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Abstract
Networks model how the entities in complex systems are connected and can
be partitioned into communities in different ways. Common approaches for
comparing network partitions compute agreements between partitions in terms
of set overlaps, however, they ignore link patterns, which are essential for the
organisation of networks. We propose flow divergence, an information-theoretic
divergence measure for comparing network partitions, inspired by the ideas
behind the Kullback-Leibler (KL) divergence and describing random walks on
networks. Like the KL divergence, flow divergence adopts a coding perspective
and compares two network partitions A and B by considering the expected extra
number of bits required to describe a random walk on a network using “estimate”
B of the network’s assumed “true” partition A. Because flow divergence is based
on random walks, it can compare hierarchical and non-hierarchical partitions
with arbitrary depths. Applied to synthetic and empirical networks, we show that
flow divergence distinguishes partitions where traditional measures fail.

1 Introduction
Many real-world complex networks have communities: groups of nodes with more internal than
external connections. Communities capture link patterns and abstract from groups of individual
nodes, revealing how networks are organised at the mesoscale. For example, tightly-knit groups
of friends in social networks, groups of interacting proteins in biological networks, or traders who
perform transactions in financial networks form communities. Motivated by various use cases and
based on different assumptions, researchers have proposed a plethora of ways to characterise what
constitutes a community, however, none of these characterisations is fundamentally more right or
wrong than any other [1]. Naturally, based on their assumptions, different methods partition the same
network into communities differently, and running stochastic community-detection methods with the
same network as input several times can return different partitions. Consequently, we need measures
to compare partitions and evaluate the extent to which they agree and how they differ.

Researchers across scientific fields have proposed many partition similarity measures [2–8]. Arguably,
the most common measures in network science are the so-called Jaccard index [2] and information-
theoretic measures based on mutual information [5, 7–9]. However, in the context of community
detection, they have a crucial shortcoming: while community detection in complex networks is
about grouping nodes with similar link patterns, popular partition similarity measures ignore links
altogether [3]. Instead, they merely consider how well the communities in different partitions coincide,
essentially measured in terms of set overlaps [10, 11].

To address this shortcoming, we propose flow divergence, a partition dissimilarity measure based
on the description of random walks on networks. Combining the principles behind the Kullback-
Leibler (KL) divergence [8] for measuring the dissimilarity between stochastic processes and the
map equation for community detection [12], flow divergence quantifies the expected extra number of
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A B C D

Figure 1: Four different partitions for the same network. Because common measures, such as the
Jaccard index and mutual information, consider merely the nodes’ community labels but ignore link
patterns, they consider B, C, and D to match the reference partition A equally well.

bits required to describe a random walk on a network when using an “estimate” B of the network’s
assumed “true” community structure A. Flow divergence builds on map equation similarity [13], an
information-theoretic measure that quantifies the number of bits for describing a random walker step,
given a network partition into possibly hierarchical communities. Because flow divergence is based
on describing random walks, it naturally takes link patterns into account and can compare hierarchical
and non-hierarchical partitions. Via the Jensen-Shannon distance, we also define a symmetric and
normalised version of flow divergence, which we call flow distance. Applied to synthetic and real
networks, we verify that our measures distinguish between partitions where traditional measures fail.

2 Related Work
Comparing partitions is a recurring problem across scientific domains that has received much
attention [14], and researchers have proposed a plethora of measures for comparing partitions [2–8].
Given two partitions A and B of the same set X with n = |X| objects into non-overlapping sets with⋃

a∈A a = X =
⋃

b∈B b, ∀a, a′ ∈ A : a ̸= a′ → a ∩ a′ = ∅, and ∀b, b′ ∈ B : b ̸= b′ → b ∩ b′ = ∅,
the aim is to measure how similar the partitions A and B are.

Measures for comparing partitions can be categorised into pair-counting, set-matching, and
information-theoretic measures [15, 16]. A popular pair-counting measure is the Rand index [17],
which considers all possible pairs of objects x, x′ ∈ X and counts t as the number of pairs for which A
and B agree whether x and x′ belong to the same group. The similarity R between A and B is the num-
ber of agreements t, divided by the total number of pairs, R(A,B) = t/(n2). The adjusted Rand index
[18] uses a null model to correct for assignments that agree due to chance. Two of the arguably most
commonly used partition similarity measures in network science are the set-matching approach known
as the Jaccard index [2] and information-theoretic scores based on mutual information [5, 7–9, 19].
The Jaccard index computes the agreement between groups a ∈ A and b ∈ B as J (a, b) = |a∩ b|

|a∪ b| .
Computing the similarity between partitions A and B requires finding the best match b ∈ B for
each a ∈ A and weighing according to a’s size: J (A,B) =

∑
a∈A

|a|
n maxb∈B J (a, b). Mutual

information considers how much information the objects’ assignments under A provide about their
assignment under B: MI (A,B) =

∑
a∈A

∑
b∈B P (a, b) log2

P (a,b)
P (a)P (b) , where P (a) =

∑
x∈a px and

P (b) =
∑

x∈b px are the probabilities for selecting a and b, respectively, when choosing an object
x ∈ X according to its probability px; P (a, b) =

∑
x∈a∩b px is the joint probability of a and b.

Normalised mutual information scales the mutual information score to the interval [0, 1], adjusted
mutual information (AMI) additionally adjusts it for chance [7, 16]. Reduced mutual information
corrects for cases where unrelated clusterings produce greater-than-zero similarity [19].

The Rand index, Jaccard index, and mutual information, including variants, ignore link patterns
because they only consider group memberships. To see why this is an issue when comparing
communities, consider the example shown in Figure 1. We assume that partition A represents the
network’s true community structure and compare partitions B, C, and D to A. The Rand index, Jaccard
index, and mutual information are all oblivious to the alternative partitions and judge them to match
the reference partition equally well with Rand index R(A,B) = R (A,C) = R (A,D) = 2/3, Jaccard
index J (A,B) = J (A,C) = J (A,D) = 1/2, and mutual information MI (A,B) = MI (A,C) =
MI (A,D) ≈ 0.46. When evaluated with community detection in mind, it seems plausible that B and
C agree with A to the same extent because of symmetry. However, partition D should be distinguished
from B and C because it describes a different pattern.
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Despite ignoring links, measures like the Jaccard index and mutual information are often used to
compare network partitions whose groups summarise link patterns according to some community-
detection objective function such as modularity [20], a stochastic block model [21], or the map
equation [12]. But community detection is about identifying groups of nodes that summarise link
patterns—links are essential for deciding what partition describes the structure of a network well. A
possible way to incorporate links into traditional measures could be by considering link sets alongside
node sets. However, while such an approach would consider nodes and links, it would ignore the
relationships between them. Straulino et al. [3] recognised the need to incorporate link patterns and
proposed a framework to compare network partitions based on any community-detection objective
function f that takes a graph G and a partition of its nodes, and returns, possibly after scaling, a value
in [0, 1]. They treat f as a black box and define the non-symmetric distance between partitions A
and B as d (A,B) = 1− f(G,A)

f(G,B) , thus incorporating link patterns as captured by f . However, their
approach cannot distinguish between partitions for which f returns the same value.

3 Flow Divergence
To define our partition dissimilarity score, flow divergence, we combine the map equation for flow-
based community detection with the Kullback-Leibler (KL) divergence [8], also known as relative
entropy, which is defined as DKL (P ||Q) =

∑
x∈X px log2

px

qx
. Here P and Q are probability

distributions defined on the same sample space X , where px and qx, respectively, are the probabilities
for drawing x ∈ X . The KL divergence quantifies the expected additional number of bits required to
describe samples from X using an estimate Q of its true frequencies P . Following this idea, our goal
is to define a partition dissimilarity measure that quantifies the expected additional number of bits
required to describe a random walk on a network using an “estimate” B of its “true” structure A.

3.1 Random-Walk Description Length

Let G = (V,E) be a connected graph with nodes V , links E, and let wuv ∈ R+ be the weight on the
link from node u to v. Further, let P = {pv | v ∈ V } be the set of ergodic node visit rates, which we
also refer to as flow. According to Shannon’s source coding theorem [22], describing the random
walker’s position on the graph requires

H (P ) = −
∑
v∈V

pv log2 pv bits (1)

per step, where H is the Shannon entropy and log2 pv is the length of node v’s codeword in bits. We
can design concrete codewords with a Huffman code [23] as shown in Figure 2a. Note, however,
that we use concrete random walks and codewords only to illustrate how flow divergence works. In
practice, we neither simulate random walks nor assign codewords. As is common in information
theory, we are only interested in the codewords’ theoretical lengths to calculate flow divergence. In
undirected and strongly connected directed graphs, we calculate the nodes’ visit rates using the power
iteration method to solve the recursive set of equations,

pv =
∑
u∈V

putuv, (2)

where tuv = wuv/
∑

v∈V wuv is the probability that a random walker at node u steps to node v. In
weakly connected graphs, we apply a power iteration to the process defined by PageRank [24] or
so-called smart teleportation [25]. By combining the above equations and reordering, we explicitly
relate describing the random walker’s position to transitions along links,

H (P ) = −
∑
u∈V

pu
∑
v∈V

tuv log2 pv. (3)

This formulation adopts a global perspective with globally unique codewords for nodes but does
not account for the network’s community structure. To make the coding depend on communities,
also called modules, we introduce a parameter M: the partition of the network’s nodes into modules.
We denote the module-dependent transition rate for stepping from u to v as s (M, u, v) such that
log2 s (M, u, v) is the cost in bits for encoding a step from u to v, and obtain the description length

L (M) = −
∑
u∈V

pu
∑
v∈V

tuv log2 s (M, u, v) . (4)
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Figure 2: Illustration of the map equation’s coding principles. (a) Without communities, we derive
unique codewords from the nodes’ visit rates and use them to describe the shown random walker
steps with the codewords at the bottom. (b) With communities, we assign codewords that are unique
within each community. Codewords for entering and exiting communities are shown next to arrows
that point into and out of the communities. (c) The coding scheme from (b), drawn as a radial tree.
Link widths are proportional to module-normalised codeword usage rates.

