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Abstract

Robust reinforcement learning (RL) under the av-
erage reward criterion, which seeks to optimize
long-term system performance in uncertain envi-
ronments, remains a largely unexplored area. To
address this challenge, we propose a reduction-
based framework that transforms robust average
reward optimization into the more extensively
studied robust discounted reward optimization by
employing a specific discount factor. Our frame-
work provides two key advantages. Data Effi-
ciency: We design a model-based reduction al-
gorithm that achieves near-optimal sample com-
plexity, enabling efficient identification of optimal
robust policies; Scalability: By bypassing the in-
herent challenges of scaling up average reward
optimization, our framework facilitates the design
of scalable, convergent algorithms for robust av-
erage reward optimization leveraging function ap-
proximation. Our algorithmic design, supported
by theoretical and empirical analyses, provides
a concrete solution to robust average reward RL
with the first data efficiency and scalability guar-
antees, highlighting the framework’s potential to
optimize long-term performance under model un-
certainty in practical problems.

1. Introduction
Reinforcement Learning (RL) aims to optimize an agent’s
performance by identifying a policy that maximizes cumula-
tive rewards based on a specified criterion while interacting
with an environment. Despite its remarkable success in ap-
plications such as synthetic control problems, board games
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(Silver et al., 2016; Zha et al., 2021), and video games
(Wei et al., 2022; Liu et al., 2022a), RL often experiences
significant performance degradation in practical settings.
This phenomenon, known as the Sim-to-Real gap, arises
from discrepancies between the training environment and
the deployment environment. In simulation-based applica-
tions like games, the training and deployment environments
are typically identical and vanilla RL performs well. How-
ever, in real-world scenarios, differences such as modeling
errors, perturbations, partial observability, and potential ad-
versarial attacks introduce model mismatches between the
training and deployment environments, resulting in subopti-
mal policies and poor performance outcomes, undermining
the reliability of RL in practical applications.

To address this issue, a framework of robust RL was in-
troduced (Bagnell et al., 2001; Nilim & El Ghaoui, 2004;
Iyengar, 2005). It deviates from vanilla RL by consider-
ing a set of environment transition dynamics instead of a
fixed one, and its goal is to optimize performance under the
worst-case scenario across these models, which provides
performance guarantees across all uncertain environments
within the defined uncertainty set, making the policy more
robust to model mismatches and more generalizable.

On the other hand, different reward criteria in (robust) RL
can result in substantially distinct problem settings. Among
these, the discounted reward criterion is the most extensively
studied. While it offers elegant mathematical properties, its
focus on short-term rewards can lead to suboptimal long-
term performance due to the exponential decay of rewards.
In practical applications such as queuing control, supply
chain inventory management, and communication networks
(Kober et al., 2013), however, evaluating policies based
on their long-term average performance becomes crucial.
This highlights the importance of optimizing the long-term
average reward in environments with uncertainty, motivating
our focus on robust RL under average reward in this paper.

Despite its practical importance, robust RL under average
reward is generally more complex than its discounted coun-
terpart due to its dependence on the limiting behavior of the
underlying stochastic processes, and is hence understudied.
Recent work (Wang et al., 2023e; Grand-Clement et al.,
2023) further emphasizes its inherent challenges, including
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the non-contracted nature of the Bellman operator, the high
dimensionality of the solution space, and the difficulties in
relaxing underlying assumptions.

To address these challenges, a natural approach is to draw
on insights from the extensive studies of robust RL for dis-
counted rewards as an intermediate step. This idea has
been validated in (Wang et al., 2023d; Grand-Clement et al.,
2023), which show that, under certain assumptions, the per-
formance of discounted robust RL asymptotically converges
to that of average reward as the discount factor approaches
1. While this convergence highlights the potential of using
discounted robust RL to study the average reward setting,
there remains a lack of results demonstrating its practical
applicability. Key questions regarding its efficiency, effec-
tiveness, and scalability remain unanswered, leaving gaps
in understanding its implementation and real-world impact.

In this paper, we explore this approach in greater depth
and propose a reduction-based framework for concrete al-
gorithm implementation. This framework facilitates the
use of various robust discounted RL algorithms to address
robust average reward RL problems. To assess the practical-
ity of our framework, we evaluate its performance across
two key dimensions: data efficiency and scalability. Our
contributions are summarized as follows.

Reduction of robust average reward RL to discounted
one: Under a standard assumption (Assumption 3.1), we
propose a reduction-based framework that shows how ro-
bust average reward optimization under model uncertainty
can be equivalently addressed through robust discounted
RL with a specific discount factor. While prior work has
explored asymptotic convergence, no practical guidance has
been offered on selecting a reduction discount factor to guar-
antee the optimality of the resulting policy. Our framework
provides a concrete choice of the reduction discount factor,
ensuring that the robust policy learned for the discounted
reward is also optimal under the average reward criterion.
This universal framework deepens the understanding of the
fundamental connections between average and discounted
rewards while enabling robust average reward optimization.

Design of data-efficient reduction algorithms: Building
on our reduction framework, we present the first model-
based algorithm for robust RL under average reward, ap-
plicable to various uncertainty set models, with a thorough
sample complexity analysis. We study the total number
of samples required to learn an ϵ-optimal robust policy for
the average reward criterion under different uncertainty set
structures. Specifically, we provide detailed analyses for
total variation, χ2 divergence, and Kullback–Leibler diver-
gence uncertainty sets, demonstrating that our reduction
algorithms achieve near-optimal sample complexity. These
results highlight the practical potential of our framework in
data-intensive settings, offering the first finite-sample com-

plexity characterization of robust RL with average reward.

Design of scalable reduction algorithms: To further vali-
date the practical applicability of our framework, we adapt
it to design scalable algorithms for robust average reward
RL. After identifying key challenges in scaling up robust
average reward RL, we show that our reduction framework
circumvents these difficulties, enabling the design of effi-
cient algorithms for large-scale problems. We evaluate our
algorithms in large-scale MuJoCo environments, showcas-
ing the capability of our framework to optimize long-term
rewards under model uncertainty in complex systems. These
results underscore the potential of our framework to effi-
ciently solve large-scale, real-world problems.

2. Preliminaries and Problem Formulation
Discounted reward MDPs. A discounted reward Marko-
vian decision process (DMDP) (S,A,P, r, γ) is specified
by: a state space S, an action space A, a transition kernel
P = {Pa

s ∈ ∆(S), a ∈ A, s ∈ S}1, where Pa
s is the distri-

bution of the next state over S upon taking action a in state
s (with Pa

s,s′ denoting the probability of transitioning to s′),
a reward function r : S ×A → [0, 1], and a discount factor
γ ∈ [0, 1). At each time step t, the agent at state st takes
an action at, the environment then transitions to the next
state st+1 according to Pat

st , and produces a reward signal
rt = r(st, at) to the agent.

A stationary policy π : S → ∆(A) is a distribution over
A for any given state s. The agent follows the policy by
taking action subject to the distribution π(s). The accumu-
lative reward of a stationary policy π starting from s ∈ S
for DMDPs is measured by the discounted value function:
V π
γ,P(s) ≜ Eπ,P [

∑∞
t=0 γ

trt|S0 = s].

Average reward MDPs. Unlike DMDPs, average reward
MDPs (AMDPs) do not discount the rewards over time and
instead measure the accumulative reward by considering
the behavior of the underlying Markov process under the
steady-state distribution. Specifically, the average reward
(or the gain) of a policy π starting from s ∈ S is2

gπP(s) ≜ lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
. (1)

It is also useful to define the following relative value func-
tion or bias for an AMDP:

hπP(s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (2)

which is the cumulative difference over time between the
immediate reward and the average reward.

1∆(S): the (|S| − 1)-dimensional probability simplex on S.
2The limit may not exist, but under the assumption we made,

such a limit exists (Puterman, 1994).
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Robust MDPs. In robust MDPs, the transition kernel is
not fixed but, instead, belongs to a designated uncertainty
set denoted as P . Following an action, the environment
undergoes a transition to the next state based on an arbitrary
transition kernel P ∈ P . We specifically concentrate on the
(s, a)-rectangular uncertainty set (Nilim & El Ghaoui, 2004;
Iyengar, 2005), where P =

⊗
s,a Pa

s , with Pa
s ⊆ ∆(S)

defined independently over all state-action pairs.

Robust MDPs aim to optimize the worst-case performance
over the uncertainty set. The robust discounted value func-
tion of a policy π is defined as the worst-case discounted
value function over all possible transition kernels:

V π
γ,P(s) ≜ min

κ∈
⊗

t≥0 P
Eπ,κ

[ ∞∑
t=0

γtrt|S0 = s

]
, (3)

where κ = (P0,P1...) ∈
⊗

t≥0 P . The discounted robust
value functions are shown to be the unique solution to the
robust discounted Bellman equation (Iyengar, 2005):

V (s) =
∑
a

π(a|s)(r(s, a) + γσPa
s
(V )), (4)

where σPa
s
(V ) ≜ minP∈Pa

s
PV is the support function of

V on the uncertainty set Pa
s .

In scenarios where the long-term performance under model
uncertainty is concerned, we focus on the following worst-
case average reward:

gπP(s) ≜ min
κ∈

⊗
t≥0 P

lim
n→∞

Eπ,κ

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (5)

to which we refer as the robust average reward. The robust
AMDP aims to find an optimal policy w.r.t. it, that is, π∗ ≜
argmaxπ∈Π g

π
P(s), for any s ∈ S.

In (Wang et al., 2023d), it is shown that the robust dis-
counted value functions converge to the robust average re-
ward w.r.t. the same MDP as the discount factor approaches
1:

lim
γ→1

(1− γ)V π
γ,P = gπP . (6)

Hence, the robust AMDP can be approximately solved
through the corresponding robust DMDP with a sufficiently
large discount factor, known as the reduction method. How-
ever, selecting a discount factor to ensure near-optimality
under the average reward remains unclear, leaving the adap-
tation of the reduction method uncertain.

In this paper, our goal is to develop a concrete reduction
framework and design algorithms for optimizing the robust
average reward, and to demonstrate the practical applicabil-
ity of our framework.

3. Reduction Framework for Robust AMDPs
Our framework aims to reduce the robust average reward
problem to a robust discounted reward one, leveraging well-
developed algorithms in this space. The convergence (6) and
the existence of a robust Blackwell optimal policy (Wang
et al., 2023d; Grand-Clément & Petrik, 2024) (a policy that
optimizes the robust discounted reward for any γ > γbw)
further inspires us to reduce a robust AMDP to a robust
DMDP with a sufficiently large discount factor. However,
existing results focus on asymptotic convergence, leaving
the choice of discount factor for a desired level of accu-
racy unresolved. In this section, we study the relationship
between the two robust MDPs and determine a specific
reduction discount factor.

We first adopt the following compactness and unichain as-
sumption, which is commonly used in robust AMDPs.

Assumption 3.1. For any s ∈ S, a ∈ A, the uncertainty
set Pa

s is a compact subset of ∆(S). Moreover, any deter-
ministic policy π and any kernel P ∈ P induce a unichain
Markovian process3.

Due to the Heine–Borel theorem (Dugac, 1989), the first
part of Assumption 3.1 is satisfied if the uncertainty set
is closed as it is always bounded. We remark that many
standard uncertainty sets satisfy this assumption, e.g., those
defined by ϵ-contamination (Huber, 1965), finite interval
(Tewari & Bartlett, 2007), total-variation (Rahimian et al.,
2022) and KL-divergence (Hu & Hong, 2013).

The second part of Assumption 3.1 imposes additional struc-
ture on the underlying MDP, an assumption commonly used
in non-robust AMDP studies due to their inherent complex-
ity (e.g., (Puterman, 1994; Wan et al., 2021; Zhang & Ross,
2021; Lan, 2020; Zhang et al., 2021b)). For robust AMDPs,
the unichain assumption ensures the solvability of the aver-
age reward robust Bellman equation (Wang et al., 2023d;e),
which plays an essential role in our analysis. Under this
assumption, the stationary distribution ηπP always exists and
does not depend on the initial state, and the average re-
ward is identical for all starting states (Bertsekas, 2011), i.e.,
gπP(s1) = gπP(s2),∀s1, s2 ∈ S.

Inspired by non-robust AMDP studies (Wang et al., 2022;
Zurek & Chen, 2023), we further extend the concept of the
optimal bias span (Bartlett & Tewari, 2012) therein to the
robust setting.

Definition 3.2. For a robust AMDP (S,A,P, r), its robust

3A Markovian process is a unichain if it contains exactly one
recurrent class and possibly some transient states (Puterman, 1994;
Bertsekas, 2011).
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optimal bias span is defined as4

H ≜ max
P∈P

Sp(hπ
∗

P ) (7)

where hπ
∗

P is the relative value function as in (2), and
Sp(V ) ≜ maxi V (i)−mini V (i) is the Span semi-norm.
Remark 3.3. We assumeH is known, which can be viewed
as a robust extension from the common assumption of knowl-
edge of non-robust span in non-robust AMDPs studies
(Wang et al., 2022; Zurek & Chen, 2023; Zhang & Xie,
2023; Wang et al., 2023a). Our framework and results re-
main valid if H is replaced with any upper bound on H,
such as the corresponding robust extensions of the mixing
time or the diameter of a non-robust MDP (Wang et al.,
2022). Additional discussion on estimatingH is provided in
Section 10. Specifically, we can derive an upper bound on
H for robust MDPs with some additional structures.

Next, we present our reduction framework.
Theorem 3.4. (Reduction Framework) For any ϵ, set γ :=
1− ϵ

H , then any ϵγ-optimal policy5 π̂γ for the robust DMDP
(S,A,P, r, γ) is also an O(ϵ)-optimal policy for the corre-
sponding robust AMDP (S,A,P, r):

gπ
∗

P − g
π̂γ

P ≤
(
8 +

5ϵγ
H

)
ϵ.

While we defer the full proof to the appendix, the intu-
ition behind the proof of our reduction framework relies
on showing a bound on the convergence error of the robust
discounted value function to the average reward. As shown
in Lemma 11.1, under Assumption 3.1 with γ ∈ (0, 1)
and for any stationary π ∈ Π, ∥gπP − (1 − γ)V π

γ,P∥∞ ≤
Sp
(
(1 − γ)V π

γ,P
)
. We then show that we can bound the

ϵγ-optimal robust discounted value function induced by πγ
as Sp

(
(1− γ)V πγ

γ,P
)
≤ ϵ. Similarly, we show we can bound

Sp
(
(1 − γ)V π∗

γ,P
)
≤ ϵ, before we combine these two re-

sults with that of Lemma 11.1 to derive our bound in the
Theorem 3.4.

The result in Theorem 3.4 shows that we provide a concrete
choice for the reduction discount factor, ensuring that the ro-
bust DMDP and robust AMDP share the same near-optimal
policy. Our framework allows any algorithm designed for ro-
bust DMDPs to be directly applied to solve robust AMDPs,
with theoretical performance guarantees, effectively bypass-
ing the challenges of robust AMDPs by transforming them
into the well-studied DMDP domain.

In the following sections, we investigate the applicability of
our reduction framework from two key perspectives: data ef-
ficiency and scalability. These demonstrate the framework’s

4We prove in the Appendix that the value H exists and is finite.
5For a robust DMDP, an ϵγ-optimal policy is some policy πγ

such that maxπ V π
γ,P(s)− V

πγ

γ,P(s) ≤ ϵγ , ∀s ∈ S.

ability to optimize long-term performance in data-intensive
and large-scale practical scenarios.

4. Sample Complexity for Robust RL under
Average Reward

In this section, we study the data efficiency of our reduction
framework for robust RL under average reward, to charac-
terize the total number of samples required to identify an
ϵ-optimal policy π through our reduction framework.

