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ABSTRACT

Few-shot out-of-distribution (OOD) detection has become a critical research direc-
tion for the practical deployment of machine learning systems. Existing approaches
commonly rely on auxiliary outlier data derived from in-distribution (ID) samples,
such as using local image patches from training data to simulate OOD features.
However, these artificially constructed OOD samples differ substantially from real
OOD instances, leading to unstable learning when trained with hard OOD labels.
To address this challenge, we propose a Local Uncertainty Smoothing (LUS) frame-
work for few-shot OOD detection. Our method incorporates label smoothing and
local uncertainty measure to facilitate a smooth transition between the reference
distribution of local image categories, based on a general knowledge model and
the target OOD distribution. This approach ensures strong OOD detection perfor-
mance while preserving the model’s ability to capture detailed local-level semantic
features. Furthermore, we theoretically analyze the relevance of local uncertainty
from the perspective of a generalization error bound (GEB). This reveals a con-
crete relationship between our local uncertainty measure and the KL divergence
observed during training. Accordingly, we propose a patch-wise local uncertainty
to effectively identify suitable soft labels for the model throughout the learning
process, achieving superior OOD detection performance. Extensive experiments
on real-world OOD benchmarks validate the effectiveness of our approach. Code
will be made publicly available.

1 INTRODUCTION

Deep learning systems are primarily built upon the theoretical framework of the independent and iden-
tically distributed assumption, which presumes identical probability distributions between training
and test data. However, real-world data acquisition systems inevitably face challenges of distribu-
tional shifts, where such discrepancies in probability distributions may pose significant safety risks,
particularly in safety-critical applications such as autonomous driving and medical diagnosis. In
response to these challenges, diverse methodologies for OOD evaluation have proliferated. Notably,
with the advent of prompt learning in pre-trained vision-language models (Radford et al., 2021),
CLIP-based prompt tuning (Zhou et al., 2022b;a) has been strategically adapted for OOD detection
tasks, catalyzing growing research interest in leveraging prompt learning paradigms for enhanced
OOD detection capabilities.

Recent advances have leveraged auxiliary OOD datasets to improve OOD detection. For instance,
as shown in our Fig. 1a. (Hendrycks et al., 2018) demonstrated that assigning one-hot labels to
entire ID images and uniform label distributions to entire OOD images can lead to effective OOD
detection. Other methods (Bai et al., 2024), (Miyai et al., 2024) have also made progress by generating
OOD data using only ID data during training. However, we reveal a critical limitation of a learning
paradigms that treat local patches as OOD samples and assign them uniform label distributions - this
labeling strategy is inherently unsuitable. Specifically, the representation of finer-grained features
in OOD local data presents significant challenges and often results in classification errors. Using
uniform distribution for local OOD features in such a setting will negatively impact ID classification
and OOD detection performance. For example, as shown in our Fig. 1b, our results indicate that
background images of lions show significant correlation with features of cliffs and stone walls.
Using such ID-like images as OOD features adversely affects the model in both ID classification
and OOD detection. It impairs the model’s ability to recognize features of cliffs and stone walls
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Figure 1: Problematic Label Assignment. (a) illustrates the OOD labeling issue arising from the use
of an auxiliary training set and local OOD features sampled from ID data, highlighting the need to
reconsider the labeling strategy for such features. (b) depicts a typical case of this local OOD feature
labeling problem and presents the underlying rationale for a revised labeling approach.
during ID classification, leading to a decline in ID classification accuracy. Meanwhile, it blurs the
feature distribution distinction between ID and OOD data, thereby compromising OOD detection
performance. To overcome this limitation, it is imperative to preserve partial semantic features from
the local OOD images. As demonstrated in Fig. 1b, we contend that the authentic distribution of
patch-level OOD data is a label distribution that reduces confidence in general categorical knowledge,
as opposed to a simple uniform distribution.

In this study, we propose the Local Uncertainty Smoothing framework. To preserve the ability of
patch-level data to retain semantic understanding across different labels, we introduce a general
category knowledge prior to serve as a reference distribution. Subsequently, we construct soft
labels by incorporating label smoothing and a novel patch-wise local uncertainty mechanism. These
soft labels are designed to simultaneously maintain the sensitivity of patch-level data to semantic
distinctions while enhance OOD detection capability. Furthermore, inspired by generalization error
bound theory, we investigate the relationship between patch-wise local uncertainty and KL divergence
during training. This theoretical foundation enables our model to adaptively determine optimal
soft label assignments for each OOD patch. Extensive experiments demonstrate that the proposed
framework yields superior OOD detection performance.

• We propose an intuitive and novel OOD soft label construction paradigm for few-shot OOD
detection. Based on the label smoothing, we derive a Local Uncertainty Smoothing (LUS)
framework to assign reasonable OOD labels for the ID local patches. This offers a new
understand of the ood local features and effectively improve the ood detection perfermance.

• We propose a patch-wise local uncertainty metric based on the covariance between the
uncertainty and the KL divergence observed during training. This offers a theoretical
guarantee for the relevance of local uncertainty from the perspective of the generalization
error upper bound.

• We develop a novel dynamic iterative learning methodology which refines the uncertainty
metric to progressively learn superior soft labels. Extensive experimental results validate our
theoretical analysis and demonstrate the superior performance of the proposed approach.

2 RELATED WORK

OOD Detection with Pre-trained Vision-language Models. OOD detection aims to identify inputs
from unknown classes absent during training, ensuring model reliability. Traditional methods leverage
confidence scores like MSP (Hendrycks & Gimpel, 2016), perturbation-enhanced ODIN (Liang et al.,
2017), or feature-space metrics such as Mahalanobis distance (Lee et al., 2018). Recent advances
exploit vision-language models (VLMs) like CLIP, which align visual and textual embeddings for
zero-shot inference. Zero-shot CLIP-based approaches (Esmaeilpour et al., 2022)utilize pre-trained
prompts to estimate OOD score with temperature-scaled softmax to enhance separability without fine-
tuning. Beyond zero-shot, fine-tuned methods (Du et al., 2022), (Tao et al., 2023) incorporate ID data
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for task-specific calibration, albeit with increased computational costs, such as CLIPN (Wang et al.,
2023) refine detection via negative prompt generation. Recently, a promising direction is few-shot
OOD detection, which balances efficiency and performance by leveraging minimal in-distribution
samples. Currently, the mainstream approaches leveraging CLIP-based prompt learning for OOD
few-shot detection primarily follow two methodologies. One is the LoCoOP (Miyai et al., 2024)
method, which enforces entropy uniformity for distribution alignment, and the other adopts a K+1
class formulation that introduces an auxiliary dimension to learn negative prompts. Variants of the
latter include techniques such as id-like (Bai et al., 2024), which reduces the number of negative
prompts by learning common features across categories, and the NegPrompt (Li et al., 2024) method,
which employs shared class-specific contexts for both positive and negative prompt construction.