Setting s (M, u, v) = pv maintains a global perspective and globally unique codewords, while setting
s (M, u, v) = tuv adopts a node-local coding perspective where codewords depend on source and
target node. Adopting an intermediate modular perspective means considering u’s and v’s modular
context when computing coding costs and assigning codewords that are unique within modules.

3.2 The Map Equation for Modular Coding

The map equation [12, 26] is an information-theoretic objective function for flow-based community
detection that provides a way to define a modular coding scheme. It identifies communities by
minimising the modular description length for random walks on networks: Without communities, that
is, when all nodes are assigned to the same module, the required number of bits per random walker
step is the entropy over the nodes’ visit rates. For a two-level partition, the map equation calculates
the random walk’s per-step description length L – also called codelength – as a weighted average of
the modules’ entropies and the entropy at the so-called index level for switching between modules,

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) . (5)

Here, q =
∑

m∈M qm is the index-level codebook usage rate, qm =
∑

u/∈m

∑
v∈m putuv is the

entry rate for module m, Q = {qm/q |m ∈ M} is the set of normalised module entry rates, pm =
mexit +

∑
u∈m pu is module m’s codebook usage rate, mexit =

∑
u∈m

∑
v/∈m putuv is module m’s

exit rate, and Pm = {mexit/pm} ∪ {pu/pm |u ∈ m} is the set of normalised node visit rates in module m,
including its exit rate. Figure 2b shows an example of a two-level coding scheme where codewords
are reused across modules for a shorter overall codelength. Through recursion, the map equation
generalises to hierarchical partitions where modules can contain further submodules [26, 27].

Minimising the map equation creates a “map” of the network’s organisational structure where nodes
are grouped into modules such that a random walker tends to stay within modules, whereas switching
modules occurs rarely. We can draw such maps as trees as shown in Figure 2c. Each random-walker
step along a link in the network corresponds to traversing the map along the shortest path between
these two nodes; to describe the step, we use the codewords along the shortest path in the map.

To apply the ideas behind the KL divergence, we rewrite the map equation such that it more closely
resembles a random walk, matching the form of Equation (4) (see Appendix A for derivation),

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) = −
∑
u∈V

pu
∑
v∈V

tuv log2 mapsim (M, u, v) , (6)

where log2 mapsim (M, u, v) is the number of bits required to describe a random-walker step from
node u to v, given partition M [13]. mapsim, which is short for map equation similarity, is defined as

mapsim (M, u, v) = (1− δmu,mv )

(
qmu

pmu

· qmv

q
· pv
pmv

)
+ δmu,mv

pv
pmv

, (7)
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where mu and mv are the modules to which nodes u and v belong, respectively, and δ is the Kronecker
delta. Given a network partition, mapsim quantifies the rate at which a random walker transitions
between pairs of nodes. Importantly, mapsim depends on the source node’s module, but not on the
specific source node itself; through recursion, mapsim generalises to hierarchical partitions [13, 28].

3.3 Relative Entropy Between Partitions

Partition can be seen as a summary of the random walker’s movement patterns, representing them
as ensembles of possibly nested random processes. Following the idea of the KL divergence, we
assume that partition A captures the random walker’s true movement patterns. And we ask: what is
the expected extra number of bits required to describe a random walk using an “estimate” B of the
true pattern A? Using the partition-dependent transition rates tAuv (see Appendix B for how we derive
them from partitions), we define our partition dissimilarity measure flow divergence as

DF (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
mapsim (A, u, v)

mapsim (B, u, v)
, where tAuv =

mapsim (M, u, v)∑
v mapsim (M, u, v)

. (8)

For an example where we compare different partitions for the same network, one of which is
hierarchical, see Appendix C. However, there is one issue. The mapsim values entering the logarithm
do not form a probability distribution as they do not sum to 1, and, therefore, Equation (8) is not a
true KL divergence. The reason is that the coding scheme induced by the map equation contains
redundancies; in principle, a random walker could switch back and forth between modules, whereas
describing the random walker’s new location is always based on the shortest path in the coding tree.
This leaves us with two options. We can either use flow divergence as in Equation (8) with the
interpretation that it captures the expected extra number of bits for describing random walks when
using an “estimate” of the network’s assumed “true” structure. Or we can normalise the quantities
entering the logarithms to ensure that they sum to 1, sacrificing flow divergence’s clean interpretation
to some extent. However, as we will see in our evaluation, the difference between these options is
typically small and often negligible in practice.

3.4 Normalising Flow Divergence

Using the partition-dependent transition probabilities in Equation (24), we define a normalised version
of flow divergence that is an expected KL divergence,

D̃F (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
tAuv
tBuv

=
∑
u∈V

pu
∑
v∈V

tAuv

[
log2

mapsim (A, u, v)

mapsim (B, u, v)
− λA

u + λB
u

]
, (9)

where λA
u and λB

u are node-dependent normalisation terms with λA
u = log2

(∑
v∈V mapsim (A, u, v)

)
and λB

u = log2
(∑

v∈V mapsim (B, u, v)
)
.

3.5 Flow Distance: Symmetric and Normalised

Like the KL divergence, the normalised version of flow divergence is not bounded and can return
arbitrarily large values. The exact behaviour depends on the network’s size, topology, and compared
community structures, but larger networks generally lead to higher flow divergence values. This
can make it difficult for practitioners to compare partition similarities between different networks,
especially when they have different sizes. Moreover, flow divergence is an asymmetric measure, and
sometimes it is more convenient to work with symmetric measures. Flow divergence can be turned
into a symmetric and normalised measure with values in the interval [0, 1] via the Jensen-Shannon
(JS) distance. The JS distance takes two probability distributions P,Q defined on the same sample
space, and computes their “distance” as the square root of the average KL divergence between P and

Q and their mixture M [29]. It is defined as dJS (P,Q) =
√

1
2DKL (P ||M) + 1

2DKL (Q ||M),

where M = 1
2 (P +Q). When using the logarithm with base 2, the JS divergence returns values in

the interval [0, 1]. We apply the same idea to flow divergence and define flow distance as

dF (A,B) =

√
1

2
D̃F (A ||MAB) +

1

2
D̃F (B ||MAB). (10)

Here, MAB=
1
2 (A+ B) is the “mixture partition” of A and B, defined implicitly by mapsim values

mapsim (MAB, u, v) =
1

2
(mapsim (A, u, v) + mapsim (B, u, v)) . (11)
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3.6 Computational Complexity and Limitations

Computing flow divergence between two partitions A,B involves mapsim values between n2 many
node pairs, where n = |V | is the number of nodes. By exploiting the partitions’ modular structure, we
can compute flow divergence in time O(dm ·m2), where m is the number of non-empty intersections
between the modules a ∈ A and b ∈ B, and dm is the average depth at which the modules are nested.
Because mapsim depends on the source module but not the specific source node, and because we
can aggregate the target nodes per module, we only need to consider m source modules and m target
modules, that is, m2 pairs of modules instead of n2 pairs of nodes. With time O(dm) to compute
the mapsim value between two modules, we have an overall complexity of O(dm ·m2), where dm
is typically small in empirical networks [27]. In the worst case, when m = n, we have quadratic
complexity, however, the number of modules in real networks is typically much smaller than the
number of nodes, and theoretical and empirical evidence suggest that it scales as m = O(

√
n) [30]. In

Appendix D, we show how we regroup the terms of flow divergence for an efficient implementation.

Computing flow distance is more expensive and requires time O (dm ·m · n). This is because we
defined the mixture partition MAB between partitions A,B (Equation (11)) without concretising its
structure. Therefore, we cannot use the same trick we used for flow divergence. However, regrouping
the terms of flow distance allows for some optimisation, which we show in Appendix E.

Since flow divergence and flow distance are based on the KL divergence, similar limitations apply: For
probability distributions P,Q defined on the same sample space X , the KL divergence is only defined
if ∀x ∈ X , qx = 0 → px = 0. Otherwise, D (P ||Q) = ∞ [8]. This means we require undirected
networks to be connected and directed networks to be strongly connected because mapsim values
between nodes in disconnected parts of the network are 0, resulting in transitions with probability
0, yielding an infinitely high flow divergence. To handle disconnected networks, we could add a
small constant to each mapsim value, thus ensuring that all transition probabilities are larger than
0. Alternatively, we could regularise the random walker’s transition rates with a Bayesian prior
designed for the map equation to reduce overfitting in sparse and incomplete networks [31]. However,
both approaches change the random walker’s dynamics and increase the codelength because they
essentially add further links to the network. A possible ad-hoc solution for computing flow divergence
on disconnected and weakly-connected networks would be to ignore disconnected node pairs.