We first present a general result on the sample complexity
of robust AMDP reduction. Specifically, leveraging Theo-
rem 3.4, the sample complexity of robust AMDP algorithms
aligns with that of robust DMDP algorithms with a specific
discount factor. This result is formally stated as follows:

Theorem 4.1. Consider any algorithm Y optimizing the
robust discounted reward. Denote the sample complexity
of Y to identify an ϵγ-optimal policy (w.r.t. the discounted
reward) by N (S,A,P, γ, ϵγ). Then, we can identify an
ϵ-optimal policy for the robust average reward through re-
duction and algorithm Y , with a sample complexity of

N
(
S,A,P, 1− ϵ

H
,H
)
. (8)

This result holds universally, regardless of the uncertainty
set models or algorithms used for robust DMDPs. More im-
portantly, it provides a basis for studying sample complexity
and data requirements for optimizing the average reward
under model uncertainty. In the following, we analyze the
sample complexity of robust AMDPs under different uncer-
tainty sets, offering a concrete understanding of their data
efficiency and our framework.

Remark 4.2. Although Theorem 4.1 holds for general un-
certainty sets, existing sample complexity studies of robust
RL focus on the ‘ball-structured’ uncertainty sets:

Pa
s = {q ∈ ∆(S) : D(q||Pa

s) ≤ R}, (9)

where Pa
s is the nominal kernel, R is the uncertainty radius

indicating the uncertainty level, and D is some distribu-
tion distance measure or divergence function. Hence, we
similarly focus on uncertainty sets with this structure.

In our subsequent analysis, we focus on the generative
model setting, where the agent can arbitrarily generate sam-
ples following the nominal kernel P. This setting has been
widely adopted for sample complexity analysis under both
non-robust RL (Agarwal et al., 2020; Li et al., 2020; Zurek
& Chen, 2023) and robust RL (Shi et al., 2023; Panaganti &
Kalathil, 2022; Wang et al., 2023e). While robust RL has
also been explored in other settings, such as offline (Shi &
Chi, 2022; Blanchet et al., 2024; Wang et al., 2024b; Pana-
ganti et al., 2022; Liu & Xu, 2024; Wang et al., 2024a) and
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online (Lu et al., 2024) scenarios, and sample complexity
results for robust average reward under these settings can be
directly derived from Theorem 4.1, we concentrate on the
generative setting, allowing us to focus on the challenges of
the robust average reward framework itself rather than the
complexities of data collection under restricted settings.

We develop a model-based reduction meta-algorithm for
robust AMDPs. Specifically, after generating the data, we
construct an estimate of the nominal kernel, and build an
empirical uncertainty set centered around it with the same
D and R in (9). We then solve a DMDP with a specific dis-
count factor to identify a near-optimal policy. Our algorithm
is presented in Algorithm 1.

Algorithm 1 Model-based algorithm for robust AMDPs

1: Input: N nominal samples {(s, a, s′i)Ni=1, s
′
i ∼ Pa

s}
under each (s, a) pair, uncertainty level R, robust bias
spanH, and accuracy level ϵ

2: Initialization: Q← 0

3: Estimate transition model P̂a
s,s′ =

∑
i 1(s,a,s′

i
)=(s,a,s′)

N

4: Construct empirical uncertainty set P̂ centered at P̂:
P̂a
s = {q ∈ ∆(S) : D(q||P̂a

s) ≤ R}
5: Set γ ← 1− ϵ

H , ϵγ ← H
6: Obtain an ϵγ-optimal policy π̂γ for the robust DMDP

(S,A, r, P̂, γ) with value iteration
7: Output: π̂γ

Remark 4.3. In Line 6 of Algorithm 1, we need to identify
an ϵγ-optimal policy for robust DMDPs, which can be done
through robust value/policy iteration (Panaganti & Kalathil,
2022; Yang et al., 2021; Shi et al., 2023). For commonly
used uncertainty sets, e.g., when D is total variation or
χ2 divergence, the algorithms can be implemented with
polynomial computational complexity (Iyengar, 2005) and
exponentially fast convergence rate.

Next, we present the sample complexity of Algorithm 1 for
the robust AMDP in the following theorem.

Theorem 4.4. Consider an uncertainty set defined by to-
tal variation (TV) or χ2 divergence (CS). Let C be some
universal constant. If the total number of samples satisfies

NSA ≥
CSAmin{ 1

R ,H
1+1

R< 1
H } log

(
SAN

δ

)
ϵ2

, (TV )

NSA ≥
CSAH2(1 +R) log

(
SAN

δ

)
ϵ2

, (CS)

then, with probability at least 1− 4δ, π̂γ is ϵ-optimal under
the robust average reward.

The result shows that Algorithm 1 requires at most
Õ
(

SAH2

ϵ2

)
samples to identify an ϵ-optimal policy for both

robust AMDPs. We note that the minimax lower bound on
the sample complexity for non-robust AMDPs is Ω̃

(
SAH
ϵ2

)
,

with H being the non-robust optimal span (Zurek & Chen,
2023; Wang et al., 2022; Jin & Sidford, 2021). Thus, our
results are near-optimal under these uncertainty sets, align-
ing with the lower bound in terms of S,A, ϵ, with an addi-
tional dependence on H. Notably, this is the first sample
complexity analysis for robust RL under average reward, of-
fering insights into data requirements for long-term reward
optimization under model uncertainty. Furthermore, our
framework demonstrates strong data efficiency, requiring
nearly minimal samples to optimize the long-term reward,
underscoring its potential in data-intensive scenarios.
Remark 4.5. Theorem 4.4 is not a direct combination
of Theorem 4.1 with existing sample complexity of robust
DMDPs (Panaganti & Kalathil, 2022; Shi et al., 2023).
Specifically, the existing sample complexity of a robust
DMDP with TV set is Õ

(
SA

(1−γ)2Rϵ2γ

)
, and Õ

(
SA

(1−γ)4ϵ2γ

)
for CS set. By setting ϵγ = H and γ = 1 − ϵ

H , the result-

ing average reward complexity is Õ
(
SA
ϵ2R

)
and Õ

(
SAH2

ϵ4

)
,

respectively. Such higher complexity results are due to
the higher dependence on (1− γ) in the DMDP complex-
ity, which becomes ϵ-order in the average reward setting
through our framework. To achieve tighter results, we need
to further tighten the complexity result for robust DMDPs.
Specifically, we showed that with a reward perturbation
technique (Li et al., 2020; Wang et al., 2022; Zurek & Chen,
2023) and more careful analysis involving the connection
between robust DMDPs and AMDPs, we can reduce both
sample complexities to Õ

(
SAH2

(1−γ)2ϵ2γ

)
, which further result

in the near-optimal complexity in Theorem 4.4.

We can further obtain sample complexity for optimizing
robust AMDPs for other types of uncertainty sets, by com-
bining Theorem 4.1 with existing results for DMDPs. For
instance, combining with (Panaganti & Kalathil, 2022), Al-

gorithm 1 requiresO
(

S2AH2 log(SAN
δ )

ϵ4 exp
(H

ϵ

))
samples

to identify an ϵ-optimal policy under the Kullback-Leibler
(KL) divergence. The results in (Clavier et al., 2023) im-

ply a sample complexity of O
(

SAH2 log(SAN
δ )

ϵ4

)
for the

lp-normed uncertainty set. Our framework thus provides
the first concrete sample complexity characterization for ro-
bust AMDPs, establishing a foundation for studying robust
long-term performance optimization.
Remark 4.6. As demonstrated in prior studies on non-
robust AMDPs (Zurek & Chen, 2023; Wang et al., 2022;
2023b), tightening the complexity bounds for non-robust
DMDPs leads to optimal AMDP complexity in the corre-
sponding reduction framework. We therefore attribute our
sub-optimal sample complexity to the loose bounds of robust
DMDPs rather than limitations in our reduction framework.
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Refining the complexity analysis of robust DMDPs to align
with the optimal bounds for robust AMDPs is an important
direction for future research.

5. Scalable Robust RL for Average Reward
In this section, we explore scalable approaches for optimiz-
ing the average reward under model uncertainty, aiming to
facilitate long-term performance optimization in practical,
large-scale problems. Specifically, we show that our frame-
work overcomes the major challenges in solving large scale
robust AMDPs, and further enables us to design scalable
algorithms for the robust average reward, greatly enhancing
the scalability and applicability of our methods.

When the problem scales are large, function approxima-
tion (FA) techniques have been extensively studied. FA
methods aim to approximate the value functions by some
low-dimensional function class, F = {fθ(s) : θ ∈ Θ ⊆
Rd, d ≪ S}, to find some θ∗ ∈ Θ such that V (s) ≈
fθ∗(s),∀s. Two commonly studied function classes for FA
are the linear function class and neural networks (Cai et al.,
2019; Bhatnagar et al., 2009; Wai et al., 2019). We focus on
linear FA to illustrate the scalability of our framework, but
our method can be directly extended to neural networks or
other function classes.

Linear FA is based on a set of feature functions{
ϕ : S → Rd

}
. In robust DMDPs, the robust value function

is approximated using a linear function: Vθ(s) ≜ ϕ(s)⊤θ ≈
V ∗
γ,P(s), where θ ∈ Rd is some weight vector. Despite

extensive studies on linear FA in robust DMDPs (Tamar
et al., 2014; Xu & Mannor, 2010; Wang & Zou, 2021; Zhou
et al., 2024; Roy et al., 2017; Badrinath & Kalathil, 2021),
it remains largely understudied for (robust) AMDPs. In the
non-robust average reward policy evaluation problem, we
aim to approximate the bias hπP to estimate gπP , by approxi-
mating the solution to the non-robust Bellman equation

h(s) =
∑
a

π(a|s)(r(s, a)− g + Pa
sh). (10)

However, two major challenges hinder the study of linear FA
for average reward MDPs. The first is that (10) admits non-
unique solutions (Puterman, 1994; Wan et al., 2021; Wan &
Sutton, 2022). Specifically, besides the average reward and
relative value function pair (gπP , h

π
P), any pair6 (gπP , h

π
P+ce)

with any c ∈ R is also a solution to (10). This implies that
the weight vector may not be unique, leading to a divergent
algorithm. A common approach to address this issue is
to impose additional assumptions on the feature functions
(Zhang et al., 2021a; Tsitsiklis & Van Roy, 1999; Konda
& Tsitsiklis, 1999; Yu & Bertsekas, 2009), ensuring that
the all-one vector e does not lie within the span of {ϕ(s)},

6e = (1, 1, ..., 1) is the all-one vector.

i.e., e ̸= Φθ,∀θ. Under this assumption, there exists a
unique θ that minimizes the approximation loss. We note
that the robust average reward also encounters this issue, but
the higher dimensionality of its solution space (compared
to the one-dimensional solution space in the non-robust
setting) (Wang et al., 2024c) may result in more restrictive
assumptions, making it even more challenging to directly
apply linear FA to the robust average reward setting.

Another challenge arises from unstable convergence under
the average reward. Even in the tabular setting, algorithm
design and convergence analysis remain limited due to the
instability caused by the Span semi-norm multi-step contrac-
tion of the Bellman operator (Puterman, 1994), compared
to the norm contraction in the discounted setting. Existing
studies address this issue either by introducing additional
offset functions to stabilize convergence (Wan et al., 2021;
Wan & Sutton, 2022; Puterman, 1994; Bertsekas, 2011) or
by only ensuring convergence to a solution set (Zhang et al.,
2021b). As demonstrated in (Wang et al., 2023d;e), simi-
lar challenges persist in the robust average reward setting,
and addressing them is expected to involve even greater
complexity.

Noting these two issues, it can be much more challenging
to directly apply FA techniques to the robust average re-
ward. However, our reduction framework simplifies this
by transforming the complex robust average reward prob-
lem into the more manageable discounted reward setting.
This bypasses the aforementioned difficulties and facilitates
the design of scalable algorithms. As an immediate appli-
cation, we extend our reduction framework to the robust
natural actor-critic (NAC) algorithm with linear FA (Zhou
et al., 2024), resulting in a robust NAC algorithm for robust
AMDPs, detailed in Algorithm 2. Algorithm 2 consists of
two key steps: (i) a robust TD step to update the weight
vector θ for value approximation, and (ii) an actor step to
update the policy7, neither of which suffers from the issues
mentioned above.

Note that the feature vectors in Algorithm 2 are predefined,
e.g., by tile coding (Sutton, 1995), Fourier Basis (Konidaris
et al., 2011), or randomly generated (Ghavamzadeh et al.,
2010), by the learner prior to training.

We further characterize the convergence of Algorithm 2 (see
Theorem 14.2 for the formal theorem statement).

Theorem 5.1. (Informal) Under some additional standard
assumptions, set T = Õ(Hϵ ) in Algorithm 2, then πwT

is an
O(ϵ+ ϵc)-optimal policy, where ϵc is the critic error due to
the representation power of the linear function class. The
total sample complexity is Õ(H2ϵ−3).

Our results demonstrate that, without requiring any addi-

7The detailed algorithms are provided in Section 14.
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Algorithm 2 Reduction Robust Natural Actor-Critic
1: Input: T,H, base functions {ϕ}
2: Initialization: θ0 for value function approximation and
w0 for policy parametrization

3: γ ← 1− ϵ
H

4: for t = 0, 1, . . . , T − 1 do
5: Robust critic updates θt with Algorithm 3
6: Robust natural actor updates wt+1 with Algorithm 4
7: end for
8: Output: wT

tional assumptions on the base functions, our framework
enables the optimization of robust average reward with func-
tion approximation with a stable convergent algorithm, un-
derscoring its scalability. This represents the first solution
for large-scale robust long-term reward optimization, offer-
ing both convergence and performance guarantees.

Remark 5.2. In addition to function approximation, design-
ing model-free algorithms for robust AMDPs can also im-
prove scalability. Our framework also facilitates model-free
algorithm design, which we discuss in detail in Section 15.

6. Numerical Experiments
We first assess the effectiveness and efficiency of our frame-
work in tabular settings, aiming to verify that with the reduc-
tion discount factor in Theorem 3.4, optimizing the robust
DMDP approximately optimizes the robust AMDP.

Our experiments are conducted on the Garnet problem
(Archibald et al., 1995), where the nominal transition kernel
and reward functions are randomly generated from Gaus-
sian distributions. We consider a Garnet problem with 20
states and 8 actions, constructing uncertainty sets using To-
tal Variation (TV) and Chi-Square (CS) divergences, both
with radius R = 0.2. Additional results for other problems
are provided in Section 9.

To verify the effectiveness of our framework, we optimize
robust DMDPs with different discount factors and plot the
robust average reward gπγ

P of the learned policy πγ using
Algorithm 1 from (Wang et al., 2023d). As a baseline, we
plot the optimal robust average reward g∗P , obtained via
Algorithm 2 from (Wang et al., 2023d). Additionally, we
estimate H using Algorithm 2 from (Wang et al., 2023e)
and compute the corresponding reduction factor for different
accuracy levels ϵ, as described in Theorem 3.4. The results,
shown in Figure 1, indicate that the robust average reward
can be approximately optimized through a robust DMDP
with a sufficiently large discount factor. Furthermore, the
robust average reward corresponding to each ϵ falls within
the prescribed accuracy level, confirming the effectiveness
of our framework and the validity of the reduction factor.

Figure 1. Effectiveness under the Garnet problem.