Prior knowledge transfer. Prior knowledge transfer has been extensively utilized across various
domains. In the context of CLIP, prior knowledge transfer has been widely adopted to address
catastrophic forgetting in tasks such as few-shot accuracy prediction and domain generalization. For
instance, ProGrad (Zhu et al., 2023) ensures alignment between the learning direction of trainable
task-specific knowledge and general knowledge (hand-crafted prompts) during prompt tuning, thereby
preserving existing knowledge while acquiring new capabilities. Similarly, while ProGrad discards
conflicting updates by optimizing prompts toward aligned directions, KgCoOp (Yao et al., 2023)
avoids knowledge discardment by introducing a Euclidean distance-based loss to constrain trainable
task-specific knowledge to remain proximal to general knowledge. Inspired by these approaches, our
work investigates catastrophic forgetting in OOD detection and explores how to effectively leverage
prior knowledge transfer to enhance OOD detection performance.

3 PRELIMINARIES

We partition the dataset into a training set Dtrain = (DID
train,DOOD

train ) and a validation set Dtest =
(DID

test,DOOD
test ), where the ID components DID

train and DID
test adhere to the joint data-label distribution

(xi, yi) with explicit sample-label pairs (x, y), while the OOD components DOOD
train and DOOD

test are
sampled from unknown POOD. But current few-shot learning paradigms increasingly avoid reliance
on external OOD datasets. Methods exemplified by LoCoOP (Miyai et al., 2024) leverage CLIP’s
inherent prior knowledge to synthesize OOD samples from ID data through patch-based strategies,
while approaches like id-like (Bai et al., 2024) generate OOD representations via random cropping of
ID samples. Consequently, the majority of OOD data in few-shot scenarios originates from systematic
transformations of ID data rather than external collections.

Zero-Shot OOD Detection. Given a pre-trained vision-language model (Radford et al., 2021) with
image encoder ϕI(·) and text encoder ϕT (·). The MCM (Ming et al., 2022) method computes
OOD scores through cross-modal alignment. MCM’s zero-shot capability stems from leveraging the
pre-trained cross-modal alignment without fine-tuning on ID data. The key hypothesis is that OOD
samples exhibit lower maximum similarity due to semantic misalignment with ID class prompts. For
an input image x, the scoring function S(x) is defined as:

S(x) = max
i

exp (⟨ϕI(x), ϕT (ti)⟩/τ)∑C
j=1 exp (⟨ϕI(x), ϕT (tj)⟩/τ)

(1)

where ti represents the hand-crafted prompt for class i, and τ is the temperature parameter to be set
as 1. The OOD decision rule follows:

F(x) =

{
ID, S(x) ≥ τ

OOD, S(x) < τ
(2)

Prompt learning for OOD detection. In contrast to conventional prompt learning frameworks like
CoOP (Zhou et al., 2022b), our method adopts the state-of-the-art OOD detection approach LoCoOp
(Miyai et al., 2024) . This framework operates without introducing auxiliary dimensions, instead
directly fine-tuning the original classification logit distribution. To address the challenge of detecting
real OOD samples under distributional uncertainty, we construct auxiliary OOD data by leveraging
low-similarity patches from ID samples under the LoCoOp (Miyai et al., 2024) paradigm. A uniform
label distribution U is imposed to suppress the original distribution of OOD data. Our final loss

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

scarf

𝑦#$%& ∉ 𝑇𝑜𝑝𝐾
𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐎𝐎𝐃 𝐥𝐨𝐜𝐚𝐥 𝐟𝐞𝐚𝐭𝐮𝐫𝐞𝐬

0.63 0.11 … 0.19scarf
scarf

2y!" = 𝑢 6 𝑓#(𝑥) + 1 − 𝑢 𝒰

𝑢 =
𝑒$%&((# ) ,( ) )/-

𝑒$%&((# ) ,( ) )/- + 𝑒$%&(𝒰,( ) )/-

𝐾𝐿(𝑓/ 𝑥 , 𝑓 𝑥 )𝐾𝐿(𝒰, 𝑓 𝑥 )

𝒰

0.10

1𝑒!"

𝑓/ 𝑥

Local	Uncertainty	Smoothing
𝑓# 𝑥

0.10

1𝑒!"

𝑓/ 𝑥

0.10

1𝑒!"Text

Image

0.53 0.21 … 0.49

𝑓# 𝑥

A	photo	of	a	scarfA	photo	of	a	scarf
A	photo	of	a	scarf

Local	Uncertainty 𝐮 𝐑𝐞𝐥𝐞𝐯𝐚𝐧𝐜𝐞

𝐺𝐸𝐵 01 < 𝐶𝑜𝑣 𝑢, 𝐾𝐿(𝑓# 𝑥 , 𝑓/ 𝑥  ) − 𝐶𝑜𝑣 𝑢, 𝐾𝐿(𝒰, 𝑓/ 𝑥 ) + 𝐶

ID

Figure 2: Overview of our framework. Our method begins by following LoCoOp for the extraction
of OOD local features. Then, we introduce a Local Uncertainty Smoothing approach to reformulate
the OOD soft labels. Subsequently, we theoretically explore the relevance of the local uncertainty
and propose a local uncertainty mechanism that enables the model to adaptively identify optimal soft
labels.

function is formulated as:

Ltrain = LCE + λLOOD

= EDID
train

[
− ytrue log fθ(x)

]
+ αEDOOD

train

[
−H(fθ(x))

]

= EDID
train

KL

(
y, fθ(x)

)
+ αEDOOD

train
KL

(
U , fθ(x)

)
+ α logK

(3)

Here fθ(x) denotes the training model, α controls the OOD loss strength, and K is the number of ID
classes.

