

000 001 002 003 004 005 LOCAL UNCERTAINTY SMOOTHING FOR FEW-SHOT 006 OOD DETECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Few-shot out-of-distribution (OOD) detection has become a critical research direc-
032 tion for the practical deployment of machine learning systems. Existing approaches
033 commonly rely on auxiliary outlier data derived from in-distribution (ID) samples,
034 such as using local image patches from training data to simulate OOD features.
035 However, these artificially constructed OOD samples differ substantially from real
036 OOD instances, leading to unstable learning when trained with hard OOD labels.
037 To address this challenge, we propose a Local Uncertainty Smoothing (LUS) frame-
038 work for few-shot OOD detection. Our method incorporates label smoothing and
039 local uncertainty measure to facilitate a smooth transition between the reference
040 distribution of local image categories, based on a general knowledge model and
041 the target OOD distribution. This approach ensures strong OOD detection perfor-
042 mance while preserving the model's ability to capture detailed local-level semantic
043 features. Furthermore, we theoretically analyze the relevance of local uncertainty
044 from the perspective of a generalization error bound (GEB). This reveals a con-
045 crete relationship between our local uncertainty measure and the KL divergence
046 observed during training. Accordingly, we propose a patch-wise local uncertainty
047 to effectively identify suitable soft labels for the model throughout the learning
048 process, achieving superior OOD detection performance. Extensive experiments
049 on real-world OOD benchmarks validate the effectiveness of our approach. Code
050 will be made publicly available.
051
052

1 INTRODUCTION

053 Deep learning systems are primarily built upon the theoretical framework of the independent and iden-
054 tically distributed assumption, which presumes identical probability distributions between training
055 and test data. However, real-world data acquisition systems inevitably face challenges of distribu-
056 tional shifts, where such discrepancies in probability distributions may pose significant safety risks,
057 particularly in safety-critical applications such as autonomous driving and medical diagnosis. In
058 response to these challenges, diverse methodologies for OOD evaluation have proliferated. Notably,
059 with the advent of prompt learning in pre-trained vision-language models (Radford et al., 2021),
060 CLIP-based prompt tuning (Zhou et al., 2022b;a) has been strategically adapted for OOD detection
061 tasks, catalyzing growing research interest in leveraging prompt learning paradigms for enhanced
062 OOD detection capabilities.
063

064 Recent advances have leveraged auxiliary OOD datasets to improve OOD detection. For instance,
065 as shown in our Fig. 1a. (Hendrycks et al., 2018) demonstrated that assigning one-hot labels to
066 entire ID images and uniform label distributions to entire OOD images can lead to effective OOD
067 detection. Other methods (Bai et al., 2024), (Miyai et al., 2024) have also made progress by generating
068 OOD data using only ID data during training. However, we reveal a critical limitation of a learning
069 paradigms that treat local patches as OOD samples and assign them uniform label distributions - this
070 labeling strategy is inherently unsuitable. Specifically, the representation of finer-grained features
071 in OOD local data presents significant challenges and often results in classification errors. Using
072 uniform distribution for local OOD features in such a setting will negatively impact ID classification
073 and OOD detection performance. For example, as shown in our Fig. 1b, our results indicate that
074 background images of lions show significant correlation with features of cliffs and stone walls.
075 Using such ID-like images as OOD features adversely affects the model in both ID classification
076 and OOD detection. It impairs the model's ability to recognize features of cliffs and stone walls
077
078

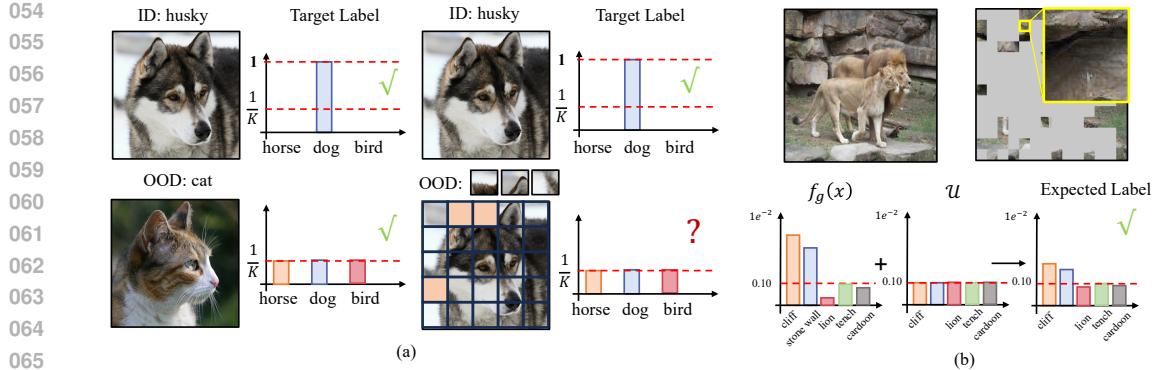


Figure 1: Problematic Label Assignment. (a) illustrates the OOD labeling issue arising from the use of an auxiliary training set and local OOD features sampled from ID data, highlighting the need to reconsider the labeling strategy for such features. (b) depicts a typical case of this local OOD feature labeling problem and presents the underlying rationale for a revised labeling approach.

during ID classification, leading to a decline in ID classification accuracy. Meanwhile, it blurs the feature distribution distinction between ID and OOD data, thereby compromising OOD detection performance. To overcome this limitation, it is imperative to preserve partial semantic features from the local OOD images. As demonstrated in Fig. 1b, we contend that the authentic distribution of patch-level OOD data is a label distribution that reduces confidence in general categorical knowledge, as opposed to a simple uniform distribution.

In this study, we propose the Local Uncertainty Smoothing framework. To preserve the ability of patch-level data to retain semantic understanding across different labels, we introduce a general category knowledge prior to serve as a reference distribution. Subsequently, we construct soft labels by incorporating label smoothing and a novel patch-wise local uncertainty mechanism. These soft labels are designed to simultaneously maintain the sensitivity of patch-level data to semantic distinctions while enhance OOD detection capability. Furthermore, inspired by generalization error bound theory, we investigate the relationship between patch-wise local uncertainty and KL divergence during training. This theoretical foundation enables our model to adaptively determine optimal soft label assignments for each OOD patch. Extensive experiments demonstrate that the proposed framework yields superior OOD detection performance.

- We propose an intuitive and novel OOD soft label construction paradigm for few-shot OOD detection. Based on the label smoothing, we derive a Local Uncertainty Smoothing (LUS) framework to assign reasonable OOD labels for the ID local patches. This offers a new understand of the ood local features and effectively improve the ood detection performance.
- We propose a patch-wise local uncertainty metric based on the covariance between the uncertainty and the KL divergence observed during training. This offers a theoretical guarantee for the relevance of local uncertainty from the perspective of the generalization error upper bound.
- We develop a novel dynamic iterative learning methodology which refines the uncertainty metric to progressively learn superior soft labels. Extensive experimental results validate our theoretical analysis and demonstrate the superior performance of the proposed approach.

2 RELATED WORK

OOD Detection with Pre-trained Vision-language Models. OOD detection aims to identify inputs from unknown classes absent during training, ensuring model reliability. Traditional methods leverage confidence scores like MSP (Hendrycks & Gimpel, 2016), perturbation-enhanced ODIN (Liang et al., 2017), or feature-space metrics such as Mahalanobis distance (Lee et al., 2018). Recent advances exploit vision-language models (VLMs) like CLIP, which align visual and textual embeddings for zero-shot inference. Zero-shot CLIP-based approaches (Esmaeilpour et al., 2022) utilize pre-trained prompts to estimate OOD score with temperature-scaled softmax to enhance separability without fine-tuning. Beyond zero-shot, fine-tuned methods (Du et al., 2022), (Tao et al., 2023) incorporate ID data

108 for task-specific calibration, albeit with increased computational costs, such as CLIPN (Wang et al.,
 109 2023) refine detection via negative prompt generation. Recently, a promising direction is few-shot
 110 OOD detection, which balances efficiency and performance by leveraging minimal in-distribution
 111 samples. Currently, the mainstream approaches leveraging CLIP-based prompt learning for OOD
 112 few-shot detection primarily follow two methodologies. One is the LoCoOP (Miyai et al., 2024)
 113 method, which enforces entropy uniformity for distribution alignment, and the other adopts a K+1
 114 class formulation that introduces an auxiliary dimension to learn negative prompts. Variants of the
 115 latter include techniques such as id-like (Bai et al., 2024), which reduces the number of negative
 116 prompts by learning common features across categories, and the NegPrompt (Li et al., 2024) method,
 117 which employs shared class-specific contexts for both positive and negative prompt construction.

