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ABSTRACT

Tokenization—the practice of converting strings of characters from an alphabet into
sequences of tokens over a vocabulary—is a critical step in the NLP pipeline. The
use of token representations is widely credited with increased model performance
but is also the source of many undesirable behaviors, such as spurious ambiguity
or inconsistency. Despite its recognized importance as a standard representation
method in NLP, the theoretical underpinnings of tokenization are not yet fully
understood. In particular, the impact of tokenization on language model estima-
tion has been investigated primarily through empirical means. The present paper
contributes to addressing this theoretical gap by proposing a unified formal frame-
work for representing and analyzing tokenizer models. Based on the category of
stochastic maps, this framework enables us to establish general conditions for a
principled use of tokenizers and, most importantly, the necessary and sufficient
conditions for a tokenizer model to preserve the consistency of statistical estimators.
In addition, we discuss statistical and computational concerns crucial for designing
and implementing tokenizer models, such as inconsistency, ambiguity, finiteness,
and sequentiality. The framework and results advanced in this paper contribute
to building robust theoretical foundations for representations in neural language
modeling that can inform future theoretical and empirical research.

1 INTRODUCTION

As a critical step in the natural language processing (NLP) pipeline, tokenization generally refers
to the process of breaking up sequences of symbols into subsequences that can be represented as
units, known as tokens. The tokenization of linguistic data has long been a common practice in the
processing of natural language (cf. Palmer, 2000; Jurafsky & Martin, 2024). However, the significance
of tokenizers took a turn with the emergence of deep neural models for NLP, where the representation
of linguistic units plays a renewed fundamental role. With the development and widespread adoption
of the byte-pair encoding (BPE) algorithm (Sennrich et al., 2016), subword tokenization became
the privileged representation method for neural NLP. Adapting an existing compression algorithm
(Gage, 1994) to overcome the challenges of out-of-vocabulary (OOV) terms in the context of neural
machine translation, BPE quickly replaced previous heuristic and rule-based tokenizer models such as
Morfessor (Creutz & Lagus, 2002) and Moses (Koehn et al., 2007), and was soon followed by other
data-driven models, including WordPiece (Wu et al., 2016, following Schuster & Nakajima, 2012)
and Unigram (Kudo, 2018) among the most widely adopted (cf. Mielke et al., 2021, for a survey).

The importance of subword tokenization for language models (LMs) has grown ever since, and
tokenization methods are now built into standard language modeling toolkits, remaining the only
major step not fully integrated into widely used end-to-end neural models. Among their recognized
benefits, two are often advanced in the literature. Tokenizers offer the ability to train language models
over an open vocabulary, circumventing the difficulties associated with OOV terms (Sennrich et al.,
2016). In addition, tokenization is often described as an efficient, lossless encoding of the original
data (Zouhar et al., 2023a). Moreover, based on empirical evidence of different kinds, tokenization
has been hypothesized to introduce a helpful inductive bias in language modeling (Nawrot et al.,
2023; Schmidt et al., 2024; Uzan et al., 2024), although in the current state of the art, this hypothesis
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remains an open question. At the same time, tokenizers have also been in the spotlight for exhibiting
undesirable behaviors that can have a negative impact on LMs. To name just a few, tokenization can
be the source of spurious ambiguity (Kudo, 2018; Cao & Rimell, 2021), generate alignment issues
(Poesia et al., 2022; Athiwaratkun et al., 2024), hinder robustness (Kudo, 2018; Xue et al., 2022),
neglect relevant linguistic features (Bostrom & Durrett, 2020; Hofmann et al., 2021; Gow-Smith et al.,
2022; Beinborn & Pinter, 2023) or result in inconsistent scoring in the use of LMs in other scientific
fields, like psycholinguistics (Salazar et al., 2020; Kauf & Ivanova, 2023; Giulianelli et al., 2024).

The prominence of undesirable behaviors induced by tokenization, together with the lack of conclusive
theoretical explanations for either their positive or negative effects in language modeling, motivated
several recent attempts to dispense with tokenization altogether (Xue et al., 2022; Clark et al., 2022;
Wang et al., 2024, inter alia). However, in the current state of research, the practical benefits of token
representations in neural language modeling seem to outweigh their disadvantages, indicating that
there is something to be understood rather than discarded in the process of tokenization.

The study of tokenization models has been an active area of research in recent years. Most of the
work in this direction has been driven by an empirical perspective (Ding et al., 2019; Hou et al.,
2023; Domingo et al., 2023; Fujii et al., 2023, inter alia). However, some notable exceptions exist
where the authors have adopted a more theoretical approach (Guo, 1997; Kudo, 2018; Zouhar et al.,
2023b;a; Berglund & van der Merwe, 2023; Rajaraman et al., 2024). The above-cited contributions
notwithstanding, this paper contends there is still a need for a more foundational perspective. Among
others, such a perspective should provide the means to advance results on the impact of tokenization
on language model estimation, which are conspicuously absent from the literature. A foundational
approach should also contribute to analyzing known issues in tokenization in a formal way, ultimately
informing future theoretical and empirical research and contributing to increasing the reliance on
models in situations in which properties such as formal guarantees, verification, or interpretability are
as important as performance for an LM.

Accordingly, the objective of the present paper is to take a step forward toward a robust theoretical
grounding for neural NLP by laying the foundations of tokenization from a formal perspective. To
that end, we characterize the problem of tokenization in current language modeling as arising from
the fact that, in practice, starting from an alphabet Σ of elementary units, one seeks to estimate
a probability distribution over Σ∗ indirectly, that is, by estimating a probability distribution over
sequences of tokens in ∆∗, where the set of tokens ∆ is, in general, different from Σ. Therefore, the
problem of tokenization is determined by the forward and backward mappings between Σ∗ and ∆∗.
To address this problem, we propose a formal framework based on what we found to be the simplest
mathematical tool allowing us to characterize tokenizer models in their full generality, namely the
category of stochastic maps. The proposed framework enables us to establish general conditions
for a principled use of tokenizers. Crucially, we prove the necessary and sufficient conditions for
a tokenizer model to preserve the consistency of statistical estimation of language modeling from
data. Additionally, this paper aims to advance the theoretical understanding of existing challenges
associated with tokenization, particularly those pertaining to inconsistency, ambiguity, finiteness,
and sequentiality. To achieve this, we characterize these known issues through the lens of formal
properties of composable maps, such as injectivity, multiplicativity, and bounded variation.