Extraction of OOD local features. To identify regions that are irrelevant to the ID categories,
we perform a selection from the complete index set I = {0, 1, 2, . . . ,H × W − 1}, with H and
W indicating the spatial dimensions of the feature map. Throughout training, the classification
probability for each region i is determined by measuring the similarity between its visual feature
f
(i)
θ and the textual embeddings of the ID classes. A region is considered ID-irrelevant and included

in the set R if its ground-truth category does not appear within the top-K classes with the highest
predicted probabilities. This is formally expressed as:

R =
{
i ∈ I : rank(π(i)(y | x;ω)) > K

}
, (6)

Here, π(i)(y | x;ω) signifies the predicted probability assigned to the true label for the i-th region,
and rank(π(i)(y | x;ω)) indicates the ordinal position of that true label when all ID class probabilities
are sorted in descending order.

4 METHOD

In the previous section, we discussed the limitations of our baseline approach, which utilized entire
images to learn from one-shot distributions while training on patch-level OOD data under a uniform
distribution. This misalignment compromises the model’s generalization capability. To overcome
this issue, we propose local uncertainty smoothing method which refining the label distribution for
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OOD patches by incorporating reference distribution of local image categories, based on a general
knowledge fg, rather than enforcing a uniform distribution indiscriminately. To further optimize
the patch-level OOD labels, we introduce Patch-wise local Uncertainty. This method dynamically
smooths the label distribution between reference distribution and uniform distribution by integrating
local uncertainty. Our design of this uncertainty-aware mechanism is motivated by theoretical insights
into generalization error bounds, which reveal a critical relationship between uncertainty and KL
divergence observed during training. Our framework is shown in Fig. 2.

4.1 LOCAL UNCERTAINTY SMOOTHING.

Building upon the label smoothing formulation, we aim to smooth the patch-level reference distribu-
tion gradually toward a uniform distribution over the OOD detection, while retaining the model’s
inherent patch-level semantic knowledge. Accordingly, we define the soft label for OOD data as
follows:

ỹ = u · fg(x) + (1− u) · U (4)

where u denotes an uncertainty method, U is a uniform distribution and fg(x) represents a general
knowledge model that denotes the semantic understanding of patch-level OOD data. When the value
of u is relatively small, the label assignment treats the current patch as a typical OOD example with
minimal semantic relevance to any known class, thereby effectively representing a feature devoid of
categorical associations. Conversely, a larger u indicates that the patch is perceived as highly relevant
to a specific class label.

Based on the definition of patch-level OOD soft labels, we construct the corresponding OOD loss
function using the KL divergence and the formula is as follows:

LOOD = EDOOD
train

[
ℓ(ỹ, fθ(x))

]
(5)

Following the setup in LoCoOp, we use the same ID loss for the entire image. The overall objective
function with full images as ID data and patch-level regions as OOD data is defined as follows:

L = LID + λLOOD (6)

where LID is as same as the LCE and λ is a hyperparameter.

4.2 PATCH-WISE LOCAL UNCERTAINTY

We have redefined the data labels at the patch level. However, quantifying the relevance between
fg(x) and U remains challenging, and the question of how to determine an optimal u for OOD
detection merits further investigation. Therefore, determining an appropriate value of uis critical after
incorporating the label smoothing strategy described above. In contrast to traditional approaches,
we propose to examine the relationship between uand the model through the lens of generalization
error minimization. This perspective allows us to develop a dynamic weighting scheme that enhances
OOD detection performance.

In machine learning, the concept of the generalization error bound describes a theoretical limit on
model performance when applied to unseen data (Niyogi & Girosi, 1996). A tighter bound generally
indicates better expected performance on data from unknown distributions. In this section, the
generalization error of an OOD detector f can be defined as follows:

GError(f, ỹ∗) = Ex∼D[ℓ(ỹ
∗, fθ(x))]. (7)

It should be emphasized that our analysis of generalization error bounds pertains to OOD data that
follows the same distribution as the patch-level OOD regions, under the assumption that an optimal
parameter u∗ exists to minimize these bounds. And and ỹ∗ denotes the optimal soft label under the
optimal u∗. Building on this foundation, we formalize our theoretical framework.
Theorem 1. (Dynamic Smoothness Uncertainty Relevance). For any hypothesis f ∈ F and Fdenotes
the optimisation space for prompt learning, given a data point x, we possess an optimal soft label ỹ∗
under an optimal u∗. We holds with a generalization error upper bound:
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Table 1: Benchmark OOD detection performance on ImageNet-1K as the ID dataset across CLIP-
based architectures. Results are reported as mean across three randomized seeds. ViT-B/16 is adopted
as the reference image encoder.

Method Backbone
OOD Dataset

iNaturalist SUN Places Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Full/Sub Data Fine-tune

MSP CLIP-B/16 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 57.92 82.31
Energy CLIP-B/16 29.75 94.68 34.28 93.15 56.40 85.60 51.35 88.00 45.83 89.43
ODIN CLIP-B/16 30.22 94.65 54.04 87.17 55.06 85.54 51.67 87.85 45.65 89.35

Fort/MSP CLIP-B/16 54.05 87.43 54.12 86.37 72.98 78.03 68.85 79.06 65.29 81.51
VOS CLIP-B/16 31.65 94.53 43.03 91.92 41.62 90.23 56.67 86.74 43.31 90.50

NPOS CLIP-B/16 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 35.99 91.48
CLIPN CLIP-B/16 23.94 95.27 26.17 93.93 33.45 92.28 40.83 90.93 32.74 92.83

Zero-shot
MCM CLIP-B/16 30.91 94.61 37.67 92.56 44.69 89.77 57.77 86.11 44.46 90.16

One-shot
CoOp CLIP-B/16 43.38 91.26 38.53 91.95 46.68 89.09 50.64 87.83 46.90 89.39
id-like CLIP-B/16 12.07 97.65 40.55 91.07 47.94 88.31 38.34 89.67 34.72 91.67

NegPrompt CLIP-B/16 65.03 84.56 44.39 89.63 51.31 86.55 87.60 63.76 62.08 81.13
LoCoOpMCM CLIP-B/16 32.05 93.61 33.60 93.01 41.29 90.05 51.51 88.62 39.61 91.32
LoCoOpGL CLIP-B/16 19.67 95.83 25.73 94.00 34.95 91.06 52.73 87.03 33.27 91.98
LUSMCM CLIP-B/16 29.54 94.34 28.73 94.13 35.09 91.48 49.70 88.86 35.76 92.20
LUSGL CLIP-B/16 18.32 96.31 25.27 94.70 34.02 91.65 51.10 86.99 32.18 92.41

