Don’t Look Twice: Faster Video Transformers with
Run-Length Tokenization

Rohan Choudhury Guanglei Zhu Sihan Liu Kris M. Kitani Laszlo A. Jeni
Carnegie Mellon University
{rchoudhu, guanglez, sihanliu, kmkitanil}@andrew.cmu.edu
{laszlojenil}@cmu.edu

Abstract

Video transformers are slow to train due to extremely large numbers of input
tokens, even though many video tokens are repeated over time. Existing methods
to remove uninformative tokens either have significant overhead, negating any
speedup, or require tuning for different datasets and examples. We present Run-
Length Tokenization (RLT), a simple approach to speed up video transformers
inspired by run-length encoding for data compression. RLT efficiently finds and
removes ‘runs’ of patches that are repeated over time prior to model inference,
then replaces them with a single patch and a positional encoding to represent the
resulting token’s new length. Our method is content-aware, requiring no tuning
for different datasets, and fast, incurring negligible overhead. RLT yields a large
speedup in training, reducing the wall-clock time to fine-tune a video transformer
by 30% while matching baseline model performance. RLT also works without any
training, increasing model throughput by 35% with only 0.1% drop in accuracy.
RLT speeds up training at 30 FPS by more than 100%, and on longer video datasets,
can reduce the token count by up to 80%. Our project page is at this link.

1 Introduction

Vision transformers [11] have enjoyed enormous success in modeling images and videos due to their
scaling properties and minimal inductive bias. Unfortunately, training these models on videos, which
generally have orders of magnitude more tokens than images, is significantly more expensive. One
contributing factor is that video transformers tokenize videos by splitting them into uniformly sized
spatiotemporal patches [2, 3], so that the number of tokens depends only on the video’s length and
resolution. As a result, researchers are forced to work with very short videos (<10s), as well as
significantly downsample them to low frames-per-second (FPS) and low resolution.

One promising solution to this problem is to reduce the number of input tokens. Compared to
language, videos are significantly less dense in information; many works observe that videos consist
mostly of redundant or uninformative tokens [15, 35, 39]. However, existing methods that aim to
reduce input tokens to vision transformers have had limited success. While learned pruning methods
[32, 48] reduce model complexity measured by GFLOPS, they either incur significant overhead during
training, or require attention masking or padding to handle changing numbers of tokens, negating any
speed-up during training. Random masking [1, 25], though fast, performs worse than the baseline and
thus requires more training epochs to match performance. Moreover, though methods like random
masking and Token Merging [5] do lead to wall-clock speedups, they are not content-aware: they
only remove a fixed number of tokens per video, and will reduce the same number of tokens from a
high-speed, high-action clip as from a still image repeated over time.

We argue that content-awareness is a key quality for effectively reducing the number input tokens.
As a motivating example, imagine an hour-long video of a lecture. Most of the frames are exactly

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://dferthvf.github.io/RLT/

Standard Tokenization Random Masking Run-Length Tokenization (Ours)

Figure 1: Toy Example. Given a set of input frames, with each square representing a patch, standard
tokenization always produces the same number of tokens. RLT compares temporally consecutive
patches and removes redundant ones, storing a single token and the run-length instead.

the same over time, displaying a single slide. Existing methods would produce the same number of
tokens from this as from an hour of motion-heavy GoPro footage, even though the two videos have
significantly different amounts of content. On the other hand, video compressors, such as H.264 and
H.265 [42, 37], are content-aware: rather than encoding frames independently, they encode pixel
differences between consecutive frames, drastically reducing video size when there is no change.

We propose Run-Length Tokenization (RLT), which combines a simpler version of this idea with
classical run-length encoding to tokenize videos for transformers. Our insight is that we can efficiently
identify ‘runs’ of input patches that are repeated over time, enabling us to reduce the number of tokens
based on the video content. When tokenizing the video, we compare consecutive patches in time and
group together patches with sufficiently small differences. We then remove the “repeated” patches,
and treat the remaining tokens as having variable length. Similar to how the string aaaabb can be
run-length encoded as a4b2, we can add length information to each of the tokens, which incurs no
additional overhead while retaining some of the information lost from removing the redundant tokens.
Despite its simplicity, RLT works remarkably well - with it, we can fine-tune a video transformer in
40% ftaster wall-clock time than baseline ViTs while matching performance.