4 Evaluation
We apply flow divergence and flow distance to compute partition dissimilarity scores for partitions
in toy, synthetic, and real networks. In a toy network, we demonstrate that flow divergence, due to
its awareness of link patterns, distinguishes partitions where popular measures fail. With synthetic
networks, where the ground-truth community structure is known, and real networks, where we use
detected communities as a drop-in for the unknown ground truth, we study how flow divergence and
flow distance behave in practical settings. In our plots, we compare flow distance to one minus the
Jaccard index and AMI because this allows us to interpret them all as distances instead of similarities.

To simulate missing data, we remove different r-fractions of the networks’ links, and use Infomap [32,
33] to detect communities in the reduced networks. For the map equation and Infomap, less data
generally reduces the codelength: fewer links make networks sparser, leading to smaller modules with
lower entropy [31]. As we increase r, we expect the detected communities to become less similar
to the reference partition. To ensure that the reduced networks remain connected, we first construct
a random spanning tree, then we add a random subset of the original network’s links such that the
reduced network has by an r-fraction fewer links than the original. For robust results, we repeat each
experiment 10 times with different seeds and show averages and standard deviations in our plots.

For completeness, we compare the normalised and non-normalised versions of flow divergence in
Appendix F; we found that their difference is generally small, and often negligible. In Appendix G,
we include plots showing synthetic and real networks with their partitions and flow distance values
for different fractions of removed links for a more intuitive illustration of how our method behaves.

Our Python implementation of flow divergence and flow distance1, and the Jupyter notebooks to
reproduce our results2 are available on GitHub.

1https://github.com/mapequation/map-equation-similarity
2https://github.com/chrisbloecker/flow-divergence-reproducibility
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Figure 3: Results on ER random graphs with link probability p ∈
{
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}
.

The top panel shows normalised flow divergence D̃F and codelength L in bits, and the number of
communities |B| detected by Infomap for different r-fractions of removed links on a logarithmic
scale. The bottom panel shows the corresponding flow distance dF , Jaccard distance 1− J, and AMI
distance 1−AMI.

4.1 Toy Example

Table 1: Rounded normalised flow diver-
gence scores D̃F and codelength L in bits
for the partitions from Figure 1.

Other

Reference L A B C D

A 2.86 0 1.25 1.25 0.92
B 3.73 1.36 0 0.86 1.35
C 3.73 1.36 0.86 0 0.96
D 4.47 1.04 1.39 1.00 0

Returning to our initial example (Figure 1), we show that
flow divergence can distinguish between partitions where
traditional measures fail. Table 1 shows the normalised
flow divergence scores according to Equation (9). Despite
its higher codelength, D is more similar to A than B and C
are. This is analogous to the fact that, for three probability
distributions P,Q,R defined on the same sample space,
R can be more similar to P than Q despite having higher
entropy, that is, H (Q) < H (R) ̸→ DKL (P ||Q) <
DKL (P ||R). To explain why D is more similar to A,
we consider the individual nodes’ contribution to the
divergences (see Appendix H), and find that A and D
overlap in the higher-degree nodes, which have more flow and, therefore, carry higher importance.

4.2 Synthetic Networks

First, we use networkx to generate Erdős-Rényi (ER) random graphs with n ∈ {1000, 5000, 10000}
nodes. In ER graphs, links exist independently with probability p, and ER graphs are almost surely
connected at p = lnn

n . To ensure connected ER graphs with ample links for removal, we use
p ∈

{
2 lnn
n , 3 lnn

n , 5 lnn
n , 10 lnn

n

}
. Because ER graphs do not have community structure [34, 35],

we use the reference partition A that assigns all nodes to the same module. Our results in Figure 3
show that flow divergence and flow distance capture differences that the Jaccard index and AMI
miss. For small r, Infomap does not detect communities and assigns all nodes to the same module.
Consequently, the Jaccard index and AMI consider the detected partitions to align perfectly with the
reference partition. However, removing links changes the random walker’s node visit and transition
rates, affecting how random walks would be encoded. Because flow divergence is designed to account
for precisely these differences in link patterns via random walk dynamics, it can distinguish between
such partitions. When we remove more links, and Infomap begins to detect communities, all the
tested measures make a sharp jump. The exact point where this jump occurs depends on the network’s
density, controlled by p. Beyond this point, AMI returns a distance of one because the one-module
partition does not provide any information about a partition with communities. The Jaccard distance
becomes larger, but remains smaller than one. Flow divergence and flow distance make a similar
jump, but increase more gradually after that, indicating a clearer distinction between the partitions.
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Figure 4: Results on undirected LFR graphs with non-hierarchical planted communities. The top
panel shows normalised flow divergence D̃F and codelength L in bits, and the number of communities
|B| detected by Infomap for different r-fractions of removed links on a log scale. The bottom panel
shows the corresponding flow distance dF , Jaccard distance 1− J, and AMI distance 1−AMI.

Second, we generate Lancichinetti–Fortunato–Radicchi (LFR) networks with non-hierarchical planted
communities [36] and n ∈ {1000, 5000, 10000} nodes, using the original authors’ implementation3.
We use maximum node degree kmax = 50, minimum community size cmin = 20, mixing µ = 0.3,
power-law exponents τ1 = 2 and τ2 = 1 for the degree sequence and community size distribution,
respectively, average node degree k ∈ {15, 25}, and maximum community size cmax ∈ {50, 250}.
The results in Figure 4 show that, for small r, Infomap detects the ground-truth communities, leading
to Jaccard and AMI scores of 1, and therefore a Jaccard and AMI “distance” of 0. However, because
removing links affects the random walker’s dynamics, flow divergence and flow distance detect these
changes. While keeping the generated communities’ properties fixed, the network size has only a
small effect on how flow divergence and flow distance behave, suggesting that the networks’ structural
patterns play a more important role than their size. In Appendix I, we repeat these experiments for
directed and hierarchical LFR graphs, and in Appendix K, we show the recorded wall-clock runtimes.

4.3 Real Networks

Table 2: Properties of eight real networks. ⟨k⟩ is the
average degree, L and Lh are the non-hierarchical and
hierarchical codelengths, respectively, of the reference
partitions Infomap detected.

Network Ref. |V | |E| ⟨k⟩ L Lh

Football [37] 115 613 10.7 5.45 –
Jazz [38] 198 2,742 27.7 6.86 –
Copenhagen [39] 800 6,429 16.1 8.34 –
FB Orgs. M1 [40] 1,429 19,357 27.1 8.74 8.71
FB Orgs. L2 [40] 5,524 94,219 34.1 9.99 9.82
Wiki Squirrel [41] 5,201 198,493 76.3 9.94 9.93
Wiki Crocodile [41] 11,631 170,918 29.4 9.26 9.25
GitHub Devs [41] 37,700 289,003 15.3 12.38 –

Real-world networks are often sparse or
incomplete, which can lead to detecing
spurious communities, similar to find-
ing structure in random networks [31,
42, 43]. We use eight undirected real-
world networks (Table 2) and detect hier-
archical and non-hierarchical communi-
ties with Infomap, regarding those com-
munities as the hierarchical and non-
hierarchical reference partitions. Again,
we remove different r-fractions of the
links to simulate missing data and use
Infomap to detect communities in the re-
duced networks. The reduced network
must contain at least |V | − 1 links to re-
main connected, placing an upper bound
on how many links we can remove.

Figure 5 is in line with the observation from the synthetic networks. Fewer links lead to lower
codelength, more communities, and larger distance from the reference partition for all measures.

3https://sites.google.com/site/andrealancichinetti/benchmarks

8

https://sites.google.com/site/andrealancichinetti/benchmarks


Flow Divergence: Comparing Hierarchical Network Partitions based on Relative Entropy

0.0 0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103

D̃
F
,L
,|B
|

Football

0.0 0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103
Jazz

0.0 0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103
Copenhagen

0.0 0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103
Facebook Orgs. M1

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

d
F
,1
−
J
,1
−

A
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

104

D̃
F
,L
,|B
|

Facebook Orgs. L2

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

104
Wikipedia Squirrel

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

104
Wikipedia Crocodile

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

104
GitHub Developers

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

d
F
,1
−
J
,1
−

A
M

I

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

flow divergence
two-level

codelength
hierarchical

#modules flow distance AMI Jaccard

Figure 5: Results on real networks. We show normalised flow divergence D̃F and codelength L in
bits, and the number of communities |B| detected by Infomap for different r-fractions of removed
links on a log scale, and the corresponding flow distance dF , Jaccard distance 1−J, and AMI distance
1−AMI.

Generally, all measures follow a similar pattern, however, in some cases, the Jaccard index makes
sharper jumps than AMI and flow distance. While the description of random walks on the network can
be compressed more when fewer links are present, flow divergence quantifies by how much Infomap
diverges from the network’s “true” partition. In practice, we would naturally choose a partition with
a lower codelength because it appears to capture the network’s structure better. But with missing
data, this would be a mistake, and flow divergence quantifies the exact cost of making this mistake.
Specifically, if A is the network’s true partition but we select B instead because L (B) < L (A), we
expect to pay L (B) per random walker step, while the true cost is L (B)+DF (A ||B). For additional
plots showing unnormalised flow divergence values, see Appendix F.