118 **Prior knowledge transfer.** Prior knowledge transfer has been extensively utilized across various
 119 domains. In the context of CLIP, prior knowledge transfer has been widely adopted to address
 120 catastrophic forgetting in tasks such as few-shot accuracy prediction and domain generalization. For
 121 instance, ProGrad (Zhu et al., 2023) ensures alignment between the learning direction of trainable
 122 task-specific knowledge and general knowledge (hand-crafted prompts) during prompt tuning, thereby
 123 preserving existing knowledge while acquiring new capabilities. Similarly, while ProGrad discards
 124 conflicting updates by optimizing prompts toward aligned directions, KgCoOp (Yao et al., 2023)
 125 avoids knowledge discardment by introducing a Euclidean distance-based loss to constrain trainable
 126 task-specific knowledge to remain proximal to general knowledge. Inspired by these approaches, our
 127 work investigates catastrophic forgetting in OOD detection and explores how to effectively leverage
 128 prior knowledge transfer to enhance OOD detection performance.

3 PRELIMINARIES

131 We partition the dataset into a training set $\mathcal{D}_{\text{train}} = (\mathcal{D}_{\text{train}}^{\text{ID}}, \mathcal{D}_{\text{train}}^{\text{OOD}})$ and a validation set $\mathcal{D}_{\text{test}} =$
 132 $(\mathcal{D}_{\text{test}}^{\text{ID}}, \mathcal{D}_{\text{test}}^{\text{OOD}})$, where the ID components $\mathcal{D}_{\text{train}}^{\text{ID}}$ and $\mathcal{D}_{\text{test}}^{\text{ID}}$ adhere to the joint data-label distribution
 133 (x_i, y_i) with explicit sample-label pairs (x, y) , while the OOD components $\mathcal{D}_{\text{train}}^{\text{OOD}}$ and $\mathcal{D}_{\text{test}}^{\text{OOD}}$ are
 134 sampled from unknown P_{OOD} . But current few-shot learning paradigms increasingly avoid reliance
 135 on external OOD datasets. Methods exemplified by LoCoOP (Miyai et al., 2024) leverage CLIP’s
 136 inherent prior knowledge to synthesize OOD samples from ID data through patch-based strategies,
 137 while approaches like id-like (Bai et al., 2024) generate OOD representations via random cropping of
 138 ID samples. Consequently, the majority of OOD data in few-shot scenarios originates from systematic
 139 transformations of ID data rather than external collections.

140 **Zero-Shot OOD Detection.** Given a pre-trained vision-language model (Radford et al., 2021) with
 141 image encoder $\phi_I(\cdot)$ and text encoder $\phi_T(\cdot)$. The MCM (Ming et al., 2022) method computes
 142 OOD scores through cross-modal alignment. MCM’s zero-shot capability stems from leveraging the
 143 pre-trained cross-modal alignment without fine-tuning on ID data. The key hypothesis is that OOD
 144 samples exhibit lower maximum similarity due to semantic misalignment with ID class prompts. For
 145 an input image \mathbf{x} , the scoring function $S(\mathbf{x})$ is defined as:

$$S(\mathbf{x}) = \max_i \frac{\exp(\langle \phi_I(\mathbf{x}), \phi_T(\mathbf{t}_i) \rangle / \tau)}{\sum_{j=1}^C \exp(\langle \phi_I(\mathbf{x}), \phi_T(\mathbf{t}_j) \rangle / \tau)} \quad (1)$$

151 where \mathbf{t}_i represents the hand-crafted prompt for class i , and τ is the temperature parameter to be set
 152 as 1. The OOD decision rule follows:

$$\mathcal{F}(\mathbf{x}) = \begin{cases} \text{ID}, & S(\mathbf{x}) \geq \tau \\ \text{OOD}, & S(\mathbf{x}) < \tau \end{cases} \quad (2)$$

153 **Prompt learning for OOD detection.** In contrast to conventional prompt learning frameworks like
 154 CoOP (Zhou et al., 2022b), our method adopts the state-of-the-art OOD detection approach LoCoOp
 155 (Miyai et al., 2024). This framework operates without introducing auxiliary dimensions, instead
 156 directly fine-tuning the original classification logit distribution. To address the challenge of detecting
 157 real OOD samples under distributional uncertainty, we construct auxiliary OOD data by leveraging
 158 low-similarity patches from ID samples under the LoCoOp (Miyai et al., 2024) paradigm. A uniform
 159 label distribution \mathcal{U} is imposed to suppress the original distribution of OOD data. Our final loss
 160

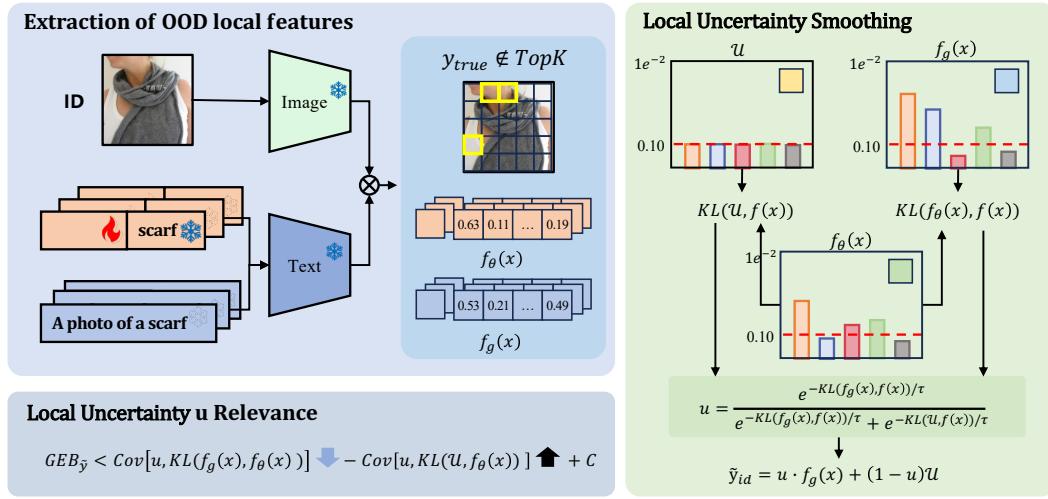


Figure 2: Overview of our framework. Our method begins by following LoCoOp for the extraction of OOD local features. Then, we introduce a Local Uncertainty Smoothing approach to reformulate the OOD soft labels. Subsequently, we theoretically explore the relevance of the local uncertainty and propose a local uncertainty mechanism that enables the model to adaptively identify optimal soft labels.

function is formulated as:

$$\begin{aligned}
 \mathcal{L}_{train} &= \mathcal{L}_{CE} + \lambda \mathcal{L}_{OOD} \\
 &= \mathbb{E}_{\mathcal{D}_{train}^{ID}} \left[-y_{true} \log f_{\theta}(x) \right] + \alpha \mathbb{E}_{\mathcal{D}_{train}^{OOD}} \left[-H(f_{\theta}(x)) \right] \\
 &= \mathbb{E}_{\mathcal{D}_{train}^{ID}} KL \left(y, f_{\theta}(x) \right) + \alpha \mathbb{E}_{\mathcal{D}_{train}^{OOD}} KL \left(\mathcal{U}, f_{\theta}(x) \right) + \alpha \log K
 \end{aligned} \tag{3}$$

Here $f_{\theta}(x)$ denotes the training model, α controls the OOD loss strength, and K is the number of ID classes.

Extraction of OOD local features. To identify regions that are irrelevant to the ID categories, we perform a selection from the complete index set $I = \{0, 1, 2, \dots, H \times W - 1\}$, with H and W indicating the spatial dimensions of the feature map. Throughout training, the classification probability for each region i is determined by measuring the similarity between its visual feature $f_{\theta}^{(i)}$ and the textual embeddings of the ID classes. A region is considered ID-irrelevant and included in the set R if its ground-truth category does not appear within the top- K classes with the highest predicted probabilities. This is formally expressed as:

$$R = \left\{ i \in I : \text{rank}(\pi^{(i)}(y | x; \omega)) > K \right\}, \tag{6}$$

Here, $\pi^{(i)}(y | x; \omega)$ signifies the predicted probability assigned to the true label for the i -th region, and $\text{rank}(\pi^{(i)}(y | x; \omega))$ indicates the ordinal position of that true label when all ID class probabilities are sorted in descending order.

