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Abstract

Continual learning (CL) aims to adapt to non-stationary data distributions while
retaining previously acquired knowledge. However, CL models typically face a
trade-off between preserving old task knowledge and excelling in new task perfor-
mance. Existing approaches often sacrifice one for the other. To overcome this
limitation, orthogonal to existing approaches, we propose a novel perspective that
views the CL model ability in preserving old knowledge and performing well in
new task as a matter of model sensitivity to parameter updates. Excessive parameter
sensitivity can lead to two drawbacks: (1) significant forgetting of previous knowl-
edge; and (2) overfitting to new tasks. To reduce parameter sensitivity, we optimize
the model’s performance based on the parameter distribution, which achieves the
worst-case CL performance within a distribution neighborhood. This innovative
learning paradigm offers dual benefits: (1) reduced forgetting of old knowledge
by mitigating drastic changes in model predictions under small parameter updates;
and (2) enhanced new task performance by preventing overfitting to new tasks.
Consequently, our method achieves superior ability in retaining old knowledge
and achieving excellent new task performance simultaneously. Importantly, our
approach is compatible with existing CL methodologies, allowing seamless inte-
gration while delivering significant improvements in effectiveness, efficiency, and
versatility with both theoretical and empirical supports.

1 Introduction

Continual learning (CL) embodies a dynamic approach aimed at adapting to non-stationary data
distributions that evolve over time. However, in pursuit of this goal, CL encounters a significant
challenge: the trade-off between preserving previously acquired knowledge and effectively learning
new knowledge. As the model assimilates new information, it often swiftly erases previously learned
knowledge, resulting in catastrophic forgetting (CF) on past tasks [44, 54]. Effectively addressing CF
during CL is essential to preserve previously acquired information. On the other hand, effectively
learning new information is equally crucial for CL models to adapt to new tasks and environments.

Existing approaches in CL often face a dilemma: they either prioritize preserving old knowledge or
excelling in new task performance, often at the expense of the other. When a CL model prioritizes
preserving old knowledge, it focuses on retaining information from previous tasks while minimizing
interference or forgetting. However, excessive emphasis on old knowledge can limit the model’s
ability to adapt to new tasks. Conversely, when a model prioritizes new task performance, it aims
to quickly adapt to new tasks or data distributions. Yet, this emphasis on new tasks can potentially
degrade performance on previously learned tasks.

To overcome the aforementioned limitations, orthogonal to existing approaches, we introduce the
concept of model sensitivity and approach the challenge of balancing old knowledge retention and
new task performance in CL from the perspective of model parameter sensitivity. When a CL
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model exhibits high sensitivity to parameter changes, it leads to two significant issues: (1) Increased
Forgetting: Excessive sensitivity in model parameters can cause abrupt and substantial changes
in model predictions with minor parameter adjustments during CL. This phenomenon results in
significant forgetting of previous tasks. (2) Diminished New Task Performance: High sensitivity in
model parameters can also result in severe overfitting on new tasks. Overfitting occurs when a model
memorizes the training data instead of generalizing patterns that can be applied to unseen data. High
parameter sensitivity means that even minor alterations in the training data can induce substantial
modifications in the learned model. This renders the model excessively tailored to the training data
and reduces its adaptability to new, unseen data, consequently leading to suboptimal performance on
new tasks.

To reduce the CL model parameter sensitivity under model updates, we aim to ensure that even
minor alterations in model parameters do not substantially impair CL model performance. This is
accomplished by optimizing the model’s performance based on the worst-case scenario of parameter
distributions within a distribution neighborhood. However, finding the optimal worst-case CL
model parameter distribution is challenging since the space of all possible distributions within the
neighborhood is an infinite-dimensional space [32]. To efficiently solve this problem, we parameterize
the optimal worst-case CL model parameter distribution as Gaussian distribution. We propose a
natural-gradient descent (NGD) method to efficiently inference the mean and covariance of the
Gaussian distribution since NGD incorporates the information geometry of the parameter space by
adapting the step size based on the curvature of the cost function. This adaptive approach leads
to faster convergence compared to conventional gradient descent methods, particularly in high-
dimensional spaces where the curvature exhibits notable variations. This is especially beneficial for
CL models. However, calculating the natural gradient is computationally expensive due to the explicit
calculation of Fisher information matrix (FIM). We thus update the worst-case CL parameters in
the expectation parameter space, rather than the traditional natural parameter space, of the Gaussian
distribution, thereby eliminating the need for explicit calculation of the FIM.

Our method offers dual benefits: (1) Reduced Forgetting: By mitigating parameter sensitivity
and avoiding drastic changes in model prediction, our approach effectively reduces the loss of
previously learned task knowledge. (2) Improved New Task Performance: Through decreased
parameter sensitivity, the model becomes less susceptible to overfitting on new task training data.
This reduced vulnerability to minor fluctuations fosters the learning of more generalized patterns rather
than memorizing specific examples. As a result, the model demonstrates enhanced generalization
capabilities on new tasks. Therefore, our method simultaneously achieves superior performance in
retaining previously learned knowledge and excelling in new task performance.

We provide a thorough theoretical analysis for our method. Firstly, the theory illustrates that our
approach implicitly reduces the variance of loss against different parameter variations, thereby
indicating reduced model parameter sensitivity. Secondly, our method tightens the generalization
bound of CL models, suggesting enhanced generalization. Furthermore, our extensive experiments
across multiple datasets, compared to various state-of-the-art (SOTA) baseline methods, reveal
substantial enhancements in overall performance across all learned tasks, backward transfer, and
new task test accuracy. These results indicate significantly enhanced CL model ability in preserving
old knowledge and achieving better performance on new task with our method. Additionally, our
proposed approach seamlessly integrates with existing CL methodologies, functioning as a versatile
plug-in. This demonstrates the effectiveness, efficiency, and versatility of our method.

Our contributions can be summarized as follows:

• We tackle the challenge of both retaining old task knowledge and excelling in new task in
CL from a novel perspective by mitigating model parameter sensitivity.

• We introduce a novel CL approach aimed at reducing model parameter sensitivity by
optimizing CL model performance under the worst-case parameter distribution within a
distribution neighborhood. Additionally, we propose an efficient learning algorithm to
identify the worst-case parameter distribution.

• We provide comprehensive theoretical analyses that substantiate our method’s ability to
decrease model parameter sensitivity and improve model generalization.

• Extensive experiments conducted across multiple datasets demonstrate the efficacy and
versatility of our proposed method.
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2 Related Works

CL aims to learn non-stationary data distributions without forgetting previously learned knowledge.
The CL scenarios can be further categorized into three scenarios: task-incremental learning (Task-IL),
domain-incremental learning (Domain-IL) and class-incremental learning (Class-IL) [67]. Task-
IL and Class-IL are most representative scenarios in CL, we thus focus on these two scenarios.
Existing approaches for CL can be categorized into five classes: (1) regularization-based methods
incorporate regularization terms either in model weights or outputs into the loss function to mitigate
catastrophic forgetting when learning new tasks, including [28, 62, 84, 55, 11, 1, 22, 10, 39]; (2)
memory replay-based methods address the challenge of catastrophic forgetting by explicitly storing
and replaying a subset of past experiences (samples from previous tasks) while learning new tasks,
including [40, 57, 15, 7, 51, 68, 3, 8, 75, 4, 74, 76, 61, 78, 77, 83, 36, 73, 72]; (3) gradient-projection-
based methods aim to mitigate catastrophic forgetting by projecting gradient updates onto subspaces
that minimize interference with previously learned tasks, including [13, 17, 60, 71, 38, 52, 82];
(4) architecture-based methods involve dynamically adapting and modifying the neural network
architecture to accommodate new tasks while preserving performance on previously learned tasks,
including [41, 63, 34, 23]; (5) Bayesian-based methods leverage principles from Bayesian inference
to manage the uncertainty and learning of new tasks while preserving knowledge from previous tasks,
including [48, 58, 30, 25, 21, 49, 66, 59].

In contrast to existing methods, which often necessitate a trade-off between retaining old knowledge
and learning new knowledge, sacrificing one for the other, our approach takes a different path. It
sets itself apart from these existing methods by offering an orthogonal solution that preserves old
task knowledge while simultaneously enhancing new task performance. This novel perspective is
achieved by reducing parameter sensitivity.