Next, we evaluate the data efficiency of our model-based
framework under the same settings by optimizing empiri-
cal robust DMDPs with a reduction factor corresponding
to ϵ = 0.01 across different dataset sizes. The results,
presented in Figure 2, show that our model-based algo-
rithm converges to the optimal policy as dataset size N
increases and achieves near-optimal performance with a
limited amount of data. These findings highlight the data
efficiency of our framework, demonstrating its ability to
optimize long-term rewards with fewer samples. Since the
computational cost for finding the worst performance (i.e.,
robust policy evaluation) in TV and CS uncertainty sets are
O
(
S log(S)

)
(Iyengar, 2005) under the tabular setting, their

estimation can be tractable.

Figure 2. Efficiency under the Garnet problem.

We then demonstrate the scalability of our framework in
large-scale problems by showing that robust average reward
optimization can be equivalently formulated as a robust
DMDP with a sufficiently large reduction factor. Specifi-
cally, we implement Algorithm 2 in the MuJoCo simulation
environments (Todorov et al., 2012) for robust DMDPs with
varying discount factors and evaluate the average reward per-
formance under model uncertainty. Implementation details
are provided in Section 14.

Our experiments are conducted in two continuous large-
scale environments: Walker2d-v3 and Hopper-v3. We first
train our algorithms in the nominal environments to learn the
optimal policy for the given robust discounted reward. To
estimate the robust average reward, we deploy the learned
policies in perturbed environments, where at each evaluation
epoch, we randomly sample parameters within the pertur-
bation interval and apply them to each joint. The average
reward is then computed over 30 independently perturbed
environments.
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Figure 3. Scalability under Walker2d-v3.

Figure 4. Scalability under Hopper-v3.

As noted in Remark 3.3, we assume we have the knowledge
ofH, however, we would like to note that in practice this is
rarely the case. In lieu of a pre-obtainedH, we can equiva-
lently use any upper-bound onH and see that our results still
hold. In our experimentation on Walker2d-v3 and Hopper-
v3, we opted to estimate the diameter as it could be easily
obtained. For each of the independently perturbed environ-
ments, we sampled 1,000 randomly obtained trajectories
and recorded how many steps it took the given trajectory
to terminate. Based on this, we recorded the highest value
for the number of steps across each of the 30 environments
before averaging these values together to obtain an estimate
for the diameter. The results, presented in Figures 3 and 4,
show that as the discount factor increases, robust DMDP
optimization aligns more closely with robust average re-
ward optimization. In both environments, performance sta-
bilizes when γ is large, further validating the effectiveness
of our framework. Moreover, our results demonstrate that,
when combined with function approximation techniques,
our framework effectively scales to large-scale problems.

We emphasize that our reduction framework is independent
of any specific discounted algorithm used, thus it is not
limited to only linear approximation. To verify this claim,
we present additional experimentation using neural network
approximation in Figures 5 and 6. As the results show,
our reduction framework remains valid even with neural
network approximation, and it is more robust than the non-
robust reduction method. We present additional results for
this in Section 14.

7. Related Work
7.1. Comparison with Prior Art

In this section, we compare our results with the most related
work (Grand-Clément & Petrik, 2024), which also explores
reduction of robust AMDPs to DMDPs. However, it focuses

Figure 5. Neural network approximation under Walker2d-v3.

Figure 6. Neural network approximation under Hopper-v3.

on bounding the Blackwell discount factor. The Blackwell
discount factor, denoted as γbw, is defined such that the
optimal robust policy for the DMDP with discount factor
γbw is also optimal to any robust DMDP with discount factor
γ ≥ γbw. This implies that any optimal policy for the robust
γbw-DMDP also optimizes the robust AMDP.

With this notation, a robust AMDP can similarly be re-
duced to a robust DMDP with γbw. To enable this reduction,
(Grand-Clément & Petrik, 2024) derives an upper bound on
γbw. While this reduction-based framework shares some
similarity with our approach, our method offers several ad-
vantages compared to their approach.

First, the results in (Grand-Clément & Petrik, 2024) are only
applied to robust MDPs that meet two conditions: (1) the
uncertainty sets are defined using l1- or l∞-norms; and (2)
the nominal kernels are rational numbers, i.e., Pa

s =
ns,a

ms,a
,

for some ns,a,ms,a ∈ N. In contrast, we only require the
uncertainty set to be compact and the Markov chain induced
by each kernel in it to be a unichain. The restrictions in their
work are due to the reliance on the separation bounds of
algebraic numbers for a rational polynomial in their proofs.
In contrast, we developed a more detailed structural char-
acterization of robust AMDPs, allowing us to obtain more
general results. More importantly, the resulting sample
complexity from (Grand-Clément & Petrik, 2024) is less
favorable than ours. The robust Blackwell discount factor
is bounded by γbw ≤ 1− C

SSmS2 , where m is the minimal
denominator of the nominal kernel. Using this result in our
reduction framework leads to an exponentially large sample
complexity, making the results impractical. We note that
the Blackwell optimality can be overly stringent for merely
solving a robust AMDP, and hence it results in significantly
worse sample complexity compared to ours.
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7.2. Other Related Work

Robust AMDPs. Robust AMDPs studies are quite limited.
Model-based robust AMDPs were first studied in (Tewari &
Bartlett, 2007) for a specific finite-interval uncertainty set,
which is further extended to more general models in recent
works including (Wang et al., 2023d; Grand-Clement et al.,
2023). A game-based method is also proposed in (Chat-
terjee et al., 2023). These works reveal the fundamental
structure of robust AMDPs, illustrating their connections
to robust DMDPs. However, all of them are model-based
with asymptotic convergence, whereas we developed sample
complexity analysis.

Robust DMDPs. Robust DMDPs were studied in (Iyen-
gar, 2005; Nilim & El Ghaoui, 2004; Bagnell et al., 2001;
Wiesemann et al., 2013; Lim et al., 2013), where the un-
certainty set is assumed to be fully known. This inspired
model-based methods for robust MDPs, where the learner
first estimates a model, then solves the estimated model
using robust dynamic programming (Zhang et al., 2021c;
Panaganti & Kalathil, 2022; Yang et al., 2021; Shi et al.,
2023). The studies were also extended to the model-free
setting for more practical settings (Roy et al., 2017; Badri-
nath & Kalathil, 2021; Wang & Zou, 2021; 2022; Liu et al.,
2022b; Zhou et al., 2021; Goyal & Grand-Clement, 2018;
Kaufman & Schaefer, 2013; Ho et al., 2018; 2021; Wang
et al., 2024c). Our work shows that the sample complex-
ity of solving robust AMDPs can be transformed to that of
solving DMDPs, enabling us to leverage the extensive prior
work on the discounted setting.

Non-robust AMDPs. Early contributions to non-robust
AMDPs involve fundamental characterizations of the prob-
lem and the development of model-based methods (Puter-
man, 1994; Bertsekas, 2011). Recently, model-free methods
in the tabular setting, e.g., (Abounadi et al., 2001; Wan
et al., 2021; Wan & Sutton, 2022), have been developed
and demonstrated convergence to the optimal average re-
ward. The sample complexity of non-robust AMDPs has
been a recent focus (Wang et al., 2022; Zhang & Xie, 2023).
Among them, similar reduction-based methods are consid-
ered in, e.g. (Wang et al., 2022; 2023b; Zurek & Chen,
2023), achieving the optimal complexity. Extending such
frameworks to robust settings is notably challenging, due to
the inherent complexity of the robust average reward setting,
stemming from the non-linearity of the Bellman operator
and a more complicated high-dimensional solution space
for the robust Bellman equation (Wang et al., 2023e).

8. Conclusion
In this work, we studied the fundamental connection be-
tween robust AMDPs and DMDPs. We reveal that ob-
taining an optimal policy for the robust average reward

is equivalent to achieving a near-optimal policy under the
discounted reward with a specific reduction discount factor,
based on which we constructed a reduction-based frame-
work that solves robust RL with average reward effectively.
Our framework is adaptable to any method or oracle and
versatile across uncertainty sets. It offers two key benefits:
data efficiency and scalability, as illustrated by our design of
both tabular and function approximation algorithms, along
with their sample complexity analysis and experimental per-
formance. Our results represent the first concrete solutions
for robust RL in the average reward setting under the mild
assumption (unichain), advancing the understanding of opti-
mizing long-term RL performance under model uncertainty.
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Appendix

9. Additional Experiments for Tabular Settings
Building upon the results in 6, we aim to verify our theoretical findings by presenting concrete experimental validation using
the true transition kernel as well as the empirical kernel in figures 7 and 8 respectively. In each setting, both the nominal
transition kernel and the reward function are generated via a normal distribution for 20 states and 8 actions. Given this, we
then construct the uncertainty set with either TV or CS divergence, both with a radius R = 0.2. For each fixed value of γ,
we estimate πγ for the associated robust DMDP using robust value iteration (Iyengar, 2005). We then use Algorithm 1 in
(Wang et al., 2023d) on this policy to obtain its robust average reward gπγ

P . Additionally, we plot the optimal robust average
reward using Algorithm 2 from (Wang et al., 2023d). By iterating through discount factors and obtaining the robust average
reward, our results show that as γ → 1, the estimated policies obtained from the corresponding robust DMDPs yield an
increasingly higher robust average reward, thus we converge to the optimal policy for the robust AMDP. To further solidify
this point, given arbitrarily chosen values for ϵ, we can estimate the robust optimal bias spanH using the work of (Wang
et al., 2023e). With these values, we know the optimal discount factor necessary to obtain the optimal policy of the robust
AMDP.

Figure 7. Convergence of true kernel for TV (left) and χ2-divergence (right).
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Figure 8. Convergence of empirical kernel for TV (left) and χ2-divergence (right).

We also wish to compare other methods to our reduction framework. Due to the novelty of our work, we opted to compare
our method to two baselines for robust AMDPs, robust value iteration (RVI) (Wang et al., 2023d), and robust relative
value iteration (RRVI) (Wang et al., 2023e), under the tabular Garnet problem due to the baseline method’s asymptotic
convergence guarantees. We set the reduction factor to be 0.99 in our framework (corresponds to ϵ = 0.001. As we show in
Figure 9, our method obtains a better policy within the same number of steps, thus achieving state-of-the-art performance in
robust average reward optimization.
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Figure 9. Comparison with AMDP baselines

10. Discussion onH
For general uncertainty sets, we can obtain an upper bound ofH with an additional assumption.

Lemma 10.1. Assume there exists some positive integer n > 0 and some positive value ρ, such that

(Pn)s,x ≥ ρ, ∀P ∈ P, (s, x) ∈ S × S. (11)

Then,

Sp(hπP) ≤
1

1− ρ
1

1− (1− ρ) 1
n

. (12)

Proof. Without loss of generality, we prove the case n = 1. The results in other cases can be derived in a similar way. First,
it holds that

Pπ
x,y ≥ ρηP(y), (13)

where Pπ
·,· is the reduced transition kernel by π, and ηP is the stationary distribution. Define a stochastic matrix Q through

the equation

P = ρP∗ + (1− ρ)Q. (14)

We claim that

(P)k = (1− (1− ρ)k)P∗ + (1− ρ)kQk . (15)

To show this, we use induction. Clearly (15) holds when k = 1. Assume that (15) holds when k = n:

(P)n = (1− (1− ρ)n)P∗ + (1− ρ)nQn. (16)

Then,

(P)1+n = (1− (1− ρ)n)P∗P+ (1− ρ)nQnP

= (1− (1− ρ)n)P∗ + (1− ρ)nQn(ρP∗ + (1− ρ)Q)

= (1− (1− ρ)n+1)P∗ + (1− ρ)n+1Qn+1, (17)

which proves the claim (15). Thus, rearranging terms implies

∥Pk − P∗∥ ≤ (1− ρ)k∥Qk − P∗∥ ≤ 1

1− ρ
(1− ρ)k. (18)
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Then, it holds that

∥hπP∥ = ∥ lim
T→∞

T∑
t=0

Ptr − TP∗r∥ ≤ lim
T→∞

∥
T∑

t=0

Ptr − TP∗r∥ ≤
∞∑
t=0

(1− ρ)t−1 ≤ 1

ρ(1− ρ)
, (19)

which further implies that

Sp(hπP) ≤ 2∥hπP∥ ≤
2

ρ(1− ρ)
. (20)

Remark 10.2. As a sufficient condition for the assumption in Lemma 10.1, it is commonly assumed that the Markov chains
induced by any deterministic policy and transition kernels in the uncertainty set are aperiodic and irreducible (Levin &
Peres, 2017). Since the aperiodicity can be ensured by applying the aperiodicity transformation (Puterman, 1994), the only
additional assumption required is the irreducibility of the induced Markov chains.

Remark 10.3. Another well adopted assumption that can imply an upper bound onH is to assume uniformly Geometric
ergodic chains. Namely, there exists constants m, ρ, such that for all deterministic policy and kernel,

∥(Pπ)n − ηπ∥ ≤ mρ−n. (21)

In this case, it holds that

H ≤ max
P∈P

Sp

(
lim

T→∞

T−1∑
i=1

((Pπ)i − ηπ)r

)
≤ 2m

1− ρ
. (22)

11. Proof of Theorem 3.4
We first prove some important lemmas.

Lemma 11.1. Under Assumption 3.1, for any γ ∈ (0, 1) and any stationary policy π, it holds that

∥gπP − (1− γ)V π
γ,P∥∞ ≤ Sp((1− γ)V π

γ,P).

Proof. Recalling the definition of gπP in (1), we have that for any kernel P and policy π,

gπP = P∗
πrπ,

where rπ is the induced immediate reward function: rπ(s) = E[r(s, a)|a ∼ π(s)], and P∗
π is the Cesàro limit (Puterman,

1994) of the transition kernel P that follows the policy π.

On the other hand, we have that

V π
γ,P = (I − γPπ)

−1rπ. (23)

Note that:

P∗
π(I − γPπ) = P∗

π − γP∗
π = (1− γ)P∗

π, (24)

where the above equation is from the fact that for every policy π, PπP
∗
π = P∗

πPπ = P∗
πP

∗
π = P∗

π . Thus,

P∗
π = (1− γ)P∗

π(I − γPπ)
−1. (25)

Hence,

gπP = P∗
πrπ = (1− γ)P∗

π(I − γPπ)
−1rπ = P∗

π·(1− γ)V π
γ,P. (26)

Here, the last equation is from (23).
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Since each row of P∗
π is a transition kernel of a unichain, gπP(s) is constant ∀s and can be bounded as:

min
s

(1− γ)V π
γ,P(s) ≤ gπP ≤ max

s
(1− γ)V π

γ,P(s). (27)

Taking min
P∈P

on both sides of inequality (27) implies that

min
P∈P

min
s

(1− γ)V π
γ,P(s) ≤ min

P∈P
gπP = gπP . (28)

By interchanging the order of two min operators, we have that

min
s

(1− γ)min
P∈P

V π
γ,P(s) = min

s
(1− γ)V π

γ,P(s) ≤ gπP . (29)

On the other hand, we have

gπP = min
P∈P

gπP = min
P∈P

[
P∗
π·(1− γ)V π

γ,P

]
. (30)

We denote by Qγ ∈ P the worst case transition kernel of V π
γ,P . Then,

gπP ≤ Q∗
γ(1− γ)V π

γ,Qγ
(31)

= Q∗
γ(1− γ)V π

γ,P (32)

≤ max
s

(1− γ)V π
γ,P(s), (33)

where (31) is from (30), (32) is from the definition of Qγ , and (33) is because for every distribution of Qγ we have
EQγ [(1− γ)V π

γ,Qγ
] ≤ max

s
(1− γ)V π

γ,Qγ
(s).

Combining (29) and (33), we get

min
s

(1− γ)V π
γ,P(s) ≤ gπP ≤ max

s
(1− γ)V π

γ,P(s). (34)

This implies that

∥gπP − (1− γ)V π
γ,P∥∞ ≤ Sp((1− γ)V π

γ,P), (35)

which completes the proof.