4 METHOD

In the previous section, we discussed the limitations of our baseline approach, which utilized entire images to learn from one-shot distributions while training on patch-level OOD data under a uniform distribution. This misalignment compromises the model's generalization capability. To overcome this issue, we propose local uncertainty smoothing method which refining the label distribution for

216 OOD patches by incorporating reference distribution of local image categories, based on a general
 217 knowledge f_g , rather than enforcing a uniform distribution indiscriminately. To further optimize
 218 the patch-level OOD labels, we introduce Patch-wise local Uncertainty. This method dynamically
 219 smooths the label distribution between reference distribution and uniform distribution by integrating
 220 local uncertainty. Our design of this uncertainty-aware mechanism is motivated by theoretical insights
 221 into generalization error bounds, which reveal a critical relationship between uncertainty and KL
 222 divergence observed during training. Our framework is shown in Fig. 2.

223

224 4.1 LOCAL UNCERTAINTY SMOOTHING.

225

226 Building upon the label smoothing formulation, we aim to smooth the patch-level reference distribution
 227 gradually toward a uniform distribution over the OOD detection, while retaining the model’s
 228 inherent patch-level semantic knowledge. Accordingly, we define the soft label for OOD data as
 229 follows:

230

$$\tilde{y} = u \cdot f_g(x) + (1 - u) \cdot \mathcal{U} \quad (4)$$

231

232 where u denotes an uncertainty method, \mathcal{U} is a uniform distribution and $f_g(x)$ represents a general
 233 knowledge model that denotes the semantic understanding of patch-level OOD data. When the value
 234 of u is relatively small, the label assignment treats the current patch as a typical OOD example with
 235 minimal semantic relevance to any known class, thereby effectively representing a feature devoid of
 236 categorical associations. Conversely, a larger u indicates that the patch is perceived as highly relevant
 237 to a specific class label.

238

239 Based on the definition of patch-level OOD soft labels, we construct the corresponding OOD loss
 240 function using the KL divergence and the formula is as follows:

241

$$\mathcal{L}_{\text{OOD}} = \mathbb{E}_{\mathcal{D}_{\text{train}}^{\text{OOD}}} \left[\ell(\tilde{y}, f_{\theta}(x)) \right] \quad (5)$$

242

243 Following the setup in LoCoOp, we use the same ID loss for the entire image. The overall objective
 244 function with full images as ID data and patch-level regions as OOD data is defined as follows:

245

$$\mathcal{L} = \mathcal{L}_{\text{ID}} + \lambda \mathcal{L}_{\text{OOD}} \quad (6)$$

246

247 where \mathcal{L}_{ID} is as same as the \mathcal{L}_{CE} and λ is a hyperparameter.

248

249 4.2 PATCH-WISE LOCAL UNCERTAINTY

250

251 We have redefined the data labels at the patch level. However, quantifying the relevance between
 252 $f_g(x)$ and \mathcal{U} remains challenging, and the question of how to determine an optimal u for OOD
 253 detection merits further investigation. Therefore, determining an appropriate value of u is critical after
 254 incorporating the label smoothing strategy described above. In contrast to traditional approaches,
 255 we propose to examine the relationship between u and the model through the lens of generalization
 256 error minimization. This perspective allows us to develop a dynamic weighting scheme that enhances
 257 OOD detection performance.

258

259 In machine learning, the concept of the generalization error bound describes a theoretical limit on
 260 model performance when applied to unseen data (Niyogi & Girosi, 1996). A tighter bound generally
 261 indicates better expected performance on data from unknown distributions. In this section, the
 262 generalization error of an OOD detector f can be defined as follows:

263

$$\text{GError}(f, \tilde{y}^*) = \mathbb{E}_{x \sim \mathcal{D}} [\ell(\tilde{y}^*, f_{\theta}(x))]. \quad (7)$$

264

265 It should be emphasized that our analysis of generalization error bounds pertains to OOD data that
 266 follows the same distribution as the patch-level OOD regions, under the assumption that an optimal
 267 parameter u^* exists to minimize these bounds. And \tilde{y}^* denotes the optimal soft label under the
 268 optimal u^* . Building on this foundation, we formalize our theoretical framework.

269

Theorem 1. *(Dynamic Smoothness Uncertainty Relevance).* For any hypothesis $f \in \mathcal{F}$ and \mathcal{F} denotes
 270 the optimisation space for prompt learning, given a data point x , we possess an optimal soft label \tilde{y}^*
 271 under an optimal u^* . We holds with a generalization error upper bound:

270
271 Table 1: Benchmark OOD detection performance on ImageNet-1K as the ID dataset across CLIP-
272 based architectures. Results are reported as mean across three randomized seeds. ViT-B/16 is adopted
273 as the reference image encoder.

Method	Backbone	OOD Dataset									
		iNaturalist		SUN		Places		Texture		Average	
		FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC
Full/Sub Data Fine-tune											
MSP	CLIP-B/16	40.89	88.63	65.81	81.24	67.90	80.14	64.96	78.16	57.92	82.31
Energy	CLIP-B/16	29.75	94.68	34.28	93.15	56.40	85.60	51.35	88.00	45.83	89.43
ODIN	CLIP-B/16	30.22	94.65	54.04	87.17	55.06	85.54	51.67	87.85	45.65	89.35
Fort/MSP	CLIP-B/16	54.05	87.43	54.12	86.37	72.98	78.03	68.85	79.06	65.29	81.51
VOS	CLIP-B/16	31.65	94.53	43.03	91.92	41.62	90.23	56.67	86.74	43.31	90.50
NPOS	CLIP-B/16	16.58	96.19	43.77	90.44	45.27	89.44	46.12	88.80	35.99	91.48
CLIPN	CLIP-B/16	23.94	95.27	26.17	93.93	33.45	92.28	40.83	90.93	32.74	92.83
Zero-shot											
MCM	CLIP-B/16	30.91	94.61	37.67	92.56	44.69	89.77	57.77	86.11	44.46	90.16
One-shot											
CoOp	CLIP-B/16	43.38	91.26	38.53	91.95	46.68	89.09	50.64	87.83	46.90	89.39
id-like	CLIP-B/16	12.07	97.65	40.55	91.07	47.94	88.31	38.34	89.67	34.72	91.67
NegPrompt	CLIP-B/16	65.03	84.56	44.39	89.63	51.31	86.55	87.60	63.76	62.08	81.13
LoCoOp _{MCM}	CLIP-B/16	32.05	93.61	33.60	93.01	41.29	90.05	51.51	88.62	39.61	91.32
LoCoOp _{GL}	CLIP-B/16	19.67	95.83	25.73	94.00	34.95	91.06	52.73	87.03	33.27	91.98
LUS _{MCM}	CLIP-B/16	29.54	94.34	28.73	94.13	35.09	91.48	49.70	88.86	35.76	92.20
LUS _{GL}	CLIP-B/16	18.32	96.31	25.27	94.70	34.02	91.65	51.10	86.99	32.18	92.41
16-shot											
CoOp	CLIP-B/16	35.36	92.60	37.06	92.27	45.38	89.15	43.74	89.68	41.49	90.48
id-like	CLIP-B/16	13.94	95.42	42.28	89.42	53.25	85.44	18.16	93.78	31.91	91.01
NegPrompt	CLIP-B/16	37.79	90.49	32.11	92.25	35.52	91.16	43.93	88.38	37.34	90.57
LoCoOp _{MCM}	CLIP-B/16	24.38	94.86	30.85	93.68	37.45	91.24	43.42	90.28	34.03	92.51
LoCoOp _{GL}	CLIP-B/16	13.99	96.83	23.37	94.78	31.87	91.87	45.14	88.18	28.59	92.92
LUS _{MCM}	CLIP-B/16	25.08	95.02	30.16	93.75	37.05	91.28	41.61	90.87	33.48	92.73
LUS _{GL}	CLIP-B/16	15.87	96.61	21.92	94.97	30.77	92.14	42.54	89.51	27.77	93.31

$$GError(f, \tilde{y}^*)) \leq Cov[u^*, KL(f_g(x), f_\theta(x))] - Cov[u^*, KL(\mathcal{U}, f_\theta(x))] + C \quad (8)$$

where $Cov[u^*, KL(f_g(x), f_\theta(x))]$ and $Cov[u^*, KL(\mathcal{U}, f_\theta(x))]$ is the covariance between Dynamic weight u^* , loss function of $KL(\mathcal{U}, f_\theta(x))$ and loss function of $KL(f_g(x), f_\theta(x))$. C is a term independent of u^* .