The outline of the paper is as follows. In §2, we present preliminary notions, including elementary
aspects of formal language theory and the concept of stochastic maps, extending some existing results
to cover the case of countably infinite sets. We also provide notational and terminological remarks. In
§3, we propose a unified formal framework for representing and analyzing tokenization models and
establish various results for the use of tokenizers, including the necessary and sufficient conditions
for a tokenizer model to preserve the consistency of estimators. Finally, in §§ 4 and 5 we discuss,
from a formal perspective, statistical and computational concerns relevant to the study, design, and
implementation of tokenizer models.

2 PRELIMINARIES

2.1 FORMAL LANGUAGES, ESTIMATORS, AND STOCHASTIC MAPS

An alphabet Γ is a finite, nonempty set of symbols. The set Γn consists of strings of symbols of
length n. The symbol ε denotes the empty string of length 0. The union Γ∗ def

=
⋃∞

n=0 Γ
n consists of
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all finite strings (including ε) from the alphabet Γ. Similarly, we denote by Γ≤N the set of all strings
from Γ of length less than or equal to N .

String concatenation (·) is an associative product Γ∗ × Γ∗ ·→ Γ∗ for which ε is an identity element.
The triple (Γ∗, ·, ε) defines a monoid, which is, in fact, a model of the free monoid on the set Γ. A
language L over an alphabet Γ is a set of strings L ⊆ Γ∗. A language model p is a probability distri-
bution over Γ∗, i.e., p is a function p : Γ∗ → [0, 1] such that

∑
γ∈Γ∗ p(γ) = 1. Language models gen-

eralize languages in the sense that the support of a language model, i.e., supp(p) = {γ | p(γ) ̸= 0}, is
a language. The definition of a language model as a probability distribution on Γ∗ is deliberately broad.
In particular, note that no compatibility between p and the monoidal structure in Γ∗ is assumed.1

In NLP, practitioners generally seek to estimate a language model p from examples of naturally
occurring text. Formally, the modeler assumes there exists a true distribution p⋆ over Γ∗, and
considers a multiset of naturally occurring texts {γm}Mm=1 ⊂ Γ∗ to be samples from p⋆. In its most
general form, an estimator of p⋆ is a sequence {pn} of probability distributions on Γ∗ such that pn
becomes closer to p⋆ as n increases. We call an estimator consistent if the sequence {pn} converges
pointwise to p⋆.2 More precisely, given a probability distribution p⋆ : Γ∗ → [0, 1] , and a sequence of
distributions {pn : Γ∗ → [0, 1]}, we say that {pn} is a consistent estimator of p⋆ if and only if, for all
strings γ ∈ Γ∗, the sequence of numbers {pn(γ)} converges to the number p⋆(γ).

This notion of consistent estimation is general enough to include many estimation methods, where
the pi (with 1 ≤ i ≤ n) can depend on various properties of the sample, such as the size M , and
may be parameterized by a set of parameters θ. In particular, the relationship between the data
{γm} and the estimator {pn} is determined by the practitioner through the choice of an estimation
method, e.g., maximum likelihood estimation (MLE; Lehmann & Casella, 1998). MLE is often
used in language model estimation where it corresponds to determining {pn} by minimizing the cross
entropy loss on the data. More precisely, it amounts to minimizing the relative entropy, also called
the Kullback–Leibler divergence, DKL(p

⋆ ∥ pn) between p⋆ and pn, making {pn} a consistent
estimator of p⋆. Note that this requires a stronger form of convergence than the one we use in our
framework: if DKL(p

⋆ ∥ pn) → 0 then pn → p⋆ pointwise (a consequence of Pinsker’s lemma). By
adopting a weak kind of convergence, our definition is compatible with a wide variety of convergence
measures and is relatively easy to check for.

Our definition of tokenizer models will require the use of a special kind of map between sets called a
stochastic map. The reference Baez & Fritz (2014) contains a detailed introduction to the category of
finite sets with stochastic maps between them. Here, we will extend some of the results in Baez &
Fritz (2014) to cover the case of countably infinite sets. We assume all sets are countable, either finite
or countably infinite. A stochastic map from a set X to a set Y is a function from X to the set of
probability distributions on Y . We use

X ⇝ Y

to denote a stochastic map from X to Y and the notation x 7→ f(y | x) to denote the probability of
y ∈ Y in the distribution assigned to x ∈ X . In other words, a stochastic map f : X ⇝ Y is a function

X × Y → [0, 1]

(x, y) 7→ f(y | x)

satisfying
∑

y∈Y f(y | x) = 1 for all x ∈ X . The notation f(y | x) is evocative of the conditional
probability of y given x, but it is more accurate to think of indexing by x rather than conditioning on
x because there is no assumption that the numbers f(y | x) can be assembled into a joint distribution
on X × Y .

Significantly, stochastic maps can be composed. The composition

X Y Z
f

gf

g

gf : X ⇝ Z is defined by

1In addition, one could typically require, for instance, that p(γ · γ′) ≤ min{p(γ), p(γ′)}.
2Following the usual convention, we may denote convergence as {pn} → p⋆, which is not to be confused

with the notation for functional types (e.g., Σ∗ → ∆∗). The context of use should prevent any ambiguity.
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gf(z | x) =
∑
y∈Y

g(z | y)f(y | x). (1)

Since the sum in equation 1 contains infinitely many summands, it requires to check that the formula
for gf(z | x) is finite, and that for each x ∈ X , gf(· | x) defines a probability distribution on Z, both
of which follow from the fact that:∑

z∈Z

gf(z | x) =
∑
z∈Z

∑
y∈Y

g(z | y)f(y | x) =
∑
y∈Y

∑
z∈Z

g(z | y)f(y | x) =
∑
y∈Y

f(y | x) = 1.

If one arranges a stochastic map into an |X| × |Y | matrix with the f(y | x) entry in the x, y position,
then every entry is nonnegative and the sum of every row is 1. The computation above shows that
composition of stochastic maps is realized by matrix multiplication, and that—even when the matrices
are infinite—the row-column dot products are finite, and the result of matrix multiplication is again a
matrix with nonnegative entries whose rows sum to 1. This view makes it clear that composition of
stochastic maps is associative.

