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ABSTRACT

Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-
posed problem. Well-calibrated distributions of possible poses can make these
ambiguities explicit and preserve the resulting uncertainty for downstream tasks,
thus providing the necessary trustworthiness in safety-critical domains. This study
shows that multi-hypothesis pose estimation methods produce miscalibrated dis-
tributions. We identify that miscalibration can be attributed to the optimization
of mean per joint position error (MPJPE). In a series of simulations, we show
that minimizing minMPJPE, the MPJPE of the best hypothesis, converges to
the correct mean prediction. However, it fails to correctly capture the uncertainty,
hence resulting in a miscalibrated distributio

The task of estimating the 3D human pose (HPE) Tuple 1: Comparison of different multi-

from 2D keypoints‘, known as lifting (Martinez hypothesis 3D human pose estimation meth-
et all 2017), is an ill-posed problem. Therefore, ods on the Human3.6M dataset and the corre-

some methods generate multiple hypotheses of 3D gponding expected calibration error (ECE).
poses to account for these ambiguities (L1 & Lee,

2019} [Sharma et all 2019} Biggs et all 2020; Method H36M ) ECE
Oikarinen et al.,[2020; [Li & Leel 2020; [Kolotouros Martinez et al|(2017) 62.9
- = Zhao et al.|(2019) 60.8
et al., 2021; [Wehrbein et al., 2021; Holmquist & Gowssian (mInMPIPE) P o
| - v aussian (min N R
‘Wandt, 2022; Plerzchlewlgz et al.., 2022). Many Gaussian (NLL) 0.1 0.07
of these approaches implicitly estimate the condi-

. . . . E Sharma et al.|(2019) 46.7 0.36
tional distribution p(X | C) of 3D poses X giventhe £ [Gikarmen et al (2020) 462 016
2D keypoints C through sample-based methods. = |Wehrbein etal](2021) 443 0.18
Since direct likelihood estimation in sample-based = [Kolotouros et al|2021) (GT) ~ 37.1 0.07

b4 Pierzchlewicz et al.| (2022) 53.0 0.08

methods is usually not feasible, different sample-
based evaluation metrics have become popular. We
show that minMPJPE, the most commonly used metric, encourages overconfident distributions
rather than correct estimates of the true distribution. As a result, it does not guarantee that the es-
timated density of 3D poses is a faithful representation of the underlying data distribution and its
ambiguities.

1 MPJPE PROMOTES MISCALIBRATION

The inherent ambiguities of the lifting problem result in a posterior distribution p(X | C) that
captures the unavoidable uncertainty. For the approximate posterior ¢(X | C) to be calibrated
means it should assign the same probability to an event as the true posterior (Brier, [1950). [Naeini
et al.| (2015) propose to measure the expected calibration error (ECE) which approximates the ex-

!Code is available at https: //github.com/sinzlab/cgnf
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Figure 1: a) Standard deviation o of a Gaussian distribution that minimizes minMPJPE for
different numbers of samples and dimensions. The true o* = 0.5 (black line), underconfident
o > o (blue), overconfident o < o* (pink). The human pose equivalent distribution (black
point, 45 dimensions, 200 samples) compared to an oracle distribution (with true i and o) in terms
of minMPJPE and NLL. b) (left) Gaussian noise baseline schematic. Optimizes two objectives
1) minMPJPE and 2) NLL between the predicted pose distribution X and the ground truth 3D
pose x*. The SimpleBaseline model weights are frozen. Right, comparison of the performance on
minMPJPE and ECE when optimizing for minMPJPE and NLL.

pected value of the absolute difference between the predicted probability and the true probability:

ECE = % ij:l |gn, — pn|, where lower ECE indicates a better-calibrated distribution. Here, we
provide an algorithm for computing ECE in the pose estimation domain (See Section[A3).

We evaluate the approximate posterior achieved by minimizing minMPJPE for samples from a
known true posterior. We consider a true posterior p = A (u*,0*2I) with known mean and vari-
ance and an approximate posterior ¢ = N(u*,0?I). We optimize o for different numbers of
dimensions and hypotheses such that minMPJPE is minimized. Minimizing minMPJPE leads to
a miscalibrated distributions (Fig. ma). In the HPE domain (black point in Fig. ma) the minMPJPE-
optimal distribution (Miscal.) is miscalibrated and has a high negative log-likelihood (NLL), as
opposed to the NLL-optimal distribution (Oracle) For analitical evidence see sections[A.T|and[A.2]

2 GAUSSIAN NOISE BASELINE ON HUMAN 3.6M

To evaluate the conclusions of section[T]in a real-world scenario, we use a Gaussian model that can
be optimized for both minMPJPE and NLL on the Human3.6M dataset (Catalin Ionescu}, 2011}
Tonescu et al. 2014) (for data details see sec. [B). We train an additive Gaussian noise model on top
of the pre-trained SimpleBaseline (]Martinez et al.l, |2017I) We generate IV pose hypotheses X for M
observed 2D poses C according to X,, ,,, = SimpleBaseline(C,,,) + oz, where only the variance
o is a trainable parameter, while the mean is fixed and z ~ N (z; 0, I) (Fig.[Ib). We optimize for
either minMPJPE or NLL. We observe the minMPJPE model to be overconfident with lower
minMPJPE than the better-calibrated NLL model. Conversely, equally accurate but calibrated
methods can seem inferior due to minMPJPE measuring not only accuracy, but also precision.

We furthermore, test the calibration of a few state-of-the-art multi-hypothesis methods and find that
all the methods that optimize towards a sample-based objective are miscalibrated while, optimizing
for NLL provides a well-calibrated distribution (Tab. [T).