A detailed proof is provided in Section Appendix A. It should be emphasized that our method focuses on the correlation between the optimal u^* and the model. In the context of label smoothing, the C term has been extensively studied and can be approximated as a constant (Yuan et al., 2020). Moreover, C is formally independent of the optimal u^* . Therefore, the theoretical analysis in this section is confined to the correlation concerning u^* , while a more detailed discussion of the C term is provided later in the discussion section.

Remark. In our framework, the KL divergence is adopted as the loss function. Within our theoretical setup and under the stated assumptions, reducing the generalization error bound requires satisfying the conditions that $Cov[u^*, KL(f_g(x), f_\theta(x))] < 0$ and $Cov[u^*, KL(\mathcal{U}, f_\theta(x))] > 0$. This leads to two corollaries for the design of u that it must be negatively correlated with the $KL(f_g(x), f_\theta(x))$, and positively correlated with the $KL(\mathcal{U}, f_\theta(x))$.

Based on the theoretical foundation established above, we define the label weights u for our model. Prior to each iteration of the loss computation, we calculate a preliminary $KL(f_g(x), f_\theta(x))$ and $KL(\mathcal{U}, f_\theta(x))$, which informs the following formulation of the dynamic smoothness uncertainty:

$$u = \frac{e^{-KL(f_g(x), f_\theta(x))/\tau}}{e^{-KL(f_g(x), f_\theta(x))/\tau} + e^{-KL(\mathcal{U}, f_\theta(x))/\tau}} \quad (9)$$

where τ is a hyperparameter. τ reflects the sensitivity of the label weighting to the loss function. We performed detailed experimental validation of this behavior in Section 3.

324
 325 Table 2: Accuracy comparison of ID on
 326 the ImageNet-1K validation data for few-
 327 shot object detection.

328	Shot	Method	Accuracy (%)
329	1-Shot	CoOp	66.23
		LoCoOp	68.10
		Ours	68.70
332	16-Shot	CoOp	72.10
		LoCoOp	71.10
		Ours	71.40

335
 336 Table 3: Performance comparison with LoCoOP
 337 on hard ood dataset. Our first row represents the
 338 id dataset and the second row represents the ood
 339 dataset.

Method	ImageNet10		ImageNet20	
	ImageNet20	ImageNet10	FPR95	AUROC
LoCoOp	28.20	92.75	34.40	92.34
Ours	5.70	98.60	16.10	97.66

340
 341 After defining u , and given the continuous iterative nature of model training, the optimal value of u
 342 typically varies over time with respect to the evolving $f_\theta(x)$. To account for this, we design u as a
 343 time-dependent uncertainty measure that is recomputed after each backward propagation of the loss.
 344 And dynamic smoothness uncertainty is as follows:

$$u^t = \frac{e^{-KL(f_g(x), f_\theta^t(x))/\tau}}{e^{-KL(f_g(x), f_\theta^t(x))/\tau} + e^{-KL(U, f_\theta^t(x))/\tau}} \quad (10)$$

345 where u^t recalculate based on f^t after each backpropagation of the gradient. And $f_\theta^t(x)$ represents the
 346 training model after t iterations of gradient backpropagation. Under this configuration, u dynamically
 347 adapts to the current $f_\theta(x)$, thereby facilitating the search for optimal soft labels. As a result, the
 348 joint optimization of u and the learning process of $f_\theta(x)$ mutually reinforce each other, ultimately
 349 converging to both suitable soft labels and a well-trained model.

351 5 EXPERIMENTS

354 5.1 EXPERIMENTAL SETUP

355 **Datasets.** We evaluate our method across three distinct OOD detection benchmarks to comprehen-
 356 sively assess performance under varying scenarios. First, following standard protocols, we employ
 357 ImageNet-1K (Deng et al., 2009) as the ID dataset and test on widely-used OOD benchmarks in-
 358 cluding iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and
 359 Textures (Cimpoi et al., 2014) with few-shot training. Second, to rigorously examine hard OOD
 360 detection, we adopt the MCM (Esmailpour et al., 2022) ImageNet-10 and ImageNet-20 setup, where
 361 ImageNet-10 mimics CIFAR-10’s class distribution with high-resolution images, and ImageNet-20 in-
 362 troduces semantically similar near-OOD classes. More experiments set can be found in the Appendix
 363 C.

364 **Implementation details.** Our implementation adheres to the LoCoOp framework with CLIP-ViT-
 365 B/16 (Dosovitskiy et al., 2020) as the backbone, where the feature maps exhibit a spatial resolution
 366 of 16×16 . The key hyperparameters are empirically configured as follows: the neighborhood size
 367 $K=200$ across all experiments, and the regularization weight $\lambda=0.5$. Additional training specifications
 368 include 50 epochs with a base learning rate of 0.002, batch size of 32, and prompt token length $N=16$.
 369 All experiments are conducted on a single NVIDIA A6000 GPU to ensure hardware consistency.

370 **Baselines and Evaluation.** Our comparative analysis encompasses three methodological paradigms.
 371 Fully-supervised approaches such as MSP (Hendrycks & Gimpel, 2016), Fort/MSP (Fort et al.,
 372 2021), Energy (Liu et al., 2020), ODIN (Liang et al., 2017), VOS (Du et al., 2022), and NPOS
 373 (Tao et al., 2023), zero-shot approaches represented by MCM (Ming et al., 2022), and few-shot
 374 methods including CoOp (Zhou et al., 2022b) and LoCoOp. All methods employ the CLIP ViT-B-16
 375 backbone to ensure equitable comparison. Performance evaluation leverages three standard metrics
 376 FPR95, AUROC, and ID classification accuracy which enable comprehensive assessment of detection
 377 capabilities.

378
 379 Table 4: Ablation analysis of local uncertainty
 380 u with other different uncertainty method on
 381 OOD datasets with average results.

Method	AVG	
	FPR95	AUROC
Static weight	40.54	91.62
Entropy	42.91	90.94
MaxLogit	38.42	91.63
Ours	35.76	92.20

382
 383 Table 5: Ablation analysis of framework com-
 384 ponents with $f_g(x)$ and u on OOD datasets
 385 with average results.

		AVG	
$f_g(x)$	u	FPR95	AUROC
✗	✗	39.61	91.32
✓	✗	39.54	91.50
✓	✓	35.76	92.20

386 387 388 389 390 391 392 393 394 395 396 397 398 399 5.2 MAIN RESULTS

399 **ImageNet-1k as ID dataset.** Table 1 summarizes our OOD detection performance using ImageNet-
 400 1K as ID data. Our proposed framework, which design soft labels suitable for patch-level OOD data,
 401 achieves state-of-the-art performance across both 1-shot and 16-shot configurations. Our approach
 402 achieves comprehensive improvements, whether for ID classification or OOD detection. The ID
 403 classification result as shown in Table 2. And demonstrates significant improvements with average
 404 FPR95 and AUROC scores of 35.76 and 92.20 in 1-shot settings. This method outperforming
 405 conventional OOD detection methods and even surpassing the original zero-shot CLIP baseline and
 406 LoCoOp. Moreover, on several other datasets set up in Openood using ImageNet-1k as id, our method
 407 also achieve superior performance compared to our baseline. More our experimental results are
 408 presented in the Appendix E.

409 **Comparisons on hard OOD detection.** Our method achieves robust performance on small hard-
 410 OOD datasets while maintaining the ability to recognize patch-level feature information. As shown
 411 in Table 3, our approach consistently outperforms the baseline and significantly surpasses LoCoOp,
 412 which exhibits considerable performance degradation on these datasets. These results confirm that our
 413 framework effectively preserves the discriminative power of categorical features rather than simply
 414 enforcing alignment toward a uniform distribution.