Lemma 11.2. Under assumption 3.1, for any ϵ ∈ [0,H), if we set γ := 1− ϵ
H , whereH = max

P∈P
Sp(hπ

∗

P ), then

Sp((1− γ)V πγ

γ,P) ≤ ϵ.

Proof. Since the MDP is assumed to be a unichain, both gπ
∗

P and gπ
∗

P are constant. Moreover, gπ
∗

P and hπ
∗

P satisfy the robust
Bellman optimality equation (Wang et al., 2023e):

(gπ
∗

P + hπ
∗

P )(s) = max
a

{
r(s, a) + σPa

s
(hπ

∗

P )
}
, (36)

where σPa
s
(V ) ≜ min

p∈Pa
s

p⊤V .

It is also known that for any γ ∈ [0, 1), the optimal robust discounted value function V πγ

γ,P satisfies the discounted Bellman
equation:

V
πγ

γ,P(s) = max
a

{
r(s, a) + γσPa

s
(V

πγ

γ,P)
}
. (37)
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Next, we aim to rewrite the robust discounted Bellman equation to obtain a form similar to the Bellman equation for the
average reward setting. First, we define

h
πγ ,π

∗

γ,P = V
πγ

γ,P −
1

1− γ
gπ

∗

P . (38)

Note the fact that hπγ ,π
∗

γ,P and V πγ

γ,P have the same span because gπ
∗

P is a constant:

Sp(hπγ ,π
∗

γ,P ) = Sp(V π∗

γ,P). (39)

Now, we substitute (38) into (37) to obtain an equation similar to (36):

V
πγ

γ,P(s) =

(
h
πγ ,π

∗

γ,P +
1

1− γ
gπ

∗

P

)
(s) = max

a

{
r(s, a) + γσPa

s

(
h
πγ ,π

∗

γ,P +
1

1− γ
gπ

∗

P

)}
= max

a

{
r(s, a) + γσPa

s

(
h
πγ ,π

∗

γ,P

)
+

γ

1− γ
gπ

∗

P

}
, (40)

where (40) is because γ
1−γ g

π∗

P is a constant and can be taken from the support function. The above equation can be written
as (

h
πγ ,π

∗

γ,P +
1

1− γ
gπ

∗

P

)
(s) = max

a

{
r(s, a) + γσPa

s

(
h
πγ ,π

∗

γ,P

)}
+

γ

1− γ
gπ

∗

P . (41)

This implies that (
h
πγ ,π

∗

γ,P + gπ
∗

P

)
(s) = max

a

{
r(s, a) + γσPa

s

(
h
πγ ,π

∗

γ,P

)}
. (42)

Combine (36) and (42) and ∀s ∈ S we have

|hπ
∗

P − h
πγ ,π

∗

γ,P (s)| = |max
a

{
r(s, a) + σPa

s
(hπ

∗

P )
}
−max

a

{
r(s, a) + γσPa

s

(
h
πγ ,π

∗

γ,P

)}
| (43)

≤ |max
a
{σPa

s
(hπ

∗

P )− γσPa
s

(
h
πγ ,π

∗

γ,P

)
}| (44)

= |max
a
{σPa

s
(hπ

∗

P )− γσPa
s

(
hπ

∗

P

)
+ γσPa

s

(
hπ

∗

P

)
− γσPa

s

(
h
πγ ,π

∗

γ,P

)
}| (45)

≤ |max
a
{γσPa

s

(
hπ

∗

P

)
− γσPa

s

(
h
πγ ,π

∗

γ,P

)
}|+ |max

a
{(1− γ)σPa

s
(hπ

∗

P )}|. (46)

And since |σPa
s
(V )− σPa

s
(W )| ≤ ∥V −W∥∞, and |σPa

s
(V )| ≤ ∥V ∥∞:

|hπ
∗

P − h
πγ ,π

∗

γ,P (s)| ≤ γ∥hπ
∗

P − h
πγ ,π

∗

γ,P ∥∞ + (1− γ)∥hπ
∗

P ∥∞. (47)

Thus, it follows that,

∥hπ
∗

P − h
πγ ,π

∗

γ,P ∥∞ ≤ ∥hπ
∗

P ∥∞. (48)

Now, we combine (39) and (48):

Sp(V πγ

γ,P) = Sp(hπγ ,π
∗

γ,P ) ≤ 2∥hπγ ,π
∗

γ,P ∥∞ ≤ 4∥hπ
∗

P ∥∞. (49)

From Theorem 3.1 of (Wang et al., 2023e), for any policy π, there exists a transition kernel PV ∈ PW such that
hπP = hπPV

+ ce for c ∈ R, where e denotes the vector (1, 1, 1, .., 1) ∈ R|S|. Hence, we have that

Sp(V πγ

γ,P) ≤ 4∥hπ
∗

P ∥∞ = 4∥hπ
∗

PV
∥∞, (50)

and

Sp(V πγ

γ,P) ≤ 4∥hπ
∗

PV
∥∞ ≤ 4Sp(hπ

∗

Pπ∗
V
) ≤ 4H, (51)

which completes the proof.
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Combine the above two results, then we direcly have the following result.
Corollary 11.3. Under Assumption 3.1, for any γ ∈ (0, 1) and the policy πγ , it holds that

∥
g
πγ

P
1− γ

− V πγ

γ,P∥∞ ≤ H.

Lemma 11.4. Under assumption 3.1, for any ϵ ∈ [0,H), if we set γ := 1− ϵ
H , then Sp((1− γ)V π∗

γ,P) ≤ ϵ.

Proof. First, we utilize the definitions of the finite time-horizon reward function V π
T,P(s) ≜ Eπ,P

[∑T−1
0 rt|S0 = s

]
and

the other definition of bias hπP(s) ≜ limT→∞

[
V π
T,P − TgπP

]
. Note that:

V π∗

γ,P = min
P∈P

V π∗

γ,P (52)

= min
P∈P

(
lim

T→∞

T−1∑
t=0

γtPt
π∗rπ∗

)
(53)

= min
P∈P

(
lim

T→∞
V π∗

T,P − (1− γ)
T−1∑
t=1

γt−1Pt
π∗V π∗

T−t,P

)
. (54)

Recall the worst case transition kernel Qγ where Qγ ∈ P:

V π∗

γ,P = V π∗

γ,Qγ
= lim

T→∞
V π∗

T,Qγ
− (1− γ)

T−1∑
t=1

γt−1Qt
γ,π∗V π∗

T−t,Qγ
. (55)

We have:

Sp(V π∗

γ,P) = Sp(V π∗

γ,Qγ
) ≤ lim

T→∞
supSp(V π∗

T,Qγ
) + (1− γ)

T−1∑
t=1

γt−1Sp(V π∗

T−t,Qγ
) (56)

Now the objective is to find an upper bound for Sp(V π∗

T,Qγ
). From the definition of hπQγ

, we have

hπQγ
= limt→∞(V π

t,Qγ
− tgπQγ

) (57)

= lim
N→∞

1

N

N∑
t=1

(V π
t,Qγ
− tgπQγ

) (58)

= lim
N→∞

1

N

N∑
t=T+1

(V π
t,Qγ
− tgπQγ

). (59)

Thus, we have

hπQγ
= lim

N→∞

1

N

N∑
t=T+1

[(V π
T,Qγ

− TgπQγ
) +QT

γ,πV
π
t−T,Qγ

− (t− T )gπQγ
]

= (V π
T,Qγ

− TgπQγ
) +QT

γ,π lim
N→∞

1

N

N−T∑
t=T+1

(V π
t−T,Qγ

− (t− T )gπQγ
) (60)

= V π
T,Qγ

− TgπQγ
+QT

γ,πh
π
Qγ
.

It follows that

V π
T,Qγ

= TgπQγ
+ hπQγ

−QT
γ,πh

π
Qγ
. (61)
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Thus, we have

Sp(V π
T,Qγ

) ≤ 2Sp(hπQγ
). (62)

Note that Sp(hπP) is continuous in P and P is a compact set, thus Sp(hπP) ≤ H,∀P ∈ P . Now we can combine the result
from (56) and (62):

Sp(V π∗

γ,P) = Sp(V π∗

γ,Qγ
) ≤ lim

T→∞
supSp(V π∗

T,Qγ
) + (1− γ)

T−1∑
t=1

γt−1Sp(V π∗

T−t,Qγ
) (63)

≤ 2Sp(hπ
∗

P )

(
1 + (1− γ)

∞∑
t=1

γt−1

)
(64)

= 4Sp(hπ
∗

P ). (65)

Thus,

Sp(V π∗

γ,P) ≤ 4H. (66)

As a direct corollary, it holds that

Corollary 11.5. Under Assumption 3.1, for any γ ∈ (0, 1), it holds that

∥ g
π∗

P
1− γ

− V π∗

γ,P∥∞ ≤ 4H.

Proof. From Lemma 11.1 and Equation (66),it holds that

∥gπ
∗

P − (1− γ)V π∗

γ,P∥∞ ≤ Sp((1− γ)V π∗

γ,P) ≤ 4(1− γ)H,

which completes the proof.

We are now ready to prove the main theorem.

Theorem 11.6. (Restatement of Theorem 3.4) Under Assumption 3.1, for any ϵ, if we set γ := 1− ϵ
H , then any ϵγ-optimal

policy π̂γ for the robust γ-DMDP8 is also an O(ϵ)-optimal policy for the robust AMDP, i.e.,

gπ
∗

P − g
π̂γ

P ≤
(
8 +

5ϵγ
H

)
ϵ. (67)

Specifically, an O(H)-optimal robust policy for the robust DMDP is an O(ϵ)-optimal robust policy under the average
reward.

Proof. Under Assumption 3.1, for any ϵ ∈ (0,H] and any δ ∈ (0, 1], we consider γ = 1− ϵ
H . Suppose πγ is an optimal

policy of the robust DMDP and π̂γ is an ϵγ-optimal policy in the robust DMDP. Then,

∥(1− γ)V πγ

γ,P − (1− γ)V π̂γ

γ,P∥∞ ≤ (1− γ)ϵγ . (68)

Considering (35), (51), and (66), we have that:

Sp((1− γ)V π̂γ

γ,P) ≤ Sp((1− γ)V πγ

γ,P) + 2∥(1− γ)V πγ

γ,P − (1− γ)V π̂γ

γ,P∥∞
≤ 4ϵ+ 2(1− γ)ϵγ . (69)

8For a robust DMDP, an ϵ-optimal policy is some policy π such that V ∗
γ,P(s)− V π

γ,P(s) ≤ ϵ,∀s ∈ S.
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Moreover, because of the optimality of πγ ,

V π∗

γ,P ≤ V
πγ

γ,P , (70)

recalling that π∗ is an optimal policy of the robust AMDP.

By merging Lemma 11.1, (68), (69), and (70) we have:

gπ
∗

P ≤ (1− γ)V π∗

γ,P + 4ϵ+ 2(1− γ)ϵγ (71)

≤ (1− γ)V πγ

γ,P + 4ϵ+ 2(1− γ)ϵγ (72)

≤ (1− γ)V π̂γ

γ,P + 4ϵ+ 3(1− γ)ϵγ (73)

≤ gπ̂γ

P + 8ϵ+ 5(1− γ)ϵγ , (74)

which completes the proof.

12. Proof of Theorem 4.4 Part 1
We first note that the result under the case R ≥ 1

H can be directly obtained from the existing result in (Shi et al., 2023).
Specifically, it is shown in (Shi et al., 2023) that learning an ϵγ-optimal policy for a γ-discounted robust MDP requires
samples of size

N (S,A, P̂, γ, ϵγ) =
CSA log cSA

δ

(1− γ)2 max{R, 1− γ}ϵ2γ
. (75)

Thus, by setting γ = 1− ϵ
H and ϵγ = H as Theorem 4.1, we have that the complexity to learn an ϵ-optimal policy for the

robust average reward MDP is

CSA log cSA
δ

(1− γ)2 max{R, 1− γ}ϵ2γ
=
CSA log cSA

δ

ϵ2R
≤
CSAH log cSA

δ

ϵ2
. (76)

We hence mainly focus on the case of R ≤ 1
H . In the following proof, we denote ϵγ as ϵ.

We first introduce some notation. Let P̂ and P̂ be the estimated nominal kernel and estimated uncertainty set. For any
policy π, let Ṽ π

γ,P̂ , V
π
γ,P̂ , V

π
γ,P be the robust value function w.r.t. perturbed reward and estimated uncertainty set, unperturbed

reward and estimated uncertainty set, unperturbed reward and the true uncertainty set. The optimal robust policy w.r.t. Ṽ π
P̂ is

denoted by π̃∗, and the corresponding optimal robust value functions are denoted by Ṽ ∗
γ,P̂ and Q̃∗

γ,P̂ .

We consider a general policy π, and we denote the worst-case kernel of any vector V under P̂ and P by P̂π,V
w and Pπ,V

w .
Then, it holds that

V π
γ,P̂ − V

π
γ,P = rπ + γP̂π,V̂

w V π
γ,P̂ −

(
rπ + γPπ,V

w V π
γ,P
)

=
(
γP̂π,V̂

w V π
γ,P̂ − γP

π,V̂
w V π

γ,P̂

)
+
(
γPπ,V̂

w V π
γ,P̂ − γP

π,V
w V π

γ,P

)
(i)

≤ γ
(
Pπ,V
w V π

γ,P̂ − Pπ,V
w V π

γ,P

)
+
(
γP̂π,V̂

w V π
γ,P̂ − γP

π,V̂
w V π

γ,P̂

)
,

where (i) holds by observing that

Pπ,V̂
w V π

γ,P̂ ≤ Pπ,V
w V π

γ,P̂

due to the worst-case kernel. Rearranging terms leads to

V π
γ,P̂ − V

π
γ,P ≤ γ

(
I − γPπ,V

w

)−1
(
P̂π,V̂
w V π

γ,P̂ − Pπ,V̂
w V π

γ,P̂

)
. (77)
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Similarly, we can also deduce

V π
γ,P̂ − V

π
γ,P = rπ + γP̂π,V̂

w V π
γ,P̂ −

(
rπ + γPπ,V

w V π
γ,P
)

=
(
γP̂π,V̂

w V π
γ,P̂ − γP

π,V̂
w V π

γ,P̂

)
+
(
γPπ,V̂

w V π
γ,P̂ − γP

π,V
w V π

γ,P

)
≥ γ

(
Pπ,V̂
w V π

γ,P̂ − Pπ,V̂
w V π

γ,P

)
+
(
γP̂π,V̂

w V π
γ,P̂ − γP

π,V̂
w V π

γ,P̂

)
≥ γ

(
I − γPπ,V̂

w

)−1 (
P̂π,V̂
w V π

γ,P̂ − Pπ,V̂
w V π

γ,P̂

)
. (78)

Combining (77) and (78), we arrive at∥∥V π
γ,P̂ − V

π
γ,P
∥∥
∞ ≤ γmax

{∥∥∥ (I − γPπ,V
w

)−1
(
P̂π,V̂
w V π

γ,P̂ − Pπ,V̂
w V π

γ,P̂

)∥∥∥
∞
,∥∥∥(I − γPπ,V̂

w

)−1 (
P̂π,V̂
w V π

γ,P̂ − Pπ,V̂
w V π

γ,P̂

)∥∥∥
∞

}
. (79)

By decomposing the error in a symmetric way, we can similarly obtain∥∥V π
γ,P̂ − V

π
γ,P
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂π,V̂
w

)−1(
P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

)∥∥∥
∞
,∥∥∥(I − γP̂π,V

w

)−1 (
P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

)∥∥∥
∞

}
. (80)

12.1. Part A: ∥Ṽ π∗

γ,P̂ − V
π∗

γ,P∥

Consider |Ṽ π∗

γ,P̂(s)− V
π∗

γ,P̂(s)| for some state s. If Ṽ π∗

γ,P̂(s)− V
π∗

γ,P̂(s) > 0, then

|Ṽ π∗

γ,P̂(s)− V
π∗

γ,P̂(s)| = Ṽ π∗

γ,P̂(s)− V
π∗

γ,P̂(s)

= (I − γP̃π∗

w )−1r̃π
∗
− (I − γPπ∗

w )−1rπ
∗

≤ (I − γPπ∗

w )−1r̃π
∗
− (I − γPπ∗

w )−1rπ
∗

≤ ϵ

6
, (81)

where P̃π∗

w and Pπ∗

w are the corresponding worst-case transition kernel.

