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Fig. 1: (a) First-person video of human demonstrations is used to train a network to predict spatial affordances, which we
define as locations where a task may take place in the current environment. (b) When a robot is navigating in the same
environment, it uses these predictions to find likely locations for various tasks. (¢) The robot can then navigate to one of these
locations to accomplish a given task (orange dot), or avoid a location to give space for humans engaged in this task (blue

circle) depending on the situation.

Abstract—We investigate the problem of spatial affordance
prediction for egocentric task-driven navigation, that is, predict-
ing locations in a environment where a given task is likely per-
formed, using a single egocentric image and a natural language
task query. Our end-to-end model encodes environment context
and task semantics by fine-tuning a vision-language framework
trained on egocentric human demonstrations from large-scale
cooking activity videos. The resulting model outputs spatial
regions representing task affordances relative to the egocentric
camera pose. The resulting predictions outperform a nearest-
neighbor baseline based on pretrained vision-language similarity,
particularly on novel tasks and viewpoints. We incorporate
these spatial affordance predictions for two robotic navigation
applications: one, localizing goals for task completion, and two,
defining task-based obstacles to avoid disturbing humans in a
shared environment.

I. INTRODUCTION

Egocentric video offers a unique view of human activities,
capturing the tasks of daily life directly from an individual’s
perspective. This first-person viewpoint naturally aligns with
the perspective of a robot, suggesting that the richness of
human demonstration can be leveraged for various robotic
tasks. To this end, large ego-video datasets of human activities
have been released (7, [14] [15]], helping drive research in
areas of human activity understanding and robotics. Egocentric
data is especially valuable for applications to navigation, as
the first-person camera does not restrict the camera-wearer’s
motion, allowing the capture of a person’s natural movement
around their environment.

Existing foundation models often used in robot perception,
such as Vision-Language Models (VLMs), typically focus on

representing the visible features of a scene, supporting queries
relating to scene contents or object localization. While this as-
pect of VLMs is important for robotics, it’s equally important
to understand the meaning of the objects and space within
the view; a VLM for robotics should not only understand
“this is what I see,” but also “what can be done here and
there”. Inspired by the need for this capability, we introduce
the problem of spatial affordance prediction — identifying
the locations in an environment where a given task can be
completed.

We conceptualize this problem as first understanding the
scene context from an ego-image, and then combining this
context with a given task in order to predict the likely region
where a person performing the task may be. We propose a deep
end-to-end approach which solves both problems simultane-
ously. The resulting network is trained on a large set of tasks
from a variety of cooking activities and kitchen environments
and is able to predict new spatial task affordances given natural
language descriptions.

In this work, we show how to incorporate spatial affordance
prediction to improve robot navigation through two practical
use cases:

o Goal Localization. Given a task specified in natural
language (and the current egocentric robot perspective)
compute the location in the environment where the task
is likely to be completed.

« Task Obstacles. Given a set of tasks specified in natural
language (and the current egocentric robot perspective)
compute the locations a robot should avoid, to avoid



disturbing humans in potentially busy areas.

When deployed to new tasks from unseen views in
known environments, our resulting system outperforms a non-
parametric baseline. Because our system localizes tasks within
a known environment, we propose its use in conjunction
with motion planning strategies such as RRTs [20] or point
navigation [44] for robot deployment.

II. RELATED WORK

Deep learning has proven to be a powerful paradigm for
understanding scene geometry from images, both in multi-
image scene reconstruction as seen in NeRFs [29], and single-
frame third-person body pose prediction [3], first-person navi-
gation [34, 137, |33]], and first-person body pose prediction [42]]
tasks. Beyond geometry, semantic reasoning through natural
language over images has recently been enabled via Vision-
Language Models (VLM) such as CLIP [38], BLIP [22],
and EgoVLP [23]. However, these models on their own have
limited spatial understanding [11]].

Egocentric vision is a common representation for robots
due to the prevalence of on-board cameras. As such, methods
have been developed to leverage egocentric data for robotic
tasks such as understanding activities [24} [12]], shaping be-
havior [30]], inferring goal locations [8], and understanding
manipulation affordances [16]. To support these applications,
specialized large-scale datasets of egocentric human demon-
strations have been proposed, such as the Ego4D dataset [14]],
and the EgoExo04D dataset [15].