415 416 417 418 419 420 421 422 423 424 425 5.3 ABLATION STUDY

426 **Impact of Components of Local Uncertainty Smoothing.** We performed a comprehensive eval-
 427 uation of the effectiveness of our label smoothing strategy. The results, presented in Table 5, show
 428 a significant improvement over the baseline without label smoothing. Notably, even with static
 429 weighting and without dynamic smoothing uncertainty, our label smoothing approach enhances
 430 object detection performance. Moreover, the introduction of dynamic smoothing uncertainty further
 431 optimizes the results, achieving the best overall performance and confirming the efficacy of the
 432 proposed method. Based on this work, we include in the Appendix D the selection and experimental
 433 results of various f_g . Our results demonstrate that a well-chosen general knowledge model—one with
 434 strong prior understanding of the dataset—can lead to greater performance gains in OOD detection.

435 **Impact of Local Uncertainty Method.** We conducted targeted experiments to evaluate the efficacy
 436 of the dynamic uncertainty smoothing component within our proposed method. The results are
 437 summarized in Table 4. Without dynamic weighting, even a simple equal weight strategy already
 438 yielded a marked improvement in OOD detection performance compared to static weighting ap-
 439 proaches. Furthermore, we compared our dynamic uncertainty smoothing mechanism against other
 440 uncertainty-based fusion methods, including those based on entropy and maximum logit to further
 441 verify its advantage. Detailed configurations of these baseline methods are provided in the Appendix
 442 F. Our results confirm the effectiveness of dynamically designed weighting schemes derived from
 443 correlations in smoothed uncertainty.

444 **Impact of Temperature coefficient τ .** We present the results for the parameter τ evaluated over a
 445 range of values (0, 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, 10) in Fig. 3. The parameter τ controls the sensitivity
 446 balance between the two KL divergence terms. The results show that a small τ amplifies the KL
 447 divergence values, making their relative ratio more prominent. However, this configuration yields
 448 suboptimal performance. We analyze that this is due to the iterative nature of the model training,
 449 there is an excessively large ratio may lead to instability in the uncertainty measure u , which can
 450 cause erratic changes in the soft labels and hinder stable model learning. Conversely, an overly small

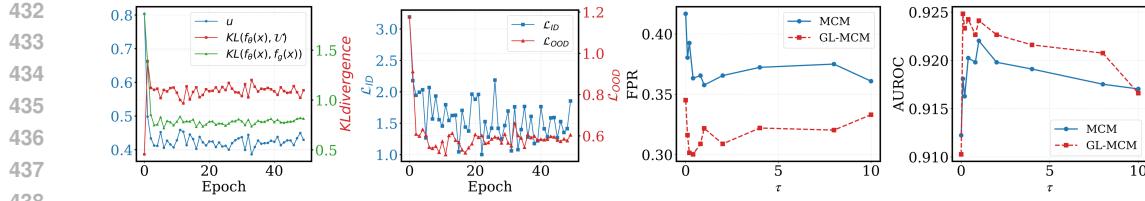


Figure 3: Visualizations of the local uncertainty, the training loss, and OOD performance for different τ values collectively serve to illustrate the convergence properties of our method.

ratio weakens the KL-based relevance signal, providing insufficient guidance for the optimization process and thus limiting the ability to converge toward an effective soft label assignment. The more result can see the Appendix G for the changes in u under different τ settings, which matches our analysis.

5.4 DISCUSSIONS

The Convergence and Relevance of Local Uncertainty. We validate and discuss the convergence and correlation of local uncertainty. As shown in Fig. 3, both divergence measures, $\text{KL}(f_g(\mathbf{x}), f_\theta^t(\mathbf{x}))$ and $\text{KL}(\mathcal{U}, f_\theta^t(\mathbf{x}))$, eventually stabilize during model training. Correspondingly, the local uncertainty u converges, consistent with our theoretical expectation that iterative convergence of local uncertainty leads to optimal soft label assignment. Furthermore, the local uncertainty trend exhibits correlations predicted by our method. Specifically, it shows a negative correlation with $\text{KL}(f_g(\mathbf{x}), f_\theta^t(\mathbf{x}))$ and a positive correlation with $\text{KL}(\mathcal{U}, f_\theta^t(\mathbf{x}))$. ID and OOD losses, as depicted in the figure, converge simultaneously with the stabilization of u . Each resulting OOD loss represents the optimal value achievable by the current model for a given uncertainty level u .

The Discussion of the Constant Term C. We discussed the results of the term C independent of u in the generalization error bound. The specific definition of C is provided in the Appendix A. These are two KL divergence results on the OOD test set. Although our loss function does not constrain these two terms, both KL divergences still converge on the training set, as shown in the figure. Additionally, the Appendix I presents KL divergence results for this term on both the training and test sets. These results align closely with our convergence findings on the training set, consistent with many exploratory studies in this area. Furthermore, from the perspective of Rademacher complexity theory, the convergence of these two KL divergence metrics signifies the convergence of empirical error results. The C-term also converges to a constant dominated by empirical error. We present the results in the Appendix I.

The limitations of smooth labeling. The feature extraction capability of our method at the patch level is contingent upon the representational power of f_g . However, requirements for feature extraction may vary across different real-world datasets. Since our approach relies on the pre-existing knowledge embedded in f_g , it may be unable to explore semantic cues beyond the scope of what f_g already captures.

6 CONCLUSION

In this paper, we presents a Local Uncertainty Smoothing (LUS) framework to address the challenges in few-shot out-of-distribution detection. Our approach introduces two key innovations, a novel soft label construction method that combines label smoothing with local uncertainty measurement, and a theoretically grounded patch-wise uncertainty mechanism derived from generalization error bound analysis. The framework effectively bridges the distribution gap between in-domain and out-of-domain samples while preserving fine-grained semantic information. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves state-of-the-art performance in few-shot OOD detection scenarios. The results validate both the theoretical foundations and practical effectiveness of our approach. The proposed local uncertainty smoothing strategy provides a robust solution for handling the distribution shift between simulated and real OOD instances.

486 REFERENCES
487

488 Yichen Bai, Zongbo Han, Bing Cao, Xiaoheng Jiang, Qinghua Hu, and Changqing Zhang. Id-like
489 prompt learning for few-shot out-of-distribution detection. In *Proceedings of the IEEE/CVF*
490 *Conference on Computer Vision and Pattern Recognition*, pp. 17480–17489, 2024.

491 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
492 textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern*
493 *recognition*, pp. 3606–3613, 2014.

494 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
495 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
496 pp. 248–255. Ieee, 2009.

497 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
498 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
499 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
500 *arXiv: Computer Vision and Pattern Recognition*, *arXiv: Computer Vision and Pattern Recognition*,
501 Oct 2020.

502 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don't know by virtual
503 outlier synthesis. *arXiv preprint arXiv:2202.01197*, 2022.

504 Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution detection
505 based on the pre-trained model clip. In *Proceedings of the AAAI conference on artificial intelligence*,
506 volume 36, pp. 6568–6576, 2022.

507 Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
508 detection. *Neural Information Processing Systems*, *Neural Information Processing Systems*, Jun
509 2021.

510 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
511 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.

512 Dan Hendrycks, Mantas Mazeika, and ThomasG. Dietterich. Deep anomaly detection with outlier
513 exposure. *International Conference on Learning Representations*, *International Conference on*
514 *Learning Representations*, Sep 2018.

515 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
516 out-of-distribution samples and adversarial attacks. *Advances in neural information processing*
517 *systems*, 31, 2018.

518 Tianqi Li, Guansong Pang, Xiao Bai, Wenjun Miao, and Jin Zheng. Learning transferable nega-
519 tive prompts for out-of-distribution detection. In *Proceedings of the IEEE/CVF Conference on*
520 *Computer Vision and Pattern Recognition*, pp. 17584–17594, 2024.

521 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
522 image detection in neural networks. *arXiv preprint arXiv:1706.02690*, 2017.

523 Weitang Liu, Xiaoyun Wang, JohnD. Owens, and Yixuan Li. Energy-based out-of-distribution
524 detection. *Cornell University - arXiv*, *Cornell University - arXiv*, Oct 2020.

525 Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
526 distribution detection with vision-language representations. *Advances in neural information*
527 *processing systems*, 35:35087–35102, 2022.

528 Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Locoop: Few-shot out-of-distribution
529 detection via prompt learning. *Advances in Neural Information Processing Systems*, 36, 2024.

530 Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Gl-mcm: Global and local maximum
531 concept matching for zero-shot out-of-distribution detection. *International Journal of Computer*
532 *Vision*, pp. 1–11, 2025.