A similar result can also be obtained for the other case, hence it holds that

∥Ṽ π∗

γ,P̂(s)− V
π∗

γ,P̂∥ ≤
ϵ

6
. (82)

We thus have that

∥Ṽ π∗

γ,P̂ − V
π∗

γ,P∥ ≤ ∥Ṽ π∗

γ,P̂ − V
π∗

γ,P̂∥+ ∥V
π∗

γ,P̂ − V
π∗

γ,P∥ ≤
ϵ

6
+ ∥V π∗

γ,P̂ − V
π∗

γ,P∥, (83)

and it suffices to study the second term ∥V π∗

γ,P̂ − V
π∗

γ,P∥. Applying (80) further implies that

∥V π∗

γ,P̂ − V
π∗

γ,P∥ ≤ γmax
{∥∥∥(I − γP̂π∗,V̂

w

)−1(
P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π∗

γ,P

)∥∥∥
∞
,∥∥∥(I − γP̂π∗,V

w

)−1 (
P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π

γ,P

)∥∥∥
∞

}
. (84)

We first consider the case that max
{∥∥∥(I−γP̂π∗,V̂

w

)−1(
P̂π∗,V
w V π∗

γ,P −Pπ∗,V
w V π∗

γ,P

)∥∥∥
∞
,
∥∥∥(I − γP̂π∗,V

w

)−1 (
P̂π∗,V
w V π∗

γ,P −

Pπ∗,V
w V π

γ,P

)∥∥∥
∞

}
=
∥∥∥(I − γP̂π∗,V̂

w

)−1(
P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π∗

γ,P

)∥∥∥
∞
.

We first apply the following lemma.
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Lemma 12.1. (Lemma 11 of (Shi et al., 2023)) Consider any δ ∈ (0, 1). Setting N ≥ log( 18SAN
δ ), with probability at least

1− δ, one has

∣∣∣P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π∗

γ,P

∣∣∣ ≤ 2

√
log( 18SAN

δ )

N

√
VarPπ∗ (V π∗

γ,P) +
log( 18SAN

δ )

N(1− γ)
1. (85)

Thus, it holds that∥∥∥(I − γP̂π∗,V̂
w

)−1 (
P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π∗

γ,P

)∥∥∥
∞

≤ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V̂
w

)−1√
VarPπ∗ (V π∗

γ,P)
∥∥∥
∞

+
log( 18SAN

δ )

N(1− γ)2

≤ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V̂
w

)−1√
Var

P̂π∗,V̂
w

(V π∗

γ,P̂
)
∥∥∥
∞︸ ︷︷ ︸

A1

+ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V̂
w

)−1√
Var

P̂π∗,V̂
w

(V π∗
γ,P − V π∗

γ,P̂
)
∥∥∥
∞︸ ︷︷ ︸

A2

+ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V̂
w

)−1
√∣∣∣Var

P̂π∗,V̂
w

(V π∗
γ,P)−VarP̂π∗ (V π∗

γ,P)
∣∣∣∥∥∥

∞︸ ︷︷ ︸
A3

+ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V̂
w

)−1 (√
VarPπ∗ (V π∗

γ,P)−
√
VarP̂π∗ (V π∗

γ,P)
)∥∥∥

∞︸ ︷︷ ︸
A4

+
log( 18SAN

δ )

N(1− γ)2
. (86)

Term A1. We note that Q ≜ P̂V̂
w = argminP∈P̂ PV π∗

γ,P̂ , thus we have that

V π∗

γ,P̂ = rπ
∗
+ γσπ∗

P̂ (V π∗

γ,P̂) = rπ
∗
+ γQπ∗

V π∗

γ,P̂ ; (87)

On the other hand, we have that

V π∗

γ,Q = rπ
∗
+ γQπ∗

V π∗

γ,Q, (88)

hence both V π∗

γ,P̂ and V π∗

γ,Q are fixed points of the Bellman operator w.r.t. Q, which implies they are identical V π∗

γ,P̂ = V π∗

γ,Q.

Thus, the term
(
I − γP̂π∗,V̂

w

)−1√
Var

P̂π∗,V̂
w

(V π∗

γ,P̂
) can be rewritten as

(
I − γP̂π∗,V̂

w

)−1√
Var

P̂π∗,V̂
w

(V π∗

γ,P̂
) =

(
I − γQπ∗

)−1√
VarQπ∗ (V π∗

γ,Q), (89)

and the term A1 can be rewritten as

A1 = 2

√
log( 18SAN

δ )

N

∥∥∥(I − γQπ∗
)−1√

VarQπ∗ (V π∗
γ,Q)

∥∥∥
∞
. (90)

We then apply the following lemma to bound A1, which is the main result for the complexity improvement.

Lemma 12.2. For any policy π, if N ≥ O
(

log SA
(1−γ)δϵ

1−γ

)
, it holds with probability at least 1− δ that

∥∥∥(I − γQπ∗
)−1√

VarQπ∗ (V π∗
γ,Q)

∥∥∥
∞
≤

√
c1H

(1− γ)2
. (91)
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The proof of this lemma can be derived similarly to the ones in (Zurek & Chen, 2023). For completeness, we provide its
proof in Section 12.4.

Thus, it holds that

A1 ≤

√
2c1 log(

18SAN
δ )H

(1− γ)2N
. (92)

Term A2. It holds that

A2 = 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π,V̂
w

)−1√
Var

P̂π,V̂
w

(V π∗
γ,P − V π∗

γ,P̂
)
∥∥∥
∞

≤ 2

√
log( 18SAN

δ )

N(1− γ)2
∥∥∥V π∗

γ,P − V π∗

γ,P̂

∥∥∥
∞
. (93)

Term A3. It holds that (
I − γP̂π,V̂

w

)−1
√∣∣∣Var

P̂π,V̂
w

(V π∗
γ,P)−VarP̂π∗ (V π∗

γ,P)
∣∣∣

=
(
I − γP̂π,V̂

w

)−1

√√√√∣∣∣∣∣
π∗∏

(Var
P̂π,V̂
w

(V π∗
γ,P)−VarP̂(V

π∗
γ,P))

∣∣∣∣∣
≤
(
I − γP̂π,V̂

w

)−1
√∥∥∥Var

P̂π,V̂
w

(V π∗
γ,P)−VarP̂(V

π∗
γ,P))

∥∥∥. (94)

Note that both P̂π,V̂
w , P̂ belong to the uncertainty set P̂ , hence ∥P̂π,V̂

w − P̂∥1 ≤ 2R, which further implies that

|Var
P̂π,V̂
w

(V π∗

γ,P)−VarP̂(V
π∗

γ,P))|s,a

= |Var
P̂π,V̂
w

(V π∗

γ,P −
1

1− γ
gπ

∗

P )−VarP̂(V
π∗

γ,P)−
1

1− γ
gπ

∗

P )|s,a

≤ ∥P̂π,V̂
w − P̂∥1∥V π∗

γ,P −
1

1− γ
gπ

∗

P ∥2

≤ 2RH2, (95)

where the last inequality is from Lemma 11.1 and Lemma 11.2.

Since R ≤ 1
H , it holds that

A3 ≤ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π,V̂
w

)−1√
2H∥ ≤ 2

√
log( 18SAN

δ )H
N(1− γ)2

. (96)

Term A4. We directly apply Lemma 6 of (Panaganti & Kalathil, 2022) and Lemma 11 of (Shi et al., 2023), and it implies
that

A4 ≤
4 log(18SAN

δ )

N(1− γ)2
. (97)

We then plug (92), (93), (96) and (97) in (86), and we have that

∥V π∗

γ,P̂ − V
π∗

γ,P∥

≤
∥∥∥(I − γP̂π,V̂

w

)−1 (
P̂π,V̂
w V π

γ,P − Pπ,V
w V π

γ,P

)∥∥∥
∞

≤
log( 18SAN

δ )

N(1− γ)2
+

√
2c1 log(

18SAN
δ )H

(1− γ)2N
+ 2

√
log( 18SAN

δ )

N(1− γ)2
∥∥∥V π∗

γ,P − V π∗

γ,P̂

∥∥∥
∞

+ 2

√
log( 18SAN

δ )H
N(1− γ)2

+
4 log(18SAN

δ )

N(1− γ)2
.

(98)
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We note that if we set N ≥ 32 log( 18SAN
δ )

(1−γ)2 , it holds that

∥V π∗

γ,P̂ − V
π∗

γ,P∥ ≤
C1 log(

18SAN
δ )

N(1− γ)2
+

√
2C2 log(

18SAN
δ )H

(1− γ)2N
, (99)

which completes the first term in (80).

To bound the second term in (80), following eq (69) in (Shi et al., 2023), we have that∥∥∥(I − γP̂π∗,V
w

)−1 (
P̂π∗,V
w V π∗

γ,P − Pπ∗,V
w V π∗

γ,P

)∥∥∥
∞

≤ 2

√
log( 18SAN

δ )

N

∥∥∥(I − γP̂π∗,V
w

)−1√
VarPπ∗ (V π∗

γ,P)
∥∥∥
∞

+
log( 18SAN

δ )

N(1− γ)2
. (100)

Now applying Lemma 12.10,

∥∥∥(I − γP̂π,V
w

)−1 (
P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

)∥∥∥
∞
≤
C3 log(

18SAN
δ )

N(1− γ)2
+

√
2C4 log(

18SAN
δ )H2

(1− γ)2N
. (101)

We hence obtain the bound on ∥Ṽ π∗

γ,P̂ − V
π∗

γ,P∥ as follows:

∥Ṽ π∗

γ,P̂ − V
π∗

γ,P∥ ≤
a1 log(

18SAN
δ )

N(1− γ)2
+

√
a2 log(

18SAN
δ )H2

(1− γ)2N
+
ϵ

6
, (102)

when N ≥ C log( 18SAN
δ )

(1−γ)2 .

12.2. Part B: ∥Ṽ π̂
γ,P̂ − V

π̂
γ,P∥

Similarly, we have that

∥Ṽ π̂
γ,P̂ − V

π̂
γ,P∥ ≤ ∥Ṽ π̂

γ,P̂ − Ṽ
π̂
γ,P∥+ ∥Ṽ π̂

γ,P − V π̂
γ,P∥

≤ ϵ

6
+ ∥Ṽ π̂

γ,P̂ − Ṽ
π̂
γ,P∥, (103)

hence it suffices to bound the term ∥Ṽ π̂
γ,P̂ − Ṽ

π̂
γ,P∥. By setting π = π̂ in (79), we have that

∥∥Ṽ π̂
γ,P̂ − Ṽ

π̂
γ,P
∥∥
∞ ≤ γmax

{∥∥∥(I − γPπ̂,
˜̂
V

w

)−1 (
P̂π̂,

˜̂
V

w Ṽ π̂
γ,P̂ − Pπ̂,

˜̂
V

w Ṽ π̂
γ,P̂

)∥∥∥
∞
,∥∥∥(I − γPπ̂,Ṽ

w

)−1 (
P̂π̂,

˜̂
V

w Ṽ π̂
γ,P̂ − Pπ̂,

˜̂
V

w Ṽ π̂
γ,P̂

)∥∥∥
∞

}
. (104)

We first bound the first term
∥∥∥(I − γPπ̂,

˜̂
V

w

)−1 (
P̂π̂,

˜̂
V

w Ṽ π̂
γ,P̂ − Pπ̂,

˜̂
V

w Ṽ π̂
γ,P̂

)∥∥∥
∞

. To simplify notation, we rewrite Pπ̂,
˜̂
V

w as

Pπ̂,V̂
w and P̂π̂,

˜̂
V

w by P̂π̂,V̂
w .

We first introduce the following separation events:

Ω̂ω ≜ {Ṽ ∗
γ,P̂(s)− max

a̸=π̂∗(s)
Q̃∗

γ,P̂(s, a) ≥ ω,∀s ∈ S}, (105)

Ωω ≜ {Ṽ ∗
γ,P(s)− max

a̸=π∗(s)
Q̃∗

γ,P(s, a) ≥ ω,∀s ∈ S}. (106)

These events indicate that there exists some threshold between the value functions of the optimal action and other actions,
and there is no tie between the optimal robust value functions. It further implies that the optimal policy π̂∗ and π∗ are unique.
As we shall show in Lemma 12.3, with a carefully chosen threshold, such events will occur with high probability.
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Lemma 12.3. Set ω = ξδ(1−γ)
3SA2 , then both (105) and (106) occur with probability at least 1− δ.

We then combine Lemma 14 from (Shi et al., 2023) and Lemma 9 in (Li et al., 2020) together to show the following result.
Such a result allows us to decouple the dependence between π̂ and other terms.

Lemma 12.4. Consider any δ ∈ (0, 1). Taking N ≥ O
(

log
(

54SAN2

(1−γ)δ

)
1−γ

)
, with probability at least 1− 2δ, events (105) and

(106) occur, and it holds that

∣∣∣P̂π̂,V̂
w Ṽ π̂

γ,P̂ − Pπ̂,V̂
w Ṽ π̂

γ,P̂

∣∣∣ ≤ 2

√
log( 54SAN2

(1−γ)δ )

N

√
VarPs,a(Ṽ

π̂
γ,P̂

)1 +
8 log(54SAN2

(1−γ)δ )

N(1− γ)
1. (107)

With Lemma 12.4 in hand, we have(
I − γPπ̂,V̂

w

)−1(
P̂π̂,V̂
w Ṽ π̂

γ,P̂ − Pπ̂,V̂
w Ṽ π̂

γ,P̂

)
(i)

≤
(
I − γPπ̂,V̂

w

)−1 ∣∣∣P̂π̂,V̂
w Ṽ π̂

γ,P̂ − Pπ̂,V̂
w Ṽ π̂

γ,P̂

∣∣∣
≤ 2

√
log( 54SAN2

(1−γ)δ )

N

(
I − γPπ̂,V̂

w

)−1√
VarP π̂ (Ṽ π̂

γ,P̂
) +

(
8 log( 54SAN2

(1−γ)δ )

N(1− γ)2

)
1

(ii)

≤

(
8 log(54SAN2

(1−γ)δ )

N(1− γ)2

)
1 + 2

√
log( 54SAN2

(1−γ)δ )

N

(
I − γPπ̂,V̂

w

)−1√
Var

Pπ̂,V̂
w

(Ṽ π̂
γ,P̂

)︸ ︷︷ ︸
=:B1

+ 2

√
log( 54SAN2

(1−γ)δ )

N

(
I − γPπ̂,V̂

w

)−1
√∣∣∣VarP π̂ (Ṽ π̂

γ,P̂
)−Var

Pπ̂,V̂
w

(Ṽ π̂
γ,P̂

)
∣∣∣︸ ︷︷ ︸

=:B2

, (108)

where (i) and (ii) hold by the fact that each row of (1− γ)
(
I − γPπ̂,V̂

w

)−1

is a probability vector that falls into ∆(S).