4.4 Discussion about Comparing Partition Dissimilarity Scores

Because scores are comparisons, a lower value in one score than another does not necessarily mean
anything. However, in our case, a lower score can tell us something. Consider the following points:

• The Jaccard index and AMI return a similarity of 1, or a “distance” of 0, when the partitions
align perfectly in terms of node assignments. But links do not matter. We could randomly rewire
or remove as many links as we wish without affecting Jaccard or AMI scores.

• Flow distance returns a distance of 0 when the coding schemes induced by the partitions are
the same, that is, when the node visit rates and transition rates are the same. We can roughly
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think about this as: the partitions need to align perfectly in terms of node assignments and links.
Links matter, and random rewiring or removing links affects the flow distance score.

• When does a partition describe the network’s structure well? Assuming assortative communities,
good partitions define communities such that most links are within communities and few links
between communities. Links matter, and random rewiring or removing links generally affects
the network’s community structure.

In our experiments with LFR networks, we used a mixing factor of µ = 0.3, meaning that about
70% of the links are within communities. Therefore, removing links uniformly at random, but while
keeping the graphs connected, we mostly delete links within communities and make the community
structure less pronounced. For empirical networks, we also expect that they have community structure
and more links within than between communities. Hence, when removing links from empirical
networks uniformly at random, we also expect to make the community structure less pronounced.

In Figures 3 and 4, we saw that the Jaccard index and AMI return distances of 0 up to a certain
fraction of removed links, meaning that the partitions did not change in terms of node assignments to
communities. Flow distance, on the other hand, returns distances larger than 0 as soon as we remove
links because it is sensitive to the changes in the network’s transition matrix. In this situation, a flow
distance score larger than 0, while the Jaccard index and AMI return a distance of 0, tells us that flow
distance can distinguish between partitions where the other measures fail. This is possible because
flow divergence considers links, and removing links changes how well the communities characterise
the network’s structure. In other words: even if the assignments of nodes to communities are the
same, having fewer links within the communities means that those communities are less pronounced
and, consequently, not as good a description of the network’s structure as compared to the case when
there are more links within the communities. The results for real networks in Figure 5 were less
distinct, which is likely because the community structure in empirical networks tends to be less
pronounced, or redundant, than in synthetic networks.

5 Conclusion

We have studied the problem of comparing network partitions and highlighted the need for approaches
that consider link patterns. While community detection focuses on grouping nodes with similar link
patterns, common measures for comparing partitions ignore links. Inspired by the Kullback-Leibler
divergence for measuring dissimilarities between probability distributions, we developed a partition
dissimilarity measure based on random walks: flow divergence. Flow divergence quantifies the
expected additional number of bits per step for describing a random walk on a network when using an
“estimate” B of the network’s “true” partition A. Via the Jensen-Shannon distance, we also derived
a symmetric and normalised version of flow divergence, which we call flow distance. Applied to
real and synthetic networks, we showed that incorporating link patterns allows flow divergence to
distinguish between partitions where popular partition similarity measures fail.

We did not consider integrating node features, which play an important role in graph representation
learning, directly into flow divergence. This allowed us to keep flow divergence conceptually clean
and more widely applicable. However, in case node features are present, they can be incorporated at
the community-detection stage, for example, by following the apporach by Bassolas et al. [44].

Our future research directions include developing an efficient way to compute flow distance and
generalising flow divergence for soft communities, where nodes can be partially assigned to several
modules. While flow divergence can be computed efficiently by exploiting the network partitions’
modular regularities, the same approach cannot be used for flow distance because we defined the
mixture MAB between partitions A and B implicitly. An explicit definition of mixture partitions would
address this issue, allowing us to also compute flow distance more efficiently. Moreover, such an
explicit notion of mixture partitions would imply a way to interpolate between network partitions.
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A Rewriting the Map Equation
Let G = (V,E) be a network with nodes V , links E, and let wuv ∈ R+ be the weight on the
link from node u to v. If G is undirected, we can calculate the stationary visit rate for node u as
pu =

∑
v∈V wuv∑

u∈V

∑
v∈V wuv

. If G is directed, we can use a power iteration to solve the recursive set of
equations pv =

∑
u∈V putuv, where tuv = wuv∑

v∈V wuv
is the probability that a random walker at u

steps to v.

We begin with the two-level map equation [12],

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) , (12)

where M is a partition of the nodes into modules, q =
∑

m∈M qm is the usage rage for the index-
level codebook, qm =

∑
u/∈m

∑
v∈m putuv is the entry rate for module m, Q = {qm/q |m ∈ M}

is the set of module entry rates, pm = mexit +
∑

u∈m pu is module m’s codebook usage rate,
mexit =

∑
u∈m

∑
v/∈m putuv is module m’s exit rate, and Pm = {mexit/pm} ∪ {pu/pm |u ∈ m} is the set

of node visit rates in module m, including its exit rate.

Expanding the map equation, we obtain

L (M) = −q
∑
m∈M

qm
q

log2
qm
q

−
∑
m∈M

pm

(
mexit

pm
log2

mexit

pm
+
∑
u∈m

pu
pm

log2
pu
pm

)
, (13)

and after cancelling common factors

= −
∑
m∈M

qm log2
qm
q

−
∑
m∈M

(
mexit log2

mexit

pm
+
∑
u∈m

pu log2
pu
pm

)
. (14)

Pulling out the summation and annotating the parts, we have

= −
∑
m∈M

entering module m

qm log2
qm
q

+

exiting module m

mexit log2
mexit

pm
+

visiting nodes in module m.∑
u∈m

pu log2
pu
pm

(15)

Next, we use qm =
∑

u̸∈m pu
∑

v∈m tuv, mexit =
∑

u∈m pu
∑

v ̸∈m tuv, and pv =
∑

u putuv, and
split up the last part,

= −
∑
m∈M

∑
u̸∈m

pu
∑
v∈m

tuv log2
qm
q

+

∑
u∈m

pu
∑
v ̸∈m

tuv log2
mexit

pm

 (16)

+

(∑
u∈m

pu
∑
v∈m

tuv log2
pv
pm

)
+

∑
u̸∈m

pu
∑
v∈m

tuv log2
pv
pm

 . (17)

Then, we merge the second and fourth terms into the first term. To merge the second term, we
“reverse” the module exits, considering those steps that leave other modules to enter module m instead
of steps that leave module m. We denote node u’s and v’s module by mu and mv , respectively,

= −
∑
m∈M

(∑
u̸∈m

pu
∑
v∈m

tuv log2

(exit mu

qmu

pmu

·

enter mv

qmv

q
·

visit node v

pv
pmv

))
+

(∑
u∈m

pu
∑
v∈m

tuv log2
pv
pmv

)
. (18)

We realise that, for each module m, we sum over all nodes u ̸∈ m and all nodes u ∈ m, and, depending
on whether they are a member of m, calculate the cost for transitioning to v ∈ m differently. We
rewrite these two cases using the Kronecker delta δ, summing over all nodes u,

= −
∑
m∈M

∑
u∈V

pu
∑
v∈m

tuv

[
(1− δmu,mv

) log2

(
qmu

pmu

· qmv

q
· pv
pmv

)
+ δmu,mv

log2
pv
pmv

]
. (19)
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Finally, instead of summing over all modules and all nodes in each module, we sum over all nodes
directly and can calculate the codelength for partition M as

L (M) = −
∑
u∈V

pu
∑
v∈V

tuv

[
(1− δmu,mv ) log2

(
qmu

pmu

· qmv

q
· pv
pmv

)
+ δmu,mv log2

pv
pmv

]
(20)

= −
∑
u∈V

pu
∑
v∈V

tuv log2

[
(1− δmu,mv

)

(
qmu

pmu

· qmv

q
· pv
pmv

)
+ δmu,mv

pv
pmv

]
. (21)

The part inside the square brackets is known as map equation similarity, or mapsim for short, an
information-theoretic measure for node similarity [13]. That is, we can calculate the codelength for a
partition M using mapsim, where log2 mapsim (M, u, v) quantifies how many bits are required to
describe a random-walker-transition from node u to v, given partition M. Thus, we can rewrite the
map equation as

L (M) = −
∑
u∈V

pu
∑
v∈V

tuv log2 mapsim (M, u, v) . (22)
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B Deriving Transition Probabilities from Partitions
Our goal is to define a partition dissimilarity measure that quantifies the expected additional number
of bits for describing a random walker step using an “estimate” B of the network’s “true” partition
A. We follow the same approach as the KL divergence, and consider two network partitions, A,B,
as statistical processes that induce transition rates for the random walker. To see why we do this,
consider a naïve attempt to define a dissimilarity measure using the observed transition rates tuv ,

D (A ||B) =
∑
u∈V

pu
∑
v∈V

tuv log2
mapsim (A, u, v)

mapsim (B, u, v)
. (23)

The issue with this measure is that, because it uses the transition rates tuv, it essentially assumes
the same statistical process for both A and B and only computes the codelength difference between
the two partitions. Via logarithm rules and by substituting the definition from Equation (6), we can
simplify Equation (23) to D (A ||B) = L (A)− L (B). That is, we would simply learn by how much
the codelength would increase or decrease if we use the other partition. But this is not what we intend
to measure. To fix this, we need to consider the transition rates induced by the partition.
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Figure 6: Partitions induce transition rates. (a) The same partition as in Figure 2c, annotated with
transition and visit rates. The solid, dashed, and dotted arrows are examples of random-walker steps.
(b) We derive transition rates between nodes according to mapsim: Transition rates depend on the
source node’s module, not on the source node itself (Equation (7)). Therefore, shortest paths start at
module nodes, and we obtain the rate at which each shortest path is used by multiplying the transition
rates along that path. The dotted arrow is not a shortest path because it contains a loop, which we
discard for efficient coding. (c) All shortest paths that start in the blue module and their usage rates.