540 Partha Niyogi and Federico Girosi. On the relationship between generalization error, hypothesis
 541 complexity, and sample complexity for radial basis functions. *Neural Computation*, pp. 819–842,
 542 May 1996. doi: 10.1162/neco.1996.8.4.819. URL <http://dx.doi.org/10.1162/neco.1996.8.4.819>.

543

544 Alec Radford, JongWook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 545 Sastry, Askell Amanda, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 546 Learning transferable visual models from natural language supervision. *Cornell University - arXiv, Cornell University - arXiv*, Feb 2021.

547

548

549 Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai Zheng, Mu Li, Alexander J Smola, and
 550 Xu Sun. Prompt pre-training with twenty-thousand classes for open-vocabulary visual recognition.
 551 *Advances in Neural Information Processing Systems*, 36:12569–12588, 2023.

552

553 Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. *arXiv preprint arXiv:2303.02966*, 2023.

554

555 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 556 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 557 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
 558 2018.

559

560 Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 561 clip to say no. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 562 1802–1812, 2023.

563

564 Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 565 Large-scale scene recognition from abbey to zoo. In *2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, Jun 2010. doi: 10.1109/cvpr.2010.5539970. URL
 566 <http://dx.doi.org/10.1109/cvpr.2010.5539970>.

567

568 Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-guided
 569 context optimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6757–6767, 2023.

570

571 Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
 572 label smoothing regularization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3903–3911, 2020.

573

574 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
 575 million image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1452–1464, Jun 2018. doi: 10.1109/tpami.2017.2723009. URL <http://dx.doi.org/10.1109/tpami.2017.2723009>.

576

577 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 578 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16816–16825, 2022a.

579

580 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 581 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

582

583 Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
 584 prompt tuning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 585 15659–15669, 2023.

586

587

588

589

590

591

592

593

594 APPENDIX A PROOF OF THEOREM 1
595

596 First, we define our id label is the y , which means the one-hot distribution for groundtruth and our ood
597 label is the \mathcal{U} , which is the uniform distribution. Like the related work, we follow the setup of them
598 and define our id label smooth are as follow:
599

$$600 \quad 601 \quad \tilde{y} = u \cdot f_g(x) + (1 - u) \cdot \mathcal{U} \quad (11)$$

602 Consider ℓ to be the convex logistic loss function applied to binary classification tasks. And considering
603 the property of convex function, we have:
604

$$605 \quad \ell\left(f_\theta(x), \tilde{y}\right) = \ell\left(f_\theta(x), u \cdot f_g(x) + (1 - u) \cdot \mathcal{U}\right) \leq (1 - u) \cdot \ell\left(\mathcal{U}, f_\theta(x)\right) + u \cdot \ell\left(f_g(x), f_\theta(x)\right) \quad (12)$$

606 According to our definition of generalisation error, we have the following:
607

$$608 \quad \begin{aligned} GE(f, \tilde{y}) &= \mathbb{E}_{(x, y) \sim D_{OOD}} \ell\left(f_\theta(x), \tilde{y}\right) \\ &= \mathbb{E}_{(x, y) \sim D_{OOD}} \ell\left(f_\theta(x), (1 - u) \cdot \mathcal{U} + u \cdot f_g(x)\right) \\ &\leq \mathbb{E}_{(x, y) \sim D_{OOD}} \left[(1 - u) \cdot \ell(\mathcal{U}, f_\theta(x)) + u \cdot \ell(f_g(x), f_\theta(x)) \right] \\ &= \mathbb{E}_{(x, y) \sim D_{OOD}} \left[\ell(\mathcal{U}, f_\theta(x)) \right] - \mathbb{E}_{(x, y) \sim D_{OOD}} \left[u \cdot \ell(\mathcal{U}, f_\theta(x)) \right] + \mathbb{E}_{(x, y) \sim D_{OOD}} \left[u \cdot \ell(f_g(x), f_\theta(x)) \right] \\ &= \left(1 - \mathbb{E}_{(x, y) \sim D_{OOD}} [u] \right) \cdot \mathbb{E}_{(x, y) \sim D_{OOD}} \left[\ell(\mathcal{U}, f_\theta(x)) \right] - Cov\left(u, \ell(\mathcal{U}, f_\theta(x))\right) \\ &\quad + \mathbb{E}_{(x, y) \sim D_{OOD}} [u] \cdot \mathbb{E}_{(x, y) \sim D_{OOD}} \left[\ell(f_g(x), f_\theta(x)) \right] + Cov\left(u, \ell(f_g(x), f_\theta(x))\right) \\ &\leq Cov\left(u, \ell(f_g(x), f_\theta(x))\right) - Cov\left(u, \ell(\mathcal{U}, f_\theta(x))\right) \\ &\quad + \underbrace{\mathbb{E}_{(x, y) \sim D_{OOD}} \left[\ell(\mathcal{U}, f_\theta(x)) \right] + \mathbb{E}_{(x, y) \sim D_{OOD}} \left[\ell(f_g(x), f_\theta(x)) \right]}_{constant} \\ &= Cov\left(u, \ell(f_g(x), f_\theta(x))\right) - Cov\left(u, \ell(\mathcal{U}, f_\theta(x))\right) + C \end{aligned} \quad (13)$$

640 Among them, the last two items are defined as irrelevant items C that are irrelevant to u . In addition,
641 in many research works (Yuan et al., 2020), the relationship between soft labels and distillation
642 learning is explored. It is believed that by using soft labels and, the loss corresponding to distillation
643 learning can be reduced, that is, C converges to an empirical error, which can also be considered a
644 constant.

645 Within our theoretical setup and under the stated assumptions, reducing the generalization
646 error bound requires satisfying the conditions that $Cov[u^*, KL(f_g(x), f_\theta(x))] < 0$ and
647 $Cov[u^*, KL(\mathcal{U}, f_\theta(x))] > 0$. This leads to two corollaries for the design of u that it must be
negatively correlated with the $KL(f_g(x), f_\theta(x))$, and positively correlated with the $KL(\mathcal{U}, f_\theta(x))$.

648 APPENDIX B OOD SCORE
649650 The CLIP model’s multimodal feature alignment capability enables the MCM Ming et al. (2022)
651 method to perform zero-shot OOD detection by quantifying the similarity distribution between image
652 features and C class text embeddings. The OOD Score function is defined as follows:
653

654
$$S_{MCM} = \max_i \frac{\exp(\langle \phi_I(\mathbf{x}), \phi_T(\mathbf{t}_i) \rangle / \tau)}{\sum_{j=1}^C \exp(\langle \phi_I(\mathbf{x}), \phi_T(\mathbf{t}_j) \rangle / \tau)} \quad (14)$$

655
656

657 where $\tau = 1$ is the temperature parameter, and $\langle \cdot, \cdot \rangle$ denotes cosine similarity.
658659 By introducing a global-local hierarchical feature matching mechanism, GL-MCM Miyai et al. (2025)
660 extends the OOD score calculation to:
661

662
$$S_{GL-MCM} = \max_i \frac{\exp(\langle \phi_I(\mathbf{x}^{local}), \phi_T(\mathbf{t}_i) \rangle / \tau)}{\sum_{j=1}^C \exp(\langle \phi_I(\mathbf{x}^{local}), \phi_T(\mathbf{t}_j) \rangle / \tau)} + S_{MCM} \quad (15)$$