Stochastic maps generalize both ordinary probability distributions and functions. A probability
distribution over a set X can be represented as a stochastic map into X from a 1-element set, denoted
as 1 def

= {1}, i.e., p : 1 ⇝ X . In such cases, the customary notation p(x) can be used without risk
of ambiguity as a shorthand for the more cumbersome p(x | 1). An ordinary function f : X → Y
can be regarded as a stochastic map X ⇝ Y by mapping x to the probability distribution on Y
concentrated on the singleton {f(x)}, in which case we say the stochastic map f is deterministic.
For simplicity, when a stochastic map f : X ⇝ Y is deterministic, writing y = f(x) means that
f(y | x) = 1 and f(y′ | x) = 0 for y′ ̸= y. Composition generalizes both the composition
of functions and the pushforward of a probability function via a function. If p : 1 ⇝ X is a
probability distribution on X and f : X → Y is a deterministic function, then the composition

1 X Y
p f

is a stochastic map fp : 1 ⇝ Y , which is a probability distribution on Y
whose formula is fp(y) =

∑
x∈X f(y | x)p(x | 1) =

∑
x∈f−1(y) p(x). That is, fp is just the

pushforward of the probability distribution p via the function f .

For any set X , the identity function on X behaves as an identity for stochastic maps. That is
idX : X ⇝ X is the stochastic map defined by idX(x′ | x) = 1 when x′ = x and idX(x′ | x) = 0
when x′ ̸= x. In matrix representation, idX is the identity matrix, and satisfies f idX = f = idY f
for all stochastic maps f : X ⇝ Y . Stochastic maps also come equipped with natural notions of
injectivity and surjectivity. A stochastic map f : X ⇝ Y is injective iff the support of f(· | x) and
f(· | x′) are disjoint whenever x ̸= x′. The support of the stochastic map f is the union of the
support of the distributions f(· | x) as x ranges over X . A stochastic map f : X ⇝ Y is surjective
iff, for all y ∈ Y , there exists x ∈ X such that f(y | x) ̸= 0. Injectivity and surjectivity for stochastic
maps reduce to their ordinary definitions for deterministic functions.

2.2 NOTATION AND TERMINOLOGY

We adopt the following notational conventions. We denote the length n of a string γ ∈ Γn as |γ|.
The expression γ′ ⪯ γ denotes the fact that γ = γ′ · γ′′ for γ,γ′,γ′′ ∈ Γ∗, that is, γ′ is a prefix of
γ. Alphabets will be denoted by uppercase Greek letters (e.g., Γ, B). In the context of tokenization,
we will be interested in maps between strings of languages over two different alphabets, which we
will denote Σ and ∆. For a more intuitive presentation that avoids ambiguity, we reserve the term
alphabet for the former and call the latter vocabulary, systematically using the green and violet
colors to highlight the respective relation to either of these sets. We denote symbols by lowercase
Greek letters, e.g., σ ∈ Σ and δ ∈ ∆, calling them characters in the first case and tokens in the
second. Strings will be denoted by bold lowercase Greek letters, e.g., σ ∈ Σ∗ and δ ∈ ∆∗, reserving
the name character strings or texts for the former and token strings or token sequences for the latter.
The reader should keep in mind these terminological distinctions are for expository purposes only.
From the formal perspective advanced in this paper, we do not assume any inherent privilege of Σ
over ∆, focusing instead on how their respective elements can be mapped into each other. Maps are
denoted using the color of their codomains.
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When necessary, we will distinguish the empty character string εΣ ∈ Σ∗ from the empty token
sequence ε∆ ∈ ∆∗. Examples of strings and tokens will be written in monospace font (e.g., t, the).
There are cases where ∆ ∩ Σ∗ ̸= ∅, and it will be necessary to distinguish between concatenation
in Σ∗ and ∆∗. In ∆∗, concatenation will be denoted as p. So, for example, if Σ = {t, h, e} and
∆ = {th, he, e}, the expression t·h·e denotes the concatenation in Σ∗ of the three characters t, h,
and e, while the expression tphe represents the concatenation in ∆∗ of the two tokens t and he. The
cases when ∆ ∩ Σ∗ ̸= ∅ are of sufficient significance that we shall generally avoid using the simple
juxtaposition of characters to express concatenation. Therefore, the reader should always interpret th
as a token in ∆, and not a text in Σ∗ (written t·h). If further notational clarification is needed, square
brackets may be used to represent the concatenation of two texts in Σ∗ (and likewise for ∆∗). For
example, [t·h]·e denotes the concatenation of the text t·h with the character e in Σ∗. Should any
ambiguity arise between specific characters and tokens (e.g., t ∈ Σ vs. t ∈ ∆), it will be explicitly
disambiguated whenever there is a risk that context alone is insufficient.

3 A FORMAL FRAMEWORK FOR TOKENIZATION

As observed in the previous pages, in modern NLP, the problem of tokenization arises from the fact
that one seeks to estimate a model p⋆ over strings of symbols in one alphabet indirectly, that is, by
estimating a probability distribution q over strings of symbols on a different alphabet. Therefore,
from a strictly formal perspective, the problem of tokenization can be characterized as that of the
respective mappings between two sets of strings, conventionally referred to as the set Σ∗ of character
strings and the set ∆∗ of token sequences. In order to estimate p⋆ through q, Σ∗ needs to be mapped
into and from ∆∗. The connection between Σ∗ and ∆∗ is thus made through a pair of mappings
(τ , κ) that constitutes the basis of our formal characterization of tokenization. Accordingly, in its
most general form, a tokenizer can be defined as follows:
Definition 3.1. A tokenizer model (or simply tokenizer) from Σ∗ to ∆∗ is a pair of stochastic maps
T = (τ , κ), respectively called the encoder and the decoder, where the encoder is a stochastic map
τ : Σ∗ ⇝ ∆∗, and the decoder is a stochastic map κ : ∆∗ ⇝ Σ∗.

Definition 3.1 is deliberately broad, covering any pair of string-to-string mappings τ and κ. Other than
the fact that the domain of each mapping constitutes the codomain of the other, we define the encoder
and decoder as arbitrary stochastic maps. In other words, we will be regarding τ and κ primarily
from the point of view of their composition. In particular, we do not require any specific connection
between the alphabet Σ and the vocabulary ∆, and hence the use of the terms encoder and decoder is
also strictly conventional. However, the distinction is motivated by an implicit assumption behind
the established use of tokenizers in language models—namely, that the samples {σm}Mm=1 ⊂ Σ∗ of
naturally occurring texts used for estimation can be mapped into ∆∗ in such a way that the estimated
model q can be, in turn, transformed into a model p over Σ∗ through the map κ, such that p = κq can
be considered as an estimate of the original distribution p⋆. When p is given in the form of κq, when
say that p is a tokenized language model.