Connection with existing flat-minima/SWAD approaches: (1) Connection and difference with
sharpness-aware minimization (SAM) [18, 27, 45] related approach: Our method is fundamen-
tally different from SAM-based CL in two aspects. (i) Deterministic vs. Probabilistic Approach:
SAM uses a fixed deterministic neighborhood, which can be restrictive in practice since updates
are constrained within a fixed ball. In contrast, our method employs a probabilistic distributional
approach, offering two distinct advantages: (a) The distributional neighborhood is more flexible and
covers a broader range of parameter variations by sampling from a neighborhood distribution, and (b)
Stochastic Gradient Descent (SGD) introduces noise during CL. Our distributional approach accounts
for this noise, making it a more realistic model in practice and providing stronger guarantees against
parameter sensitivity. (ii) Uniform vs. Parameter-specific sensitivity without explicit calculation of
FIM: SAM uniformly updates all parameters, overlooking the varying importance and sensitivity of
each parameter in the context of CL. Our method, on the other hand, considers these differences and
treats parameters uniquely through the natural gradient without needing to explicitly calculating the
FIM. This distinction is crucial for CL, as each parameter has different sensitivity to forgetting—a
factor that SAM does not address. (2) Connection and difference with model averaging flatness
seeking approach: SWA [24] and SWAD [9], which aim to achieve flatter minima by averaging
multiple models during training. However, these approaches are memory-intensive and inefficient for
CL, as they require storing multiple sets of model parameters, which compromises memory efficiency.

3 Method

In this section, we first present the preliminary in section 3.1 and then present the model sensitivity
aware continual learning in section 3.2.

3.1 Preliminary

Continual Learning Setup The standard CL problem involves learning a sequence of T tasks,
represented as Dtr = {Dtr

1 ,Dtr
2 , · · · ,Dtr

T }. The training dataset Dtr
k for the kth task contains a

collection of triplets: (xk
i , y

k
i )

nk
i=1, where xk

i denotes the ith data example specific to task k, yki
represents the associated data label for xk

i . The primary objective is to train a neural network function,
parameterized by θ, denoted as gθ(x). The goal is to achieve good performance on the test datasets
from all the learned tasks, represented as Dte = {Dte

1 ,Dte
2 , · · · ,Dte

T }, while ensuring that knowledge
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acquired from previous tasks is not forgotten. The CL loss function is defined as the following:

LCL(θ) := LCE(x, y;θ) + ζLf (θ) (1)

where LCE(x, y;θ) is the current task cross-entropy loss function. Lf (θ) is the forgetting-mitigation
loss, e.g., memory-replay, weight-regularization and gradient-projection loss, etc. ζ is a constant that
balances the weight between the loss of the new task and the loss of the previous tasks.

Exponential Family of Distributions The exponential family distribution [70] is defined as:

Pϕ(θ) := h(θ)exp(⟨ϕ,Ω(θ)⟩ − Z(ϕ)) (2)

Where := denotes a definition. In existing literature [70], ϕ are called the natural parameters
for defining the distribution, Pϕ(θ). h(θ) is the base measure, Ω(θ) is the sufficient statistic,
Z(ϕ) := log

∫
h(θ)exp(⟨ϕ,Ω(θ)⟩)dθ is the log-partition function, ⟨, ⟩ denotes the dot product

between two vectors. We denote the expectation parameters as λ := EPϕ(θ)Ω(θ). We can write
multivariate Gaussian distribution as canonical form of exponential family as:

f(θ;µ,Σ) :=
1

(2π)
d
2 det(Σ)

1
2

exp{−1

2
(θ − µ)TΣ−1(θ − µ)} (3)

= exp{θTΣ−1µ− 1

2
θTΣ−1θ − 1

2
[d log 2π + log |Σ|+ µTΣ−1µ]} (4)

Therefore, the correspondence between f(θ;µ,Σ) and exponential family distribution in Eq.(2) can
be expressed as the following:

ϕ := (Σ−1µ,−1

2
Σ−1), Ω(θ) := (θ,θθT ) (5)

λ1 := Ef(θ;µ,Σ)θ = µ, λ2 := Ef(θ;µ,Σ)θθ
T = µµT +Σ (6)

Derivations details of Eq.(6) can be found in Appendix B.1. In the following section, we use
exponential family distributions to parameterize the worst-case of CL model parameter distribution
since this enables us to efficiently calculate the natural gradient in the expectation parameter space
λ without needing to explicitly calculate the Fisher information matrix (FIM) in natural parameter
space ϕ.

3.2 Model Sensitivity Aware Continual Learning

Learning Objective Specifically, we propose the following CL learning objective to reduce the CL
parameter sensitivity under model parameter updates:

min
µ

max
U∈U

Eθ∼U(θ)LCL(θ) (7)

s.t. U = {U : DKL(U,V) ≤ ϵ}

where U denotes the uncertainty set. DKL(U,V) denotes the KL divergence between the current CL
model parameter distribution V and the neighbour CL model parameter distribution U. ϵ is a small
constant. maxU∈U Eθ∼U(θ)LCL(θ) aims to find the worst-case CL model parameter distribution
within a neighbourhood. We choose probabilistic distributional neighbourhood due to two-fold
reasons: (1) the distributional neighbourhood covers more flexible parameter space; and (2) widely
used SGD method incurs update noise during CL, thereby distributional neighbourhood provides
stronger guarantee against parameter sensitivity. It is important to note that the outer minimization
is performed with respect to µ, the expectation of θ, since during inference, only µ is used as the
model parameter for predictions.

Objective for Learning the Worst-Case CL Parameter Distribution We convert the constrained
inner maximization optimization in Eq. (7) into the following unconstrained optimization to find the
worst-case CL model parameter distribution.

argmin
U

[H(U) := −Eθ∼U(θ)LCL(θ) + αDKL(U,V)] (8)

where α > 0 is a constant. However, solving Eq. (8) is intractable since the optimization target is
in an infinite-dimensional function space [32]. For computation efficiency, we set the current CL
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model parameter distribution as V(θ) = N (θ|µ0,Σ0), where µ0 and Σ0 denote the mean vector
and covariance matrix, respectively. We set the neighbourhood distribution as U(θ) = N (θ|µ,Σ),
where µ and Σ denote the mean vector and covariance matrix, respectively. To further improve
computational efficiency, we constrain the covariance matrix to be diagonal matrix, i.e., Σ = diag(σ2)
and Σ0 = diag(ρ2). We denote the density function of U(θ) and V(θ) as u(θ) and v(θ), respectively.
We express the loss function in Eq. (8) as the following:

H(U) = Eθ∼u(θ)[L(µ,Σ) := −LCL(θ) + α[log u(θ)− log v(θ)]] (9)

By parameterizing the distribution U as exponential family distribution in Eq. (4), our goal is to learn
the parameters ϕ in Eq. (5) with natural gradient descent (NGD) [42] as the following equation:

ϕi+1 = ϕi − ηF−1∇ϕL(ϕi) (10)

where F is the FIM. We opt for NGD because it adjusts the step size according to the curvature of the
cost function, making convergence faster than traditional gradient descent methods. This is especially
advantageous in high-dimensional spaces where the curvature and parameter-wise sensitivity vary
significantly, benefiting CL models. However, computing the natural gradient is computationally
intensive due to the need to calculate the FIM. To address this, we develop an efficient update method
in the dual space, specifically the expectation parameter space λ, rather than the natural parameter
space ϕ, eliminating the need for explicit FIM calculation. In the following, we will use L(ϕ) and
L(λ) interchangeably, as they represent the same loss function only parameterized in different spaces.
We leverage the relation between NGD in natural parameter space and gradient descent in expectation
parameter space (in Appendix A.1), NGD can be performed without explicitly computing the FIM.
This update in its dual space leads to significantly more efficient parameter updates and promising
computational advantages.

