un-
signed model explanation requires extra effort beyond the
scope of this study. Nevertheless, the aforementioned
frequency distortion phenomenon is something EEG-DL
researchers should be extra careful when adopting XAl
methods that embody some sign-elimination when inter-
preting spectral features.

dient with Absolute (GDA) comparing
to a reference 10-Hz sinusoidal signal.
(b) Shows a comparison of the spectro-
grams for the temporal saliency of GD
and GDA, highlighting that GDA ex-
hibits a 20-Hz component attributed to
the incorporation of absolute saliency.

5.4 QUALITATIVE FRAMEWORK VALIDATION WITH NEUROSCIENTIFIC EVIDENCE

We complement the quantitative validation of evaluation frameworks by visualizing the explanations
evaluated as the most and least faithful, and interpret them with neuroscientific knowledge. We select
EEGNet from one repeat for example and the subjects it achieved the best classification performance,
which are subject 3 from SMR dataset with 0.8923 accuracy, subject 22 from ERN dataset with
0.9828 roc-auc score, and subject 11 from SSVEP dataset with 0.92 accuracy. The faithfulness
evaluation values are provided in the figure.
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LeftHand  Right Hand

WIthERN _  nw owr  esmz | 7smz

)

(a) methods: (SS, GI) (b) methods: (SS, GD) (c) methods: (GD, VG)

Figure 4: (Most, Least) faithful explanation method visualization, saliency values normalized to
0-1, EEGNet for example, faithfulness measurement from mdAR framework. (a) Spatial domain
explanation on SMR dataset. (b) Temporal domain explanation on ERN dataset. (c) Spectral domain
explanation on SSVEP dataset.

In the Spatial domain with SMR case, we can see Smoothgrad Squared better captured motor cortex
activations, especially the contralateral pattern in class "Left Hand” and “Right Hand”, and response
close to the longitudinal fissure of class “Feet”.In the temporal domain with ERN case, Smoothgrad
Squared shows a converged activation around 500 milliseconds after cue onset, while the magnitude
in Gradientx Input are rather scattered. In the spectral domain with SSVEP case, the significant
frequency responses are duly intensified at the stimuli and their harmonic frequencies in Gradient; in
Vargrad the responses are discernable but diluted. As models with better convergence are presumed
to extract data characteristics well, we found that explanations evaluated as more faithful by our
framework did contain patterns aligned with neuroscientific knowledge (Pfurtscheller et al., 2006}
[Hajcak et al, 2005} Martinez et al.,[2007).

6 CONCLUSION

We introduce a novel adversarial information masking (AIM) approach to enhance in-distribution
information masking, addressing key gaps in the assessment of faithfulness for post-hoc explana-
tions in deep learning. To validate the AIM method, we conduct the first quantitative comparison
of faithfulness assessment frameworks across various architectures, datasets, and domains. Through
these efforts, we successfully identify effectiveness of post-hoc explanation methods in EEG-DL,
thus furthering our understanding of model behavior and improving their explainability. Future re-
search could focus on refining these frameworks and exploring their applicability to a wider range
of multivariate time series and sequential data contexts.
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A TEMPORAL FEATURE IMPUTATION IN MDROAD

A.1 FRACTIONAL BROWNIAN MOTION

General Representations Fractional Brownian motion (FBM) is a self-similar stochastic process
designed to practically model natural time-series with minimum mathematical difficulty. In the
original definition, the FBM is modeled with a Gaussian process and formulated as a Riemann-
Liouville integral (Loeve, [1948) of . Later work by Mandelbrot & Van Ness| (1968) introduced
FBM represented in Weyl integral, which has stationary increments and a simpler covariance
function. Denoting X (¢) as the observation of the FBM at ¢ = ¢, and X(¢) is real noise
(ordinary Brownian motion modeled by Gaussian white noise), for ¢ > 0, FBM is written as