16-shot
CoOp CLIP-B/16 35.36 92.60 37.06 92.27 45.38 89.15 43.74 89.68 41.49 90.48
id-like CLIP-B/16 13.94 95.42 42.28 89.42 53.25 85.44 18.16 93.78 31.91 91.01

NegPrompt CLIP-B/16 37.79 90.49 32.11 92.25 35.52 91.16 43.93 88.38 37.34 90.57
LoCoOpMCM CLIP-B/16 24.38 94.86 30.85 93.68 37.45 91.24 43.42 90.28 34.03 92.51
LoCoOpGL CLIP-B/16 13.99 96.83 23.37 94.78 31.87 91.87 45.14 88.18 28.59 92.92
LUSMCM CLIP-B/16 25.08 95.02 30.16 93.75 37.05 91.28 41.61 90.87 33.48 92.73
LUSGL CLIP-B/16 15.87 96.61 21.92 94.97 30.77 92.14 42.54 89.51 27.77 93.31

GError(f, ỹ∗)) ≤ Cov

[
u∗,KL(fg(x), fθ(x))

]
− Cov

[
u∗,KL(U , fθ(x))

]
+ C (8)

where Cov[u∗,KL(fg(x), fθ(x))] and Cov[u∗,KL(U , fθ(x))] is the covariance between Dynamic
weight u∗, loss function of KL(U , fθ(x)) and loss function of KL(U , fθ(x)). C is a term independent
of u∗.

A detailed proof is provided in Section Appendix A. It should be emphasized that our method focuses
on the correlation between the optimal u∗ and the model. In the context of label smoothing, the
C term has been extensively studied and can be approximated as a constant (Yuan et al., 2020).
Moreover, C is formally independent of the optimal u∗. Therefore, the theoretical analysis in this
section is confined to the correlation concerning u∗, while a more detailed discussion of the C term
is provided later in the discussion section.

Remark. In our framework, the KL divergence is adopted as the loss function. Within our theoretical
setup and under the stated assumptions, reducing the generalization error bound requires satisfying
the conditions that Cov[u∗,KL(fg(x), fθ(x))] < 0 and Cov[u∗,KL(U , fθ(x))] > 0. This leads to
two corollaries for the design of u that it must be negatively correlated with the KL(fg(x), fθ(x)),
and positively correlated with the KL(U , fθ(x)).
Based on the theoretical foundation established above, we define the label weights u for our model.
Prior to each iteration of the loss computation, we calculate a preliminary KL(fg(x), fθ(x)) and
KL(U , fθ(x)), which informs the following formulation of the dynamic smoothness uncertainty:

u =
e−KL(fg(x),fθ(x))/τ

e−KL(fg(x),fθ(x))/τ + e−KL(U,fθ(x))/τ
(9)

where τ is a hyperparameter. τ reflects the sensitivity of the label weighting to the loss function. We
performed detailed experimental validation of this behavior in Section 3.
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Table 2: Accuracy comparison of ID on
the ImageNet-1K validation data for few-
shot object detection.

Shot Method Accuracy (%)

1-Shot
CoOp 66.23

LoCoOp 68.10
Ours 68.70

16-Shot
CoOp 72.10

LoCoOp 71.10
Ours 71.40

Table 3: Performance comparison with LoCoOP
on hard ood dataset. Our first row represents the
id dataset and the second row represents the ood
dataset.

Method ImageNet10 ImageNet20
ImageNet20 ImageNet10

FPR95 AUROC FPR95 AUROC

LoCoOp 28.20 92.75 34.40 92.34
Ours 5.70 98.60 16.10 97.66

After defining u, and given the continuous iterative nature of model training, the optimal value of u
typically varies over time with respect to the evolving fθ(x). To account for this, we design u as a
time-dependent uncertainty measure that is recomputed after each backward propagation of the loss.
And dynamic smoothness uncertainty is as follows:

ut =
e−KL(fg(x),f

t
θ(x))/τ

e−KL(fg(x),ft
θ(x))/τ + e−KL(U,ft

θ(x))/τ
(10)

where ut recalculate based on f t after each backpropagation of the gradient. And f t
θ(x) represents the

training model after t iterations of gradient backpropagation. Under this configuration, u dynamically
adapts to the current fθ(x), thereby facilitating the search for optimal soft labels. As a result, the
joint optimization of u and the learning process of fθ(x) mutually reinforce each other, ultimately
converging to both suitable soft labels and a well-trained model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method across three distinct OOD detection benchmarks to comprehen-
sively assess performance under varying scenarios. First, following standard protocols, we employ
ImageNet-1K (Deng et al., 2009) as the ID dataset and test on widely-used OOD benchmarks in-
cluding iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and
Textures (Cimpoi et al., 2014) with few-shot training. Second, to rigorously examine hard OOD
detection, we adopt the MCM (Esmaeilpour et al., 2022) ImageNet-10 and ImageNet-20 setup, where
ImageNet-10 mimics CIFAR-10’s class distribution with high-resolution images, and ImageNet-20 in-
troduces semantically similar near-OOD classes. More experiments set can be found in the Appendix
C.

Implementation details. Our implementation adheres to the LoCoOp framework with CLIP-ViT-
B/16 (Dosovitskiy et al., 2020) as the backbone, where the feature maps exhibit a spatial resolution
of 16×16. The key hyperparameters are empirically configured as follows: the neighborhood size
K=200 across all experiments, and the regularization weight λ =0.5. Additional training specifications
include 50 epochs with a base learning rate of 0.002, batch size of 32, and prompt token length N=16.
All experiments are conducted on a single NVIDIA A6000 GPU to ensure hardware consistency.

Baselines and Evaluation. Our comparative analysis encompasses three methodological paradigms.
Fully-supervised approaches such as MSP (Hendrycks & Gimpel, 2016), Fort/MSP (Fort et al.,
2021), Energy (Liu et al., 2020), ODIN (Liang et al., 2017), VOS (Du et al., 2022), and NPOS
(Tao et al., 2023), zero-shot approaches represented by MCM (Ming et al., 2022), and few-shot
methods including CoOp (Zhou et al., 2022b) and LoCoOp. All methods employ the CLIP ViT-B-16
backbone to ensure equitable comparison. Performance evaluation leverages three standard metrics
FPR95, AUROC, and ID classification accuracy which enable comprehensive assessment of detection
capabilities.
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Table 4: Ablation analysis of local uncertainty
u with other different uncertainty method on
OOD datasets with average results.