Despite the potential empirical increase in the predictive performance of a model resulting from
specific tokenization choices, the soundness of such a procedure is not guaranteed for arbitrary τ and
κ without further conditions. On the one hand, the notion of estimation in ∆∗ is not well defined
unless there exists a reference distribution q⋆ over ∆∗ to which the estimator {qn} can converge. On
the other, assuming such an estimator is consistent, transforming it into a consistent estimator of p⋆
requires a way to map the sequence {qn} into a sequence {pn} that converges to p⋆.

Assuming a reference distribution p⋆ exists on Σ∗, one obtains a reference q⋆ on ∆∗ simply through
the composition (Eq. (1)) with the encoder: q⋆ = τp⋆. In other words, the following diagram of
stochastic maps commutes

1

Σ∗ ∆∗

p⋆ q⋆

τ

The distribution q⋆ is just the pushforward of the measure p⋆ along τ , which then makes the encoder
τ a measure-preserving map between (Σ∗, p⋆) and (∆∗, q⋆).
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In the same way, {pn} can be obtained by mapping the sequence {qn} through κ. Defining pi = κqi,
we obtain the following commutative diagram

N

∆∗ Σ∗

{qn} {pn}

κ

So far, none of these requirements imposes conditions on τ and κ other than being well-defined
mappings between their respective domains and codomains. Notably, the notion of estimation of
τp⋆ is well defined for arbitrary τ . However, given a consistent estimator {qn} of q⋆, {κqn} is not
guaranteed to converge to p⋆ without further conditions on κ. To establish such conditions, we will
need the following lemmas.3

Lemma 3.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then limn→∞

∑
x∈X |pn(x)− p(x)| = 0.

Corollary 3.0.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then {pn} → p uniformly.

Lemma 3.2. Let f be a stochastic map from X to Y , and {pn} be an estimator for a probability
distribution p on X . Then fpn is an estimator for the probability distribution fp on Y .

In other words, Lemma 3.2 says that stochastic maps preserve the consistency of estimators. Armed
with Lemma 3.2, it is now easy to establish a simple but fundamental principle for the use of
tokenization models in language modeling.
Theorem 3.1 (Fundamental Principle of Tokenization). Given a reference probability distribution
p⋆ over Σ∗, a tokenizer T = (τ , κ) from Σ∗ to ∆∗, and a consistent estimator {qn} of the image
reference distribution q⋆ = τp⋆, the sequence {κqn} is a consistent estimator of p⋆ if and only if
κτp⋆ = p⋆.

Theorem 3.1 characterizes precisely when a consistent estimator {qn} of q⋆ yields a consistent
estimator {pn} of p⋆ after decoding. Based on the fundamental principle expressed in Theorem 3.1,
we propose the following definitions:
Definition 3.2. Given a probability distribution p over Σ∗, a tokenizer T = (τ , κ) from Σ∗ to ∆∗ is
consistent with respect to p if we have κτp = p.
Definition 3.3. Let p be a probability distribution over Σ∗ and T = (τ , κ) a tokenizer from Σ∗ to
∆∗. When κτ = idΣ∗ , we say that T is exact.

Notice that exact tokenizers are consistent, but a tokenizer that is consistent with respect to a
distribution p is not necessarily exact. Take, for instance, a probability distribution p over some set X
and x′, x′′ ∈ X such that p(x′) = p(x′′) = c. Then one can fashion a tokenizer for which κτ(x) = x
for all x except κτ(x′) = x′′ and κτ(x′′) = x′. Such a tokenizer is consistent with respect to p
without being exact. Consistency with respect to all distributions, however, is the same as being exact.
Proposition 3.1. A tokenizer T = (τ , κ) from Σ∗ to ∆∗ is exact if and only if it is consistent with
respect to every probability distribution over Σ∗.

Our whole setting is quite general and can be represented by the following diagram:

1

N

Σ∗ ∆∗ Σ∗

p⋆

q⋆
p⋆

{qn}

{pn}

τ

idΣ∗

κ

3The proofs for all formal results (theorems, propositions, lemmas) have been placed in the Appendix (§8).

6



Published as a conference paper at ICLR 2025

When this diagram commutes, we have that κτp = p for all probability distributions p over Σ∗, and
Theorem 3.1 guarantees that {pn} → p⋆ when {qn} → q⋆.

Exact tokenizers have special properties. First, if a tokenizer (τ , κ) is exact, then κ is deterministic
over the image of τ , because idΣ∗ also is. We make this notion formal in the following proposition.

Proposition 3.2. Let T = (τ , κ) be an exact tokenizer from Σ∗ to ∆∗. Then κ is deterministic on the
support of τ , i.e., κ is deterministic τ almost everywhere.

The condition κτ = idΣ∗ means τ is a right inverse (or section) of κ and κ is a left inverse (or
retraction) of τ . The proof of Proposition 3.2 shows that τ(δ | σ) places probability zero on every
δ ∈ ∆∗ such that κ(σ | δ) = 0. Since κ is deterministic in this case, it follows that, for an exact
tokenizer (τ , κ), the encoder does not place positive probability mass on a token sequence for more
than one text. In other words, τ is injective. Additionally, it must be that for each text σ there is a δ
with κ(σ | δ) = 1, and therefore κ is surjective.

4 STATISTICAL CONCERNS: INCONSISTENCY AND AMBIGUITY

While in most concrete cases of statistical language modeling a tokenizer’s consistency is implicitly
or explicitly assumed, there are many ways in which the conditions established in the previous section
can, and in practice do, fail to be satisfied. In this section, we discuss two main statistical concerns
to be considered when implementing or using tokenizers, namely inconsistency and ambiguity,
and associate them with the properties of maps introduced in the previous section. The following
definitions will be convenient.

Definition 4.1. Given a tokenizer T = (τ , κ), we say T has a deterministic encoder (resp. decoder)
or is τ -deterministic (resp. κ-deterministic) if τ (resp. κ) is a deterministic map. When a tokenizer
T is both τ -deterministic and exact, we have that T is also κ-deterministic, and κ = τ−1 over τ(Σ∗).
Therefore, in such a case we say T is bijective.