Recent work seeks to align geometry and semantics to
enable robust navigation of mobile agents. Reinforcement
learning approaches seek to understand how to reason about
the environment given a pre-defined task from a robot’s
perspective [44] 28, |17, 35, (13} 21, 40]. CLIP has been
integrated into mobile robot policies to allow natural lan-
guage task augmentation [26 [10, 40]. VLMs have also been
used to create flexible semantic maps a mobile robot can
query using natural language, such as VLMaps [19], NLMap-
SayCan [6]], CLIP-Fields [39], and 3D-LLMs [18], using e.g.
an RRT [20]. Particularly relevant to our proposed work are
Vision-Language Navigation approaches [1, 136, 41]. These
models seek enable language-conditioned robot navigation in
real environments, but unlike our approach, focus on unknown
environments where access to a navigational map is infeasible.

A closely related problem to spatial affordances (where a
person stands for a task) is manipulation affordances (how to
manipulate an object for a task). Manipulation affordances can
be estimated from image segmentation [4, 9], from 3D object
or scene representations [43| 27], or learned end-to-end [235].
Affordances can also be learned from human demonstration
as in the Vision-Robotics Bridge [2] and its text-based exten-
sion [46] which learn to represent image-based affordances
from egocentric human demonstrations, where affordance is
defined as contact points and trajectories for robots to interact.
R3M [31]] uses egocentric human demonstrations to create a
semantic representation well-suited as a foundational model
for downstream robot tasks.

III. AFFORDANCE LOCALIZATION

Given a task, our aim is to predict the locations where a
person would be to execute the task. We refer to these locations
as the environment’s “spatial affordance” for the task.

To identify spatial affordances, we assume human demon-
strations define a true per-task distribution D, the region where
a person performed a task, within an environment £. These
distributions can be extracted from an ego-video demonstration
V, defined by camera poses X under tasks 7. Given a first-
person image I within £ and a natural language task query q,
our goal is to predict the relative task distribution D, such that

D(q,I) = T(D(q,€)). (D)
Importantly, because the image I is egocentric, each image
carries with it an implied location within the camera’s envi-
ronment, explicitly represented by the transform 7.

A. Model Architecture

We model the affordance prediction task with an encoder-
decoder style deep neural network architecture, first encoding
the egocentric image and task query as vectors ey and ef,
respectively, which individually capture the environmental and
task semantics, which are then decoded into the task’s location
using a decoder A.

Environmental Context and Image Localization To encode
the egocentric image I at the robot’s current viewpoint, we
can use pre-trained, foundational image models that have
demonstrated a strong ability to capture the image’s semantic
information, such as CLIP [38]]. However, such image encod-
ing models typically capture the semantics of what is being
viewed in the image rather than encoding the spatial affordance
the image suggests. To address this, we finetine a pre-trained
image encoder E'y, on ego-video demonstrations, intending to
capture the relative spatial affordance given the image through
the envoding vector e, = Ey (I).

Task Encoding Unlike images, which need additional
learned context, tasks described in natural language can
be encoded directly with pretrained language models such
as CLIP [38]. A task query is tokenized then passed to a
pre-trained language encoder FE, to obtain the encoding
vector e¢p = Er(q). Unlike Ey, Ey, is frozen during training,
as learning the context on just the image information allows
the network to learn environmental context separate from
downstream language task queries.

Affordance Prediction Because a person may naturally move
around as they accomplish a given task, each task may have
a small range of positions where it was seen accomplished.
We therefore represent the observed distribution of a task as
being a normal distribution:

Ne(pe, Ee) = D(t) )

capturing the likely location for a person for that task across
all the frames the task occurs.

The encoding vectors ey, and e, represent what is expected
to be around the viewer, and what the goal task is, respectively.
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Fig. 2: Model Architecture. Given video demonstration, V, of an activity containing several tasks, our model is trained over
pairs of tasks and images selected from different times in the video. For example, a task at frame “A” is encoded via a (frozen)
pretrained language model E;, and combined with an encoding of an image from frame “B”. Images are encoded with a
pretrained vision model Fy (unfrozen). This pair of encodings is finally passed to an affordance network Ay which predicts
an region where task “B” should take place relative to frame “A”. The loss function Lp rectifies this position and compares

it to the ground truth global position from task “A”.

Taken together, this should provide sufficient information
for spatial affordance prediction within the environment. An
affordance prediction network, Ay, is trained which takes as
input these encoding vectors and produces a final 3D task
region:

Ag(eyv,ee) =N (o, Xo) 3)

whose mean is a 3D position and with 2D uncertainty con-
strained to lie along the ground plane with zero covariance
(isotropic).