AVG

Method FPR95 AUROC

Static weight 40.54 91.62
Entropy 42.91 90.94
MaxLogit 38.42 91.63
Ours 35.76 92.20

Table 5: Ablation analysis of framework com-
ponents with fg(x) and u on OOD datasets
with average results.

AVG

fg(x) u FPR95 AUROC

✗ ✗ 39.61 91.32

! ✗ 39.54 91.50

! ! 35.76 92.20

5.2 MAIN RESULTS

ImageNet-1k as ID dataset. Table 1 summarizes our OOD detection performance using ImageNet-
1K as ID data. Our proposed framework, which design soft labels suitable for patch-level OOD data,
achieves state-of-the-art performance across both 1-shot and 16-shot configurations. Our approach
achieves comprehensive improvements, whether for ID classification or OOD detection. The ID
classification result as shown in Table 2. And demonstrates significant improvements with average
FPR95 and AUROC scores of 35.76 and 92.20 in 1-shot settings. This method outperforming
conventional OOD detection methods and even surpassing the original zero-shot CLIP baseline and
LoCoOp. Moreover, on several other datasets set up in Openood using ImageNet-1k as id, our method
also achieve superior performance compared to our baseline. More our experimental results are
presented in the Appendix E.

Comparisons on hard OOD detection. Our method achieves robust performance on small hard-
OOD datasets while maintaining the ability to recognize patch-level feature information. As shown
in Table 3, our approach consistently outperforms the baseline and significantly surpasses LoCoOp,
which exhibits considerable performance degradation on these datasets. These results confirm that our
framework effectively preserves the discriminative power of categorical features rather than simply
enforcing alignment toward a uniform distribution.

5.3 ABLATION STUDY

Impact of Components of Local Uncertainty Smoothing. We performed a comprehensive evalu-
ation of the effectiveness of our label smoothing strategy. The results, presented in Table 5, show
a significant improvement over the baseline without label smoothing. Notably, even with static
weighting and without dynamic smoothing uncertainty, our label smoothing approach enhances
object detection performance. Moreover, the introduction of dynamic smoothing uncertainty further
optimizes the results, achieving the best overall performance and confirming the efficacy of the
proposed method. Based on this work, we include in the Appendix D the selection and experimental
results of various fg . Our results demonstrate that a well-chosen general knowledge model—one with
strong prior understanding of the dataset—can lead to greater performance gains in OOD detection.

Impact of Local Uncertainty Method. We conducted targeted experiments to evaluate the efficacy
of the dynamic uncertainty smoothing component within our proposed method. The results are
summarized in Table 4. Without dynamic weighting, even a simple equal weight strategy already
yielded a marked improvement in OOD detection performance compared to static weighting ap-
proaches. Furthermore, we compared our dynamic uncertainty smoothing mechanism against other
uncertainty-based fusion methods, including those based on entropy and maximum logit to further
verify its advantage. Detailed configurations of these baseline methods are provided in the Appendix
F. Our results confirm the effectiveness of dynamically designed weighting schemes derived from
correlations in smoothed uncertainty.

Impact of Temperature coefficient τ . We present the results for the parameter τ evaluated over a
range of values (0, 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8, 10) in Fig. 3. The parameter τ controls the sensitivity
balance between the two KL divergence terms. The results show that a small τ amplifies the KL
divergence values, making their relative ratio more prominent. However, this configuration yields
suboptimal performance. We analyze that this is due to the iterative nature of the model training,
there is an excessively large ratio may lead to instability in the uncertainty measure u, which can
cause erratic changes in the soft labels and hinder stable model learning. Conversely, an overly small

8
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Figure 3: Visualizations of the local uncertainty, the training loss, and OOD performance for different
τ values collectively serve to illustrate the convergence properties of our method.

ratio weakens the KL-based relevance signal, providing insufficient guidance for the optimization
process and thus limiting the ability to converge toward an effective soft label assignment. The more
result can see the Appendix G for the changes in u under different τ settings, which matches our
analysis.

5.4 DISCUSSIONS

The Convergence and Relevance of Local Uncertainty. We validate and discuss the convergence
and correlation of local uncertainty. As shown in Fig. 3, both divergence measures, KL

(
fg(x), f

t
θ(x)

)
and KL

(
U , f t

θ(x)
)
, eventually stabilize during model training. Correspondingly, the local uncertainty

u converges, consistent with our theoretical expectation that iterative convergence of local uncertainty
leads to optimal soft label assignment. Furthermore, the local uncertainty trend exhibits correlations
predicted by our method. Specifically, it shows a negative correlation with KL

(
fg(x), f

t
θ(x)

)
and

a positive correlation with KL
(
U , f t

θ(x)
)
. ID and OOD losses, as depicted in the figure, converge

simultaneously with the stabilization of u. Each resulting OOD loss represents the optimal value
achievable by the current model for a given uncertainty level u.

The Dicussion of the Constant Term C. We discussed the results of the term C independent of u in
the generalization error bound. The specific definition of C is provided in the Appendix A. These
are two KL divergence results on the OOD test set. Although our loss function does not constrain
these two terms, both KL divergences still converge on the training set, as shown in the figure.
Additionally, the Appendix I presents KL divergence results for this term on both the training and test
sets. These results align closely with our convergence findings on the training set, consistent with
many exploratory studies in this area. Furthermore, from the perspective of Rademacher complexity
theory, the convergence of these two KL divergence metrics signifies the convergence of empirical
error results. The C-term also converges to a constant dominated by empirical error. We present the
results in the Appendix I.

The limitations of smooth labeling. The feature extraction capability of our method at the patch level
is contingent upon the representational power of fg . However, requirements for feature extraction may
vary across different real-world datasets. Since our approach relies on the pre-existing knowledge
embedded in fg, it may be unable to explore semantic cues beyond the scope of what fgalready
captures.