Consider the partition shown in Figure 6a where nodes are annotated with their module-normalised
visit rates and arrows between modules show the modules’ entry and exit rates. Three black arrows
are drawn on the map: a solid arrow for a random walker who is in the blue module and steps to node
3, a dashed arrow for a random walker who is in the blue module and steps to node 5 in the orange
module, and a dotted arrow for a random walker who is in the green module and visits node 9 in the
orange module. Because codewords depend on the random walker’s current module, but not on the
most recently visited node, the paths begin at the square-shaped nodes that represent the modules.

Figure 6b details at what rates a random walker follows the solid, dashed, and dotted paths. A random
walker in the blue module visits node 3 at rate 4

14 . A random walker in the blue module exits at rate
2
14 , enters the orange module at rate 2

6 , and visits node 5 at rate 3
18 , resulting in a rate of 2

14 ·
2
6 ·

3
18 for

the dashed arrow. The dotted arrow contains a loop, which we discard because we describe transitions
along shortest paths. Therefore, a random walker in the green module exits at rate 2

22 , enters the
orange module at rate 2

6 , and visits node 9 at rate 5
18 , resulting in a rate of 2

22 · 2
6 · 5

18 for the dotted
arrow. Taking the log2 of the arrows’ usage rates returns the required number of bits for describing
the corresponding transition.

Figure 6c shows all shortest paths starting in the blue module and their usage rates. Since we only
consider shortest paths, their usage rates do not sum to 1; here, their sum is approximately 0.94.
Because paths with loops are ways to make detours from shortest paths, their usage rate is proportional
to the shortest path they contain. To obtain the transition probability from u to v according to partition
M, we normalise with the sum of transition rates for the shortest paths from u to all nodes v,

tMuv =
mapsim (M, u, v)∑

v∈V mapsim (M, u, v)
. (24)
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C Comparing Maps
Network partitions represent the organisational structure of networks as possibly nested random
processes. Figure 7 shows two different partitions for the same network, one of which is hierarchical,
that is, there is at least one module that contains further sub-modules. Each of these two partitions
corresponds to different assumed random-walker dynamics, inducing different transition rates. Using
our definition of flow divergence,

DF (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
s (A, u, v)

s (B, u, v)
. (25)

we obtain DF (M2 ||M3) ≈ 0.09 bits and DF (M3 ||M2) ≈ 0.01 bits. Assuming that M2 captures
the random walker’s true dynamics, the expected additional cost per step for using M3 is 0.09 bits.
Conversely, assuming that M3 describes the random walker’s true dynamics, the expected additional
cost per step for using M2 is 0.01 bits. That is, besides the higher cost of M2 in terms of codelength,
choosing M2 while M3 represents the network’s true structure would lead to a higher excess in coding
cost than the other way around.
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L (M2) ≈ 3.39 bits
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L (M3) ≈ 3.37 bits

Figure 7: Different partitions for the same network, drawn on the network in the left column and as a
tree in the right column. (a) A two-level map, M2, of the network into five modules. (b) A three-level
map, M3, of the network into four modules, one of which has two submodules. Labels in the trees
show the rate at which a random walker visits nodes and enters or exits modules. For example, a
random walker who is in the blue module exits at rate 1

12 in both maps. A random walker who is at
the tree’s root level enters the green module at rate 3

24 in map M2 and 3
20 in map M3, respectively.
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D Computational Complexity of Flow Divergence
Computing flow divergence between two partitions A and B requires considering n2 mapsim scores
per partition, where n = |V |. Therefore, it can be naïvely computed in time O

(
dm · n2

)
with a

double loop over the nodes to compute all pairwise mapsim values, where each mapsim value
can be computed in time O (dm) based on a tree data structure. Here, dm is the average depth at
which the modules are located in the network’s community structure, which is typically small [27,
45]. However, the regularities in the networks’ community structures and the details of mapsim
make it possible to compute flow divergence in time O

(
dm ·m2

)
, where m = |A× B|, and A ×

B = {ma ∩mb | ma ∈ A,mb ∈ B,ma ∩mb ̸= ∅} is the set of non-empty intersections between the
modules in A and B, also called the meet between A and B [6].

Since mapsim (M, u, v) depends on the source node’s module, mu, but not the source node u itself,
we can drop the dependence on the source node and consider the source module instead, that is,
mapsim (M, u, v) = mapsim (M,mu, v). Consequently, the number of mapsim values we need to
compute reduces to m ·n, with typically m ≪ n. Theoretical and empirical evidence suggest that the
number of modules typically scales as m = O (

√
n) [30]. Furthermore, based on its definition, we

can decompose mapsim (M,mu, v) as mapsim (M,mu,mv) · pv

pmv
, meaning that we can precompute

and reuse the mapsim values between all pairs of source and target modules and aggregate the node
visits per module. Therefore, we only need to consider the mapsim values between m2 pairs of
modules. In the worst case, that is, when each node is assigned to its own singleton module, the
complexity becomes O

(
n2
)

because the depth dm in this case would be 2 for each of the singleton
modules, which is a constant. However, with m = O (

√
n) many modules, there are O (n) many

pairs of modules. For each pair of modules, we need to find the source module mu and target module
mv in the partition tree and multiply the random walker’s transition rates along the shortest path from
mu to mv. Based on a tree data structure, this can be done in time O (dm) for each pair of modules
by caching the modules’ locations in the tree in a hash table with constant-time lookup. Overall, this
results in time O

(
dm ·m2

)
for precomputing the mapsim values between all pairs of modules.

In the following two subsections, we provide details on how flow divergence can be decomposed and
how its terms can be regrouped for efficient computation.

Notation. For layout reasons, we use the shorthand s (M, u, v) to denote mapsim (M, u, v).

D.1 Without Normalisation

We have defined flow divergence as

DF (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
s (A, u, v)

s (B, u, v)
. (26)

Naïvely, we can compute flow divergence in time O
(
dm · n2

)
with a double loop for all pairs of

nodes, where computing each mapsim value requires time O (dm) using a tree data structure, and
dm is the average depth at which the modules are located in the network’s community structure, or
equivalently, in the partition tree. However, by expanding and simplifying the terms in Equation (26),
we can compute flow divergence efficiently in time O

(
dm ·m2

)
. We begin by substituting the

definition of the partition-dependent transition rates,

tMuv =
s (M, u, v)∑

v∈V s (M, u, v)
. (27)

into Equation (26),

DF (A ||B) =
∑
u∈V

pu
∑
v∈V

s (A, u, v)∑
v∈V s (A, u, v)

log2
s (A, u, v)

s (B, u, v)
. (28)

We pull out the normalisation factor for u from the second sum and define the weight factor ϕA
u =

pu∑
v∈V s(A,u,v) ,

DF (A ||B) =
∑
u∈V

pu∑
v∈V s (A, u, v)

=ϕA
u

∑
v∈V

s (A, u, v) log2
s (A, u, v)

s (B, u, v)
. (29)
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The weight factor ϕA
u can be computed efficiently by exploiting the regularities in the modular

network structure. As per the definition of mapsim (Equation (7)), we make use of two useful
facts. First, that mapsim only depends on the source node’s module mu but not the source node
itself, mapsim (M, u, v) = mapsim (M,mu, v). And second, that mapsim can be decomposed
into different parts that correspond to transitions between modules and visiting the target node,
mapsim (M,mu, v) = mapsim (M,mu,mv) · pv

pmv
.

ϕA
u =

pu∑
v∈V A (u, v)

(30)

=
pu∑

m∈A

∑
v∈m A (mu,m) pv

pm

(31)

=
pu∑

m∈A A (mu,m)
∑

v∈m
pv

pm

(32)

=
pu∑

m∈A

(
1− mexit

pm

)
A (mu,m)

(33)

Here, the last step follows from pm = mexit +
∑

u∈m pu. Because mapsim depends on the source
module mu but not the specific source node u, we only need to consider m2 = O (n) many pairs of
modules, assuming that there are m = O (

√
n) many modules. With weight factor ϕA

u, we have

DF (A ||B) =
∑
u∈V

ϕA
u

∑
v∈V

s (A, u, v) log2
s (A, u, v)

s (B, u, v)
, (34)

Next, we apply logarithm rules to split up flow divergence into two terms per source node,

DF (A ||B) =
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2 s (A, u, v)

]
(35)

−
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2 s (B, u, v)

]
, (36)

where Equation (35) is the codelength when using A, and Equation (36) is the codelength when using
B, both in the case that a random walker moves according to A. Because mapsim only depends on the
source module mu but not the specific source node u, we can drop the dependence on the source node.
This also allows us to aggregate the weights ϕ per source module, and we define ΦA

mu
=
∑

u∈mu
ϕA
u.