Noninjective τ and Inconsistency. Most commonly used tokenizers have deterministic encoders,
including BPE (Sennrich et al., 2016) and WordPiece (Wu et al., 2016), as well as Unigram (Kudo,
2018) when used without regularization. As we have seen, functions can be understood as a particular
case of stochastic maps where the probability mass is concentrated on one element. Tokenizers
with deterministic encoders thus constitute a simplified form of tokenization. However, even in
this simplified setting, the consistency of the tokenization process is not guaranteed. The following
example offers an elementary intuition of this circumstance.

Example 4.1. Consider the simple configuration represented in Fig. 1, where both τ and κ are
deterministic maps. Let p⋆(σ1) = 0.2 and p⋆(σ2) = p⋆(σ3) = 0.4, with p⋆(σi) = 0 for i > 3.
For q⋆ = τp⋆, we have, therefore, q⋆(δ1) = 0.2, q⋆(δ2) = 0, and q⋆(δ3) = 0.8, with q⋆(δi) = 0
for i > 3, and hence κτp⋆(σ1) = 0 ̸= 0.2, κτp⋆(σ2) = 0.2 ̸= 0.4, and κτp⋆(σ1) = 0.8 ̸= 0.4.
Assuming {qn} is a consistent estimator of q⋆, the pushforward of qn through κ (i.e., κqn) would
result in an inconsistent estimation of p⋆. Notice that the consistency of the tokenizer is relative to the
distribution. Relative to a different distribution p in Σ∗, where, for instance, p(σ1) = p(σ2) = 0 and
p = p⋆ otherwise, the tokenizer specified in Fig. 1 is consistent.

As shown in §3 and illustrated in Example 4.1, a fundamental cause of a tokenizer’s inconsistency
is the lack of injectivity of the encoder τ . This is not just a theoretical concern. Even if in its abstract
specification a tokenizer’s encoder may appear to be injective, implementation decisions often in-
troduce noninjective behaviors. These include normalizing operations, such as lowercasing, stripping
accents, removing punctuation, or uniforming whitespaces (e.g., Moi & Patry, 2023). Irrespective
of how the core tokenization function is defined, including this preprocessing step as part of the
tokenizer model results in a noninjective encoding that compromises the consistency of estimators.

Even if text normalization is excluded from the decoding function, it can still happen that τ is
undefined for some elements in Σ, and is, therefore, only a partial function. If the exceptions
are handled by returning a unique distinguished token in ∆ (e.g., an ‘unknown’ token unk), then
τ becomes noninjective, incurring the risk of inconsistency. The appeal to an unk token and the
difficulties associated with it have been widely studied from the perspective of OOV terms, especially
in the context of NMT (e.g., Luong & Manning, 2016; Jean et al., 2015), ultimately leading to

7



Published as a conference paper at ICLR 2025

σ1

σ2

σ3

...

δ1

δ2

δ3

...

τ

κ

Σ∗ ∆∗

p⋆(σ1) = 0.2 q⋆(δ1) = 0.2 κτp⋆(σ1) = 0

p⋆(σ2) = 0.4
τ−−→ q⋆(δ2) = 0

κ−−→ κτp⋆(σ2) = 0.2

p⋆(σ3) = 0.4 q⋆(δ3) = 0.8 κτp⋆(σ3) = 0.8

Figure 1: Example of an inconsistent tokenizer

subword tokenizers as a way of providing “open vocabulary” solutions (Sennrich et al., 2016; Wu
et al., 2016).4 Formally, it is enough to inject Σ into ∆ (i.e., to include the alphabet in the vocabulary)
to achieve an open vocabulary, something most tokenizers do by default. However, open vocabulary
solutions do not entirely remove the risk of noninjective decoding. Some open vocabulary models,
for instance, limit the size of Σ to the sample’s k most frequent symbols, mapping all other symbols
to an unk character in Σ (e.g., Wu et al., 2016). Understood as a preprocessing step, this operation
should not affect τ ’s injectivity. However, the use of copy models (e.g., Luong et al., 2015) that
keep track of the original out-of-alphabet symbols to restore them in decoding, violates de facto the
tokenizer’s injectivity, and with it, the model’s consistency over strings including those symbols.

Even if all symbols in the training sample are included in Σ, out-of-alphabet symbols can always
be encountered at test or inference time. The recourse to a distinguished unk symbol both in Σ
and ∆ must, therefore, be handled in such a way that the injectivity of τ is guaranteed. The use
of a stochastic κ (e.g., Mielke & Eisner, 2019) over the restricted domains of out-of-alphabet or
out-of-vocabulary elements could, in principle, provide a novel way of addressing this problem in
agreement with consistency concerns.

Noninjective κ and Ambiguity. Whenever κ is noninjective, the tokenizer introduces ambiguity in
the model because more than one token sequence is mapped into a unique text. In bijective tokenizers,
decoding is injective over the encoder’s image, thus preventing ambiguity in principle. However, in
practice, whenever τ(Σ∗) is a proper subset of ∆∗, it may happen that the probability mass placed by
the estimated language model outside the image of τ is nonzero, reintroducing ambiguity into the
model (cf. Example 8.1 in the Appendix for an elementary illustration). This ambiguity is, however,
spurious because τ was assumed to be deterministic, and hence the ambiguity does not stem from
the reference distribution p⋆, but is a side-effect of the estimator. An obvious source of spurious
ambiguity resides in the fact that consistency is a property defined in the limit. As a consequence,
for any δ ∈ ∆∗, qn(δ) can and will generally differ from q⋆(δ). Spurious ambiguity can also result
from the fact that, due to the properties of gradient descent and certain activation functions such as
softmax, neural models are incapable of assigning zero probability to elements of ∆∗. While spurious
ambiguity has been identified among the motivations for introducing subword regularization (Kudo,
2018; Provilkov et al., 2020), it is often overlooked or disregarded, despite its potential nonnegligible
effect on estimation (Cao & Rimell, 2021), although mostly in the case of “strongly out-of-domain
evaluation sets” (Chirkova et al., 2023).