6 CONCLUSION

In this paper, we presents a Local Uncertainty Smoothing (LUS) framework to address the challenges
in few-shot out-of-distribution detection. Our approach introduces two key innovations, a novel
soft label construction method that combines label smoothing with local uncertainty measurement,
and a theoretically grounded patch-wise uncertainty mechanism derived from generalization error
bound analysis. The framework effectively bridges the distribution gap between in-domain and
out-of-domain samples while preserving fine-grained semantic information. Extensive experiments
on multiple benchmark datasets demonstrate that our method achieves state-of-the-art performance in
few-shot OOD detection scenarios. The results validate both the theoretical foundations and practical
effectiveness of our approach. The proposed local uncertainty smoothing strategy provides a robust
solution for handling the distribution shift between simulated and real OOD instances.
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APPENDIX A PROOF OF THEOREM 1

First, we define our id label is the y, which means the one-hot distribution for groudtruth and our ood
label is the U , which is the uniform distribution. Like the related work, we follow the setup of them
and define our id label smooth are as follow:

ỹ = u · fg(x) + (1− u) · U (11)

Consider ℓ to be the convex logistic loss function applied to binary classification tasks. And consider-
ing the property of convex function, we have:

ℓ

(
fθ(x), ỹ

)
= ℓ

(
fθ(x), u · fg(x)+ (1−u) · U

)
≤ (1−u) · ℓ

(
U , fθ(x)

)
+u · ℓ

(
fg(x), fθ(x)

)
(12)

According to our definition of generalisation error, we have the following:

GE(f, ỹ) = E(x,y)∼DOOD
ℓ

(
fθ(x), ỹ

)

= E(x,y)∼DOOD
ℓ

(
fθ(x), (1− u) · U + u · fg(x)

)

≤ E(x,y)∼DOOD

[
(1− u) · ℓ(U , fθ(x)) + u · ℓ(fg(x), fθ(x))

]

= E(x,y)∼DOOD

[
ℓ(U , fθ(x))

]
− E(x,y)∼DOOD

[
u · ℓ (U , fθ(x))

]
+ E(x,y)∼DOOD

[
u · ℓ(fg(x), fθ(x))

]

=

(
1− E(x,y)∼DOOD

[u]

)
· E(x,y)∼DOOD

[
ℓ(U , fθ(x))

]
− Cov

(
u, ℓ(U , fθ(x))

)

+ E(x,y)∼DOOD
[u] · E(x,y)∼DOOD

[
ℓ(fg(x), fθ(x))

]
+ Cov

(
u, ℓ(fg(x), fθ(x))

)

≤ Cov

[
u, ℓ(fg(x), fθ(x))

]
− Cov

[
u, ℓ(U , fθ(x))

]

+ E(x,y)∼DOOD

[
ℓ(U , fθ(x))

]
+ E(x,y)∼DOOD

[
ℓ(fg(x), fθ(x))

]
︸ ︷︷ ︸

constant

= Cov

[
u, ℓ(fg(x), fθ(x))

]
− Cov

[
u, ℓ(U , fθ(x))

]
+ C

(13)
Among them, the last two items are defined as irrelevant items C that are irrelevant to u. In addition,
in many research works (Yuan et al., 2020), the relationship between soft labels and distillation
learning is explored. It is believed that by using soft labels and, the loss corresponding to distillation
learning can be reduced, that is, C converges to an empirical error, which can also be considered a
constant.

Within our theoretical setup and under the stated assumptions, reducing the generalization
error bound requires satisfying the conditions that Cov[u∗,KL(fg(x), fθ(x))] < 0 and
Cov[u∗,KL(U , fθ(x))] > 0. This leads to two corollaries for the design of u that it must be
negatively correlated with the KL(fg(x), fθ(x)), and positively correlated with the KL(U , fθ(x)).
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APPENDIX B OOD SCORE

The CLIP model’s multimodal feature alignment capability enables the MCM Ming et al. (2022)
method to perform zero-shot OOD detection by quantifying the similarity distribution between image
features and C class text embeddings. The OOD Score function is defined as follows:

S
MCM

= max
i

exp (⟨ϕI(x), ϕT (ti)⟩/τ)∑C
j=1 exp (⟨ϕI(x), ϕT (tj)⟩/τ)

(14)

where τ = 1 is the temperature parameter, and ⟨·, ·⟩ denotes cosine similarity.

By introducing a global-local hierarchical feature matching mechanism, GL-MCM Miyai et al. (2025)
extends the OOD score calculation to:

S
GL−MCM

= max
i

exp
(
⟨ϕI(x

local), ϕT (ti)⟩/τ
)∑C

j=1 exp (⟨ϕI(xlocal), ϕT (ti)⟩/τ)
+ S

MCM
(15)

where xlocal represents the feature of the i-th local image patch.

APPENDIX C EXPERIMENTAL DETAILS

Base OOD Benchbark. The implementation of the system adheres to the LoCoOp framework with
CLIP-ViT-B/16 Dosovitskiy et al. (2020), where the feature maps exhibit a spatial resolution of 14x14.
The key hyperparameters have been empirically configured as follows: the neighbourhood size K =
200 across all experiments, the knowledge distillation coefficient α = 0.25, and the regularization
weight λ = 0.3. The additional training specifications encompass 50 epochs with a base learning rate
of 0.002, a batch size of 32, and a prompt token length of N=16. It is imperative that all experiments
are conducted on a single NVIDIA A6000 GPU in order to ensure hardware consistency.

Hard OOD Benchbark. It is evident that our fundamental experimental details are consistent with
those of the baseood benchmark. However, given that imagenet-10 and imagenet-20 contain 10 and
20 data types respectively, it was determined that the neighborhood size K=2 would be employed for
these hard-to-imitate experiments. The results of the model under the 16-shot setting are presented in
full in our paper.

OpenOOD OOD Benchbark. The experimental details are fundamentally analogous to the base
food benchmark. The imagenet1k has been selected as the ID dataset, while the SSh-hard, NINCO
and OpenImage-O have been designated as the OOD dataset. It should be noted that iNaturalist and
Texture have not been included in the evaluation process, as these two datasets have previously been
evaluated in the base OOD benchmark.

APPENDIX D THE SELECTION OF A SUITABLE GENERAL KNOWLEDGE
MODEL

Table 6: The cross-domain generalisation performance of prompt-tuned general knowledge models
fg , pre-trained on ImageNet-21K and evaluated through out-of-distribution benchmarks.