DF (A ||B) =
∑
mu∈A

ΦA
mu

[∑
v∈V

s (A,mu, v) log2 s (A,mu, v)

I

]
(37)

−
∑

mu∈A×B

ΦA
mu

[∑
v∈V

s (A,mu, v) log2 s (B,mu, v)

II

]
. (38)

In Equation (37), we can simply sum over the source modules mu in A. However, in Equation (38),
we need to sum over the intersections between the modules mu in A and B, where we define A×B =
{ma ∩mb | ma ∈ A,mb ∈ B}. These intersections can be computed efficiently with a single pass
over the nodes and tabulating their memberships. We note that the expressions mapsim (A,mu, v)
and mapsim (B,mu, v) are a slight abuse of notation because the modules mu ∈ A× B technically
do not exist in A and B, but any node in mu can be used as a representative to compute these mapsim
values. Now, we consider parts I and II in turn, starting with part I. As before, instead of directly
summing over all target nodes v, we sum over the target modules m and then over their nodes,

(I) =
∑
v∈V

s (A,mu, v) log2 s (A,mu, v) =
∑
m∈A

∑
v∈m

s (A,mu, v) log2 s (A,mu, v) , (39)

pull out the last factor from the mapsim operators

=
∑
m∈A

∑
v∈m

s (A,mu,m)
pv
pm

log2

(
s (A,mu,m)

pv
pm

)
, (40)
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pull out common factors

=
∑
m∈A

s (A,mu,m)
∑
v∈m

pv
pm

log2

(
s (A,mu,m)

pv
pm

)
, (41)

and apply logarithm rules and simplify

=
∑
m∈A

s (A,mu,m)

[∑
v∈m

pv
pm

log2 s (A,mu,m) +
∑
v∈m

pv
pm

log2
pv
pm

]
(42)

=
∑
m∈A

s (A,mu,m)

[(
1− mexit

pm

)
log2 s (A,mu,m) +

∑
v∈m

pv
pm

log2
pv
pm

]
. (43)

Simplifying part II is done analogously and, again, requires considering the intersections between the
modules from partitions A and B.

(II) =
∑
v∈V

s (A,mu, v) log2 s (B,mu, v) =
∑
ma∈A

∑
mb∈B

∑
v∈ma∩mb

s (A,mu, v) log2 s (B,mu, v) (44)

Next, we pull out the last factors from the mapsim operator again,

=
∑
ma∈A

∑
mb∈B

∑
v∈ma∩mb

s (A,mu,ma)
pv
pma

log2

(
s (B,mu,mb)

pv
pmb

)
, (45)

pull out common factors

=
∑
ma∈A

s (A,mu,ma)
∑
mb∈B

∑
v∈ma∩mb

pv
pma

log2

(
s (B,mu,mb)

pv
pmb

)
, (46)

and apply logarithm rules

=
∑
ma∈A

s (A,mu,ma)
∑
mb∈B

[ ∑
v∈ma∩mb

pv
pma

log2 s (B,mu,mb) +
∑

v∈ma∩mb

pv
pma

log2
pv
pmb

]
(47)

=
∑
ma∈A

s (A,mu,ma)
∑
mb∈B

[
pma∩mb

pma

log2 s (B,mu,mb) +
∑

v∈ma∩mb

pv
pma

log2
pv
pmb

]
, (48)

where pma∩mb
=
∑

v∈ma∩mb
pv . Altogether, flow divergence can be rewritten as

DF (A ||B)

=
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

[(
1− mexit

pm

)
log2 s (A,mu,m) +

∑
v∈m

pv
pm

log2
pv
pm

]
(49)

−
∑

mu∈A×B

ΦA
mu

∑
ma∈A

s (A,mu,ma)
∑
mb∈B

[
pma∩mb

pma

log2 s (B,mu,mb) +
∑

v∈ma∩mb

pv
pma

log2
pv
pmb

]
. (50)

D.2 With Normalisation

Because mapsim (M, u, v) is based on the shortest path from node u to node v in the coding tree in-
duced by partition M, certain paths are never considered, specifically those that are not shortest paths
and contain loops. Consequently, when modules are present, the sum

∑
v∈V mapsim (M, u, v)

is smaller than one for every node and, thus, the transition rates originating at u, that is
{mapsim (M, u, v) | v ∈ V }, do not form a probability distribution. Therefore, flow divergence
is not an expected KL divergence. We can easily fix this by defining a normalised version of flow
divergence based on the partition-dependent transition rates from Equation (24).

D̃F (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
tAuv
tBuv

. (51)
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We expand Equation (51) by plugging in the partition-dependent transition rates from Equation (24),

D̃F (A ||B) =
∑
u∈V

pu
∑
v∈V

s (A, u, v)∑
v∈V s (A, u, v)

log2

(
s (A, u, v)

s (B, u, v)
·
∑

v∈V s (B, u, v)∑
v∈V s (A, u, v)

)
. (52)

Then, we reorder and apply logarithm rules,

=
∑
u∈V

pu∑
v∈V s (A, u, v)

=ϕA
u (see Equation (33))

∑
v∈V

s (A, u, v)

(
log2

s (A, u, v)

s (B, u, v)
+ log2

∑
v∈V s (B, u, v)∑
v∈V s (A, u, v)

)
(53)

=
∑
u∈V

ϕA
u

∑
v∈V

[
s (A, u, v) log2

s (A, u, v)

s (B, u, v)
+ s (A, u, v) log2

∑
v∈V s (B, u, v)∑
v∈V s (A, u, v)

]
. (54)

We split this up into two parts, one for the non-normalised version of flow divergence, and one for
normalising it.

=
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2 s (A, u, v)−
∑
v∈V

s (A, u, v) log2 s (B, u, v)

]
(55)

−
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (A, u, v)

)
I

−
∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (B, u, v)

)
II

]
. (56)

Here, Equation (55) is exactly the non-normalised version of flow divergence. The terms in Equa-
tion (56) normalise flow divergence and turn it into an expected KL divergence. We can compute
these normalisation terms efficiently in a similar way as Equation (34), that is, by exploiting the
partitions’ modular structure. We begin with part I,

(I) =
∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (A, u, v)

)
=λA

u

(57)

= λA
u ·
∑
m∈A

∑
v∈m

s (A,mu,m)
pv
pm

(58)

= λA
u ·
∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
. (59)

Similarly, for part II, we have

(II) =
∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (B, u, v)

)
(60)

= λB
u ·
∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
. (61)

Now, it only remains to compute λM
u ,

λM
u = log2

(∑
v∈V

s (M, u, v)

)
(62)

= log2

(∑
m∈M

∑
v∈m

s (M,mu,m)
pv
pm

)
(63)

= log2

(∑
m∈M

s (M,mu,m)

(
1− mexit

pm

))
(64)
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Putting everything together and aggregating the normalisation terms per source module, we can
rewrite the normalised version of flow divergence as

D̃F (A ||B)

=
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

[(
1− mexit

pm

)
log2 s (A,mu,m) +

∑
v∈m

pv
pm

log2
pv
pm

]
(65)

−
∑

mu∈A×B

ΦA
mu

∑
ma∈A

s (A,mu,ma)
∑
mb∈B

[
pma∩mb

pma

log2 s (B,mu,mb) +
∑

v∈ma∩mb

pv
pma

log2
pv
pmb

]
(66)

−
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
log2

(∑
m∈A

s (A,mu,m)

(
1− mexit

pm

))
(67)

+
∑

mu∈A×B

ΦA
mu

∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
log2

(∑
m∈B

s (B,mu,m)

(
1− mexit

pm

))
, (68)

where the first two parts are the non-normalised version of flow divergence, and the last two lines are
for normalisation.
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E Computational Complexity of Flow Distance

We define flow distance, dF , a normalised and symmetric version of flow divergence by following
the ideas behind the Jensen-Shannon distance,

dF (A,B) =

√
1

2
D̃F (A ||MAB) +

1

2
D̃F (B ||MAB), (69)

where MAB = 1
2 (A+ B) is the “mixture partition” of A and B, defined indirectly via its mapsim

values,

mapsim (MAB, u, v) =
mapsim (A, u, v)

2
+

mapsim (B, u, v)

2
. (70)

Notation. Again, for layout reasons, we use the shorthand s (M, u, v) to denote mapsim (M, u, v).

To compute dF efficiently, we need to be able to compute D̃F (A ||MAB) and D̃F (B ||MAB) effi-
ciently. According to Equations (9) and (51), respectively, we have

D̃F (A ||MAB) =
∑
u∈V

pu
∑
v∈V

tAuv log2
tAuv

tMAB
uv

, (71)

which, following Equations (55) and (56), can be rewritten as

=
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2 s (A, u, v)−
∑
v∈V

s (A, u, v) log2 s (MAB, u, v)

]
(72)

−
∑
u∈V

ϕA
u

[∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (A, u, v)

)
−
∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (MAB, u, v)

)]
. (73)

We split this further up, substitute s (MAB, u, v) = s(A,u,v)
2 + s(B,u,v)

2 , and aggregate per source
module,

=
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

[(
1− mexit

pm

)
log2 s (A,mu,m) +

∑
v∈m

pv
pm

log2
pv
pm

]
(74)

−
∑

mu∈A×B

ΦA
mu

∑
v∈V

s (A,mu, v) log2

(
s (A,mu, v)

2
+

s (B,mu, v)

2

)
I

(75)

−
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
log2

(∑
m∈A

s (A,mu,m)

(
1− mexit

pm

))
(76)

+
∑

mu∈A×B

ΦA
mu

∑
v∈V

s (A,mu, v) log2

(∑
v∈V

s (A,mu, v)

2
+

s (B,mu, v)

2

)
II

. (77)

Here, we consider Parts I and II, which involve the mixture partition MAB; we have discussed the other
parts in Appendix D. Unfortunately, the sum in the logarithm in Part I prevents us from simplifying
this expression, and we need to consider a total of n target nodes per source module, resulting in a
time complexity of O (dm ·m · n). Part II captures the normalisation term for the mixture partition
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MAB, which, somewhat surprisingly, can be computed efficiently in time O
(
dm ·m2

)
.