NGD for Efficiently Finding the Worst-Case Gaussian Distribution In the following, we present
specific algorithms for updating the µ and Σ with NGD to find the worst-case Gaussian distribution,
i.e., U∗ := argminU H(U). We can get the following updates for mean µ and diagonal covariance
Σ = diag(σ2) (detailed derivations can be found in Appendix B):

µi+1 = µi + ηΣi+1[∇θLCL(θ)− α(µi − µ0)Σ
−1
0 ] (11)

Σ−1
i+1 = (1− ηα)Σ−1

i + η[−∇2
θθLCL(θ) + αΣ−1

0 ] (12)

By plug-in Σ = diag(σ2) and Σ0 = diag(ρ2) into the above equations, we can obtain the following
updates:

µi+1 = µi + ησ2
i+1[∇θLCL(θi)− α(µi − µ0)ρ

−2] (13)

σ−2
i+1 = (1− ηα)σ−2

i + η[−∇2
θθLCL(θi) + αρ−2] (14)

In practice, we set α = 1.0 to reduce the reliance on hyperparameters. However, computing the
diagonal Hessian matrix ∇2

θθLCL(θ) in Eq. (14) is a computationally challenging task. Following
[42], we efficiently approximate the Hessian as the following:

∇2
θkθkLCL(θ) =

1

N

j=N∑
j=1

[∇θkLCL
j (θ)]2 (15)

where N is the number of training data points for the current task, LCL
j (θ) denotes the loss function

for the data point j, θk denotes the kth element of the model parameter θ. It is crucial to note that this
Hessian approximation is computed only once after learning each task and involves calculating only
the diagonal elements, i.e., Σ = diag(σ2). As a result, the overall computational cost throughout the
continual learning process remains low. Additionally, this update mechanism maintains the same
number of learnable parameters as existing methods, ensuring fair comparisons. This is because,
during the learning of each task, only the mean parameters of the Gaussian distribution are updated.

Learning Algorithm We name our method as Model sensitivity Aware Continual Learning
(MACL). The detailed algorithm is present in Algorithm 1.
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Algorithm 1 Model Sensitivity Aware Continual Learning
1: REQUIRE: model parameters θ, CL model learning rate β, worst-case Gaussian learning rate η, number

of CL tasks T , number of CL steps K for each task, distribution neighbourhood regularization strengths
α = 1.0. Randomly initialized diagonal covariance matrix, i.e., diag(σ2).

2: for n = 1 to T do
3: for i = 1 to K do
4: calculate the CL loss function according to Eq. (1)
5: update the worst-case Gaussian mean µ (i.e., θ) by θ′

i = θi + ησ2
n[∇θLCL(θi)− (θi − θ0)ρ

−2]
6: sample parameters from the worst-case CL model parameter distribution. θ′ = θ′

i + σnζ, where
ζ ∼ N (0, I)

7: update CL model parameters θi+1 = θ′ − β∇θLCL(θ′)
8: end for
9: update the worst-case Gaussian covariance σ by σ−2

n+1 = (1− η)σ−2
n + η[−∇2

θθLCL(θ) + ρ−2]

10: where the Hessian is calculated by ∇2
θkθkLCL(θ) = 1

N

∑j=N
j=1 [∇θkLCL

j (θ)]2 according to Eq. (15)
11: end for

4 Theoretical Analysis

In this section, we build the theoretical connection between MACL and parameter sensitivity in
Theorem 4.2 and the generalization analysis in Theorem 4.3. Due to the space limitations, we provide
the theorem proof in Appendix A.2. Let’s first look at the inner maximization problem in Eq. (7).

max
U∈U

∫
LCL(θ)dU(θ), s.t. U = {U : DKL(U,V) ≤ ϵ} (16)

Lemma 4.1. DKL(U,V) =
∫
u(θ) log(u(θ)v(θ) )dθ ≤

∫ (u(θ)−v(θ))2

v(θ) dθ

Theorem 4.2. Assume
∫
|| 1
v(θ) ||∞dθ ≤ M , we can obtain the following conclusion for Eq. (16):

max
U∈U

∫
LCL(θ)dU(θ) = LCL(θ) +

√
ϵE(LCL(θ)− LCL(θ))2

M
(17)

where LCL(θ) :=
∫
LCL(θ)dV(θ). V ar(LCL(θ)) denotes the variance of LCL(θ) with re-

spect to different model parameters variations, i.e., V ar(LCL(θ)) = E(LCL(θ) − LCL(θ))2 =∫
(LCL(θ) − LCL(θ))2dθ. In this context, V ar(LCL(θ)) serves as a measure of the CL model’s

sensitivity to parameter updates. Essentially, a smaller loss variance indicates lower parameter
sensitivity in the CL model. However, directly optimizing the loss variance within the parameter
distribution neighborhood is impractical, as it requires computing the loss variation across a large
number of different sets of CL model parameters and training data points. In contrast, our method
(MACL) offers an efficient and effective alternative. MACL implicitly minimizes the loss variance
across different model parameter variations by optimizing CL performance solely on the worst-case
CL model parameter distribution. In the following, inspired by UDIL [64], we further provide the
following generalization bound for CL:
Theorem 4.3 (Generalization bound of MACL). Let q be the number of CL model parameters and
n be the number of training data points. The CL loss LCL(θ) ≤ C (C is a constant). With high
probability of 1− δ, the following bound holds:

Eθ∼N (µ,Σ)

i=T∑
i

LCL
Di

(θ) ≤ max
U∈U

Eθ∼ULCL(θ) +
C

NT + ζ
∑i=T−1

i=1 Ni

+ (18)√√√√τ2(
√
q +

√
2 log(NT + ζ

∑i=T−1
i=1 Ni))2 +R+ 2 log(

NT+ζ
∑i=T−1

i=1 Ni

δ )

4(NT + ζ
∑i=T−1

i=1 Ni − 1)

Where τ is a constant. We denote the number of data examples for task 1, · · · , T − 1 in the memory
buffer M during training on task T as N1, N2, · · · , NT−1 when using memory replay based approach
or the number of training data points when using regularization based approach. LCL

Di
(θ) denotes

the CL loss on the data from data distribution Di of task i (generalization error), i.e., it is defined
as: LCL

Di
(θ) := E(x,y)∼Di

L(x, y,θ). LCL(θ) denotes the empirical CL loss as Eq. (1). N (µ,Σ)
denotes the CL model parameter posterior distribution parameterized with Gaussian distribution.
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Generalization bound implication: (1) When using a memory-replay approach, the number of samples
from new tasks often exceeds the number of samples in the memory buffer, causing data imbalance.
This imbalance, where fewer samples from previous tasks are stored, affects the second and third
terms in the generalization bound. The bound suggests that as the number of samples in the memory
buffer increases (i.e.,

∑i=T−1
i=1 Ni ↑), these terms tighten, leading to a tighter generalization upper

bound. This is because limx→∞[h(x) := log x
x ] = 0, meaning the generalization improves with a

larger buffer, aligning with the intuition that more memory buffer data leads to better performance.
(2) In the regularization-based approach, ζ

∑i=T−1
i=1 Ni is treated as the effective sample size for

previous tasks since the loss is approximated in the absence of earlier data. The parameter ζ controls
the trade-off between learning the new task and retaining knowledge from past tasks. A larger ζ
increases regularization, preventing the model from deviating too much from the parameters learned
on previous tasks. This leads to higher empirical loss on the new task (first term), but tighter bounds
(second and third terms), indicating that knowledge from previous tasks is retained effectively. This
prioritizes stability over learning flexibility for the new task.

5 Experiments

5.1 Setup

Datasets We conduct experiments on several datasets, including CIFAR10 (10 classes), CIFAR100
(100 classes) [29], and Tiny-ImageNet (200 classes) [80], to assess the effectiveness of MACL
in task incremental learning (Task-IL) and class incremental learning (Class-IL). In addition, we
also conduct experiments on 5-dataset [79, 5], CUB200 [69] and ImageNet-R [20] (in Appendix).
Following the approach in [7], we split the CIFAR-10 dataset into five tasks, each with two distinct
classes. We divided the CIFAR-100 dataset into ten tasks, each containing ten classes. We split the
Tiny-ImageNet dataset into ten tasks, each comprising twenty classes. More dataset statistics can be
found in Appendix E.1.