3 CONCLUSION

In this study, we provide evidence that the focus on achieving the lowest minMPJPE in multi-
hypothesis 3D pose estimation is leading to miscalibrated distributions. We identify that optimizing
for distribution-based objectives like NLL leads to well-calibrated distributions. We believe that
our findings will be useful for identifying and mitigating miscalibration in multi-hypothesis pose
estimation and will lead to more robust and safer applications of multi-hypothesis pose estimation.
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A  METRICS

A.1 MEAN PER JOINT POSITION ERROR

A popular optimization metric is the MPJPE. While this metric is especially popular in single-pose
estimation methods, it has also been used in various forms in multi-hypothesis methods. Optimizing
this metric causes the distribution of poses to be overconfident. We show this for a simple one-
dimensional distribution, the generalization to the multi-dimensional case is straightforward. Given
samples z ~ p(x|c) from a data distribution given a particular context ¢, such as keypoints from a
image, consider an approximate distribution ¢(:|c) supposed to reflect the uncertainty about x|c.

This below objective is equivalent to the mean position error for a single joint. Note that x and & are
conditionally independent given ¢, i.e. x_L&|c. The objective can then be expanded as follows:
~\2
L =Euorpolo)inailo)e (7 — )]
= Ec [Ez,ﬂc [(LC — e + He — fi’)2”

=E. Var[m | C] _2Em,i|c [({,C - Mc)(‘% - Mc)] + Ei\c [(‘% - MC)Q:I
—_———

indep. of ¢

= const. — 2E; |Ey). [(z — pe)] Ezc (& — pe)] + Eze [(j: - /“LC)Q]
T
= const. + Ec [Ez. [(2 — pe)?]] >0
The expectation in the final line is non-negative and can be minimized by ¢(Z|c) = §(& — pe),

i.e. setting £ = . and shrinking the variance to zero. This means that ¢ would be extremely
overconfident.

A.2 minMPJPE CONVERGES TO THE CORRECT MEAN

Consider 1D samples z* from a data distribution p(z) and an approximate Gaussian distribution
q(x) with parameters 1 and 0. We sample N hypotheses from ¢(x) and minimize the minMPJPE
objective:

minMPJPE = Ey.) |Ey) [min(z* — o — 02:)°|
Consider z; as the z; sample which minimizes the expression for the j-th data sample z7.
minMPJPE = E(.) [E,«) [(¢* — p — 02])?]]
Thus the derivative can be computed to be
o0 % *
om minMPJPE = —2E,.) [E,@) [¢* —p—02z]]] =0
= Ep(a) [27] = 1 = Eq(z) [4]]
| can be approximated by a sigmoid function S : R — [—1,1]

Simulations indicate that E, . [z”‘f

J
with S(0) = 0.
Eyx) 2] = S (Bp) (2] = 1) - Clo, N)
where C(c, N) is a scalar scaling value dependent on o and the number of hypotheses. Thus the
root of the derivative can be computed to be:
p=Epm) [27]
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A.3 QUANTILE CALIBRATION FOR POSE ESTIMATION

Algorithm 1 Quantile calibration for pose estimation
for each X, and C,,, do
draw N hypotheses X | C,,
Xk ¢ CTM(X. ) > Central Tendency Measure
Enmk < [ Xnmk — X ol |2
‘bm(s) <~ CDF(&';,m,k)
ErrL,k — ||Xrn,k - Xm,k
end for o
Wk (@) < 37 Lmet Lo (er, ) <a
w(q) «+ median(wg(q))
ECE = & X 4co (@) —q|

|2

Quantile calibration (Song et al., 2019) defines a perfectly calibrated distribution as one for which
ground-truth values X* fall within the g-th quantile ¢% of the time. However, for high dimensions
estimating whether a point is contained within a given quantile is non-trivial. We, therefore, propose
to simplify the problem by projecting to the univariate space of squared errors € from the central
tendency X of N hypotheses X conditioned on 2D poses C with K keypoints. We then compute
ECE in the space of € over the set of quantiles Q € [0, 1] (Algorithm . As a measurement of
central tendency we choose the median statistic, which is more robust to outlier samples. However,
in practice, the choice of median vs. mean results in minor differences in the calibration outcomes
as we show in sec.[A. 4

A.4 IMPACT OF THE CENTER TENDENCY MEASURE ON EXPECTED CALIBRATION ERROR

The choice of center tendency measure should be considered when computing the expected cali-
bration error. Therefore on a subset of the models presented in table [1| we compare the effect of
choosing 3 different reference points. 1) The median of the samples 2) the mean of the samples and
3) the mode of the samples. We showcase the results in table[2] We observe that the use of median

Supplementary Table 2: Comparison of different reference points definitions on the resulting ECE
score. In bold we mark the method that under the particular reference point has the lowest ECE.

Method | Median Mean Mode

Sharma et al.| (2019) 0.36 0.36 0.14
Wehrbein et al.[(2021) | 0.18 0.18 0.08

in contrast to mean has little to no effect on the computation of ECE. Using the mode as a reference
point results in generally smaller values of ECE.

B DaAta

We use the Human3.6M Dataset (H36M) on the academic use only license (Catalin Ionescul |2011;
Ionescu et al.2014)) which is the largest dataset for 3D human pose estimation. It consists of tuples
of 2D images, 2D poses, and 3D poses for 7 professional actors performing 15 different activities
captured with 4 cameras. Accurate 3D positions are obtained from 10 motion capture cameras and
markers placed on the subjects. We evaluate the models on every 64th frame of subjects 9 and 11.
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