(II) =
∑
v∈V

s (A, u, v) log2

(∑
v∈V

s (A,mu, v)

2
+

s (B,mu, v)

2

)
(78)

=
∑
m∈A

∑
v∈m

s (A,mu,m)
pv
pm

log2

(∑
v∈V

s (A, u, v)

2
+

s (B, u, v)

2

)
(79)

=
∑
m∈A

s (A,mu,m)

(
1− mexit

pm

)
log2

(∑
m∈A

s (A,mu,m)
(
1− mexit

pm

)
2

+
∑
m∈B

s (B,mu,m)
(
1− mexit

pm

)
2

)
(80)

Putting everything together, we compute the normalised version of flow divergence between the
reference partition A and the mixture partition MAB as follows,

D̃F (A ||MAB)

=
∑
mu∈A

ΦA
mu

∑
m∈A

s (A,mu,m)

[(
1− mexit

pm

)
log2 s (A,mu,m) +

∑
v∈m

pv
pm

log2
pv
pm

]
(81)

−
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mu∈A×B

ΦA
mu

∑
v∈V

s (A,mu, v) log2

(
s (A,mu, v)

2
+

s (B,mu, v)

2

)
(82)
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ΦA
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(
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pm

)
log2

(∑
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(
1− mexit

pm

)
s (A,mu,m)

)
(83)

+
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mu∈A×B

ΦA
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s (A,mu,m)

(
1− mexit

pm

)
log2

(∑
m∈A

s (A,mu,m)
(
1− mexit

pm

)
2

+
∑
m∈B

s (B,mu,m)
(
1− mexit

pm

)
2

)
(84)

Altogether, flow distance can be computed in time O (dm ·m · n). Because we defined the mixture
partition MAB indirectly via its mapsim values, we cannot access its structural regularities to compute
flow distance more efficiently.
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F Comparison of normalised and non-normalised flow divergence values
This appendix includes additional results showing the normalised and non-normalised flow divergence
values for the synthetic and empirical networks used in our evaluation in Sections 4.2 and 4.3. We find
that, for synthetic networks with communities (LFR networks) and real networks, the normalised and
non-normalised versions of flow divergence yield virtually identical results. For synthetic networks
without communities (Erdős-Rényi random graphs), the normalised and non-normalised versions of
flow divergence return different results, where the difference tends to be larger in larger networks.
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Figure 8: Normalised and non-normalised flow divergence values for Erdős-Rényi random graphs
with the same setup as described in Section 4.2. Erdős-Rényi random graphs do not have communities,
however, as we remove links and spurious communities are detected, the two versions of flow
divergence return slightly different results.
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Figure 9: Normalised and non-normalised flow divergence values for LFR networks with the same
setup as described in Section 4.2. Both versions of flow divergence return virtually the same results.
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Figure 10: Normalised and non-normalised flow divergence values for real networks with the same
setup as described in Section 4.3. Both versions of flow divergence return virtually the same results.
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G Networks with Partitions and Flow Divergence and Flow Distance Values
Here, we show some networks and their partitions as detected with Infomap for different fractions of
removed links. We annotate each network with its flow divergence and flow distance compared to the
reference partition. Different from the other experiments, we consecutively remove links from the
network, that is, we obtain the network for r = 0.2 by removing further links from the network for
r = 0.1, the network for r = 0.3 by removing further links from the network for r = 0.2, and so on.

G.1 Erdős-Rényi Random Graph

Reference r = 0.1, D̃F = 0.01, dF = 0.04 r = 0.2, D̃F = 0.02, dF = 0.06

r = 0.3, D̃F = 0.03, dF = 0.08 r = 0.4, D̃F = 0.05, dF = 0.11 r = 0.5, D̃F = 0.07, dF = 0.13

r = 0.6, D̃F = 1.56, dF = 0.61 r = 0.7, D̃F = 1.81, dF = 0.65 r = 0.8, D̃F = 2.34, dF = 0.71

Figure 11: An Erdős-Rényi network with 100 nodes and p = 5 lnn
n . For different r-fractions of

removed links, we show the resulting partitions with normalised flow divergence values D̃F and flow
distance values dF . The nodes’ sizes correspond to their visit rates. Because the communities in the
last three cases are spurious, they do not naturally match, making it difficult to align their colours.
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G.2 Lancichinetti–Fortunato–Radicchi Network

Reference r = 0.1, D̃F = 0.01, dF = 0.04 r = 0.2, D̃F = 0.08, dF = 0.12

r = 0.3, D̃F = 0.74, dF = 0.37 r = 0.4, D̃F = 0.82, dF = 0.37 r = 0.5, D̃F = 1.51, dF = 0.52

r = 0.6, D̃F = 1.90, dF = 0.57 r = 0.7, D̃F = 2.57, dF = 0.67 r = 0.8, D̃F = 3.49, dF = 0.74

Figure 12: A Lancichinetti–Fortunato–Radicchi network with 100 nodes and 5 communities. We
generated the network by setting the average node degree k = 10, maximum node degree kmax = 30,
mixing µ = 0.3, minimum community size cmin = 10, and maximum community size cmax = 25.
For different r-fractions of removed links, we show the resulting partitions with normalised flow
divergence values D̃F and flow distance values dF . The flow divergence and flow distance values
indicate that the communities found for up to 20% removed links are relatively stable. Once we
remove 30% or more of the links, spurious communities start to appear, as confirmed visually by the
additional colours.
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G.3 Real Networks

Reference r = 0.1, D̃F = 0.09, dF = 0.12 r = 0.2, D̃F = 0.08, dF = 0.12

r = 0.3, D̃F = 0.03, dF = 0.08 r = 0.4, D̃F = 0.11, dF = 0.15 r = 0.5, D̃F = 0.51, dF = 0.30

r = 0.6, D̃F = 0.76, dF = 0.37 r = 0.7, D̃F = 2.05, dF = 0.55 r = 0.8, D̃F = 3.77, dF = 0.70

Figure 13: The football network with 115 nodes. For different r-fractions of removed links, we show
the resulting partitions with normalised flow divergence values D̃F and flow distance values dF .
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Reference r = 0.1, D̃F = 0.17, dF = 0.19 r = 0.2, D̃F = 0.16, dF = 0.17

r = 0.3, D̃F = 0.14, dF = 0.17 r = 0.4, D̃F = 0.42, dF = 0.29 r = 0.5, D̃F = 0.52, dF = 0.31

r = 0.6, D̃F = 0.64, dF = 0.35 r = 0.7, D̃F = 0.90, dF = 0.41 r = 0.8, D̃F = 1.34, dF = 0.50

Figure 14: The jazz network with 198 nodes. For different r-fractions of removed links, we show
the resulting partitions with normalised flow divergence values D̃F and flow distance values dF .
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Figure 15: The same partitions as in Figure 1, together with their partition trees.

Here, we consider our motivational toy example in more detail and explain why flow divergence
considers partition D to be more similar to A than B and C. Figure 15 shows four partitions of the
same network, together with their maps drawn as radial trees and annotated with transition rates. We
consider the individual nodes’ contribution to flow divergences instead of computing the outer sum of

D̃F (A ||B) =
∑
u∈V

pu
∑
v∈V

tAuv log2
tAuv
tBuv

=
∑
u∈V

pu
∑
v∈V

tAuv

[
log2

mapsim (A, u, v)

mapsim (B, u, v)
− λA

u + λB
u

]
,

(85)

where λA
u = log2

(∑
v∈V mapsim (A, u, v)

)
and λB

u = log2
(∑

v∈V mapsim (B, u, v)
)
.

The values in Table 3 reveal that D is more similar to A because the modules in A and D overlap in
the higher-degree nodes, which carry higher weight due to their higher flow. In contrast, the modules
in B and C overlap in one higher-degree and one lower-degree node with the modules in A.

Table 3: Rounded normalised flow divergence scores on a per-node basis between the partitions
shown in Figure 15. We fix A as the reference partition.

Node

1 2 3 4 5 6 7 8 9

B 0.08 0.13 0.21 0.21 0.08 0.13 0.13 0.21 0.08
C 0.08 0.21 0.13 0.13 0.08 0.21 0.21 0.13 0.08
D 0.15 0.08 0.08 0.08 0.15 0.08 0.08 0.08 0.15
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I Experiments on directed Lancichinetti–Fortunato–Radicchi networks
Here, we show additional results for experiments on directed Lancichinetti–Fortunato–Radicchi
networks, following the same setup as used in Section 4.2. We ensured that the generated LFR
networks are strongly connected, meaning there is a path between every pair of nodes. However,
removing links can create networks that are no longer strongly connected, meaning there is no path
between some pairs of nodes anymore. For computing flow divergence and flow distance values, we
ignore such node pairs, and show in the plot the fraction of pairs that we had to ignore.
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Figure 16: Results on directed Lancichinetti–Fortunato–Radicchi graphs with planted communities.
The top panel shows normalised flow divergence values D̃F and codelength L in bits, and the number
of communities |B| detected by Infomap for different r-fractions of removed links on a log scale. The
bottom panel shows the corresponding flow distance dF , Jaccard index J, and AMI values on a linear
scale. For more intuitive comparisons, we plot 1− J and 1−AMI.
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Figure 17: Normalised and non-normalised flow divergence values for directed LFR networks with
the setup described in Section 4.2. Both versions of flow divergence return virtually the same results.
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Figure 18: Empirical runtime for computing flow divergence, flow distance, AMI, and Jaccard index
values for hierarchical partitions of LFR networks with the same setup as described in Section 4.2.