B. Loss Function

We can directly optimize Equation [I] by minimizing the
difference between the task’s predicted distribution and the
target distribution. To ensure the predicted regions N are
metrically meaningful, we use the Fréchet Distance, dp.
Because affordance predictions happen in an egocentric frame,
the target task region must be rectified before the Fréchet
Distance can be computed. We align the target task in the
coordinate frame of the query image through the transform
Ry, and compute the error over all image-task pairs as follows:

Lr= Y > dr(Rx(Ne), N), )

x,IeEV teT

computed over all videos V. The training scheme is shown
alongside the architecture in Figure 2]

C. Training

We curated a dataset consisting of egocentric videos of
people demonstrating cooking tasks from the EgoExo4D
dataset [13]], where each task is a keystep from a larger cooking
activity. For example, the activity “Making Noodles” includes
tasks such as “Wipe hands with a kitchen towel” and “Add

soy sauce to the noodles in the skillet.” An LLM (GPT-4 [32])
was used during training to augment each task description with
several rephrasings which preserve the meaning of the original
task. When computing keysteps for training we only consider
frames where the camera has a velocity below 0.1 m/s. To
stabilize our predictions in our egocentric coordinate frame,
we also correct for pitch and roll of the camera.

For the pretrained vision and language encoding networks,
Ey and Er, we used pretrained CLIP [38] as it has been
shown successful in a wide variety of language tasks. The
affordance predictor network Ay is a 4-layer MLP with 1M
trainable parameters, each with layer normalization.

We randomly split the dataset into training and testing tasks
(80%/20%), and a training and testing image set (consecutive
10% held out), and train on a single V100 GPU and 10 CPU
cores. Our base model was trained for 150 epochs over 7 hours
of training.

D. Non-parametric Baseline

An alternative to our proposed approach is to represent the
entire scene either directly by retaining all images, or through
a learned field representation. However, without additional
training to consider affordances, these methods will still have
limitations despite their larger data requirements. As a rep-
resentative baseline, we introduce a nearest-neighbor based
approach which leverages pretrained CLIP as a task-
similarity measure that can be applied over all images cap-
tured per environment in the dataset. This baseline approach,
referred to as CLIP-NN, takes a CLIP text encoding of the task
description q, and a CLIP image encoding of every image in
the demonstration V. We can predict the best fitting image as
the frame c for which the cosine encoding similarity between
the egocentric image and the task query is maximized. The
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Fig. 3: Affordance prediction from the baseline approach
(blue) and our proposed approach (red) on two task queries.
Left: The spatial predictions along with the ground truth as
a yellow star. On both queries, our proposed method predicts
the correct locations while the baseline predicts a pose far
away. Right: The image/location pair with the highest CLIP
similarity. These capture elements of the scene (e.g., onions or
scallions) but do not capture the full task and miss the context
of the cutting board and countertop, which are needed for the
actions of ‘chopping’ or ‘acquiring’.

task position prediction is then x., the corresponding position
of the camera-wearer at time c. That is, we predict the location
where the view best matches the task as evaluated by the
CLIP encoding similarity. To compute the region uncertainty,
we compute per-task uncertainty from all task positions, and
average over all tasks in V.

An immediate limitation of the baseline, and similar ap-
proaches based directly on CLIP descriptions, is that CLIP
only captures the content of the image itself, rather than
information about the kinds of tasks and activities that the
scene affords, as shown in Figure @

This affordance grounding capability can be directly mea-
sured through a multiple-choice paradigm, where the model
is used to predict which of three randomly selected task
queries is most likely to take place at a given image, either
the highest CLIP similarity for the baseline, or the lowest
predicted distance for our method. The CLIP-NN baseline
only does slightly better than random guessing (37%), while
our model has nearly double the performance of the baseline
(63%) as seen in Figure @] We hypothesize this is due to
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Fig. 4: Affordance grounding. When predicting from which
in a set of three tasks is the most likely for a given image,
the baseline (orange) performs similarly to random guessing
(dashed line). Our model with a frozen language encoder
(green) significantly outperforms the baseline, and our model
with an unfrozen image encoder (blue) nearly doubles the
baseline.

CLIP encodings capturing the content of the image, rather than
the activities afforded by the scene viewed from the image.
Our model’s ability to capture affordances comes in part by
fine-tuning the vision encoder Ey . Even with a frozen Ey
(unmodified CLIP), the model still outperforms the baseline,
but by a less significant margin.

IV. ROBOT APPLICATIONS
A. Navigation

Task localization ability is directly required by a home
assistive robot to accomplish natural language directions such
as “turn on the stove”. When compared to the baseline, our
approach is significantly more accurate at predicting where a
given task will take place relative to an arbitrary egocentric
viewpoint. Our approach shows statistically significant gain
over the baseline [t(82) = 4.683, p <0.001] (Figure @ left of
dashed line) even when testing on both unseen tasks from held-
out viewpoints. The right side Figure [5a shows two additional
breakdowns of the task localization results tested on either
only known images or known tasks. When tested on seen
images and unseen tasks, the performance is nearly the same.
When tested on seen tasks and unseen images, our model has
almost no error.