Spurious ambiguity is not the only kind of ambiguity that can result from the use of tokenization in
language models. Whenever a tokenizer model is stochastic, a deterministic κ must be noninjective
for the model to preserve the consistency of estimators. However, the ambiguity thus introduced
is not spurious in that it is deliberately designed for statistical purposes. In current tokenization
practices, the main reason for the introduction of stochastic ambiguity is regularization (Kudo, 2018;
Provilkov et al., 2020). The claim is that, by exhibiting different token sequences corresponding
to the same text during training, a model increases its capability to handle text compositionality

4For a tokenization-free alternative to the OOV problem, see, for instance, Xue et al. (2022) and Clark et al.
(2022), who also offer a good overview of existing approaches to this problem.
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as well as its robustness to noise and tokenization errors. However, one could also conceive of
a stochastic tokenizer where the possible images of a text reflect the objective probabilities of all
linguistic ambiguities potentially affecting it (e.g., anpicecream, anpicepcream, apnicepcream as
three possible token sequences for the text: a·n·i·c·e·c·r·e·a·m). This would require, however, to
enhance tokenizers with linguistically motivated segmentation (see, for instance, Bostrom & Durrett,
2020; Hofmann et al., 2021; Gow-Smith et al., 2022; Beinborn & Pinter, 2023).

Although all these classes of ambiguity (spurious, stochastic, and linguistic) are both formally and
semantically different, they all represent the same challenge for the tokenizer’s consistency: The
probability mass indirectly assigned by the model to one text in a language is spread over different
token sequences. Notice that all these cases of ambiguity can coexist, and hence their impact is
difficult to evaluate. Yet, from a formal perspective, the solution for all these cases is the same: The
computation of κqn for a single text σ ∈ Σ∗ requires marginalizing over all its preimages δ under κ,
for which qn(δ) > 0, following the composition of stochastic maps presented in the previous section
(Eq. (1)). However, such operation can be computationally challenging because it can imply summing
over a large or even infinite number of terms. For different strategies to address that challenge, see
van Merriënboer et al. (2017); Buckman & Neubig (2018); Grave et al. (2019); Hannun et al. (2020);
Cao & Rimell (2021); Vieira et al. (2024).

5 COMPUTATIONAL CONCERNS: FINITENESS AND SEQUENTIALITY

As the end of the previous section shows, even when a tokenizer model is consistent and all statistical
concerns are taken into account, there are still computational aspects that can hinder the practice of
tokenization. In this section, we turn to issues of finiteness and sequentiality.

Multiplicativity and Finiteness. Definitions 3.1 to 3.3 are general enough to allow for many
kinds of encoding and decoding functions, including uncomputable ones; see Example 8.2 in the
Appendix for an example. However, even when a tokenizer model is computable, its tractability is
not guaranteed. Indeed, there are many reasons that could make the computation of tokenization
intractable. Many of the operations defining tokenizer models involve sums over infinite sets. This
is particularly true for the composition of stochastic maps whenever it is performed over an infinite
domain, as in our case. Therefore, it is crucial to assess the tractability not only of τ and κ, but also
of their composition κτ .

We have seen that when a tokenizer model is exact, τ is a section of κ, or equivalently, τ is injective.
It follows that, for any σ ∈ Σ∗, τ concentrates the probability mass on only a subset of ∆∗. This
property can help reduce the computational costs by restricting the sums to just those subsets.
However, without further constraints, those subsets can still be infinite. For this reason, we introduce
the following definitions.
Definition 5.1. We say a tokenizer model T = (τ , κ) is multiplicative if its decoder κ respects the
concatenation products, i.e., if κ(δ′pδ′′) = κ(δ′)·κ(δ′′).
Definition 5.2. We say the kernel of a multiplicative tokenizer’s decoder κ is trivial if κ maps
nonempty token sequences to nonempty token sequences (i.e., if δ ̸= ε∆ then κ(δ) ̸= εΣ).

The most commonly used tokenizers, including BPE, WordPiece, and Unigram, are multiplicative.
Notice that, for a kernel of a multiplicative tokenizer’s decoder to be trivial, it is enough that
κ(δ) ̸= εΣ for any δ ∈ ∆. This implies that token sequences do not include special tokens that are
erased during decoding. Importantly, when a multiplicative tokenizer’s decoder has a trivial kernel, a
decoded text cannot be shorter than the token sequence from which it has been decoded. This simple
observation guarantees that the number of preimages of a text under κ is finite. More precisely, we
have the following proposition.
Proposition 5.1. Let T = (τ , κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
For any δ ∈ ∆∗, κ(δ) = σ =⇒ |δ| ≤ |σ|.

Corollary 5.0.1. Let T = (τ , κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
Then for any text σ, the set κ−1(σ) is finite.

Proposition 5.1 guarantees that, if no token in the vocabulary is mapped to the empty string, then
the length of every preimage of a text σ of length n has length less than or equal to n. So the
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number of elements in κ−1(σ), and hence also the support of τ for any given σ ∈ Σ∗ when (τ , κ)
is exact, is bounded by

∑n
i=1 |∆|i. Since this bound is exponential in n, the exact or approximate

computation of a tokenizer’s encoding and decoding so that the consistency of the language model
is not compromised requires the appeal to multiple strategies as the ones mentioned at the end of
§4. Ideally, the complexity of a tokenizer model (that is, of the composition κτ ) should be at most
linear in the length of the input text. By placing all the probability mass on one token sequence, κτ in
exact deterministic tokenizers, such as BPE and WordPiece, can be computed in linear time as long
as τ and κ can be computed in linear time. However, rigorously handling spurious ambiguity still
represents a challenge in these cases. In follow-up work, Vieira et al. (2024) exploit the finiteness
of κ−1(σ) to introduce both exact and approximate algorithms for converting token-level language
models to character-level ones, assuming κ is prefix monotone, i.e., δ′ ⪯ δ =⇒ κ(δ′) ⪯ κ(δ), a
weaker condition implied by multiplicativity which is crucial in autoregressive models.5

Bounded Variation and Sequentiality. Finally, even though multiplicativity ensures the length of
all the preimages of κ−1(σ) is bounded by the length of σ, the latter may still be unbounded. In prac-
tice, the bounded character of tokenization is secured externally by fixing a hyperparameter that artifi-
cially limits the length of input texts. However, boundedness can be addressed as an internal property
of a tokenizer. For this purpose, we introduce the following definitions, adapted from Berstel (1979).
Definition 5.3. The (left) distance between two strings γ,γ′ ∈ Γ∗ is the number:

∥γ,γ′∥ def
= |γ|+ |γ′| − 2 |γ ∧ γ′|,

where γ ∧ γ′ is the longest common prefix of γ and γ′.
Definition 5.4. A function f : Γ∗ → B∗ has bounded variation if and only if ∀k ≥ 0, ∃Ck ≥ 0:

γ,γ′ ∈ Γ∗, ∥γ,γ′∥ ≤ k =⇒ ∥f(γ), f(γ′)∥ ≤ Ck.