Baselines We compare to the following various SOTA CL methods. (1) Regularization-based
methods, including oEWC [62], synaptic intelligence (SI) [84], Learning without Forgetting (LwF)
[35], Classifier-Projection Regularization (CPR) [10]. (2) Bayesian-based methods, including NCL
[25]. (3) Architecture-based methods, including HAT [63]. (4) Memory-based methods, including
ER [15], A-GEM [14], iCaRL[55], GSS [2], HAL [12], DER++ [7], ER-ACE [8] and LODE [36].
(5) Gradient-projection-based methods: Gradient Projection Memory (GPM) [60].

Implementation Details Following [7], we use ResNet18 [19] as the backbone network for all the CL
datasets and compared baseline methods. For the baselines that are included in the open-source code
of DER++ [7], we use the same hyperparameters provided in DER++ [7] for the compared methods.
For the baselines not included in the open-source code of DER++, e.g., GPM, LODE, etc, we use the
open-source code from their original paper for comparisons. For the hyperparameters in our method,
we set α = 1.0 across all the datasets to minimize the model’s dependence on hyperparameters. For
η, we set η = 1e − 5 for CIFAR10 and CIFAR100, and η = 1e − 6 for Tiny-ImageNet. The η is
selected from the range of [1e− 4, 1e− 5, 1e− 6, 1e− 7]. Following [7, 14], the hyperparameter is
determined through the validation sets split from the training sets from the first three tasks. Similar
to [7], we train all the CL models using the standard SGD optimizer to update the CL model. The
batch size and replay buffer batch size are set to 32. We use a single NVIDIA A5000 GPU with
24GB memory to run the experiments. Each experiment result is averaged for 10 runs with mean and
standard deviation.

5.2 Results
We evaluate the performance of different CL methods with (1) overall accuracy; (2) new task accuracy;
and (3) backward transfer in the following.

Overall Accuracy (ACC) ACC is the average accuracy across the entire task sequence. We present
the results on CIFAR10, CIFAR-100 and Tiny-ImageNet in Table 1. We can observe that our method
substantially improve over various SOTA baseline methods up to 3% to 4% on CIFAR100, TinyIma-
geNet by integrating MACL with existing CL methods. This overall performance improvement is
attributed to the reduced parameter sensitivity.
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Table 1: Task-IL and class-IL overall accuracy on CIFAR10, CIFAR-100 and Tiny-ImageNet,
respectively with memory size 500. ’—’ indicates not applicable/available.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

fine-tuning 19.62± 0.05 61.02± 3.33 9.29± 0.33 33.78± 0.42 7.92± 0.26 18.31± 0.68
Joint train 92.20± 0.15 98.31± 0.12 71.32± 0.21 91.31± 0.17 59.99± 0.19 82.04± 0.10

SI 19.48± 0.17 68.05± 5.91 9.41± 0.24 31.08± 1.65 6.58± 0.31 36.32± 0.13
LwF 19.61± 0.05 63.29± 2.35 9.70± 0.23 28.07± 1.96 8.46± 0.22 15.85± 0.58
NCL 19.53± 0.32 64.49± 4.06 8.12± 0.28 20.92± 2.32 7.56± 0.36 16.29± 0.87
GPM —– 90.68± 3.29 —– 72.48± 0.40 —– —–
UCB —– 79.28± 1.87 —– 57.15± 1.67 —– —–
HAT —– 92.56± 0.78 —– 72.06± 0.50 —– —–

A-GEM 22.67± 0.57 89.48± 1.45 9.30± 0.32 48.06± 0.57 8.06± 0.04 25.33± 0.49
GSS 49.73± 4.78 91.02± 1.57 13.60± 2.98 57.50± 1.93 —– —–
HAL 41.79± 4.46 84.54± 2.36 9.05± 2.76 42.94± 1.80 —– —–

oEWC 19.49± 0.12 64.31± 4.31 8.24± 0.21 21.2± 2.08 7.42± 0.31 15.19± 0.82
oEWC+MACL 20.55 ± 0.71 66.95 ± 2.46 8.82 ± 0.50 23.42 ± 1.93 7.86 ± 0.23 17.43 ± 0.93
CPR(EWC) 19.61± 3.67 65.23± 3.87 8.42± 0.37 21.43± 2.57 7.67± 0.23 15.58± 0.91
CPR(EWC)+MACL 20.58 ± 2.56 67.28 ± 3.75 9.15 ± 0.63 22.87 ± 1.78 8.10 ± 0.49 17.96 ± 0.82
GPM —- —- —- 72.48± 0.40 —- 30.72 ± 0.27
GPM+MACL —- —- —- 74.51 ± 0.36 —- 35.06 ± 0.38
iCaRL —- —- 44.16 ± 1.53 84.06 ± 0.42 23.71 ± 0.23 59.24 ± 0.16
iCaRL+MACL —- —- 48.27 ± 0.95 84.55 ± 0.51 24.18 ± 0.58 59.45 ± 0.32
ER 57.74± 0.27 93.61± 0.27 20.98± 0.35 73.37± 0.43 9.99 ± 0.29 48.64± 0.46
ER+MACL 63.74 ± 1.24 93.78 ± 0.36 22.18 ± 0.27 74.87 ± 0.51 9.87 ± 0.15 51.25 ± 0.37
DER++ 72.70± 1.36 93.88± 0.50 36.37± 0.85 75.64± 0.60 19.38± 1.41 51.91± 0.68
DER+++MACL 74.53 ± 0.79 94.72 ± 0.65 39.42 ± 0.82 77.53 ± 0.89 20.17 ± 1.56 54.03 ± 0.79
ER-ACE 71.83± 1.42 94.12± 0.61 37.05± 0.36 75.97± 0.69 20.43± 0.97 52.59± 0.75
ER-ACE+MACL 73.21 ± 0.96 94.98 ± 0.72 40.28 ± 0.39 77.65 ± 0.76 21.89 ± 0.83 53.95 ± 0.78
LODE 75.45± 0.90 94.41 ± 0.22 38.95± 0.93 78.92± 0.67 19.87± 0.72 60.18± 0.65
LODE+MACL 76.41 ± 0.67 94.32 ± 0.24 40.67 ± 0.89 40.03 ± 0.51 21.09 ± 0.97 61.79 ± 0.86

New Task Accuracy To evaluate the new task performance of the proposed CL method, we evaluate
the new task performance during CL by integrating MACL with DER++ and GPM in Figure 1.
The results show that MACL can significantly improves the new task performance for different CL
methods, indicating that reducing the model parameter sensitivity is beneficial to improve new task
performance during CL.

Figure 1: new task performance during CL.

Backward Transfer Backward trans-
fer (BWT) quantifies the degree of
forgetting observed on previously
learned tasks. When BWT > 0, it
indicates that learning the current new
task positively influences the perfor-
mance on previously learned tasks.
Conversely, when BWT ≤ 0, it sig-
nals that learning the current new
task may result in forgetting previ-
ously acquired knowledge. We eval-
uate BWT in Table 2. We can ob-
serve that our method significantly im-
proves BWT by up to 5% through
integrating MACL with existing CL
methods. This indicates that reduc-
ing parameter sensitivity can substan-
tially reduce forgetting on previously
learned knowledge. These empirical
analysis also verify our theoretical analysis that our method implicitly improves the stability by
reducing loss variance.
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Table 2: Backward Transfer of different CL methods with memory size 500.