Xp(t) — Xu(0) = ﬁ{fim(t —s)H-2dX(s) — fgm(O — s)H=2dX(s)}. The self-similar

property can be represented as A(Xg(t + 7), Xg(t)) = hmTA(Xg(t + 7), Xg(t)). The co-
variance function of FBM in Weyl intergral representation can be written as (X g (to) X g (t1)) =

%ﬁ‘:s(}m(\tﬂ”[ + [t1]?H — |to — t1|*H); for a fixed H, the scalar term is also fixed. The full

derivation of covariance function can be found in item (5.1) of[Mandelbrot & Van Ness| (1968).
Although EEG is a non-stationary, non-linear and noisy signal (Klonowskil 2009), the imputed
signal is short and the mdROAD framework emphasize on utilizing the distribution of neighbors,
we view the time-series in the masked short interval as quasi-stationary and adopted the multipoint
fractional Brownian bridge (MFBB) method. Previous MFBB utilization on EEG appeared in |[Ma
et al.[(2023) .

Davies-Harte method for Fractional Brownian Motion Simulation Several algorithms are de-
veloped to simulate FBM, some simulated results have exact property of FBM while some algo-
rithm choose to approach the properties by approximation, considering benefits such as computa-
tion speed. We used method from |Davies & Harte| (1987) to simulate exact FBM for efficient series
generation.
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Given a one dimensional fractional Gaussian noise of length n: X = (X(0), X(1)...X(n — 1))T
its covariance function denoted as (-). In our case v(k) = $(|k + n|*" + |k — n[*# — |2k|*1),
n,k =0,1,2.... T'is a Toeplitz matrix constructed as 4}

v0) (1) y(n—1)
v(1) ¥0) - y(n—2)
ann = : . . : (4)
Y =1) 4n=2) - ~(0)

The main idea is to find the square root G of T in the sense that I' = GGT'. Embed I in the upper left
corner of circulant covariance matrix C' constructed using similar process with size M > 2N — 1,
written as within which ¢; = y(j) for0 < j < & and ¢; = y(j) for & <j < M — 1.

Co C1 C2 ' Cm—1
Cm—1 Co C1 - Cm—2
_ | em—2 Cm-1 €0 - Cm—
Cyxy = | "m=2 fm=1 20 m=3 &)
C1 Co C3 - Co

Circulant matrix C has the representation QAQ7, Q is the complex conjugate of Q). A is the diagonal
matrix of eigenvalues of C' that A = diag(Ag, A1, ...A\ar—1), and Q is unitary matrix that QQ7 =
The entries of Q is defined in [6] and the eigenvalues are given by discrete fourier transform of the
first row in C'[Z}

1 gk

gjk = f exp(—2mi~—) fork=0,1,2...M — 1, (6)
M M
ik

A = ZMO ¢; exp(QWijM) fork=0,1,2....M — 1, (7

Let S = QA%QT so that C' = SS7, a standard normal complex sequence Z multiplied by S will
satisfy the desired property; that is, the first [V terms in SZ is the simulated FBM.

For a standard normal variable v, multiply by v M@ is as if taking discrete fourier transform (DFT)
of v, and multiply by WQT is as if taking inverse discrete fourier transform (iDFT) of vl Con—

sequently, SZ = ZDFT(A DFT(Z)). (Brockwell & Davis, |1991; Wood & Chan, |1994; Dieker,
2004; Banna et al., [2019)

I gk _
VMQu = (E]ku:ol Vg, eltp(727TZL))£J:01

N
1 5 I m- Jk a1 ®
WQ U:(MEk o Uk 6Ip(27TZﬁ))k:0

A.2 MULTIPOINT FRACTIONAL BROWNIAN BRIDGE

A fractional Brownian bridge (FBB) is defined as a FBM starting from 0 at £ = 0 and ends at X
when ¢ = T'. FBB is constructed with a Gaussian process conditioned on X, its one- and two-point
correlation function are:
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A function satisfy equation 9| can be constructed as Xppp(t) = X(t) — (X(T) — Xﬂ%

to generate FBB. A complete derivation can be found in the appendix of |Delorme & Wiese|(2016).
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Multipoint fractional Brownian bridge is the ordinary FBB generalized to an arbituary number of
prescribed points. Considering the MFBB is conditioned on a set of points X; at ¢; fori = 1,2....n,
the one- and two-point conditional moments are:

. ::LX( )HgﬂéﬁX( ) Xr))
(X (t){ X, t:3) n(6(X(f) — >>

<X(t1)X( )Hz, 6(X(t:) — Xr))
I, (0(X (t:) — X7))

(10)
(X (@)X (L) { X, ti}) =

Using similar process as FBB, a function can be constructed to satisfyas Xurep(t) = X(t) —

(X (t;) — Xl)% fori,5 = 1,2...n. A complete derivation can be found in the appendix

of |Friedrich et al.| (2020).

B IMPLEMENTATION DETAILS

B.1 EXPLANATION METHODS

All explanations are generated with python Captum (Kokhlikyan et al.l 2020) package, all sign
are kept and the explanations were not normalized until visualization. The absolute values and
masking were conducted within single trial. When visualizing explanations, we compute min-max
normalization to scale the values to 0-1 after averaging across unwanted dimensions.

Gradient and Gradient x Input Gradient Egp(x) (Simonyan et al.l 2013) are the gradient of
class score with regard to input. Gradient x Input F;(x) (Ancona et al., 2017) is obtained through
element-wise multiplying Gradient with original input.

0S,

EGI(.’L‘) = EGD(.'L‘) Oz

Smoothgrad , Smoothgrad Squared and Vargrad Smoothgrad Fsq(x) , Smoothgrad Squared
Esg(x) and Vargrad Evy () (Smilkov et al., 2017;|Adebayo et al.,[2018) are ensemble explanation
methods that can reduce visually noisy explanation maps. Here we took Gradient as the primitive
explanation method, the number of random samples /N for ensemble explanation methods are set to
be 16, and their noise level € set as ~ N (0, le — 2).

Bsola) = = 3" (Bap(r+0)

Bss(r) = (x+ 3 (Ban(x +6)))? (12
Evyg(x) = Variance(Egp(x + €))

Integrated Gradient Integrated Gradient F;¢(x) (Sundararajan et al.,2017) sums over the values
from “baseline” Z along a interpolation path up to the actual Gradient. Although the "baseline” has
been proven to have nonnegligible influence on the explanation result, we follow typical setting to
set the baseline as zero, and the default scaling variable o = 50.

1 _ _
Ero(z) = (z — ) x /0 95(& *80;(’“’ =) g (13)

B.2 DATASET AND PREPROCESSING

Sensory Motor Rhythm (SMR) Motor imagery (MI) reflects endogenous activity in the senso-
rimotor cortex induced by imagined movement. The SMR dataset in this study comes from BCI
Competition Dataset 2A (Brunner et al., [2008)), it consisted of 22 channel EEG data recorded at
250Hz sampling rate from 9 subjects performing 4 MI tasks (left hand, right hand, feet and tongue).
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The dataset contains one training session and one evaluation session for each subject recorded on
different dates. A session includes 72 trials for each of the 4 tasks. The preprocessing followed |Wei
et al.[(2019) by downsample to 125 Hz and epoch to [-0.5, 4] seconds post cue onset.

Feedback Error-Related Negativity (ERN) Feedback Error-Related Negativity (ERN) is a time-
locked amplitude component that can be observed after the subject encounters an erroneous event.
The dataset comes from (Jérémie Mattout & Kanl|2014) and is available as the early stage release in
the "BCI challenge” on Kaggle. The dataset consisted of 56 channel EEG data recorded at a 600Hz
sampling rate from a total of 16 subjects executing P300 speller task. The experiment had a total of
340 trials from 5 sessions, where we split the first 300 trials as the training set and the remainder as
the test set. The preprocessing followed Pan et al.|(2022) by downsample to 128 Hz, bandpass filter
to 1-40 Hz and epoch to [0, 1.25] seconds post cue onset.