Term B1. Similar to term A1, term B1 is equivalent to 2

√
log( 54SAN2

(1−γ)δ
)

N (I − γP)−1√
VarP(Vγ,P) with P = Pπ̂,V̂

w .
Specifically, π̂ can be viewed as the optimal policy for γ and the empirical uncertainty set. Thus, applying Corollary 11.3
implies that

∥Ṽ π̂
γ,P̂ −

g̃∗P̂
1− γ

∥ ≤ H, (109)

and hence

B1 ≤

√
2d1 log(

18SAN
δ )H2

(1− γ)2N
. (110)

Term B2. Similar to term A3, term B2 can be bounded by noting that R ≤ 1
H

B2 ≤ 2

√
log( 18SAN

δ )H2

N(1− γ)2
. (111)

Combine both bounds together, and we have that when N ≥ C log SAN
δ

(1−γ)2 ,

(
I − γPπ̂,V̂

w

)−1(
P̂π̂,V̂
w Ṽ π̂

γ,P̂ − Pπ̂,V̂
w Ṽ π̂

γ,P̂

)
≤
D1 log(

18SAN
δ )

N(1− γ)2
+

√
2D2 log(

18SAN
δ )H2

(1− γ)2N
(112)
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with probability at least 1− δ. Similarly, we can get the bound on the second term of (104), which finally implies that

∥∥Ṽ π̂
γ,P̂ − Ṽ

π̂
γ,P
∥∥
∞ ≤

D1 log(
18SAN

δ )

N(1− γ)2
+

√
2D2 log(

18SAN
δ )H2

(1− γ)2N
. (113)

12.3. Summing Up the Results

Combine the bounds obtained from both Part A and Part B, it holds that with probability at least 1− 4δ,

V ∗
γ,P − V π̂

γ,P ≤ m1ϵ+m2

log( 18SAN
δ )

N(1− γ)2
+m3

√
log( 18SAN

δ )H2

(1− γ)2N
, (114)

when N ≥ C log( 18SAN
δ )

(1−γ)2 .

Thus, to achieve an ϵ-optimal policy, it requires a total number of samples of

NSA =
CSA log( 18SAN

δ )H2

(1− γ)2ϵ2
+
CSA log( 18SAN

δ )

(1− γ)2
, (115)

for some constant C. Then setting ϵ = H and 1− γ = ϵ
H implies that

NSA ≥
CSAH2 log SAN

δ

ϵ2
(116)

samples are required to find an ϵ-optimal policy for robust average reward.

12.4. Proofs of Lemmas

Lemma 12.5. (Lemma 6 of (Zurek & Chen, 2023)) For any deterministic stationary policy π, we have

γ

∥∥∥∥∥(I − γPπ)−1

√
VarPπ

[
V π
γ,P

]∥∥∥∥∥
∞

≤
√

2

1− γ

√√√√∥∥∥∥∥VarPπ

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

(117)

Proof. The following variance Bellman equation holds from (Sobel, 1982):

VarPπ

[ ∞∑
t=0

γtRt

]
= γ2VarPπ

[
V π
γ,P

]
+ γ2PπVarPπ

[ ∞∑
t=0

γtRt

]
. (118)

On the other hand, it holds that∣∣∣∣∣(1− γ)e⊤s (I − γPπ)−1

√
VarPπ

[
V π
γ,P

]∣∣∣∣∣ ≤
√∣∣∣(1− γ)e⊤s (I − γPπ)−1VarPπ

[
V π
γ,P

]∣∣∣.
Denote that v = VarPπ

[
V π
γ,P

]
, we then have that

γ
∥∥(I − γPπ)−1

√
v
∥∥
∞ = γ

1

1− γ
∥∥(1− γ)(I − γPπ)−1

√
v
∥∥
∞ (119)

≤ γ 1

1− γ

√
∥(1− γ)(I − γPπ)−1v∥∞ (120)

= γ
1√
1− γ

√
∥(I − γPπ)−1v∥∞. (121)
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Moreover, ∥∥(I − γPπ)−1v
∥∥
∞ =

∥∥(I − γPπ)−1(I − γ2Pπ)(I − γ2Pπ)−1v
∥∥
∞ (122)

=
∥∥(I − γPπ)−1 ((1− γ)I + γ(I − γPπ)) (I − γ2Pπ)−1v

∥∥
∞ (123)

=
∥∥((1− γ)(I − γPπ)−1 + γI

)
(I − γ2Pπ)−1v

∥∥
∞ (124)

≤
∥∥(1− γ)(I − γPπ)−1(I − γ2Pπ)−1v

∥∥
∞ + γ

∥∥(I − γ2Pπ)−1v
∥∥
∞ (125)

≤ (1− γ)
∥∥(I − γPπ)−1

∥∥
∞→∞

∥∥(I − γ2Pπ)−1v
∥∥
∞ + γ

∥∥(I − γ2Pπ)−1v
∥∥
∞ (126)

≤ (1 + γ)
∥∥(I − γ2Pπ)−1v

∥∥
∞ (127)

≤ 2
∥∥(I − γ2Pπ)−1v

∥∥
∞ . (128)

Combining them with the variance Bellman equation (118), it holds that

γ
∥∥(I − γPπ)−1

√
v
∥∥
∞ ≤ γ

1√
1− γ

√
2 ∥(I − γ2Pπ)−1v∥∞ ≤

√
2

1− γ

√√√√∥∥∥∥∥VarPπ

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

. (129)

Lemma 12.6. (Lemma 7 of (Zurek & Chen, 2023)) For any integer T ≥ 1, for any deterministic stationary policy π, we
have ∥∥∥∥∥VarPπ

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

≤

∥∥∥VarPπ

[∑T−1
t=0 γtRt + γTV π

γ (ST )
]∥∥∥

∞
1− γ2T

.

Lemma 12.7. (Lemma 8 of (Zurek & Chen, 2023)) If γ ≥ 1− 1
H for some integerH ≥ 1, then

1− γ2H

1− γ
≥
(
1− 1

e2

)
H ≥ 4

5
H.

Lemma 12.8. Letting π∗ be the optimal policy for the robust DMDP (S,A, γ, r,P), we have∥∥∥∥∥VarPπ∗

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

≤ 5
H

1− γ
.

Proof. By using Lemma 12.6, it suffices to bound
∥∥∥VarPπ∗

[∑H−1
t=0 γtRt + γHV π∗

γ,P(SH)
]∥∥∥

∞
.

Fixing a state s0 ∈ S,

VarPπ∗
s0

[H−1∑
t=0

γtRt + γHV π∗

γ,P(SH)

]
= VarPπ∗

s0

[H−1∑
t=0

γtRt + γH
(
V π∗

γ,P(SH)− 1

1− γ
gπ

∗

P

)]

≤ EPπ∗
s0

∣∣∣∣∣
H−1∑
t=0

γtRt + γH
(
V π∗

γ,P(SH)− 1

1− γ
gπ

∗

P

)∣∣∣∣∣
2

≤ 2EPπ∗
s0

∣∣∣∣∣
H−1∑
t=0

γtRt

∣∣∣∣∣
2

+ 2EPπ∗
s0

∣∣∣∣γH(V π∗

γ,P(SH)− 1

1− γ
gπ

∗

P

)∣∣∣∣2
≤ 2H2 + 2 sup

s

(
V π∗

γ,P(s)−
1

1− γ
gπ

∗

P

)2

≤ 4H2,
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where the last inequality can be similarly derived as Lemma 11.1. We thus have that∥∥∥∥∥VarPπ∗

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

≤ 4H2

1− γ2H
.

Together with Lemma 12.7, this completes the proof.

Lemma 12.9. (Lemma 12.2) For any policy π, if N ≥ O
(

log SA
(1−γ)δϵ

1−γ

)
, it holds with probability at least 1− δ that

∥∥∥(I − γQπ∗
)−1√

VarQπ∗ (V π∗
γ,Q)

∥∥∥
∞
≤

√
c1H

(1− γ)2
. (130)

Proof. We prove a more general result: for any kernel P, it holds that∥∥∥(I − γPπ∗
)−1√

VarPπ∗ (V π∗
γ,P)

∥∥∥
∞
≤

√
c1H

(1− γ)2
. (131)

By Lemma 12.5, we have that ∥∥∥(I − γPπ∗
)−1√

VarPπ∗ (V π∗
γ,P)

∥∥∥
∞

≤
√

2

1− γ

√√√√∥∥∥∥∥VarPπ∗

[ ∞∑
t=0

γtRt

]∥∥∥∥∥
∞

(a)

≤
√

2

1− γ

√
5
H

1− γ

=

√
10H

(1− γ)2
, (132)

where (a) is due to Lemma 12.8.

Lemma 12.10. For any transition kernels q1 and q2, it holds that

∥∥∥(I − γqπ∗

1

)−1√
Varqπ∗

2
(V π∗

γ,P)
∥∥∥
∞
≤

√
c1H2

(1− γ)2
. (133)

Proof. Note that Varq(V ) = Varq(V − ke) for any k and e = (1, ..., 1). Moreover, from Corollary 11.5, it holds that

∥V π∗

γ,P −
1

1− γ
gπ

∗

P ∥ ≤ 4H. (134)

Thus

Varqπ∗
2
(V π∗

γ,P) = Varqπ∗
2
(V π∗

γ,P −
1

1− γ
gπ

∗

P ) ≤ ∥V π∗

γ,P −
1

1− γ
gπ

∗

P ∥2 ≤ 16H2. (135)

The proof is then completed.

Lemma 12.11. (Lemma 12.3) Set ω = ξδ(1−γ)
3SA2 , then both (105) and (106) occur with probability at least 1− δ.

Proof. The proof is similar for both events, hence we only present the proof for (106). We show a more general result,
namely, with probability at least 1− δ, for any s and a1 ̸= a2,

|Q∗
γ,P(s, a1)−Q∗

γ,P(s, a2)| >
ξδ(1− γ)
3SA2

. (136)
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We further introduce the following notation:

rτ (s, a1) = τ, (137)
rτ (s

′, a′) = r̃(s′, a′),∀(s′, a′) ̸= (s, a1). (138)

We denote the optimal robust value functions and the optimal policy w.r.t. rτ as Q∗
τ , V

∗
τ and π∗

τ .

We first prove the following claim: there exists some τ ′, such that

π∗
τ (s) ̸= a1, for all τ < τ ′, (139)
π∗
τ (s) = a1, for all τ > τ ′. (140)

Define

τ ′ = sup{u : π∗
τ (s) ̸= a1,∀τ < u}, (141)

then it suffices to show (140) for our choice, which exactly follows as the proofs of eq (95) in (Li et al., 2020). We then
prove the lemma as follows.

First, define the following sets:

I0,ω ≜ {τ : |Q∗
τ (s, a1)−Q∗

τ (s, a2)| < ω}, (142)

I1,ω ≜ {τ : τ < τ ′, |Q∗
τ (s, a1)−Q∗

τ (s, a2)| < ω}, (143)

I2,ω ≜ {τ : τ ≥ τ ′, |Q∗
τ (s, a1)−Q∗

τ (s, a2)| < ω}. (144)

Clearly, I0,ω = I1,ω ∪ I2,ω , and we will show that the probability of these events is small.

Step 1. For τ ∈ I1,ω, note that V ∗
τ does not depend on τ , since π∗

τ (s) ̸= a1, and τ is never active when calculating V ∗
τ .

Thus, the robust Bellman equation becomes

Q∗
τ (s, a1) = τ + γσPa1

s
(V ∗

τ ),

Q∗(s, a2) = r̃(s, a2) + γσPa2
s
(V ∗

τ ). (145)

Thus, it holds that

I1,ω ⊂ {τ : |τ + γσPa1
s
(V ∗

τ )−Q∗(s, a2)| < ω}. (146)

Since both terms γσPa1
s
(V ∗

τ ) and Q∗(s, a2) are independent from τ , the Lebesgue measure of I1,ω is at most 2ω.

Step 2. We now consider I2,ω . First, note that

0 ≤ Q∗
τ2 −Q

∗
τ1 ≤ rτ2 − rτ1 + γ(σ(V ∗

τ2)− σ(V
∗
τ1))

≤ rτ2 − rτ1 + γ∥V ∗
τ2 − V

∗
τ1∥, (147)

for any τ2 > τ1 > τ ′, which is from the 1-Lipschitz of the support functions. Moreover, for any (x, b) ̸= (s, a1), since
rτ2(x, b) = rτ1(x, b), it holds that

0 ≤ Q∗
τ2(x, b)−Q

∗
τ1(x, b) ≤ γ∥V

∗
τ2 − V

∗
τ1∥. (148)

On the other hand, note that

0 ≤ V ∗
τ2 − V

∗
τ1 = max

a
Q∗

τ2 −max
a

Q∗
τ1 ≤ ∥Q

∗
τ2 −Q

∗
τ1∥, (149)

and thus

∥V ∗
τ2 − V

∗
τ1∥ ≤ ∥Q

∗
τ2 −Q

∗
τ1∥. (150)
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Note that (148) implies that

Q∗
τ2(x, b)−Q

∗
τ1(x, b) ≤ γ∥V

∗
τ2 − V

∗
τ1∥ < ∥V

∗
τ2 − V

∗
τ1∥,∀(x, b) ̸= (s, a1), (151)

thus

∥Q∗
τ2 −Q

∗
τ1∥ = |Q

∗
τ2(s, a1)−Q

∗
τ1(s, a1)| ≥ ∥V

∗
τ2 − V

∗
τ1∥. (152)

Since τ1, τ2 ≥ τ ′, V ∗
τ2(s) = Q∗τ2(s, a1) and V ∗

τ1(s) = Q∗τ1(s, a1), and we further have that

V ∗
τ2(s)− V

∗
τ1(s) = Q∗

τ2(s, a1)−Q
∗
τ1(s, a1) ≥ ∥V

∗
τ2 − V

∗
τ1∥, (153)

and hence

∥V ∗
τ2 − V

∗
τ1∥ = Q∗

τ2(s, a1)−Q
∗
τ1(s, a1). (154)

Now from the robust Bellman equation, it holds that

Q∗
τ2(s, a1)−Q

∗
τ1(s, a1)

= ∥V ∗
τ2 − V

∗
τ1∥

= ∥rτ2 − rτ1 + γ(σ(V ∗
τ2)− σ(V

∗
τ1)∥

≥ rτ2 − rτ1 , (155)

due to the monotonicity properties of the support functions.

We note that (148) and (155) exactly match eqs. (99) and (102) in (Li et al., 2020), and hence the rest of the proof follows
similarly.

Lemma 12.12. (Lemma 12.4) Consider any δ ∈ (0, 1). Taking N ≥ O
(

log
(

54SAN2

(1−γ)δ

)
1−γ

)
, with probability at least 1− 2δ,

events (105) and (106) occur, and it holds that

∣∣∣P̂π̂,V̂
w Ṽ π̂

γ,P̂ − Pπ̂,V̂
w Ṽ π̂

γ,P̂

∣∣∣ ≤ 2

√
log( 54SAN2

(1−γ)δ )

N

√
VarPs,a

(Ṽ π̂
γ,P̂

)1 +
8 log(54SAN2

(1−γ)δ )

N(1− γ)
1. (156)

Proof. The proof is obtained similarly as Lemma 14 from (Shi et al., 2023), by only replace r(s, a) therein by E[r̃(s, a)].