Method CIFAR10 CIFAR100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

finetuning −96.39± 0.12 −46.24± 2.12 −89.68± 0.96 −62.46± 0.78 −78.94± 0.81 −67.34± 0.79

AGEM −94.01± 1.16 −14.26± 1.18 −88.5± 1.56 −45.43± 2.32 −78.03± 0.78 −59.28± 1.08
GSS −62.88± 2.67 −7.73± 3.99 −82.17± 4.16 −33.98± 1.54 —– —–
HAL −62.21± 4.34 −5.41± 1.10 −49.29± 2.82 −13.60± 1.04 —– —–

ER −45.35± 0.07 -3.54 ± 0.35 −74.84± 1.38 −16.81± 0.97 -75.24 ± 0.76 −31.98± 1.35
ER+MACL -34.43 ± 0.82 -3.31 ± 0.32 -73.17 ± 0.69 -15.73 ± 0.78 −75.29± 0.37 -29.32 ± 0.42
DER++ −22.38± 4.41 −4.66± 1.15 −53.89± 1.85 −14.72± 0.96 −64.6± 0.56 −27.21± 1.23
DER++ MACL -21.87 ± 1.67 -3.09 ± 1.31 -48.62 ± 1.56 -13.62 ± 0.35 -62.23 ± 0.78 -27.10 ± 0.43
ER-ACE -13.64 ± 0.95 -3.28 ± 0.83 -39.51 ± 1.23 -14.57 ± 0.39 -46.07 ± 0.83 -28.35 ± 0.16
ER-ACE+MACL -12.76 ± 1.23 -3.15 ± 0.57 -33.86 ± 1.37 -13.89 ± 0.57 -42.29 ± 0.50 -28.41 ± 0.23

LODE -16.37 ± 0.67 -2.93 ± 0.19 -53.23 ± 1.72 -15.24 ± 0.76 -55.89 ± 0.98 -19.13 ± 0.56
LODE+MACL -16.25 ± 0.73 -3.16 ± 0.45 -52.67 ± 1.35 -15.11 ± 0.53 -55.61 ± 1.15 -18.17 ± 0.83

5.3 Ablation Study

Hyperparameter Analysis We evaluate the sensitivity of the hyperparameters η in Table 5 in
Appendix D.1. Our observations indicate that when parameter sensitivity is not reduced, i.e., η = 0,
the CL model performs poorly. As we gradually increase the reduction of parameter sensitivity, the
CL model’s performance improves. This improvement is because appropriately reducing parameter
sensitivity helps mitigate forgetting and enhances learning for new tasks, thus boosting overall CL
performance. However, if the reduction in parameter sensitivity is increased excessively, the model’s
performance deteriorates. This is because an overly constrained model, while minimizing forgetting,
struggles to learn new tasks effectively, resulting in worse performance.

Effect of Memory Size To assess the impact of varying memory buffer sizes, we present the results
in Table 3. The results demonstrate that compared to different baseline methods, our MACL plug-in
also enhances the performance of baseline methods with a memory size of 2000.
Table 3: Task-IL and class-IL overall accuracy on CIFAR-100 and Tiny-ImageNet, respectively
with memory size 2000.

Algorithm CIFAR-100 Tiny-ImageNet
Method Class-IL Task-IL Class-IL Task-IL

ER 36.06± 0.72 81.09± 0.45 15.16± 0.78 58.19± 0.69
ER+MACL 37.83 ± 0.94 83.37 ± 1.35 17.08 ± 0.73 59.51 ± 0.53
DER++ 50.72± 0.71 82.43± 0.38 24.21± 1.09 62.22± 0.87
DER+++MACL 52.79 ± 0.85 84.07 ± 0.79 27.55 ± 1.43 64.28 ± 0.95
LODE 54.32 ± 0.56 85.79 ± 0.67 31.03 ± 1.27 70.05 ± 0.59
LODE+MACL 54.76 ± 0.68 86.53 ± 0.58 32.16 ± 1.12 69.79 ± 0.53

Benefit of NGD To evaluate the benefits of using NGD over gradient descent (GD) for calculating
the worst-case Gaussian distribution, we present comparison results in Table 6 in Appendix D.2. The
results show that NGD outperforms GD because NGD better captures parameter importance, which
helps preserve old knowledge while effectively adapting to new tasks.

Efficiency Evaluation To assess the efficiency of our proposed method, we compare the running
time of integration of different CL methods with MACL and corresponding CL methods alone on
CIFAR100, as shown in Table 15 in Appendix D.8. The results indicate that incorporating MACL
increases the computational cost by only 55% to 61% compared to the corresponding CL methods
alone. This demonstrates the high efficiency of our method, as it introduces only small additional
training cost.

Effect of Different Architectures To evaluate the impact of different architectures, we compared
various approaches using both ViT and ResNet32. For the ResNet32 experiments, we followed the
setup in [85], integrating MACL with MEMO [86] and comparing it to MEMO alone, using a memory
buffer size of 2000 on CIFAR100. Additionally, we conducted experiments with a pre-trained Vision
Transformer (ViT) [16], specifically the vit-base-patch16-224 model pre-trained on ImageNet1K. On
CIFAR100, we integrated MACL with DER++, using a memory size of 500, and demonstrated that
using a pre-trained ViT significantly improves CL performance. Moreover, combining MACL with
DER++ further enhances CL performance with the pre-trained ViT. The results are presented in the
Appendix.
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Long Task Sequence To assess the effectiveness of the proposed approach across varying task
lengths, we conducted experiments by splitting Tiny-ImageNet into sequences of 10 and 20 tasks.
The Task-IL and Class-IL results for integrating DER++ with MACL, using a memory buffer size of
500, are presented in Table 4. These results demonstrate that even with longer task sequences, our
method still significantly outperforms DER++.

Table 4: Overall accuracy of integrating DER++ with MACL using a memory buffer of 500 and
longer task sequence on Tiny-ImageNet.

number of tasks 10 20

Class-IL 19.38± 1.41 15.02 ± 0.53
Class-IL+ MACL 20.17 ± 1.56 16.08 ± 0.81
Task-IL 51.91± 0.68 51.65 ± 1.36
Task-IL + MACL 54.03 ± 0.79 54.96 ± 0.72

Online CL Under the online CL setting, we evaluate the effectiveness of the proposed approach on
CIFAR100 and Tiny-ImageNet by comparing with MKD [46] and PCR [37]. The results are put in
the Appendix.

5-datasets results To assess the effectiveness of MACL on the 5-Datasets benchmark [79, 5],
which includes CIFAR-10, MNIST [33], Fashion-MNIST [81], SVHN [47], and notMNIST [6], we
conducted experiments. This dataset provides a diverse range of CL tasks. We performed experiments
on 5-Datasets, using a memory buffer size of 500, with MACL. The detailed results are provided in
the Appendix.

ImageNet-R and CUB200 results We further evaluate the effectiveness of MACL on CUB200 [69]
and ImageNet-R [20], the results are shown in the Appendix.

6 Conclusion

In this paper, we address the challenge of balancing learning new tasks while preserving knowledge
from previous ones in continual learning. We propose a model sensitivity-aware continual learning
method that enhances both the model’s ability to retain old knowledge and improve performance
on new tasks. Specifically, our goal is to reduce model parameter sensitivity by optimizing CL
performance for the worst-case parameter distribution within the neighborhood of the current model’s
parameter distribution. This approach improves stability in preserving old knowledge and mitigates
overfitting on new tasks. We provide a comprehensive theoretical analysis of the proposed method, and
extensive experiments on multiple datasets demonstrate its effectiveness, efficiency, and versatility.

Limitation Discussion Our method introduces additional training cost compared to existing continual
learning approaches.

Broader Impacts

Our work advances continual learning, which is beneficial to develop more adaptable and efficient AI.
Our work has no negative societal impacts.
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A Theorem Proof

A.1 Duality in Natural Gradient Descent for Exponential Family Distribution

Theorem A.1. Gradient of the loss L(λ) with respect to the expectation parameter λ, i.e., ∇λL(λ),
is equal to the natural gradient with respect to natural parameter ϕ, i.e., F−1∇ϕL(ϕ). This can be
expressed as the following:

∇λL(λ) = F−1∇ϕL(ϕ) (19)

In particular, NGD in natural parameter space can be equivalently performed through gradient
descent with respect to the expectation parameters as the following:

ϕi+1 = ϕi − ηF−1∇ϕL(ϕi) = ϕi − η∇λL(λi) (20)

where η is the learning rate and F is the Fisher information matrix (FIM).

Proof. The exponential family distribution is defined as the following:

Pϕ(θ) = exp(⟨ϕ,Ω(θ)⟩ − Z(ϕ)) (21)

According to the expectation of the score function is 0, we can obtain the following

0 = EPϕ(θ)∇ϕ logPϕ(θ) = EPϕ(θ)[Ω(θ)−∇ϕZ(ϕ)] = λ−∇ϕZ(ϕ) (22)

Therefore,
λ = ∇ϕZ(ϕ) (23)

where the first equality is due to the fact that the expectation of the score function is zero.