In many cases, it is not possible to accurately predict where
a task may place from a single viewpoint, especially if the task
happens far away from the robot and out of its view. However,
in these cases, it’s often possible to establish a reasonable
guess of what general direction a task is relative to the viewer.
Then, as a robot moves towards the predicted direction, it
can refine its estimate of the task location. Figure [5b] captures
this angular error. Unlike the baseline, our approach has the
lowest angular error for far away tasks, highlighting its utility
in egocentric navigation.

We demonstrate applications to navigation in a custom
simulator to allow a robot to use testing images to navigate
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Fig. 5: Results for task localization. (a) When predicting which location a given task may take place at, the baseline approach
does well in some cases (median error of 0.48m) but has many cases with high error or significant outliers. Our approach
has much lower error when testing on unseen images (red), unseen tasks (green), or both unseen images and tasks (blue). (b)
When predicting task direction from current viewpoint, our approach is able to better estimate the angle for far-away tasks

compared to baseline.

Fig. 6: Trajectory to “Heat the Food” (stove highlighted).

to positions appropriate for new tasks unseen in training. We
based the simulation on the Fetch robot as it has similar
physical affordance to humans. An example of navigation is
shown in Figure [ where a robot is given a novel view (shown
in the inset bubble) and asked to navigate to the task “Heat the
Food”. Given this egocentric view, the robot is able to predict
the tasks’ relative location. A navigation mesh of estimated
free space is used to avoid collision during motion.

B. Collision Avoidance

In shared robot-human environments, it can be important
for a robot to proactively avoid regions where a person may
need to be be while doing a set of tasks. We can use the
trained model to define a Task Obstacle covering a set of
locations a robot should avoid while a person is doing a set
of related tasks as detailed in Algorithm [I] For a given set
of tasks a person may do, we first bound a safety radius of
Obound Standard deviations around the predicted task regions
and then encompass the entire set of bounded regions by
their convex hull. The resulting task obstacle contains both
the likely regions a person would be in during tasks and the

Algorithm 1: Task Obstacle Generation

1 Load A = Ev, EL, Ag,

2 Given Icurrem, 7;et’ Obound

3 distributions = A (Tset, Leurrent)

4 regions = [region(D, opoyna) for D in distributions ]
5 points = [ discretize(r) for r in regions ]

6 task_obstacle = convex_hull(points)

areas they will likely travel between tasks, allowing a robot to
plan accordingly.

Figure [7b] shows two examples of task obstacle-aware
navigation. In the first example, a task obstacle is comprised of
the two tasks of “slice tofu” and “cook meat” which the robot
expects a person to be completing. The resulting task obstacles
spans the kitchen galley, blocking the direct path between the
robot and its goal task of “get soy sauce”, requiring the robot
to take a less-direct path. In the second example, the task
obstacle is comprised of “slice tofu” and “wash dishes”. Here,
the expected motion of a person hugs the countertop closely,
allowing the robot to freely pass by without interfering.

V. CONCLUSION

We presented a framework to predict spatial affordances
of where people perform tasks within a robot’s environment,
and demonstrated it’s applications in robot navigation tasks.
Our system is trained on egocentric video demonstrations and
shows generalizability to new tasks (not seen in training)
described in natural language.

Limitations Though our approach shows generalization to
new tasks and novel viewpoints, this generalization is limited
to scenes very similar to those seen at train time. This limita-
tion could be alleviated via online learning where the model
is continuously updated based on live observations. Likewise,
the affordances from human demonstrations may not map one-
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Fig. 7: Example of task obstacles for navigation. In (a), two
tasks defining the task obstacle span across the workspace,
representing an expectation of a busy area, blocking the robot’s
direct path to its goal (red dot). In (b), predicted task locations
span along the countertop, allowing the robot to pass freely
without disturbing the person in that area.

to-one with various types of robots, and online learning or
other approaches could be used to adapt between the robot
and the demonstrations. Another important limitation of our
work is that all examples were taken from cooking activities in
kitchens, and more environments should be considered. Lastly,
we currently assume each task region is approximated by a
unimodal distribution. In the future, we would like to explore
alternative forms of spatial affordance prediction, for example
predicting heatmaps, or full-body poses.

Future Work As a point of future research, we would like
to explore the video input, as opposed to static images, as
video input may stabilize predictions over time. We would also
like to explore the use of spatial affordances directly within
a robot policy as seen in vision-language navigation tasks.
Lastly, we wish to explicitly ground the predictions in the

environmental geometry via training loss function, which may
help give more accurate predictions.
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