The importance of Definition 5.4 is that, following Choffrut’s (1979) theorem, whenever f preserves
rational sets, if f has bounded variation, then it is subsequential, that is, it can be realized by a
deterministic finite-state transducer enhanced with a function over terminal states (cf. Definition 8.4
in the Appendix). Since subsequential functions are closed under composition (Berstel, 1979,
prop. IV.2.5), for κτ to be subsequential, it is enough that both τ and κ are. Given that most
commonly used tokenizers are multiplicative, the following result is significant.
Proposition 5.2. If a function f : Γ∗ → B∗ is multiplicative then it has bounded variation.

However, in the context of tokenizers, multiplicativity concerns only the decoder κ (a multiplicative
encoder τ is not a desirable feature for a tokenizer), thus shifting the focus towards the encoder τ . The
“maximal munch” approach (Reps, 1998; Palmer, 2000) adopted by WordPiece, for instance, itera-
tively maps the successive longest prefixes of a text to tokens in the vocabulary. WordPiece’s encoder
is thus bounded by the maximum length of the preimages of ∆ under τ , and is, therefore, subsequential
(cf. Song et al., 2021, for a realization of WordPiece by a finite-state transducer). Moreover, assuming
specific conditions on the structure of the list of rules or “merges”, Berglund & van der Merwe (2023)
and Berglund et al. (2024) proposed an algorithm for constructing deterministic finite automata
realizing BPE’s encoder, thus suggesting that, under such conditions, BPE is also subsequential.

6 CONCLUSION

In this work, we have addressed the use of token representations in NLP from a foundational
perspective. Relying on the category of stochastic maps as an elementary formal tool, we proposed
a general definition of a tokenizer as an arbitrary pair of composable maps. The framework proposed
enabled us to formally establish several properties of tokenization, and most importantly, the necessary
and sufficient condition for a tokenizer to preserve the consistency of estimators. Furthermore, our
approach allowed to shed new theoretical light on known issues concerning tokenization, namely
inconsistency, ambiguity, finiteness, and sequentiality, by characterizing the latter through formal
properties of composable maps such as injectivity, multiplicativity, or bounded variation. We believe
this framework will inform future empirical research and contribute to establishing and developing
theoretical and practical aspects of representation learning in NLP on solid grounds, especially in
cases where the reliance on a model requires to go beyond its mere performance, and take into account
properties such as formal guarantees, verification, theoretical soundness, interpretability, or liability.

5Note that Vieira et al. (2024) call “non-erasing” the fact that κ has a trivial kernel.
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8 APPENDIX

8.1 PROOFS

Lemma 3.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then limn→∞

∑
x∈X |pn(x)− p(x)| = 0.

Proof. Fatou’s lemma applied to X with the counting measure implies that for any sequence of
nonnegative functions {fn} on X ,∑

x∈X

lim inf
n→∞

fn(x) ≤ lim inf
n→∞

∑
x∈X

fn(x). (2)

We will apply this to fn := pn + p − |pn − p|. First, note that since limn→∞ pn(x) = p(x), we
have lim infn→∞ fn(x) = p(x) + p(x) − 0 = 2p(x) so the left hand side of equation 2 becomes∑

x∈X 2p(x) = 2. Therefore,

2 ≤ lim inf
n→∞

∑
x∈X

fn(x) (3a)

= lim inf
n→∞

∑
x∈X

pn(x) + p(x)− |pn(x)− p(x)| (3b)

= lim inf
n→∞

∑
x∈X

pn(x) +
∑
x∈X

p(x)−
∑
x∈X

|pn(x)− p(x)| (3c)

= lim inf
n→∞

1 + 1−
∑
x∈X

|pn(x)− p(x)| (3d)

= 2− lim sup
n→∞

∑
x∈X

|pn(x)− p(x)|. (3e)

It follows that lim supn→∞
∑

x∈X |pn(x)− p(x)| ≤ 0, so limn→∞
∑

x∈X |pn(x)− p(x)| = 0.

Corollary 3.0.1. Let {pn} be a sequence of probability distributions over a countable set X that
converges pointwise to a probability distribution p. Then {pn} → p uniformly.

Proof. Since the sum of nonnegative numbers is always greater than any particular term in the sum and
limn→∞

∑
x∈X |pn(x)− p(x)| = 0, we can conclude that the sequence {pn} → p uniformly.

Lemma 3.2. Let f be a stochastic map from X to Y , and {pn} be an estimator for a probability
distribution p on X . Then fpn is an estimator for the probability distribution fp on Y .

Proof. Fix y ∈ Y . We will show that {fpn(y)} → fp(y). By Lemma 3.1, we have that
limn→∞

∑
x∈X |pn (x)− p (x)| = 0. Therefore,

lim
n→∞

|fpn(y)− fp(y)| = lim
n→∞

∣∣∣∣∣∑
x∈X

f(y | x)pn(x)−
∑
x∈X

f(y | x)p(x)

∣∣∣∣∣ (4a)

≤ lim
n→∞

∑
x∈X

f(y | x) |pn (x)− p (x)| (4b)

≤ lim
n→∞

∑
x∈X

|pn (x)− p (x)| (4c)

= 0. (4d)

Theorem 3.1 (Fundamental Principle of Tokenization). Given a reference probability distribution
p⋆ over Σ∗, a tokenizer T = (τ , κ) from Σ∗ to ∆∗, and a consistent estimator {qn} of the image
reference distribution q⋆ = τp⋆, the sequence {κqn} is a consistent estimator of p⋆ if and only if
κτp⋆ = p⋆.
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Proof. By hypothesis, {qn} → q⋆ and by definition q⋆ = τp⋆. By Lemma 3.2, applying κ to both
sides, we have that {κqn} → κq⋆ and so

{κqn} → κτp⋆.

Therefore, if κτp⋆ = p⋆ we have {κqn} → p⋆. Conversely, if {κqn} → p⋆ we have both {κqn} →
p⋆ and {κqn} → κτp⋆ and so by the uniqueness of limits, κτp⋆ = p⋆.

Proposition 3.1. A tokenizer T = (τ , κ) from Σ∗ to ∆∗ is exact if and only if it is consistent with
respect to every probability distribution over Σ∗.