We then derive the Fisher information matrix (FIM) as the following:

F (ϕ) := EPϕ(θ)[−∇2
ϕ logPϕ(θ)] (24)

= EPϕ(θ)[−∇ϕ(∇ϕ logPϕ(θ))] (25)

= EPϕ(θ)[−∇ϕ(∇ϕ(⟨ϕ,Ω(θ)⟩ − Z(ϕ))] (26)

= EPϕ(θ)[−∇ϕ(Ω(θ)−∇ϕZ(ϕ))] (27)

= ∇ϕλ (28)
= ∇ϕ∇ϕZ(ϕ) (29)

= ∇2
ϕZ(ϕ) (30)

where := denotes defined as. Then,

∇ϕλ = ∇2
ϕZ(ϕ) = F (31)

Next,

∇λL(ϕ) = ∇λϕ∇ϕL(ϕ) = [∇ϕλ]
−1∇ϕL(ϕ) = F−1∇ϕL(ϕ) (32)

More general results on manifold can be found in [53].

A.2 Theoretical and Generalization Analysis of MACL

Lemma A.2. DKL(U,V) =
∫
u(θ) log(u(θ)v(θ) )dθ ≤

∫ (u(θ)−v(θ))2

v(θ) dθ
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Proof.

DKL(U,V) =
∫

u(θ) log(
u(θ)

v(θ)
)dθ (33)

≤ log

∫
u(θ)2

v(θ)
dθ (by Jensen’s inequality) (34)

≤
∫

u(θ)2

v(θ)
− 1dθ (log(1 + x) ≤ x) (35)

=

∫
(u(θ)− v(θ))2

v(θ)
dθ (36)

where the last equality is because∫
(u(θ)− v(θ))2

v(θ)
dθ =

∫
u(θ)2

v(θ)
− 2

∫
u(θ)dθ +

∫
v(θ)dθ =

∫
u(θ)2

v(θ)
− 1 (37)

Since
∫
u(θ)dθ =

∫
v(θ)dθ = 1

Theorem A.3. Assume
∫
|| 1
v(θ) ||∞dθ ≤ M , we can obtain the following conclusion for Eq. (16):

max
U∈U

∫
LCL(θ)dU(θ) = LCL(θ) +

√
ϵE(LCL(θ)− LCL(θ))2

M
(38)

where LCL(θ) :=
∫
LCL(θ)dV(θ). We denote the variance of the random variable LCL(θ) as

V ar(LCL(θ)) = E(LCL(θ)− LCL(θ))2 =
∫
(LCL(θ)− LCL(θ))2dθ.

Proof. We define a new distribution Z := U− V.

∫
LCL(θ)dU(θ) =

∫
LCL(θ)d(Z(θ) + V(θ)) = LCL(θ) +

∫
LCL(θ)dZ(θ) (39)

= LCL(θ) +

∫
(LCL(θ)− LCL(θ))dZ(θ) +

∫
LCL(θ)dZ(θ) (40)

By Lemma 4.1 and Hölder’s inequality, we can obtain the following:

DKL(U,V) =
∫

u(θ) log(
u(θ)

v(θ)
)dθ ≤

∫
(u(θ)− v(θ))2

v(θ)
dθ (41)

≤
∫
(u(θ)− v(θ))2dθ

∫
|| 1

v(θ)
||∞dθ (42)

≤
∫
(u(θ)− v(θ))2dθM ≤ ϵ (43)

Therefore, ∫
(u(θ)− v(θ))2dθ ≤ ϵ

M
(44)

∫
(LCL(θ)− LCL(θ))dZ(θ) =

∫
(LCL(θ)− LCL(θ))(u(θ)− v(θ))dθ (45)

≤

√∫
(LCL(θ)− LCL(θ))2dθ

∫
(u(θ)− v(θ))2dθ (Cauchy-Schwarz inequality)

(46)

≤

√
ϵE(LCL(θ)− LCL(θ))2

M
(47)
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The equality holds when the following condition holds:

u(θ)− v(θ) = a(LCL(θ)− LCL(θ)) (48)

where a is a constant.

∫
LCL(θ)dZ(θ) =

∫
LCL(θ)(u(θ)− v(θ))dθ (49)

= LCL(θ)

∫
(u(θ)− v(θ))dθ (50)

= 0 (51)

The last equality is because
∫
(u(θ)− v(θ))dθ =

∫
u(θ)dθ −

∫
v(θ)dθ = 1− 1 = 0

Therefore, we can obtain the following conclusion:

max
U∈U

∫
LCL(θ)dU(θ) = LCL(θ) +

√
ϵE(LCL(θ)− LCL(θ))2

M
(52)

In this context, the CL loss variance across various sets of model parameters V ar(LCL(θ)) serves as
a measure of the CL model’s sensitivity to parameter updates. Essentially, a smaller loss variance
indicates lower parameter sensitivity in the CL model. However, directly optimizing the loss variance
within the parameter distribution neighborhood is impractical, as it requires computing the loss
variance across a large number of different sets of CL model parameters and training data points. In
contrast, our method (MACL) offers an efficient and effective alternative. MACL implicitly minimizes
the loss variance across different model parameter variations by optimizing CL performance solely
on the worst-case CL model parameter distribution.

We denote the prior distribution as V(θ) = N (µp,Σp) and posterior distribution as U(θ) =
N (µs,Σs)

Theorem A.4 (Generalization bound of MACL). Let q be the number of CL model parameters and
n be the number of training data points. The CL loss LCL(θ) ≤ C (C is a constant). With high
probability of 1− δ, the following bound holds:

Eθ∼N (µ,Σ)

i=T∑
i

LCL
Di

(θ) ≤ max
U∈U

Eθ∼ULCL(θ) +
C

NT + ζ
∑i=T−1

i=1 Ni

+ (53)√√√√τ2(
√
q +

√
2 log(NT + ζ

∑i=T−1
i=1 Ni))2 +R+ 2 log(

NT+ζ
∑i=T−1

i=1 Ni

δ )

4(NT + ζ
∑i=T−1

i=1 Ni − 1)

Where τ is a constant. We denote the number of data examples for task 1, · · · , T − 1 in the
memory buffer M during training on task T as N1, N2, · · · , NT−1 when using memory replay based
approach or the number of training data points when using regularization based approach. LCL

Di
(θ)

denotes the CL loss on the data from data distribution Di (generalization error), i.e., it is defined
as: LCL

Di
(θ) := E(x,y)∼Di

L(x, y,θ). LCL(θ) denotes the empirical CL loss as Eq. (1). N (µ,Σ)
denotes the CL model parameter posterior distribution parameterized with Gaussian distribution.

Proof. We apply the PAC-Bayes theorem [43] that for any prior distribution, with probability 1− δ
over the CL training dataset T , the following bound holds:

Eθ∼U(θ)[LCL
D (θ)] ≤ Eθ∼U(θ)[LCL

T (θ)] +

√
DKL(U(θ)||V(θ)) + log(nδ )

2(n− 1)
(54)

The KL divergence between posterior and prior distribution can be calculated as the following:
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DKL(U(θ)||V(θ)) = Eθ∼U(θ)[log(U(θ))− log(V(θ))] (55)

=
1

2
log

|Σp|
|Σs|

− 1

2
Eθ∼U(θ)(θ − µs)

TΣ−1
s (θ − µs) +

1

2
Eθ∼U(θ)(θ − µp)

TΣ−1
p (θ − µp) (56)

=
1

2
[log

|Σp|
|Σs|

− q + (µs − µp)
TΣ−1

p (µs − µp) + Tr(Σ−1
p Σs)] (57)

We assume the following inequality:

log
|Σp|
|Σs|

+ Tr(Σ−1
p Σs) ≤ R+ q, R ≥ 0 (58)

Therefore,

DKL(U(θ)||V(θ)) ≤
1

2
[R+ (µs − µp)

TΣ−1
p (µs − µp)] (59)

According to [50], we have the following identity:

For a random variable θ ∼ N (µ,Σ)

Eθ∼N (µ,Σ)(θ − µ′)TA(θ − µ′) = (µ− µ′)TA(µ− µ′) + Tr(AΣ) (60)

where Tr denotes the trace of A matrix. Therefore, according to Eq. (60), we have the following two
equations 61 and 62.