Steady state visual evoked potential (SSVEP) Steady state visual evoked potential (SSVEP)
are quasi-periodic oscillatory responses that occur in the occipital cortex when a person is visually
stimulated by flickering of a specific frequency (Wang et al.,[2016). The dataset in this study comes
from MAMEM SSVEP experiment 2 (Martinez et al., [2007)), it consisted of 256 channel EEG data
recorded at 250Hz sampling rate from 11 subjects, with stimuli in 5 frequencies (6.66, 7.50, 8.57,
10.00, and 12.00 Hz). The experiment has 5 sessions, we used the first 4 sessions as our training set
and the last as the test set. The preprocessing followed |Pan et al.| (2022) by downsample to 125Hz,
bandpass filter to 1-50 Hz, and epoch the original trials into 1 second segments.

B.3 MODELS AND TRAINING SETTING

The models and training procedure were implemented using pytorch framework (Paszke et al.,
2019). We repeatedly trained 5 set of models using different random seeds, and the quantitative
results in the manuscript were averaged across the repeats, except for the distorted frequency cor-
rection experiment which was conducted on one set of the models. In the total training of 500
epochs, the model with best test accuracy will be taken to generate explanation and conduct mask-
ing experiment. The learning rate were initially set as Se-4 with a 0.01 decay every ten epochs using
ExponentialLR. Adam optimizer were used. Batch size was set as 32 for SMR dataset, 32 for ERN
dataset and 25 for SSVEP dataset. As the models were trained for individual subjects, we assume
that the variance between data samples or batches are ignorable; thus, the batch normalization layers
were left unmodified.

The parameter of EEGNet and InterpretableCNN trained on SMR and ERN dataset followed the de-
fault setting that EEGNet: {F1=8, F2=16, D=2} and InterpretableCNN: {N1=16, d=2}, for SSVEP
we used EEGNet: {F1=100, F2=10, D=8} and InterpretableCNN: {N1=100, d=8}.

B.4 DETAILS FOR IMPUTATION

Spectral domain target search For spectral domain target frequency band B, firstly we assume
for each center frequency b, we can find frequency band By, (b ri—b. Hz) and Br (b.—byign: Hz)
whose power are both g% of sample power, bj.s; and b,;4n: can be exhaustively determined by
gradually adding up the power from each side of b.. Since the datasets were bandpass filtered in the
preprocessing procedure, special cases occur when by ¢+ or byign+ hits the band limit before power
under the By, or B meet %% of sample power, our solution is to continue the search in the opposite
direction.

Imputation ratio setting Considering artifact introduced, only the performance up to 50% mask-
ing ratio will be taken into quantitative analysis. For spatial domain, the masking ratio range from 1
to the half number of channels. For computation time concerns, the interval of spectral and temporal
domain are set to 5%.

Attack method for mdAR framework Project gradient descent (PGD) attack starts by adding a
small noise ¢ to benign data, then iteratively take small gradient steps of size « as an optimization
of 1) minimize attack magnitude and 2) maximize effect of attack. To constraint the result to fall in
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ae — {5 or € — ', neighborhood, the result is projected back onto the neighborhood after each step.
The expression of PGD can be written as[I4]

i =zt e
Adv a4
iter

AW = Proj (zA% | + o x signV Loss(z4% y))
Our experiment conducted untargeted attack (y = ¥¢,4e), and used cross-entropy to be the Loss
function. The neighborhood is a {5 ball with radius equal to the extreme values of original data. By
empirically testing for effective attack for all datasets and models, we set « to be 2 and iterations to

be 10.