663
664

665 where \mathbf{x}^{local} represents the feature of the i -th local image patch.
666667 APPENDIX C EXPERIMENTAL DETAILS
668669 **Base OOD Benchbark.** The implementation of the system adheres to the LoCoOp framework with
670 CLIP-ViT-B/16 Dosovitskiy et al. (2020), where the feature maps exhibit a spatial resolution of 14x14.
671 The key hyperparameters have been empirically configured as follows: the neighbourhood size $K =$
672 200 across all experiments, the knowledge distillation coefficient $\alpha = 0.25$, and the regularization
673 weight $\lambda = 0.3$. The additional training specifications encompass 50 epochs with a base learning rate
674 of 0.002, a batch size of 32, and a prompt token length of $N=16$. It is imperative that all experiments
675 are conducted on a single NVIDIA A6000 GPU in order to ensure hardware consistency.
676677 **Hard OOD Benchbark.** It is evident that our fundamental experimental details are consistent with
678 those of the baseood benchmark. However, given that imagenet-10 and imagenet-20 contain 10 and
679 20 data types respectively, it was determined that the neighborhood size $K=2$ would be employed for
680 these hard-to-imitate experiments. The results of the model under the 16-shot setting are presented in
681 full in our paper.
682683 **OpenOOD OOD Benchbark.** The experimental details are fundamentally analogous to the base
684 food benchmark. The imagenet1k has been selected as the ID dataset, while the SSh-hard, NINCO
685 and OpenImage-O have been designated as the OOD dataset. It should be noted that iNaturalist and
686 Texture have not been included in the evaluation process, as these two datasets have previously been
687 evaluated in the base OOD benchmark.
688689 APPENDIX D THE SELECTION OF A SUITABLE GENERAL KNOWLEDGE
690 MODEL
691692 Table 6: The cross-domain generalisation performance of prompt-tuned general knowledge models
693 f_g , pre-trained on ImageNet-21K and evaluated through out-of-distribution benchmarks.
694695

Method	iNaturalist		SUN		Places		Texture		Average	
	FPR95	AUROC								
MCM										
LUS _{CLIP}	27.74	94.16	34.78	93.01	42.55	90.19	48.48	89.05	38.39	91.60
LUS _{POMP}	30.80	94.17	31.25	93.91	39.78	90.79	41.50	90.81	35.83	92.42
GL-MCM										
LUS _{CLIP}	13.59	96.81	27.73	93.87	35.94	91.09	51.21	85.80	32.12	91.89
LUS _{POMP}	16.41	96.48	22.78	95.05	32.41	91.80	44.11	88.95	28.92	93.07

700 The following experiments are presented, in which other models of general knowledge are selected to
701 guide the model in acquiring general knowledge. The POMP paper Ren et al. (2023) was selected as

the secondary general knowledge model to present the experimental results. POMP presented the results of prompt tuning on the ImageNet-21K dataset. In this instance, the model under discussion was employed. It is evident that the parameter settings are consistent with the base OOD benchmark. Our results are shown in Table 6, where the clip subscript represents our general knowledge as " a photo of ", and the POMP subscript represents this general knowledge after training on Imagenet-21k. Our results demonstrate that different $f_g(x)$ models can exhibit varying performance for our method, indicating that our model will acquire distinct general knowledge under distinct $f_g(x)$ settings.

Moreover, in order to demonstrate the rationality of our methodology, we employ the same comparison strategy as outlined in Table 1. The results of the ood score of POMP using MCM and GL-MCM in ood detection are presented, as well as the results of the ood score of the LoCoOp model using only our training loss. The following presentation will outline the output results of the model under the KDE strategy. The results of the study are presented in tabular form. The findings of this study suggest that the proposed methodology explores the upper limit of OOD detection, while exhibiting the POMP generalization.

Table 7: The model performance of POMP when used as the f_g model. The present method has been developed in such a manner that it inherits the generalisation ability of POMP, whilst also exploring the upper limit of OOD detection.

Method	OOD Dataset									
	iNaturalist		SUN		Places		Texture		Average	
	FPR95	AUROC								
MCM										
LoCoOp	38.96	92.34	32.40	93.60	37.95	91.00	49.32	88.70	39.65	91.41
LUS	30.80	94.17	31.25	93.91	39.78	90.79	41.50	90.81	35.83	92.42
GL-MCM										
LoCoOp	24.38	94.95	25.45	94.77	32.63	91.81	52.32	86.58	33.69	92.03
LUS	16.41	96.48	22.78	95.05	32.41	91.80	44.11	88.95	28.92	93.07

APPENDIX E MORE EXPERIMENTAL RESULTS

The appendices to this section contain further experimental results of our model, the purpose of which is to demonstrate its experimental performance. The following presentation comprises the experimental results of MCM and GL-MCM under a variety of conditions.

Table 8: cross-domain OOD detection performance comparison across OOD datasets which under different detection frameworks setting: evaluations follow the OpenOOD benchmark with ImageNet-1K as ID data against SSB-hard, NINCO, and OpenImage-O OOD splits, and the MCM cross-evaluation protocol adopting ImageNet-10 ImageNet-20 as ID datasets with reciprocal OOD testing . Our first row represents the id dataset and the second row represents the ood dataset.

Method	ImageNet-10		ImageNet-20		ImageNet-1K					Average		
	ImageNet-20		ImageNet-10		SSh-hard		NINCO		OpenImage-O			
	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC
LoCoOp	28.20	92.75	34.40	92.34	90.27	63.16	82.54	69.19	45.12	90.73	56.11	81.63
Ours	5.70	98.60	16.10	97.66	88.78	64.41	79.19	74.10	41.43	91.84	46.24	85.32

The experimental results obtained under the OpenOOD and MCM benchmarks demonstrate that GL-MCM exhibits superior performance in cross-dataset ID and OOD detection scenarios when compared to the baseline.

The experimental findings yielded from the execution of MCM benchmarks demonstrate that GL-MCM evinces superior performance in OOD detection scenarios when contrasted with the baseline MCM. This outcome is congruent with our experimental expectations and concomitantly signifies that GL-MCM also attains comparatively favourable enhancement results for GL-MCM of our soft label.

756 Table 9: OOD detection performance for ImageNet-1k as ID, the SSh-hard, NINCO, OpenImage-O
 757 as OOD dataset.

Method	ImageNet-1K					
	SSh-hard		NINCO		OpenImage-O	
	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC
LUS _{MCM}	88.78	64.41	79.19	74.10	41.43	91.84
LUS _{GL}	85.13	68.27	72.57	76.06	34.59	92.36

764 Table 10: OOD detection performance for ImageNet-10, ImageNet-20 as ID, the corresponding
 765 imangenet20, imangenet10 as ood datasetas.

Method	ImageNet10		ImageNet20	
	ImageNet20		ImageNet10	
	FPR95	AUROC	FPR95	AUROC
LUS _{MCM}	5.70	98.60	16.10	97.66
LUS _{GL}	10.60	98.66	9.90	98.32

773 The subsequent presentation will expound upon the findings of the model’s image detection process
 774 in relation to imagnet100, which will be utilised as the ID data. The experimental results of the model
 775 on 4-shot are also presented. In the present experiment, the value of K was set to 20. The 1-shot
 776 configuration was not selected as the experimental outcome due to the inability of our model to
 777 converge on the original LoCoOp setting. In order to conduct a one-shot experiment, it is necessary
 778 to enlarge the epoch under the LoCoOp setting until the experimental results obtained are consistent
 779 with those reported in the aforementioned paper. The present study employs imangenet-100 as the ID
 780 dataset, thereby adopting a methodology that explores enhanced object detection while ensuring the
 781 efficacy of the $f_g(x)$ model. This approach is employed to demonstrate the efficacy of the proposed
 782 methodology.

784 APPENDIX F COMPARING WITH MORE UNCERTAINTY METHOD.

786 **Static weight.** We first define the static method which use the weight is 1/2. We define the soft label
 787 for OOD data as follows:

$$788 \quad \tilde{y} = \frac{1}{2} \cdot f_g(x) + \frac{1}{2} \cdot \mathcal{U} \quad (16)$$

790 **Max logit.** We initially define the uncertainty measure as the maximum logit, denoted as:

$$792 \quad u = \max_{c \in \mathcal{C}} f_c(\mathbf{x}) \quad (17)$$

794 where $f_c(\mathbf{x})$ is the logit output for class c given input \mathbf{x} , and \mathcal{C} is the set of all classes.

795 Since this raw uncertainty value is not normalized, we scale it to the range $[0, 1]$ using extremal
 796 statistics from the entire training dataset $\mathcal{D}_{\text{train}}$. Let:

$$798 \quad u_{\min} = \min_{\mathbf{x}_i \in \mathcal{D}_{\text{train}}} \max_c f_c(\mathbf{x}_i) \quad (18)$$

$$799 \quad u_{\max} = \max_{\mathbf{x}_i \in \mathcal{D}_{\text{train}}} \max_c f_c(\mathbf{x}_i) \quad (19)$$

801 represent the global minimum and maximum uncertainty values observed over $\mathcal{D}_{\text{train}}$. The normalized
 802 uncertainty u_{norm} is then defined as:

$$804 \quad u_{\text{norm}} = \frac{u - u_{\min}}{u_{\max} - u_{\min}} \quad (20)$$

806 This min-max normalization ensures $u_{\text{norm}} \in [0, 1]$ with the property that the most uncertain sample
 807 in the training set maps to 1 and the least uncertain to 0.

$$809 \quad u = \frac{u - u_{\min}}{u_{\max} - u_{\min}} \quad (21)$$

Table 11: OOD detection performance for ImageNet-10, ImageNet-20 as ID, the corresponding imangenet20, imagenet10 as ood datasets.