Proof. Exact means κτ = idΣ∗ hence κτp = p for every probability distribution p on Σ∗. To prove
the other direction, suppose that κτp = p for every p on Σ∗. Fix an arbitrary σ ∈ Σ∗. Let pσ be the
point mass distribution on Σ∗ concentrated on σ. So pσ(σ) = 1 and pσ(σ

′) = 0 for any σ′ ̸= σ. By
hypothesis, pσ = κτpσ. Apply to σ to get 1 = κτpσ(σ). The right hand side, as the pushforward
of pσ via κτ , says 1 = pσ(κτ(σ)). Since pσ takes the value 1 at only one point, it follows that the
argument κτ(σ) = σ. Since σ was arbitrary, we conclude that κτ = idΣ∗ , i.e., the tokenizer (τ , κ)
is exact.

Proposition 3.2. Let T = (τ , κ) be an exact tokenizer from Σ∗ to ∆∗. Then κ is deterministic on the
support of τ , i.e., κ is deterministic τ almost everywhere.

Proof. Assume (τ , κ) is exact, i.e., κτ = idΣ∗ , and let σ ∈ Σ∗.

Since
∑

δ∈∆∗ τ(δ | σ) = 1 and κτ(σ|σ) = idΣ∗(σ | σ) = 1. We obtain:

0 =
∑
δ∈∆∗

τ(δ | σ)− κτ(σ|σ) (5a)

=
∑
δ∈∆∗

τ(δ | σ)−
∑
δ∈∆∗

κ(σ | δ)τ(δ | σ) (5b)

=
∑
δ∈∆∗

τ(δ | σ)− κ(σ | δ)τ(δ | σ) (5c)

=
∑
δ∈∆∗

τ(δ | σ)(1− κ(σ | δ)). (5d)

Since Eq. (5d) is a sum of nonnegative terms that equals zero, each terms must be zero. It follows that
if τ(δ | σ) > 0 for some δ (e.g.: δ is in the support of τ ) then then 1−κ(σ | δ) = 0 ⇔ κ(σ | δ) = 1.
From which it follows that

κ(σ′ | δ) =
{
1 if σ′ = σ

0 if σ′ ̸= σ.
.

Proposition 5.1. Let T = (τ , κ) be a multiplicative tokenizer model whose decoder’s kernel is trivial.
For any δ ∈ ∆∗, κ(δ) = σ =⇒ |δ| ≤ |σ|.

Proof. We can reason by induction. Let |δ| = m and |σ| = n. The property is true when m = 1
since 1 is the minimun length of any possible image of κ. Assume it is true for m = k and let
δ = δ1p . . . pδk pδk+1. Then κ(δ) = κ(δ1p . . . pδk)·κ(δk+1) = σ1· . . . ·σr·σr+1· . . . ·σr+s, where
κ(δk+1) = σr+1· . . . ·σr+s. Since r ≥ k and s ≥ 1, we have that r + s ≥ k + 1.

Proposition 5.2. If a function f : Γ∗ → B∗ is multiplicative then it has bounded variation.

Proof. Assume f is multiplicative and let k be given. Suppose γ,γ′ ∈ Γ∗ satisfy ∥γ,γ′∥ ≤ k. Let

Ck = max
γ′′,γ′′′∈Γ∗

|γ′′|+|γ′′′|≤k

{|f(γ′′)|+ |f(γ′′′)|}.
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Write γ and γ′ as γ = γ ∧ γ′ · γ′′ and γ′ = γ ∧ γ′ · γ′′′. Notice that ∥γ′′,γ′′′∥ = |γ′′|+ |γ′′′| ≤ k,
and look at ∥f(γ), f(γ′)∥:

∥f(γ), f(γ′)∥ = ∥f(γ ∧ γ′ · γ′′), f(γ ∧ γ′ · γ′′′)∥ (6a)

= ∥f(γ ∧ γ′) · f(γ′′), f(γ ∧ γ′) · f(γ′′′)∥ (6b)

= ∥f(γ′′), f(γ′′′)∥ (6c)

≤ |f(γ′′)|+ |f(γ′′′)| (6d)
≤ Ck (6e)

8.2 EXAMPLES

Example 8.1. Take, for instance, a bijective tokenizer such as BPE or WordPiece, with κ performing
concatenation of the token maps in the usual way. Let Σ = {t, h, e} and ∆ = {t, h, e, th, he}.
In this minimal configuration, it is easy to see that κ(tphpe) = κ(tphe) = κ(thpe) = t·h·e ∈ Σ∗.
However, BPE or WordPiece being bijective tokenizers, τ can only map the value of κ to at most one
of the latter’s arguments, say τ(t·h·e) = thpe. We then have that τ(κ(tphe)) ̸= tphe (and likewise
for tphpe). If the estimator happens to place nonzero probability mass on any of the latter two token
sequences, the model will exhibit spurious ambiguity.

Example 8.2. Let Σ = ∆ = {0, 1}, and define Tunc = (τunc, κunc) as a deterministic model in the
following way:

τunc(σ) =


σp1, if σ describes a valid

Turing Machine followed by
an input for which it halts.

σp0, otherwise.

κunc(δ) =

{
ε, if δ ∈ ∆.
σ, otherwise, where δ = σpδ.

Significantly, Tunc is not only well-defined but also exact and therefore consistent for any language
model p over Σ∗. However, τunc is famously an uncomputable function, and hence Tunc is an
uncomputable tokenizer.

8.3 DEFINITIONS

Definition 8.1. A (left) sequential transducer is a 6-tuple (Q,Γ, B, i, ⋄, ∗), where:
Q is a set of states
Γ is an input alphabet
B is an output alphabet
i ∈ Q is an initial state
⋄ : D ⊆ Q× Γ → Q is an input or “next state” function
∗ : D ⊆ Q× Γ → B∗ is an output function.

Definition 8.2. A function f : Γ∗ → B∗ is sequential if it is realized by a sequential transducer, i.e.,
f(γ) = (i ∗ γ).
Definition 8.3. A (left) subsequential transducer is a 7-tuple (Q,Γ, B, i, ⋄, ∗, ρ), where:
(Q,Γ, B, i, ⋄, ∗) is a sequential transducer
ρ : Q → B∗ is a terminal function.

Definition 8.4. A function f : Γ∗ → B∗ is subsequential if it is realized by a subsequential transducer
(Q,Γ, B, i, ⋄, ∗, ρ), i.e., f(γ) = (i ∗ γ) · ρ(i ⋄ γ).
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