31



Flow Divergence: Comparing Hierarchical Network Partitions based on Relative Entropy

J Experiments on hierarchical Lancichinetti–Fortunato–Radicchi networks
Here, we show additional results for experiments on hierarchical Lancichinetti–Fortunato–Radicchi
networks with two levels of communities, following the same setup as used in Section 4.2.
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Figure 19: Results on hierarchical Lancichinetti–Fortunato–Radicchi graphs with planted communi-
ties. The top panel shows normalised flow divergence values D̃F and codelength L in bits, and the
number of communities |B| detected by Infomap for different r-fractions of removed links on a log
scale. The bottom panel shows the corresponding flow distance dF , Jaccard index J, and AMI values
on a linear scale. For more intuitive comparisons, we plot 1− J and 1−AMI.
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Figure 20: Normalised and non-normalised flow divergence for hierarchical LFR networks with the
setup described in Section 4.2. Both versions of flow divergence return virtually the same results.
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Figure 21: Empirical runtime for computing flow divergence and flow distance values for hierarchical
partitions of LFR networks with the same setup as described in Section 4.2.
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K Empirical Runtime
Here, we report the empirical wall-clock runtimes for computing flow divergence, flow distance, AMI,
and Jaccard index scores. We ran the experiments on an Intel Core Ultra 7 165H CPU. To compute
flow distance, we used a single-threaded implementation, however, our Python library also contains
a parallelised version. Our experimental results are in line with our theoretical results showing
that computing flow divergence requires time O

(
m2
)

while computing flow distance requires time
O (dm ·m · n), where n is the number of nodes, m is the number of modules, and dm is the average
depth at which the modules are located in the network’s community structure.

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

2.5

5.0

7.5

10.0

tim
e

[s
]

p ≈ 0.014

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

2.5

5.0

7.5

10.0
p ≈ 0.021

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

2.5

5.0

7.5

10.0
p ≈ 0.035

0.0 0.2 0.4 0.6 0.8 1.0

r

0.0

2.5

5.0

7.5

10.0
p ≈ 0.069

flow divergence flow distance AMI Jaccard n = 1000 n = 5000 n = 10000

Figure 22: ER Graphs. Wall-clock runtimes for computing partition similarity values for partitions
on ER random graphs with different sizes and link probabilities. The ER networks are the same ones
used in the main text in Section 4.2.
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Figure 23: LFR Graphs. Wall-clock runtimes for computing partition similarity values for partitions
on undirected LFR networks with planted communities and different sizes and average node degrees.
The LFR networks are the same ones used in the main text in Section 4.2.
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Figure 24: Empirical Networks. Wall-clock runtimes for computing partition similarity values for
partitions on empirical networks. The networks are the same ones used in the main text in Section 4.3.
Note the different scales on the y-axes due to different network sizes.
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L Experiments with Communities from Louvain Modularity Maximisation
Here, we repeat the experiments from the main text but use modularity maximisation via the Louvain
algorithm [46], implemented in networkx, to detect communities. As reference partitions, we use
again the partition that assigns all nodes to the same community for the ER networks, and the planted
ground-truth partitions for the LFR networks. For the empirical networks, we use the partitions
detected with Infomap before removing links to facilitate comparability with the results from the
main text.

0.0 0.2 0.4 0.6 0.8 1.0

10−1

100

101

102

D̃
F
,L
,|B
|

p ≈ 0.014

0.0 0.2 0.4 0.6 0.8 1.0

10−1

100

101

102
p ≈ 0.021

0.0 0.2 0.4 0.6 0.8 1.0

10−1

100

101

102
p ≈ 0.035

0.0 0.2 0.4 0.6 0.8 1.0

10−1

100

101

102
p ≈ 0.069

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

d
F
,1
−
J
,1
−

A
M

I

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.25

0.50

0.75

1.00

flow divergence
n = 1000

modularity
n = 5000

#modules
n = 10000

flow distance AMI Jaccard

Figure 25: Results on ER random graphs with link probability p ∈
{

2 lnn
n , 3 lnn

n , 5 lnn
n , 10 lnn

n

}
. The

top panel shows normalised flow divergence D̃F and modularity Q, and the number of communities
|B| detected by Louvain for different r-fractions of removed links on a logarithmic scale. The bottom
panel shows the corresponding flow distance dF , Jaccard index J, and AMI values on a linear scale.
For more intuitive comparisons, we plot 1− J and 1−AMI.
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Figure 26: Results on undirected Lancichinetti–Fortunato–Radicchi graphs with non-hierarchical
planted communities. The top panel shows normalised flow divergence D̃F and modularity Q, and
the number of communities |B| detected by Louvain for different r-fractions of removed links on a
log scale. The bottom panel shows the corresponding flow distance dF , Jaccard index J, and AMI
values on a linear scale. For more intuitive comparisons, we plot 1− J and 1−AMI.
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Figure 27: Results on real networks. We show normalised flow divergence D̃F and modularity Q,
and the number of communities |B| detected by Louvain for different r-fractions of removed links on
a log scale, and the corresponding flow distance dF , Jaccard index J, and AMI values on a linear
scale. For more intuitive comparisons, we plot 1− J and 1−AMI.
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M Python-like Pseudo-Code for Flow Divergence and Flow Distance
1 def flow_divergence( A : Partition # the reference partition
2 , B : Partition # an alternative partition
3 , normalise : bool
4 ) -> float:
5

6 res : float = 0.0
7

8 # for all source nodes
9 for u in A.nodes:

10 # node u’s visit rate
11 p_u : float = A.get_visit_rate(u)
12

13 # sum of transition rates from u to all nodes in A
14 sum_A : float = sum([A.transition_rate(u,v) for v in A.nodes ])
15

16 # set normalisation factors
17 norm_A : float = 1.0
18 norm_B : float = 1.0
19 if normalise:
20 norm_A = sum_A
21 norm_B = sum([B.transition_rate(u,v) for v in B.nodes ])
22

23 # sum up node -wise divergence in coding costs for going
24 # from node u to v
25 for v in A.nodes:
26 coding_rate_A : float = A.transition_rate(u,v) / norm_A
27 coding_rate_B : float = B.transition_rate(u,v) / norm_B
28

29 # probability that a random walker steps from u to v,
30 # given partition A
31 transition_prob : float = p_u * A.transition_rate(u,v)/sum_A
32

33 res += transition_prob * log2(coding_rate_A / coding_rate_B)
34

35 return res

Listing 1: Python-like pseudo-code for a naive approach to compute flow divergence with a double
loop over all node pairs.
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1 def flow_distance( A : Partition # the reference partition
2 , B : Partition # an alternative partition
3 , normalise : bool
4 ) -> float:
5 res : float = 0.0
6

7 # for all source nodes
8 for u in A.nodes:
9 # node u’s visit rate in both A and B, which is often

10 # the same , but can be different when B is obtained
11 # after removing links from the graph
12 p_u_A : float = A.get_visit_rate(u)
13 p_u_B : float = B.get_visit_rate(u)
14

15 # sum of transition rates from u to all nodes in A and B
16 sum_A : float = sum([A.transition_rate(u,v) for v in A.nodes ])z
17 sum_B : float = sum([B.transition_rate(u,v) for v in A.nodes ])
18

19 # set normalisation factors
20 norm_A : float = 1.0
21 norm_B : float = 1.0
22 norm_AB : float = 1.0
23 if normalise:
24 norm_A = sum_A
25 norm_B = sum_B
26

27 # sum of the "average" transition rates from u to all nodes
28 norm_AB = sum([ 0.5 * A.transition_rate(u,v)
29 + 0.5 * B.transition_rate(u,v)
30 for u in A.nodes
31 ])
32

33 # sum up node -wise distance
34 for v in A.nodes:
35 coding_rate_A : float = A.transition_rate(u,v) / norm_A
36 coding_rate_B : float = B.transition_rate(u,v) / norm_B
37 coding_rate_AB : float = ( 0.5 * A.transition_rate(u,v)
38 + 0.5 * B.transition_rate(u,v)
39 ) / norm_AB
40

41 transition_prob_A : float = p_u_A * A.transition_rate(u,v)/sum_A
42 transition_prob_B : float = p_u_B * B.transition_rate(u,v)/sum_B
43

44 # node -wise divergence between partitions A and B and their
45 # mixture partition AB
46 a = transition_prob_A * log2(coding_rate_A / coding_rate_AB)
47 b = transition_prob_B * log2(coding_rate_B / coding_rate_AB)
48

49 # following Jensen -Shannon distance
50 res += 0.5 * (a + b)
51

52 return sqrt(res)

Listing 2: Python-like pseudo-code for a naive approach to compute flow distance with a double
loop over all node pairs.
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