Eθ∼U(θ)(θ − µs)
TΣ−1

s (θ − µs) = (µs − µs)
TΣ−1

s (µs − µs) + Tr(Σ−1
s Σs) = q (61)

Eθ∼U(θ)(θ − µp)
TΣ−1

p (θ − µp) = (µs − µp)
TΣ−1

p (µs − µp) + Tr(Σ−1
p Σs) (62)

We set γ = Σ
− 1

2
p (µs − µp). Then, ||γ||2 = (µs − µp)

TΣ−1
p (µs − µp).

If γ ∼ N(0, τ2I), according to [31], we have the following inequality with probability of 1− 1
n

||γ||2 ≤ τ2(q + 2
√
q log n+ 2 log n) ≤ τ2(

√
q +

√
2 log n)2 (63)

Then we partition the space of µs into two disjoint area that satisfy (µs − µp)
TΣ−1

p (µs − µp) ≤
2ϵ−R and (µs − µp)

TΣ−1
p (µs − µp) > 2ϵ−R.

(1) In the case of (µs −µp)
TΣ−1

p (µs −µp) ≤ 2ϵ−R, we take the maximum loss over µs, we have
the following inequality:

Eθ∼U(θ)[LCL
T (θ)] ≤ max

(µs−µp)TΣ−1
p (µs−µp)≤2ϵ−R

Eθ∼U(θ)LCL(θ) (64)

(2) For the case of (µs − µp)
TΣ−1

p (µs − µp) > 2ϵ−R, we have LCL
T (θ) ≤ C

Combining case (1) and (2), we can obtain the following generalization bound:

DKL(U,V) ≤
1

2
[(µs − µp)

TΣ−1
p (µs − µp) +R+ q − q] ≤ 1

2
[||γ||2 +R] (65)

≤ 1

2
[τ2(

√
q +

√
2 log n)2 +R] (66)

We have the following bound with probability of 1− 1
n :
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Eθ∼U(θ)[LCL
T (θ)] ≤ (1− 1

n
) max
(µs−µp)TΣ−1

p (µs−µp)≤2ϵ−R
Eθ∼U(θ)LCL(θ) +

C

n
(67)

≤ (1− 1

n
) max
DKL(U,V)≤ϵ

Eθ∼U(θ)LCL(θ) +
C

n
(68)

Then, we can obtain the following generalization bound with probability of 1− 1
n :

Eθ∼N (µ,Σ)

i=T∑
i

LCL
Di

(θ) ≤ max
U∈U

Eθ∼ULCL(θ) +
C

NT + ζ
∑i=T−1

i=1 Ni

+ (69)√√√√τ2(
√
q +

√
2 log(NT + ζ

∑i=T−1
i=1 Ni))2 +R+ 2 log(

NT+ζ
∑i=T−1

i=1 Ni

δ )

4(NT + ζ
∑i=T−1

i=1 Ni − 1)

In this theorem, we provide the theoretical guarantee for the generalization analysis of our pro-
posed method. This bound indicates by optimizing the MACL loss, our method tighten/reduce the
generalization error of the CL method, thus improving the overall performance of our method.

B Equation Derivation

B.1 Exponential Family Distribution Details

According to the definition of expectation, we can obtain the following equation:

λ1 := Ef(θ;µ,Σ)θ = µ (70)

According to the definition of covariance matrix,

Σ := E[(θ − µ)(θ − µ)T ] (71)

= E[θθT − 2µθ + µµT ] (72)

= E[θθT ]− µµT (73)

By rearranging the above equation, we can obtain the following:

E[θθT ] = µµT +Σ (74)

Then, the conclusion follows:

λ1 := Ef(θ;µ,Σ)θ = µ, λ2 := Ef(θ;µ,Σ)θθ
T = µµT +Σ (75)

B.2 Worst-Case Gaussian Distribution NGD Derivations

Gradient of Loss L(λ) With Respect to λ Taking gradient with respect to λ as the following:

∇λ1L(λ) = ∇µL(λ)
∂µ

∂λ1
+∇ΣL(λ)

∂Σ

∂λ1
= ∇µL(λ)− 2∇ΣL(λ)µ (76)

In Eq. (76), the second equality is because the identity: ∂µ
∂λ1 = 1, ∂Σ

∂λ1 = ∂Σ
∂µ = −2µ. (by Eq.

(75))

∇λ2L(λ) = ∇µL(λ)
∂µ

∂λ2
+∇ΣL(λ)

∂Σ

∂λ2
= ∇ΣL(λ) (77)

In Eq. (77), the second equality is because the identity: ∂µ
∂λ2 = 0, ∂Σ

∂λ2 = 1 (by Eq. (75))

According to Eq. (5), we set the natural parameters as:

ϕ1 := Σ−1µ, ϕ2 := −1

2
Σ−1 (78)
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• (1) NGD with respect to ϕ2: According to Eq. (20 and 77), NGD with respect to ϕ2 can be
obtained as:

−1

2
Σ−1

i+1 = −1

2
Σ−1

i − η∇λ2L(λi) = −1

2
Σ−1

i − η∇ΣL(λi) (79)

Then, obtain the following update:

Σ−1
i+1 = Σ−1

i + 2η∇ΣL(λi) (80)

• (2) NGD with respect to ϕ1: Similarly, according to Eq. (20 and 76), NGD with respect to
ϕ1 can be obtained as:

Σ−1
i+1µi+1 = Σ−1

i µi − η(∇µL(λi)− 2∇ΣL(λi)µi) (81)

By simplifying and rearranging Eq. (81), the following update for µ:

µi+1 = µi − ηΣi+1∇µL(λi) (82)

Mean and Covariance Updates Derivations Following the results in [56, 26], we can obtain the
following equation:

∇µEθ∼u(θ)L(µ,Σ) = Eθ∼u(θ)∇θL(µ,Σ) (83)

∇ΣEθ∼u(θ)L(µ,Σ) =
1

2
Eθ∼u(θ)∇2

θθL(µ,Σ) (84)

Then, we only need to calculate Eθ∼u(θ)∇θL(µ,Σ) and Eθ∼u(θ)∇2
θθL(µ,Σ). Here, since we

assumed a general CL Gaussian distribution for the current CL parameter distribution, i.e., V(θ) =
N (θ|µ0,Σ0) and neighbourhood distribution, i.e., U(θ) = N (θ|µ,Σ). The detailed derivations for
the gradient are present in the following:

∇µEθ∼u(θ)L(µ,Σ) = −Eθ∼u(θ)∇θLCL(θ) + αEθ∼u(θ)[∇θ log u(θ)−∇θ log v(θ)] (85)

= −Eθ∼u(θ)∇θLCL(θ)− αEθ∼u(θ)(θ − µ)Σ−1 + αEθ∼u(θ)(θ − µ0)Σ
−1
0

(86)

= Eθ∼u(θ)[−∇θLCL(θ) + α(µ− µ0)Σ
−1
0 ] (87)

∇ΣEθ∼u(θ)L(µ,Σ) = −1

2
Eθ∼u(θ)∇2

θθLCL(θ) + αEθ∼u(θ)[log u(θ)− log v(θ)] (88)

= −1

2
Eθ∼u(θ)∇2

θθLCL(θ) +
α

2
Eθ∼u(θ)[∇2

θθ log u(θ)−∇2
θθ log v(θ)]

(89)

= −1

2
Eθ∼u(θ)∇2

θθLCL(θ) +
α

2
Eθ∼u(θ)[−Σ−1 +Σ−1

0 ] (90)

=
1

2
Eθ∼u(θ)[−∇2

θθLCL(θ)− αΣ−1 + αΣ−1
0 ] (91)

Plug-in the gradient derivation into Eq. (82 and 80), we can obtain the following results:

Σ−1
i+1 = Σ−1

i + ηEθ∼u(θ)[−∇2
θθLCL(θ)− αΣ−1

i + αΣ−1
0 ] (92)

= (1− ηα)Σ−1
i + ηEθ∼u(θ)[−∇2

θθLCL(θ) + αΣ−1
0 ] (93)

µi+1 = µi − ηΣi+1Eθ∼u(θ)[−∇θLCL(θ) + α(µi − µ0)Σ
−1
0 ] (94)

Finally, by using single sample from distribution U with density θ ∼ u(θ) to approximate the
expectation. By plug-in Σ = diag(σ2) and Σ0 = diag(ρ2) into the above equations, we can obtain
the following updates:

µi+1 = µi + ησ2
i+1[∇θLCL(θi)− α(µi − µ0)ρ

−2] (95)

σ−2
i+1 = (1− ηα)σ−2

i + η[−∇2
θθLCL(θi) + αρ−2] (96)
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C Baseline Details

• EWC [28]: EWC endeavors to alleviate forgetting in continual learning through the uti-
lization of a weighted weight regularization technique based on the Fisher information
matrix.