C EXTENDED FIGURE OF PERFORMANCE-RATIO CURVES

The extended figures of performance-masking ratio curves of each dataset is provided in figure 5] [6]
and[7} The curves presented are results firstly averaged across dataset subjects, and then averaged
across 5 differently random seeded set of models.
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Figure 5: Extend performance-masking ratio curves for SMR dataset. (Odd columns: MoRF, Even
columns: LeRF)
D EXTENDED EXPERIMENTAL RESULTS

D.1 EFFECTS OF DIFFERENT IMPUTATION METHOD IN MDROAD FRAMEWORK

To explore the effect of different stochastic processes in the temporal domain imputation of
mdROAD framework, we conducted an extended experiment with EEGNet on the ERN dataset,
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Figure 6: Extend performance-masking ratio curves for ERN dataset. (Odd columns: MoRF, Even
columns: LeRF)

with models from 5 repeats. From the results, we can observe that using different stochastic pro-
cesses does not greatly affect the faithfulness measurement, and IG is the most faithful explanation
method in this dataset-model configuration. The results of the original mdROAD framework that
averaged in three models using MFBB for imputation are provided in Table7}

Similarly, to explore the effect of different spectral domain imputation designs of the mdROAD
framework, we conducted an extended experiment with EEGNet on the SSVEP dataset, with models
from 5 repeats. In line with the discussion in Sections[5.1]and[5.3] explanation methods that preserve
the sign of the saliency pattern are measured to be more faithful. In addition, explanations with
absolute performed worse in metrics that consider the MoRF order with the unnatural imputation
method.

D.2 FAITHFULNESS EVALUATION RESULT AND RANKINGS

The unscaled faithfulness metrics are presented in Table[6] [7] and[8] For fair comparison, the intrin-
sic differences of classification performance between model structures or datasets and the nonpar-
allel distribution of raw faithfulness measurement values should be considered. Firstly, to eliminate
model and dataset variabilities, we clipped and scaled the raw accuracies to [chance level-original
accuracy (0% information masked)] before computing the area-based metrics. The chance level
datasets refer to are {0.25, 0.5, 0.2} for {SMR, ERN, SSVEP} dataset, respectively. The results
from 5 differently random seeded set of models are averaged after this step.

For a comprehensible comparison of faithfulness between explanation methods, their ranking aver-
aged across models are displayed in Fig. [§] The inconsistency in spectral domain comparing to the
other two was discussed in Section[5.3]
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Table 4: Comparison of faithfulness scores for feature attribution methods using different imputation
method in mdROAD framework with spectral domain, EEGNet on the ERN dataset. Higher values
indicate greater faithfulness. Highlighted cells represent the “most faithful” method within each
column.

mdROAD, Temporal domain with EEGNet on ERN dataset

MFBB, p: 0.538+0.162 G ian Process, p:0.64+0.164 Uniform Distribution, p:0.721+0.168

AOC ABC AUC AOC ABC AUC AOC ABC AUC
GD 0.221+0.019  0.013+0.010 0.784+0.015  0.220£0.017 0.019+0.013  0.792+0.017 0.207£0.023  0.026+0.027 0.813+0.027
GI 0.282+0.022  0.111£0.008 0.829+0.016 0.305+0.019 0.153+0.013 0.847+0.017 0.284+0.032 0.146+0.021 0.862+0.019
SG 0.220+0.019  0.012+0.010  0.783+0.019  0.220£0.015 0.018+0.011  0.792+0.024  0.206+0.022  0.025+£0.026  0.813+0.028
SS 0.265+0.014  0.106+£0.017 0.841+0.017 0.287+0.018 0.137+£0.011 0.850+0.021  0.257+0.025 0.115+0.016 0.859+0.023
VG 0.263+0.005 0.100£0.021  0.836+0.022 0.289+0.010 0.140£0.016  0.850+0.022 0.256+0.026  0.113+0.018  0.858+0.025
1G 0.290+0.023  0.128+0.009 0.838+0.014 0.322+0.030 0.177+0.016  0.855+0.017 0.2954+0.038 0.162+0.026 0.866+0.021
GDA  0.263+0.015 0.103+£0.014  0.840£0.017 0.28940.017 0.141+0.011 0.851£0.020 0.256+0.026 0.116+0.015 0.860+0.022
GIA 0.262+0.007 0.104+0.011 0.843+0.017 0.290+0.015 0.145+0.009 0.856+0.020 0.258+0.025 0.120+0.014 0.862+0.021
SGA 0.264+0.015 0.103+£0.014  0.839+0.017 0.288+0.018 0.140£0.006 0.852+0.019  0.2574+0.025 0.116+0.013  0.860+0.022
IGA 0.264+0.008 0.107+£0.012  0.843+0.017 0.293+0.016 0.146+0.011 0.853+0.021 0.257+0.024 0.119+0.014  0.862+0.022