Method
OOD Dataset

iNaturalist SUN Places Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
MCM

LUSCLIP 27.74 94.16 34.78 93.01 42.55 90.19 48.48 89.05 38.39 91.60
LUSPOMP 30.80 94.17 31.25 93.91 39.78 90.79 41.50 90.81 35.83 92.42

GL-MCM
LUSCLIP 13.59 96.81 27.73 93.87 35.94 91.09 51.21 85.80 32.12 91.89
LUSPOMP 16.41 96.48 22.78 95.05 32.41 91.80 44.11 88.95 28.92 93.07

The following experiments are presented, in which other models of general knowledge are selected to
guide the model in acquiring general knowledge. The POMP paper Ren et al. (2023) was selected as
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the secondary general knowledge model to present the experimental results. POMP presented the
results of prompt tuning on the ImageNet-21K dataset. In this instance, the model under discussion
was employed. It is evident that the parameter settings are consistent with the base OOD benchmark.
Our results are shown in Table 6, where the clip subscript represents our general knowledge as " a
photo of ", and the POMP subscript represents this general knowledge after training on Imagenet-21k.
Our results demonstrate that different fg(x) models can exhibit varying performance for our method,
indicating that our model will acquire distinct general knowledge under distinct fg(x) settings.

Moreover, in order to demonstrate the rationality of our methodology, we employ the same comparison
strategy as outlined in Table 1. The results of the ood score of POMP using MCM and GL-MCM
in ood detection are presented, as well as the results of the ood score of the LoCoOp model using
only our training loss. The following presentation will outline the output results of the model under
the KDE strategy. The results of the study are presented in tabular form. The findings of this study
suggest that the proposed methodology explores the upper limit of OOD detection, while exhibiting
the POMP generalization.

Table 7: The model performance of POMP when used as the fg model. The present method has been
developed in such a manner that it inherits the generalisation ability of POMP, whilst also exploring
the upper limit of OOD detection.

Method
OOD Dataset

iNaturalist SUN Places Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
MCM

LoCoOp 38.96 92.34 32.40 93.60 37.95 91.00 49.32 88.70 39.65 91.41
LUS 30.80 94.17 31.25 93.91 39.78 90.79 41.50 90.81 35.83 92.42

GL-MCM
LoCoOp 24.38 94.95 25.45 94.77 32.63 91.81 52.32 86.58 33.69 92.03
LUS 16.41 96.48 22.78 95.05 32.41 91.80 44.11 88.95 28.92 93.07

APPENDIX E MORE EXPERIMENTAL RESULTS

The appendices to this section contain further experimental results of our model, the purpose of
which is to demonstrate its experimental performance. The following presentation comprises the
experimental results of MCM and GL-MCM under a variety of conditions.

Table 8: cross-domain OOD detection performance comparison across OOD datasets which under
different detection frameworks setting: evaluations follow the OpenOOD benchmark with ImageNet-
1K as ID data against SSB-hard, NINCO, and OpenImage-O OOD splits, and the MCM cross-
evaluation protocol adopting ImageNet-10 ImageNet-20 as ID datasets with reciprocal OOD testing .
Our first row represents the id dataset and the second row represents the ood dataset.

Method
ImageNet-10 ImageNet-20 ImageNet-1K Average

ImageNet-20 ImageNet-10 SSh-hard NINCO OpenImage-O

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

LoCoOp 28.20 92.75 34.40 92.34 90.27 63.16 82.54 69.19 45.12 90.73 56.11 81.63
Ours 5.70 98.60 16.10 97.66 88.78 64.41 79.19 74.10 41.43 91.84 46.24 85.32

The experimental results obtained under the OpenOOD and MCM benchmarks demonstrate that
GL-MCM exhibits superior performance in cross-dataset ID and OOD detection scenarios when
compared to the baseline.

The experimental findings yielded from the execution of MCM benchmarks demonstrate that GL-
MCM evinces superior performance in OOD detection scenarios when contrasted with the baseline
MCM. This outcome is congruent with our experimental expectations and concomitantly signifies
that GL-MCM also attains comparatively favourable enhancement results for GL-MCM of our soft
label.
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Table 9: OOD detection performance for ImageNet-1k as ID, the SSh-hard, NINCO, OpenImage-O
as OOD dataset.

Method ImageNet-1K

SSh-hard NINCO OpenImage-O

FPR95 AUROC FPR95 AUROC FPR95 AUROC

LUSMCM 88.78 64.41 79.19 74.10 41.43 91.84
LUSGL 85.13 68.27 72.57 76.06 34.59 92.36

Table 10: OOD detection performance for ImageNet-10, ImageNet-20 as ID, the corresponding
imagenet20, imagenet10 as ood datasetas.

Method ImageNet10 ImageNet20
ImageNet20 ImageNet10

FPR95 AUROC FPR95 AUROC

LUSMCM 5.70 98.60 16.10 97.66
LUSGL 10.60 98.66 9.90 98.32

The subsequent presentation will expound upon the findings of the model’s image detection process
in relation to imaget100, which will be utilised as the ID data. The experimental results of the model
on 4-shot are also presented. In the present experiment, the value of K was set to 20. The 1-shot
configuration was not selected as the experimental outcome due to the inability of our model to
converge on the original LoCoOp setting. In order to conduct a one-shot experiment, it is necessary
to enlarge the epoch under the LoCoOp setting until the experimental results obtained are consistent
with those reported in the aforementioned paper. The present study employs imagenet-100 as the ID
dataset, thereby adopting a methodology that explores enhanced object detection while ensuring the
efficacy of the fg(x) model. This approach is employed to demonstrate the efficacy of the proposed
methodology.

APPENDIX F COMPARING WITH MORE UNCERTAINTY METHOD.

Static weight. We first define the static method which use the weight is 1/2. We define the soft label
for OOD data as follows:

ỹ =
1

2
· fg(x) +

1

2
· U (16)

Max logit. We initially define the uncertainty measure as the maximum logit, denoted as:

u = max
c∈C

fc(x) (17)

where fc(x) is the logit output for class c given input x, and C is the set of all classes.

Since this raw uncertainty value is not normalized, we scale it to the range [0, 1] using extremal
statistics from the entire training dataset Dtrain. Let:

umin = min
xi∈Dtrain

max
c

fc(xi) (18)

umax = max
xi∈Dtrain

max
c

fc(xi) (19)

represent the global minimum and maximum uncertainty values observed over Dtrain. The normalized
uncertainty unorm is then defined as:

unorm =
u− umin

umax − umin
(20)

This min-max normalization ensures unorm ∈ [0, 1] with the property that the most uncertain sample
in the training set maps to 1 and the least uncertain to 0.

u =
u− umin

umax − umin
(21)
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Table 11: OOD detection performance for ImageNet-10, ImageNet-20 as ID, the corresponding
imagenet20, imagenet10 as ood datasetas.