• CPR [10]: Drawing on neural networks with wide local minima and principles from
information theory, CPR introduces an extra regularization term. This term aims to maximize
the entropy of a classifier’s output probabilities, thereby reaching wider local minima to
enhance generalization.

• GPM [60]: A CL model acquires new skills by adjusting its parameters through gradient
steps that move orthogonal to the gradient subspaces considered vital for previous tasks.
The Gradient Projection Memory (GPM) establishes these subspaces by analyzing network
activations following the completion of each task using Singular Value Decomposition
(SVD), then preserves them in memory.

• HAT [63]: HAT is a task-driven hard attention mechanism that retains information from
prior tasks while ensuring it doesn’t interfere with the current task’s learning process.

• A-GEM [14]: AGEM aims to guarantee that, at every training step, the average loss
of episodic memory over past tasks does not rise, thus mitigating the risk of forgetting
previously acquired knowledge.

• Gradient-Based Sample Selection (GSS-Greedy) [2]: The goal is to populate the memory
buffer with a diverse set of examples, using the data gradient as a feature for sample selection.
For comparison, we opt for the efficient GSS-Greedy version.

• ER [15]: This method stores a subset of examples from previous tasks using reservoir
sampling [15]. During each iteration, we randomly replay a subset of examples from the
memory buffer.

• DER++ [7]: This method combines experience replay with knowledge distillation to further
improve the effectiveness of experience replay.

• ER-ACE [8]: They discovered that ER causes significant overlap between the representa-
tions of newly added classes and previous ones, resulting in highly disruptive parameter
updates. From this empirical analysis, they proposed a new method to address this issue
by protecting the learned representations from drastic adaptations when incorporating new
classes. Their approach uses an asymmetric update rule that pushes new classes to adapt
to the older ones, rather than the reverse. This technique is particularly effective at task
boundaries, where much of the forgetting typically happens.

• LODE [36]: They conducted an in-depth analysis of the impacts of distinguishing between
new and old classes, as well as among new classes, finding that these two learning objectives
result in varying degrees of forgetting. Consequently, combining these objectives negatively
affects the performance of the CL model. To address this, LODE separates the two objectives
for new tasks by decoupling the loss associated with them. This approach allows LODE
to assign different weights to each objective, leading to better performance compared to
methods that use a coupled loss.

D More Experimental Results

D.1 Hyperparameter Sensitivity Analysis

Table 5: Analysis of hyperparameter η on CIFAR100 and Tiny-ImageNet in the setting of task-IL.

η 0.0 1e-7 1e-6 1e-5 3×1e-5

CIFAR100 75.64±0.60 77.16±0.42 77.69±0.37 77.53±0.89 76.97±0.46
Tiny-ImageNet 51.91±0.68 53.12±0.82 54.03±0.79 54.46±0.91 51.62±0.55
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D.2 Benefit of NGD

Table 6: Benefit of MACL-NGD vs. MACL-GD on CIFAR100 and Tiny-ImageNet in the setting of
task-IL.

method DER++ DER++(MACL-NGD) DER++(MACL-GD)

CIFAR100 75.64±0.60 77.53±0.89 76.62±0.53
Tiny-ImageNet 51.91±0.68 54.03±0.79 52.97±0.71

D.3 Online CL results

Table 7: Online CL Results on CIFAR100 under the blurry boundary setting

Memory Size 1000 2000 5000
MKD(PCR) 35.6 ± 0.66 44.95 ± 0.42 54.87 ± 0.39

MKD(PCR) + MACL 37.2 ± 0.53 46.17 ± 0.51 56.21 ± 0.43

Table 8: Online CL Results on Tiny-ImageNet under the blurry boundary setting

Memory Size 2000 5000 10000
MKD(PCR) 17.33 ± 1.28 29.58 ± 0.60 38.02 ± 1.64

MKD(PCR) + MACL 18.21 ± 1.32 30.69 ± 0.71 38.73 ± 1.56

D.4 Prompt-based CL results

We conducted an experiment integrating MACL with the SOTA prompt-based CL method, CODA-
Prompt [65]. Our method operates on the parameters of prompt components and corresponding
keys/attention vectors.

Table 9: CODA Prompt Results on ImageNet-R

Number of Tasks 10 20
CODA-P 75.45 ± 0.56 72.37 ± 1.19

CODA-P + MACL 76.39 ± 0.67 73.42 ± 1.23

D.5 5-datasets results

Table 10: Comparison of methods on Class-IL and Task-IL on 5-datasets.

Method Class-IL Task-IL
ER 66.03 ± 1.37 92.58 ± 1.26
ER+MACL 67.32 ± 1.18 93.21 ± 1.08
DER++ 85.92 ± 0.33 87.16 ± 0.21
DER++MACL 87.23 ± 0.51 87.51 ± 0.30

D.6 Effect of Different Architectures

Table 11: Overall accuracy with ResNet32 using a memory buffer of 2000 by integrating with
MEMO.

MEMO MEMO+MACL

accuracy 58.49 59.61

Table 12: Overall accuracy with ViT using a memory buffer of 500 by integrating DER++ with
MACL.

Class-IL Task-IL

DER++ 76.21 ± 0.67 96.72 ± 0.31
DER++ MACL 77.83 ± 0.80 97.31 ± 0.46
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D.7 ImageNet-R and CUB200 results

We conducted experiment on the recent CL datasets of ImageNet-R and CUB200 with pre-trained
Vision Transformer (ViT), i.e., vit-base-patch16-224 as the backbone following the codebase of
DER++. The results (memory size of 500) are shown in the following table.

Table 13: ImageNet-R Results

Method Class-IL Task-IL
DER++ 58.29 ± 1.78 86.93 ± 0.32
DER++MACL 60.51 ± 1.65 87.56 ± 0.41
LODE 74.98 ± 0.21 90.22 ± 0.39
LODE+MACL 75.51 ± 0.26 90.81 ± 0.28

Table 14: CUB200 Results
Method Class-IL Task-IL
DER++ 41.81 ± 1.69 87.16 ± 1.09
DER++MACL 43.07 ± 1.53 88.03 ± 0.97
LODE 66.87 ± 0.35 93.12 ± 0.56
LODE+MACL 67.53 ± 0.51 93.42 ± 0.37

D.8 Efficiency Evaluation

Table 15: Running efficiency of MACL on CIFAR100 by training for a single epoch on CIFAR100.

CL method w/o MACL w/ MACL

DER++ 8.7 13.5
ER-ACE 6.3 10.2
LODE 13.2 20.8

E Experiment Setup

E.1 Dataset Statistics

Table 16: Dataset Statistics

Dataset Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImageNet
Number of Tasks 5 10 10
Number of Classes 10 100 200
Number of Training Samples 50,000 50,000 100,000
Number of Test Samples 10,000 10,000 10,000
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the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction summarize the main contributions in our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dicussed the limitations of our work after conclusion.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions and a complete (and correct) proof in
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our contribution is a new continual learning algorithm. We described full
implementation details for our proposed algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided detailed implementation details regarding training and test details,
data splits, hyperparameters and type of optimizer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided results standard deviation with multiple experiment runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided sufficient information on the computer resources in implementa-
tion details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the societal impacts afer conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the code package produced by DER++ and the dataset used,
e.g., CIFAR10, CIFAR100, TinyImageNet.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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