For any (s, a), by the duality we have that∣∣∣(P̂π̂,V̂
w )s,aṼ

π̂
γ,P̂ − (Pπ̂,V̂

w )s,aṼ
π̂
γ,P̂

∣∣∣ ≤ max
α∈[mins Ṽ π̂

γ,P̂
(s),maxs Ṽ π̂

γ,P̂
(s)]

∣∣∣(Ps,a − P̂s,a

) [
Ṽ π̂
γ,P̂

]
α

∣∣∣ . (157)

Construction of auxiliary RMDPs with deterministic empirical nominal transitions. Recall that we target the empirical
infinite-horizon robust MDP with the nominal transition kernel P̂. We define the nominal transition kernel and reward
function as P s,u and rs,u, which are expressed as follows{

P s,u(s′|s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(·|s̃, a) = P̂(·|s̃, a) for all (s̃, a) ∈ S ×A and s̃ ̸= s,

(158)

and {
rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = E[r̃(s̃, a)] for all (s̃, a) ∈ S ×A and s̃ ̸= s.

(159)

Correspondingly, the associated robust Bellman operator is then

∀(s̃, a) ∈ S ×A : Ts,u(Q)(s̃, a) = rs,u(s̃, a) + γ inf
P∈P(P s,u

s̃,a )
PV, with V (s̃) = max

a
Q(s̃, a). (160)
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Fixed-point equivalence. Recall that Q̃π̂
γ,P̂ is the unique fixed point of the Bellman operator with the corresponding robust

value Ṽ π̂
γ,P̂ . We assert that the corresponding robust value function (Ṽ π̂

γ,P̂)s,u
∗ obtained from the fixed point of Ts,u(·)

aligns with the robust value function Ṽ π̂
γ,P̂ , as long as we choose u in the following manner:

u∗ = u∗(s) = Ṽ π̂
γ,P̂(s)− γ inf

P∈P(es)
PṼ π̂

γ,P̂ . (161)

where es is the s-th standard basis vector in RS . Towards verifying this, we shall break our arguments in two different cases.

• For state s: One has for any a ∈ A:

rs,u
∗
(s, a) + γ inf

P∈P(P s,u∗
s,a )

PṼ π̂
γ,P̂ = u∗ + γ inf

P∈P(es)
PṼ π̂

γ,P̂

= Ṽ π̂
γ,P̂(s)− γ inf

P∈P(es)
PṼ π̂

γ,P̂ + γ inf
P∈P(es)

PṼ π̂
γ,P̂ = Ṽ π̂

γ,P̂(s), (162)

where the first equality follows from the definition of P s,u∗

s,a in (158), and the second equality follows from plugging in
the definition of u∗ in (161).

• For state s′ ̸= s: It is easily verified that for all a ∈ A,

rs,u
∗
(s′, a) + γ inf

P∈P(P s,u∗
s′,a )

PṼ π̂
γ,P̂ = r(s′, a) + γ inf

P∈P(P̂s′,a)
PṼ π̂

γ,P̂

= T(Q̃π̂
γ,P̂)(s

′, a) = Q̃π̂
γ,P̂(s

′, a), (163)

where the first equality follows from the definitions in (159) and (158), and the last line arises from the definition of the
robust Bellman operator, and that Q̃π̂

γ,P̂ is the fixed point of T(·).

Combining the facts in the above two cases, we establish that there exists a fixed point (Q̃π̂
γ,P̂)s,u

∗ of the operator Ts,u∗(·)
by taking {

(Q̃π̂
γ,P̂)s,u

∗(s, a) = Ṽ π̂
γ,P̂(s) for all a ∈ A,

(Q̃π̂
γ,P̂)s,u

∗(s′, a) = Q̃π̂
γ,P̂(s

′, a) for all s′ ̸= s and a ∈ A.
(164)

Consequently, we confirm the existence of a fixed point of the operator Ts,u∗(·). In addition, its corresponding value
function (Ṽ π̂

γ,P̂)s,u
∗ also coincides with Ṽ π̂

γ,P̂ .

This equivalence exactly matches with Step 1 and Step 2 in Lemma 14 of (Shi et al., 2023), and hence the remaining part
directly follows.

13. Proof of Theorem 4.4 Part 2
The proof of Theorem 4.4 mainly follows a similar structure. We note that it is equivalent to show that

∥∥V π∗

γ,P − V π̂
γ,P
∥∥
∞ ≤ 16

√
2(1 +R)H2 log( 36SAN2

δ )

(1− γ)2N
. (165)

In order to control the performance gap
∥∥V π∗

γ,P − V π̂
γ,P
∥∥
∞, note that

V π∗

γ,P − V π̂
γ,P ≤ V π∗

γ,P − V π∗

γ,P̂ + V π∗

γ,P̂ − V
π̂
γ,P̂ + V π̂

γ,P̂ − V
π̂
γ,P ≤ V π∗

γ,P − V π∗

γ,P̂ + V π̂
γ,P̂ − V

π̂
γ,P . (166)

It is hence sufficient to bound the two terms on the RHS.
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Part A:
∥∥V π∗

γ,P̂ − V
π∗

γ,P
∥∥
∞. Towards this, recall the bound in (80):

∥∥V π∗

γ,P̂ − V
π∗

γ,P
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂π⋆,V̂
w

)−1(
P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

)∥∥∥
∞
,∥∥∥(I − γP̂π⋆,V

w

)−1(
P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

)∥∥∥
∞

}
. (167)

To control the main term P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P in (167), we first introduce the following lemma.

Lemma 13.1. For any δ ∈ (0, 1) and any fixed policy π, one has with probability at least 1− δ,

∥∥∥P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

∥∥∥
∞
≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

N
. (168)

Applying Lemma 13.1 by taking π = π⋆ gives

∥∥∥P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

∥∥∥
∞
≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

N
, (169)

which directly leads to∥∥∥(I − γP̂π⋆,V̂
w

)−1(
P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

)∥∥∥
∞

≤
∥∥∥P̂π⋆,V

w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

∥∥∥
∞
·
∥∥∥(I − γP̂π⋆,V̂

w

)−1

1
∥∥∥
∞
≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

(1− γ)2N
. (170)

Similarly, we have

∥∥∥(I − γP̂π⋆,V
w

)−1(
P̂π⋆,V
w V π∗

γ,P − Pπ⋆,V
w V π∗

γ,P

)∥∥∥
∞
≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

(1− γ)2N
. (171)

Inserting (170) and (171) back to (167) yields

∥∥V π∗

γ,P̂ − V
π∗

γ,P
∥∥
∞ ≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

(1− γ)2N
. (172)

Part B: controlling
∥∥∥V π̂

γ,P̂ − V
π̂
γ,P

∥∥∥
∞

. Similarly, we have that

∥∥V π̂
γ,P̂ − V

π̂
γ,P
∥∥
∞ ≤ γmax

{∥∥∥(I − γPπ̂,V
w

)−1(
P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂

)∥∥∥
∞
,∥∥∥(I − γPπ̂,V̂

w

)−1(
P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂

)∥∥∥
∞

}
. (173)

We introduce the following lemma which controls P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂ in (173);

Lemma 13.2. With probability at least 1− δ, one has

∥∥∥P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂

∥∥∥
∞
≤ 12

√
2(1 +R)H2 log( 36SAN2

δ )

N
. (174)

Repeating the arguments from (169) to (172) yields

∥∥V π̂
γ,P̂ − V

π̂
γ,P
∥∥
∞ ≤ 12

√
2(1 +R)H2 log( 36SAN2

δ )

(1− γ)2N
. (175)
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Finally, combining all bounds together implies that∥∥V π∗

γ,P − V π̂
γ,P
∥∥
∞

≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

(1− γ)2N
+ 12

√
2(1 +R)H2 log( 36SAN2

δ )

(1− γ)2N

≤ 16

√
2(1 +R)H2 log( 36SAN2

δ )

(1− γ)2N
. (176)

13.1. Proofs of Lemmas

Lemma 13.3. (Lemma 13.1) For any δ ∈ (0, 1) and any fixed policy π, one has with probability at least 1− δ,

∥∥∥P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

∥∥∥
∞
≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

N
. (177)

Proof. Step 1: controlling the point-wise concentration. Consider any fixed policy π and the corresponding robust value
vector V ≜ V π

γ,P −
gπ
P

1−γ (independent from P̂). We note that ∥V ∥ ≤ H as showed before. By the duality of CS sets (Shi
et al., 2023) it holds that∣∣∣(P̂π,V

w )s,aV
π
γ,P − (Pπ,V

w )s,aV
π
γ,P

∣∣∣
=

∣∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
Ps,a[V ]α −

√
RVarPs,a

([V ]α)
}

− max
α∈[mins V (s),maxs V (s)]

{
P̂s,a[V ]α −

√
RVarP̂s,a

([V ]α)
} ∣∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣(Ps,a − P̂s,a

)
[V ]α +

√
RVarP̂s,a

([V ]α)−
√
RVarPs,a ([V ]α)

∣∣∣
≤ max

α∈[mins V (s),maxs V (s)]

∣∣∣(Ps,a − P̂s,a

)
[V ]α

∣∣∣+
+ max

α∈[mins V (s),maxs V (s)]

√
R
∣∣∣√VarP̂s,a

([V ]α)−
√
VarPs,a

([V ]α)
∣∣∣ , (178)

where the first inequality follows by the maximum operator being 1-Lipschitz, and the second inequality follows from the
triangle inequality.

The first term in (178) can be directly bounded through an ϵ-net technique and Hoeffding’s inequality, which implies that
with probability at least 1− δ,

max
α∈[mins V (s),maxs V (s)]

∣∣∣(Ps,a − P̂s,a

)
[V ]α

∣∣∣ ≤ 2

√
log( 2SAN

δ )H2

N
, (179)

holds for all (s, a).

Step 2: controlling the second term in (178). Consider a fixed α ∈ [0, 1
1−γ ], applying Lemma 6 of (Panaganti & Kalathil,

2021) with ∥[V ]α∥∞ ≤ H, we get that

∣∣∣√VarP̂s,a
([V ]α)−

√
VarPs,a ([V ]α)

∣∣∣ ≤
√

2 log(2δ )H
N

(180)

holds with probability at least 1 − δ. We then introduce the following lemma, whose proof can be similarly derived as
Lemma 18 of (Shi et al., 2023).

Lemma 13.4. For any V obeying ∥V ∥∞ ≤ H, the function Js,a(α, V ) :=
∣∣∣√VarP̂s,a

([V ]α)−
√

VarPs,a
([V ]α)

∣∣∣ w.r.t. α

obeys

|Js,a(α1, V )− Js,a(α2, V )| ≤ 4
√
|α1 − α2|H.
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We then construct an ϵ-netN over [0,H] with size Nn ≤ 3ϵH (Vershynin, 2018), so that with probability at least 1− δ
SA , it

holds that for any (s, a),

max
α∈[mins V (s),maxs V (s)]

∣∣∣√VarP̂s,a
([V ]α)−

√
VarPs,a

([V ]α)
∣∣∣

≤ max
α∈[0,1/(1−γ)]

∣∣∣√VarP̂s,a
([V ]α)−

√
VarPs,a

([V ]α)
∣∣∣

(i)

≤ 4

√
ϵ

1− γ
+ sup

α∈N

∣∣∣√VarP̂s,a
([V ]α)−

√
VarPs,a ([V ]α)

∣∣∣
(ii)

≤ 4

√
ϵ

1− γ
+

√
2H2 log( 2SA|Nϵ|

δ )

N

(iii)

≤ 2

√
2H2 log( 2SA|Nϵ|

δ )

N

≤ 2

√
2H2 log( 24SAN

δ )

N
, (181)

where (i) holds by the property of the ϵ-net, (ii) follows from (180), (iii) follows from taking ϵ = H log(
2SA|N|

δ )

8N .

Inserting (179) and (181) back to (178) and taking the union bound over (s, a), with probability at least 1− δ,∣∣∣(P̂π,V
w )s,aV − (Pπ,V

w )s,aV
∣∣∣ ≤ max

α∈[mins V (s),maxs V (s)]

∣∣∣(Ps,a − P̂s,a

)
[V ]α

∣∣∣+
+ max

α∈[mins V (s),maxs V (s)]

∣∣∣√RVarP̂s,a
([V ]α)−

√
RVarPs,a

([V ]α)
∣∣∣

≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

N
.

Finally, we complete the proof by recalling the matrix form as below:

∥∥∥P̂π,V
w V π

γ,P − Pπ,V
w V π

γ,P

∥∥∥
∞
≤ max

(s,a)

∣∣∣P̂π,V
s,a V − (Pπ,V

w )s,aV
∣∣∣ ≤ 4

√
2(1 +R)H2 log( 24SAN

δ )

N
.

Lemma 13.5. (Lemma 13.2) With probability at least 1− δ, one has

∥∥∥P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂

∥∥∥
∞
≤ 12

√
2(1 +R)H2 log( 36SAN2

δ )

N
. (182)

Proof. For any (s, a), following the same arguments of (178) yields

∣∣∣(P̂π̂,V̂
w )s,aV

π̂
γ,P̂ − (Pπ̂,V̂

w )s,aV
π̂
γ,P̂

∣∣∣
=
∣∣∣(P̂π̂,V̂

w )s,a(V
π̂
γ,P̂ − g

π̂
P̂)− (Pπ̂,V̂

w )s,a(V
π̂
γ,P̂ − g

π̂
P̂)
∣∣∣

≤ max
α∈

[
mins V π̂

γ,P̂
(s)−gπ̂

P̂
,maxs V π̂

γ,P̂
(s)−gπ̂

P̂

]
∣∣∣(Ps,a − P̂s,a

) [
V π̂
γ,P̂ − g

π̂
P̂

]
α

∣∣∣+
+ max

α∈
[
mins V π̂

γ,P̂
(s)−gπ̂

P̂
,maxs V π̂

γ,P̂
(s)−gπ̂

P̂

]√R
∣∣∣∣∣
√
VarP̂s,a

([
V π̂
γ,P̂
− gπ̂

P̂

]
α

)
−
√
VarPs,a

([
V π̂
γ,P̂
− gπ̂

P̂

]
α

)∣∣∣∣∣ . (183)
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The first term in (183) can be bounded through Hoeffding’s inequality as

max
α∈

[
mins V π̂

γ,P̂
(s)−gπ̂

P̂
,maxs V π̂

γ,P̂
(s)−gπ̂

P̂

]
∣∣∣(Ps,a − P̂s,a

) [
V π̂
γ,P̂

]
α

∣∣∣
≤ max

α∈[−H,H]

∣∣∣(Ps,a − P̂s,a

) [
V π̂
γ,P̂

]
α

∣∣∣
≤ 4

√
H2

log( 3SAN3/2

(1−γ)δ )

N
. (184)

We then consider the second term of (183). Towards this, we can construct an auxiliary robust MDP (S,A,Ps,u, rs,u, γ) as
in Section D.2.2. in (Shi et al., 2023), so that V π̂

γ,P̂ − g
π̂
P̂ = Vs,u∗ − gs,u∗ for some u∗ ∈ [−H,H]. We then construct an

ϵ-net N over [−H,H], so that |u∗ − u| ≤ ϵ for some u ∈ N . Following (Shi et al., 2023), it holds that

max
α∈

[
mins V π̂

γ,P̂
(s)−gπ̂

P̂
,maxs V π̂

γ,P̂
(s)−gπ̂

P̂

]
∣∣∣∣√VarP̂s,a

([
V π̂
γ,P̂
− gπ̂

P̂

]
α

)
−
√
VarPs,a

([
V π̂
γ,P̂
− gπ̂

P̂

]
α

)∣∣∣∣
≤ 6

√
2RH2 log( 36SAN2|N |

δ )

N
, (185)

with probability at least 1− δ.