Method ImageNet10 ImageNet20
ImageNet20 ImageNet10

FPR95 AUROC FPR95 AUROC

LUSMCM 5.70 98.60 16.10 97.66
LUSGL 10.60 98.66 9.90 98.32

Table 12: Cross-domain generalization performance on ImageNet-100 as ID data under four-shot
learning protocol. A comparison was made between MCM and LoCoOp.

Method
OOD Dataset

iNaturalist SUN Places Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
MCM

LoCoOpMCM 18.69 96.54 21.16 96.32 27.82 95.12 26.17 94.99 23.46 95.74
LUSMCM 10.70 97.71 16.81 96.92 22.52 95.65 24.68 95.49 18.67 96.44

GL-MCM
LoCoOpGL 12.97 97.09 12.55 97.20 18.15 96.06 26.17 94.36 17.46 96.18
LUSGL 4.44 98.87 13.15 97.42 18.43 96.11 27.23 94.48 15.81 96.72

Entropy. The entropy-based uncertainty is defined as u = −
∑

c pc(x) log pc(x) and normalized to
[0,1] using:

unorm =
u− umin

umax − umin
(22)

where umin and umax are the extreme entropy values from the training set.

APPENDIX G MORE TEMPERATURE COEFFICIENT VISUALIZATION RESULTS.

This section analyzes the convergence of u under different hyperparameter settings in the paper.
These images match our analysis in the article. For smaller temperature coefficients, u will have
large fluctuations, while for larger temperature coefficients, the fluctuations are smaller, but the
performance deteriorates. In the experiments in the paper, we choose the results when the temperature
coefficient is 1.

𝜏 = 0.1 𝜏 = 1 𝜏 = 10

Figure 4: More hyperparameter τ visualization results.
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APPENDIX H THE EXPERIMENT ON GEB COMPONENT CONSTANT.

This part shows the results of C on the test set. Obviously, for LoCoOP, the KL divergence for
general knowledge is large. For our method, both KL divergences on the test set remain small, which
explains one of the reasons why we consider these two terms as constant terms in the generalization
error

Table 13: Two KL divergence results on the test set.

Method KL(fθ(x),U) KL(fθ(x), fg(x))

LoCoOp 0.84 1.89
Ours 0.81 1.13

APPENDIX I OOD DATASETS.

iNaturalist. The dataset under consideration is comprised of 859,000 biological specimens, which
are divided into more than 5,000 taxonomic categories. The primary focus of the dataset is flora and
fauna biodiversity. In accordance with the established protocol, the evaluation process is conducted
using a sample of 10,000 images, selected at random from a total of 110 classes, with the exclusion
of those that are already present in the ImageNet-1K database.

SUN. The scene recognition corpus under consideration contains 130,000 visual instances, which are
divided into 397 environmental categories. For the purpose of comparative analysis, a curated subset
of 10,000 images has been employed, sampled from 50 ImageNet-disjoint classes.

Places. Places provides complementary coverage of environmental semantics, mirroring SUN’s
conceptual scope in scene understanding. The assessment utilises 10,000 images from 50 non-
overlapping classes.

TEXTURE. The present corpus is one that has been specifically compiled for the purpose of this
study. It consists of 5,640 high-resolution texture patterns that have been organised into 47 material
categories. A comprehensive evaluation is performed using the full dataset.

OpenImage-O. This rigorously curated visual recognition benchmark comprises 17,632 images that
have been manually filtered through multi-stage quality assurance protocols, achieving 7.8× greater
scale diversity than ImageNet-O through pixel-coverage optimisation.

SSB-hard. Derived from ImageNet-21K’s hierarchical ontology through semantic scarcity sampling,
this 49,000-image benchmark spans 980 visually complex categories characterised by high inter-class
ambiguity.

NINCO. The dataset contains 5,879 meticulously annotated samples across 64 novel categories,
thereby introducing conceptual novelty through systematic exclusion of ImageNet-1K semantic
overlaps.

ImageNet-10. The creation of ImageNet-10 was driven by the necessity to emulate the class
distribution of CIFAR-10, while incorporating high-resolution images. The following categories
are contained within the dataset, along with their respective class identifiers: The following subject
headings have been identified: The following terms are listed: ’warplane’ (n04552348), ’sports car’
(n04285008), ’brambling bird’ (n01530575), ’Siamese cat’ (n02123597), ’antelope’ (n02422699).
The following have been identified: ’Swiss mountain dog’ (n02107574), ’bull frog’ (n01641577),
’garbage truck’ (n03417042), ’horse’ (n02389026), and ’container ship’ (n03095699).

ImageNet-20. In order to facilitate the evaluation of hard OODs with realistic datasets, ImageNet-20
has been curated. The dataset under consideration consists of 20 classes that are semantically similar
to ImageNet-10. The categories are selected based on the distance in the WordNet synsets. The
following categories are contained therein: The following items are listed herewith: The following
objects are documented: a sailboat (n04147183), a canoe (n02951358), a balloon (n02782093), a
tank (n04389033), a missile (n03773504), and a bullet train (n02917067). The following species
were documented: A starfish (n02317335), a spotted salamander (n01632458), a common newt
(n01630670), a zebra (n01631663), and a frilled lizard (n02391049). For the purposes of this study,
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the following taxa were selected: the green lizard (n01693334), the African crocodile (n01697457),
the Arctic fox (n02120079), the timber wolf (n02114367), the brown bear (n02132136), the moped
(n03785016), the steam locomotive (n04310018), the space shuttle (n04266014) and the snowmobile
(n04252077).

18


	Introduction
	Related Work
	Preliminaries
	Method
	Local Uncertainty Smoothing.
	Patch-wise Local Uncertainty

	Experiments
	Experimental Setup
	Main results
	Ablation study
	Discussions

	Conclusion
	Proof of Theorem 1
	OOD Score
	Experimental Details
	The Selection of A Suitable General Knowledge Model
	More Experimental Results
	Comparing with more uncertainty method.
	More Temperature Coefficient Visualization Results.
	The experiment on GEB component constant.
	OOD Datasets.