RD 0.2204+0.015  0.013+£0.005 0.788+0.019 0.21540.018 0.0124+0.002  0.794+0.022  0.198+0.022 0.011£0.007 0.81040.029
Table 5: Comparison of faithfulness scores for feature attribution methods using different stochastic
processes in mdROAD framework with temporal domain, EEGNet on the SSVEP dataset. Higher
values indicate greater faithfulness. Highlighted cells represent the "most faithful” method within
each column.

method

mdROAD, Spectral domain with EEGNet on SSVEP dataset

method Polynomial of degree 3 Linear interpolation
p: 0.318+0.340 p: 0.4731+0.221
AOC ABC AUC AOC ABC AUC

GD 0.643£0.021 0.284+0.009 0.641+0.013  0.626+0.087 0.2594+0.057 0.633+0.032
GI 0.617£0.021 0.242+0.013  0.625+0.015 0.617+0.092  0.2474+0.076  0.630+0.017
SG 0.644+0.021 0.286+0.009 0.642+0.014 0.623+0.089 0.262+0.074 0.639+0.016
SS 0.603£0.011 0.230+£0.010 0.627+0.013  0.546+0.127 0.160+0.118 0.614+0.013
VG 0.650£0.007 0.217£0.015 0.567+0.016 0.5324+0.134  0.100+0.113  0.551+0.013
IG 0.618+£0.018 0.245+0.010 0.627+0.014 0.612+0.094  0.2424+0.079 0.630£0.018
GDA  0.59740.012 0.209+0.007 0.612+0.012  0.4924+0.020 0.093+0.010  0.596+0.014
GIA 0.587£0.015 0.206£0.008 0.619+0.016 0.509+0.020 0.1254+0.007 0.615+0.014
SGA 0.597£0.011 0.210£0.008 0.613+0.013  0.494+0.020 0.0974+0.008  0.599+0.014
IGA 0.591£0.016  0.213£0.007 0.622+0.016 0.515+0.020 0.130+0.006  0.614+0.015

RD 0.493£0.022  0.000£0.000 0.404+0.013  0.5424+0.109  0.0494+0.080 0.483+0.017
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Figure 7: Extend performance-masking ratio curves for SSVEP dataset. (Odd columns: MoREF,
Even columns: LeRF)

E EXTENDED EXAMPLE OF FEATURE ATTRIBUTION RESULTS

In Fig O] [T0] and [TI] we present the class-wise feature attribution results from the best-performing
model in one repeat, for a selected subject from each dataset. It is important to note that our impu-
tation experiments were conducted on a per-input basis and were devoid of class information.
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(c) Temporal saliency maps.

Figure 9: Example of SMR dataset feature attributions. The examples are generated with EEGNet
from one out of 5 repeats on subject 3.
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from one out of 5 repeats on subject 7.
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(c) Temporal saliency maps.

Figure 11: Example of SSVEP dataset feature attributions. The examples are generated with EEG-
Net from one out of 5 repeats on subject 2.
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