Method	ImageNet10		ImageNet20	
	ImageNet20		ImageNet10	
	FPR95	AUROC	FPR95	AUROC
LUS_{MCM}	5.70	98.60	16.10	97.66
LUS_{GL}	10.60	98.66	9.90	98.32

Table 12: Cross-domain generalization performance on ImageNet-100 as ID data under four-shot learning protocol. A comparison was made between MCM and LoCoOp.

Method	OOD Dataset									
	iNaturalist		SUN		Places		Texture		Average	
	FPR95	AUROC								
MCM										
$LoCoOp_{MCM}$	18.69	96.54	21.16	96.32	27.82	95.12	26.17	94.99	23.46	95.74
LUS_{MCM}	10.70	97.71	16.81	96.92	22.52	95.65	24.68	95.49	18.67	96.44
GL-MCM										
$LoCoOp_{GL}$	12.97	97.09	12.55	97.20	18.15	96.06	26.17	94.36	17.46	96.18
LUS_{GL}	4.44	98.87	13.15	97.42	18.43	96.11	27.23	94.48	15.81	96.72

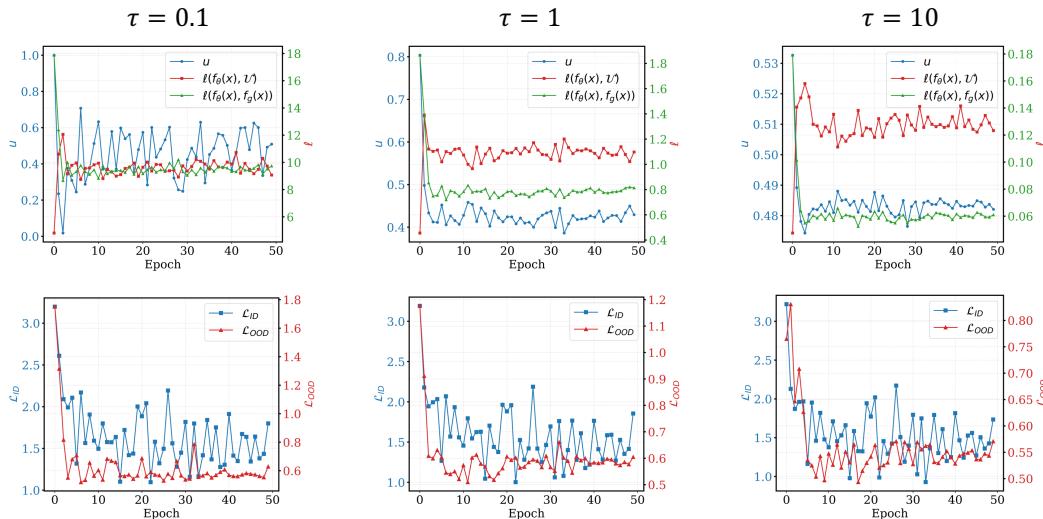
Entropy. The entropy-based uncertainty is defined as $u = -\sum_c p_c(\mathbf{x}) \log p_c(\mathbf{x})$ and normalized to $[0, 1]$ using:

$$u_{\text{norm}} = \frac{u - u_{\min}}{u_{\max} - u_{\min}} \quad (22)$$

where u_{\min} and u_{\max} are the extreme entropy values from the training set.

APPENDIX G MORE TEMPERATURE COEFFICIENT VISUALIZATION RESULTS.

This section analyzes the convergence of u under different hyperparameter settings in the paper. These images match our analysis in the article. For smaller temperature coefficients, u will have large fluctuations, while for larger temperature coefficients, the fluctuations are smaller, but the performance deteriorates. In the experiments in the paper, we choose the results when the temperature coefficient is 1.

Figure 4: More hyperparameter τ visualization results.

864 APPENDIX H THE EXPERIMENT ON GEB COMPONENT CONSTANT.
865866 This part shows the results of C on the test set. Obviously, for LoCoOP, the KL divergence for
867 general knowledge is large. For our method, both KL divergences on the test set remain small, which
868 explains one of the reasons why we consider these two terms as constant terms in the generalization
869 error870
871 Table 13: Two KL divergence results on the test set.
872873
874
875

Method	$KL(f_\theta(x), \mathcal{U})$	$KL(f_\theta(x), f_g(x))$
LoCoOp	0.84	1.89
Ours	0.81	1.13

876
877 APPENDIX I OOD DATASETS.
878879 **iNaturalist.** The dataset under consideration is comprised of 859,000 biological specimens, which
880 are divided into more than 5,000 taxonomic categories. The primary focus of the dataset is flora and
881 fauna biodiversity. In accordance with the established protocol, the evaluation process is conducted
882 using a sample of 10,000 images, selected at random from a total of 110 classes, with the exclusion
883 of those that are already present in the ImageNet-1K database.
884885 **SUN.** The scene recognition corpus under consideration contains 130,000 visual instances, which are
886 divided into 397 environmental categories. For the purpose of comparative analysis, a curated subset
887 of 10,000 images has been employed, sampled from 50 ImageNet-disjoint classes.
888889 **Places.** Places provides complementary coverage of environmental semantics, mirroring SUN’s
890 conceptual scope in scene understanding. The assessment utilises 10,000 images from 50 non-
891 overlapping classes.
892893 **TEXTURE.** The present corpus is one that has been specifically compiled for the purpose of this
894 study. It consists of 5,640 high-resolution texture patterns that have been organised into 47 material
895 categories. A comprehensive evaluation is performed using the full dataset.
896897 **OpenImage-O.** This rigorously curated visual recognition benchmark comprises 17,632 images that
898 have been manually filtered through multi-stage quality assurance protocols, achieving 7.8 \times greater
899 scale diversity than ImageNet-O through pixel-coverage optimisation.
900901 **SSB-hard.** Derived from ImageNet-21K’s hierarchical ontology through semantic scarcity sampling,
902 this 49,000-image benchmark spans 980 visually complex categories characterised by high inter-class
903 ambiguity.
904905 **NINCO.** The dataset contains 5,879 meticulously annotated samples across 64 novel categories,
906 thereby introducing conceptual novelty through systematic exclusion of ImageNet-1K semantic
907 overlaps.
908909 **ImageNet-10.** The creation of ImageNet-10 was driven by the necessity to emulate the class
910 distribution of CIFAR-10, while incorporating high-resolution images. The following categories
911 are contained within the dataset, along with their respective class identifiers: The following subject
912 headings have been identified: The following terms are listed: ‘warplane’ (n04552348), ‘sports car’
913 (n04285008), ‘brambling bird’ (n01530575), ‘Siamese cat’ (n02123597), ‘antelope’ (n02422699).
914 The following have been identified: ‘Swiss mountain dog’ (n02107574), ‘bull frog’ (n01641577),
915 ‘garbage truck’ (n03417042), ‘horse’ (n02389026), and ‘container ship’ (n03095699).
916917 **ImageNet-20.** In order to facilitate the evaluation of hard OODs with realistic datasets, ImageNet-20
918 has been curated. The dataset under consideration consists of 20 classes that are semantically similar
919 to ImageNet-10. The categories are selected based on the distance in the WordNet synsets. The
920 following categories are contained therein: The following items are listed herewith: The following
921 objects are documented: a sailboat (n04147183), a canoe (n02951358), a balloon (n02782093), a
922 tank (n04389033), a missile (n03773504), and a bullet train (n02917067). The following species
923 were documented: A starfish (n02317335), a spotted salamander (n01632458), a common newt
924 (n01630670), a zebra (n01631663), and a frilled lizard (n02391049). For the purposes of this study,
925

918 the following taxa were selected: the green lizard (n01693334), the African crocodile (n01697457),
919 the Arctic fox (n02120079), the timber wolf (n02114367), the brown bear (n02132136), the moped
920 (n03785016), the steam locomotive (n04310018), the space shuttle (n04266014) and the snowmobile
921 (n04252077).

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971