Inserting (185) and (184) back to (183), we have that with probability at least 1− δ,

∥∥∥P̂π̂,V̂
w V π̂

γ,P̂ − Pπ̂,V̂
w V π̂

γ,P̂

∥∥∥
∞
≤ 12

√
2(1 +R)H2 log( 36SAN2

δ )

N
. (186)

14. Function Approximation for Robust AMDPs
The algorithm design part is almost identical to (Zhou et al., 2024). For completeness we provide a brief discussion.

Following (Zhou et al., 2024), we consider a class of Integral Probability Metric (IPM) Uncertainty Set. Given some
function class F ⊂ RS including the zero function, the integral probability metric (IPM) is defined by dF (p, q) :=
supf∈F{p⊤f − q⊤f} ≥ 0 (Müller, 1997). Many metrics such as Kantorovich metric, total variation, etc., are special cases
of IPM under different function classes (Müller, 1997). The IPM uncertainty set is defined as Pa

s = {q : dF (q,Pa
s) ≤ R}.

We also consider the linear function class as (Zhou et al., 2024). Denote Φ ∈ RSd the feature matrix with rows ϕ(s), we set

F := {s 7→ ψ(s)⊤ξ : ξ ∈ Rd, ∥ξ∥ ≤ 1}. (187)

Without loss of generality, assume Φ has full column rank, and let the first coordinate of ϕ(s) be 1 for any s.

We then detail the algorithm designs of the two updates steps in Algorithm 2.

Algorithm 3 Robust Linear Temporal Difference (RLTD)
1: Input: π,K
2: Initialization: θ0, s0
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ak ∼ π(·|sk), yk+1 according to Psk,ak

, and sk+1 from yk+1

5: Update wk+1 = θk + αkϕ(sk)
[
(T̂πVθk)(sk, ak, yk+1)− ϕ(sk)⊤θk

]
6: end for
7: Output: θK

We adopt the following standard assumption from robust RL studies.
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Algorithm 4 Robust Q-Natural Policy Gradient (RQNPG)
1: Input: θ, η, w,N
2: Initialization: u0, s0
3: for n = 0, 1, . . . , N − 1 do
4: Sample an ∼ πw(·|sn), yn+1 according to Psk,ak

and determine sn+1 from yn+1

5: Update un+1 = un + ζnϕ(sn, an)
[
(T̂πVθ)(sn, an, yn+1)− ϕ(sn, an)⊤un

]
6: end for
7: Output: w + ηuN

Assumption 14.1. There exists β < 1 such that

γqas,s′ ≤ βPa
s,s′ ,∀qas ∈ Pa

s . (188)

This assumption is widely adopted in function approximation studies in robust RL, e.g., (Tamar et al., 2014; Xu & Mannor,
2010; Zhou et al., 2024), to ensure the solvability of function approximation.

We then provide the formal statement of Theorem 5.1.

Theorem 14.2. Set geometrically increasing step sizes ηt ≥ S2H2

ϵSH−ϵ2 η
t−1 for each t = 1, 2, . . . , T . Set N,K = O(Hϵ−2)

in Algorithm 3 and Algorithm 4, and T ≥ H logH
ϵ , then

g∗P − E[gπT

P ] ≤ C
(
1− ϵ

HS

)T−1

+
MH2

ϵ2
ϵ2e,

where C is some constant, and ϵe = ϵstat + ϵbias measures the approximation error .

Proof. To apply Theorem 1 of (Zhou et al., 2024), it is assumed that for initial state distribution ρ, there exists M such that
supκ∈P ∥

d∗,κ
ρ

ρ ∥∞ ≤M <∞. We note that since gπP is a constant and does not depend on the initial distribution, we can
simply set uniform initial distribution ρ = ( 1

S , ...,
1
S ), in which case M = S.

By applying Theorem 1 of (Zhou et al., 2024) with γ = 1− ϵ
H , it holds that

V ∗
γ,P − E[V πT

γ,P ] ≤
(
1− ϵ

HS

)T−1

C +
SH2

ϵ
ϵ2e. (189)

Note that ϵe = Õ( 1√
K

+ 1√
N
) when omitting the critic error, thus setting N,K = O(SHϵ−2) implies that

V ∗
γ,P − E[V πT

γ,P ] ≤
(
1− ϵ

HS

)T−1

C + SH. (190)

Note that if we set T large enough so that
(
1− ϵ

HS

)T−1 ≤ H, which can be satisfied if T ≥ H logH
ϵ , then πT is an

H-optimal policy for the robust DMDP. Combining the above with Theorem 3.4 completes the proof.

14.1. Details for Experiments

To expand on our results in Section 6, we provide additional detail here. In our experiments, for different discount factors γ,
we run the corresponding RNAC algorithm (Zhou et al., 2024) to learn a robust policy, and then we estimate the robust
average reward of the learned policy by calculating the average reward under environment perturbations. Experiments were
performed in two custom perturbed MuJoCo environments, Walker2d-v3 and Hopper-v3, using the integral probability metric
(IPM) uncertainty set (Zhou et al., 2024). We evaluate the performance of our algorithm with different perturbation levels,
and the results, including one standard deviation from the mean, are shown below in Figure 10 for varying perturbation levels.
These experimental results align with our theoretical results, and thus verify the scalability of combining our framework
with function approximation.

To show that our framework does not result in high computational costs regarding varying reduction factors, we show the
execution time of our method using these factors. As can be seen in Tables 1 and 2, even with a very large value for γ, the
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Figure 10. Scalability under Walker2d-v3.

execution time is similar, thus showing that our method is also computationally efficient. Similar to how we showed in
Section 6, we show additional results comparing our robust reduction method to that of the non-robust reduction method
in Figures 11 and 12 for neural network approximation in the Walker2d-v3 and Hopper-v3 environments, respectively.
Additionally, while the focus of this work is on distributional robustness, we hypothesize that our reduction framework should
work under the adversarial robustness formulation. Due to this idea and inspired by (Zhang et al., 2020), we conducted a
preliminary experiment on (discounted) adversarial robust RL in the Humanoid-v4 environment using increasing factors of
γ. As our result in Figure 13 shows, the reward under attack increases as γ increases, indicating the potential to develop a
similar reduction framework for this setting.

Table 1. Computational efficiency under the Walker2d-v3 environment.

PHASE γ=[0.9, 0.99, 0.999, 0.9999, 0.99998, 0.999980448383733]

TRAINING 603.92, 630.72, 690.33, 706.32, 711.70, 676.36
EVALUATION 5.93, 25.60, 10.03, 9.16, 10.44, 6.05

Table 2. Computational efficiency under the Hopper-v3 environment.

PHASE γ=[0.9, 0.99, 0.999, 0.9999, 0.99998, 0.9999925319260162]

TRAINING 579.41, 634.98, 678.29, 682.53, 686.92, 683.56
EVALUATION 6.42, 37.80, 7.15, 5.80, 7.10, 6.84

Figure 11. Neural network approximation under Walker2d-v3.
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Figure 12. Neural network approximation under Hopper-v3.

Figure 13. Preliminary discounted adversarial robust RL under Humanoid-v4.

15. Model-Free RL for Robust AMDPs
15.1. Multi-Level Monte Carlo Robust Q-Learning

One potential way to improve scalability is to design model-free algorithms. In contrast to the model-based method in
the last section, model-free methods do not store the transition kernels and aim to learn the optimal policy directly. To
illustrate the applicability of our framework and ensure it’s scalability, we develop two model-free algorithms that can be
applied efficiently for large-scale problems. First, we introduce an algorithm that combines our reduction framework with
the multi-level Monte Carlo (MLMC) technique (Liu et al., 2022b; Wang et al., 2023e; Blanchet & Glynn, 2015; Blanchet
et al., 2019; Wang & Wang, 2022), and provide a theoretical analysis of its sample complexity. We further design another
mini-batch model-free robust Q-learning algorithm for robust AMDP in Section 15.2. Both algorithms do not require model
estimation and storage, making them scalable for robust RL with average reward.

The MLMC approach is widely used to construct an unbiased estimator of the robust Bellman operator, which is challenging
due to its non-linear dependence on the nominal kernel9 (Wang et al., 2023e). It relies on a geometric distribution with
parameter Ψ ∈ (0, 1), and requires 2N+1 samples at each step, with N ∼ Geom(Ψ), to construct an unbiased estimator of
σPa

s
(V ).

By adapting the MLMC estimator with our reduction-based framework, we propose the MLMC robust Q-learning algorithm
for robust AMDPs, given in Algorithm 5.

Our algorithm is hence the first model-free one for robust RL under average reward, along with finite sample analysis.
These results demonstrate the broad applicability of our reduction-based framework, enabling the direct integration of any
model-free algorithm designed for robust DMDPs to yield algorithms for robust AMDPs with sample complexity guarantees.

9Specifically, the support function σPa
s
(V ) is not linear in Pa

s .
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Algorithm 5 MLMC robust Q-learning for robust AMDPs

1: Input: A generative model of (S,A,P, r), uncertainty radius σ, robust bias span H, accuracy ϵ, Ψ = 0.5, threshold
Nm

2: Initialization:Q1 ← 0, s0
3: γ ← 1− ϵ

H , T ←
1

H2(1−γ)5

4: for t < T do
5: for all s ∈ S, a ∈ A do
6: V (s)← maxaQ(s, a)
7: Sample N ∼ Geom(Ψ)
8: N ← min{Nm, N}
9: Sample 2N+1 samples following Pa

s

10: Obtain the multi-level estimator according to (191)
11: Q(s, a)← r(s, a) + γσ̂Pa

s
(V )

12: end for
13: end for
14: π̂γ(s)← argmaxaQ(s, a),∀s
15: Output: π̂γ

As a result, our framework is scalable to large-scale problems while maintaining high data efficiency.

The MLMC operator is based on a geometric distribution with parameter Ψ ∈ (0, 1). For any s, a, we first generate a
number N from a geometric distribution with parameter Ψ ∈ (0, 1). Then, we take action a at state s for 2N+1 times, and
observe r(s, a) and the subsequent state {s′i}, i = 1, . . . , 2N+1. We divide these 2N+1 samples into two groups: samples
with odd indices, and samples with even indices. We then individually calculate the empirical distribution of s′ using the
even-index samples, the odd-index samples, all the samples, and the first sample: P̂a,E

s,N+1 = 1
2N

∑2N

i=1 1s′2i , P̂a,O
s,N+1 =

1
2N

∑2N

i=1 1s′2i−1
, P̂a

s,N+1 = 1
2N+1

∑2N+1

i=1 1s′i , P̂a,1
s,N+1 = 1s′1

. Then, we use these estimated transition kernels as nominal

kernels to construct four estimated uncertainty sets (with the same uncertainty radius): P̂a,E
s,N+1, P̂

a,O
s,N+1, P̂a

s,N+1, P̂
a,1
s,N+1.

The multi-level estimator is then defined as

σ̂Pa
s
(V ) ≜ σP̂a,1

s,N+1
(V ) +

∆N (V )

pN
, (191)

where pN = Ψ(1−Ψ)N and

∆N (V ) ≜ σP̂a
s,N+1

(V )−
σP̂a,E

s,N+1
(V ) + σP̂a,O

s,N+1
(V )

2
.

Our threshold-MLMC estimator is constructed as follows

σ̂Pa
s
(V ) ≜ σP̂a,1

s,min{Nm+1,N+1}
(V ) +

∆min{N,Nm}(V )

pmin{N,Nm}
.

The formal statements on the sample complexity are as follows. The proofs are straightforward by combining our framework
with the results in (Wang et al., 2024c).
Theorem 15.1. (1). For the TV-defined uncertainty set, set Nm = 2 log T

log 2 and the step size as βt = 2 log T
(1−γ)T . Then, the output

of Algorithm 5 is an ϵ-optimal policy for the robust AMDP if

N ≥ Õ
(
SAH3

ϵ5

)
. (192)

(2). For the Chi-Square-divergence-defined uncertainty set, set Nm = 2 log T
log 2 and step size as βt = 2 log T

(1−γ)T . Then the output
of Algorithm 5 is an ϵ-optimal policy for the robust AMDP if

N ≥ Õ
(
SAH3

ϵ5

)
. (193)
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(3). For the KL-divergence-defined uncertainty set, set

Nm = max

{
2 log T

log 2
,
log(1 + p2∧ log(2S) log T )

log 2

}
,

where p∧ is the minimal positive entry of the nominal kernel P. Then, the output of Algorithm 5 is an ϵ-optimal policy for
the robust AMDP if

N ≥ Õ
(
SAH3

p2∧ϵ5

)
. (194)

15.2. Mini-Batch Robust Q-Learning with Variance Reduction

In this section, we present a model-free mini-batch Q-learning algorithm. The algorithm is derived from the robust DMDP
algorithm (Wang et al., 2023c), which employs a variance reduction technique to improve the sample complexity. When
combined with our framework, we can also achieve improved sample complexity for robust AMDPs. The details can be
found in Algorithm 6.

Algorithm 6 Mini-batch robust Q-learning for robust AMDPs

1: Input: A generative model of (S,A,P, r), uncertainty radius σ, robust bias span H, accuracy ϵ, batch size n, and
behavior policy π

2: Initialization: Q1 ← 0, s0
3: Set γ ← 1− ϵ

H
4: for t < T do
5: Vt(s)← maxaQt(s, a),∀s
6: Sample at ∼ π(·|st)
7: Sample n samples from Pat

st and obtain empirical uncertainty set P̂at
st

8: λt ← 1
1+(1−γ)t

9: Qt+1(st, at)← (1− λt)Qt(st, at) + λt(r(st, at) + γσP̂at
st
(Vt))

10: Sample the next state st+1 ∼ Pat
st from the generative model

11: end for
12: π̂γ(s)← argmaxaQT (s, a),∀s
13: Output: π̂γ

We then derive the sample complexity of the mini-batch robust Q-learning algorithm, as stated in the following theorem.

Theorem 15.2. Consider the uncertainty set defined by the KL divergence. If we set10

T = Õ
(
SAH2

ϵ2

)
, n = Õ

(
H
ϵ

)
(195)

in Algorithm 6, then the output policy π̂γ of Algorithm 6 is an ϵ-optimal policy for robust AMDP.

The result shows that the mini-batch robust Q-learning requires Õ
(

SAH3

ϵ3

)
samples to obtain an ϵ-optimal policy for

the robust AMDP. This improves the sample complexity for our MLMC robust Q-learning algorithm and represents the
state-of-the-art in robust AMDP model-free sample complexity.

15.3. Numerical Experiments

To exemplify the scalability of our framework for robust AMDPs, we present concrete proof of convergence of our model-
free MLMC robust Q-learning algorithm in figure 14. We first created the uncertainty set using total variation. Then for each
γ value we wanted to test, we generate a number N from a geometric distribution with Ψ ∈ (0, 1) and take action a at state

10We omit the complex dependencies of T and n on other parameters, including the uncertainty set radius, to highlight the potential of
our framework.
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s for 2N+1 times in order to learn the optimal policy under the robust discounted DMDP. Once we have the ϵγ-optimal
policy, π̂γ , we then applied algorithm 1 from (Wang et al., 2023d) to evaluate the robust average reward for each policy.
This experiment was independently conducted 5 times, where we plot the mean of the estimated robust average reward for
every γ factor along with 1 standard deviation above and below the mean in figure 14. Following this, we then implemented
algorithm 2 from (Wang et al., 2023d) in order to find the optimal robust average reward. By combining our reduction-based
framework with the multi-level Monte Carlo (MLMC) technique (Liu et al., 2022b; Wang et al., 2023e; Blanchet & Glynn,
2015; Blanchet et al., 2019; Wang & Wang, 2022), we are able to prove our theoretical results in showing that our model-free
algorithm converges to the optimal robust average reward.

Figure 14. Model-Free Experimental Results Under Total Variation
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