Our overall contributions are as follows: we (1) propose RLT, an alternative method to tokenize
videos for vision transformers, (2) thoroughly compare its performance and compare RLT’s speed to
prior methods, finding significant improvements, (3) evaluate RLT’s performance on high-FPS and
longer videos, and (4) ablate design choices and qualitatively visualize RLT’s output. We believe
RLT can be a key step to significantly accelerate and further scale video understanding.

2 Related Work

Video Transformers. Vision Transformers [11] have been successfully adapted to video [2, 3,
13, 24, 34] but are generally designed for short (<10s) video clips with relatively few frames. To
efficiently handle videos, many works incorporate video-specific inductive biases in their architectures
[27, 20, 52], such as memory [45], compression cues [44], or modified attention mechanisms [28, 49].
In contrast, we use the standard ViT but apply a different tokenization scheme, reducing the number
of input tokens to improve speed while maintaining performance.

Video Tokenization. Prior to vision transformers, video architectures were designed to take in a fixed
size input [14, 36, 51]. However, transformers can handle arbitrary numbers of input tokens [40], and
training on variable-sized inputs is standard in language modeling [21]; this has been used to train
vision transformers with variable resolutions [4, 10]. However, video transformers still generally
use the spatiotemporal patch tokenization scheme introduced in [2, 3] which is content-agnostic: the
number of tokens depends only on the video’s length and resolution. Some works attempt to reduce

2. Compute consecutive frame differences

—_— 1 3 3 1 2 3 1 1
[Index into Learnable Embedding J

-+

- o- - — 0Ee0ChE0a®

3. Prune patches with low difference & compute temporal run-length 4. Add length embedding to tokens

Figure 2: RLT Overview. RLT works by comparing temporally consecutive patches, and retaining
those with L1 difference above a threshold 7. The remaining tokens are augmented with a length
encoding to signify their ‘run-length’ and passed to the transformer.

input size by compressing the video to a latent space, then tokenizing [12, 31, 6], but the number
of tokens still depends strictly on the input video dimensions. On the other hand, standard video
compressors like HEVC [37] and AVC [42] are content-aware: they actively consider the differences
between consecutive frames for more efficient compression. Our work applies this idea to video
transformers by condensing static tokens and tracking their length.

Faster ViTs with Fewer Tokens. Several works have attempted to remove uninformative tokens
from vision transformers. One line of work identifies such tokens either through learned modules or
attention scores [32, 48, 26, 19], and prunes them at each layer. Although transformers can handle
variable sized inputs, these methods require padding as token counts change unpredictably with
each layer. Other works combine tokens instead of pruning them ([5, 33, 29, 47]). Most of these
works require training a model for pruning or merging, with the exception of Token Merging [5],
which demonstrates strong results at inference time. Inspired by the success of masked pre-training
([17, 41, 39, 15]), another line of work uses random masking to speed up training. Although masking
leads to worse performance after the same number of batches, the dramatic speedup enables training
for more epochs in less time [1, 10, 25, 46]. In contrast, our method matches the performance of base
models with the same amount of data with large speedups, and can be stacked with random masking
for even more speed benefits.

3 Method

Consider a vision transformer that takes as input a video V' € REXT*XHxW The standard tok-
enization scheme splits V into a set P of uniformly sized, non-overlapping patches, each with size
C x Dy x Dy x Dy, with P, called the tubelet size. These patches are projected to a lower dimension
dempbeq With an MLP &, resulting in Np tokens, with each corresponding to a distinct spatiotemporal
location. This results in the same number of tokens for any input video that has the same size.

In contrast, our goal is to to identify input patches that are extremely similar, then compress these
redundant patches, increasing throughput and training time. Our approach is illustrated in Figure 2.
In particular, we focus on temporally consecutive patches, those which have the same z, y location
and differ by one timestep. These correspond to visual content that does not change or move over
time, and such tokens can be easily compressed. We refer to these patches as “static” for the rest of
this paper.

3.1 Removing Static Patches

Token Similarity. Unlike prior works, we aim to reduce the number of total input tokens by
comparing patches rather than tokens. By operating on patches, we do not need to run the patch
embedding &£ or any layer of the model. As a result, we do not need to freeze parts of the model or

propagate gradients through the pruning operation, which would require padding and negate potential
speedups. This contrasts with prior works which progressively prune or combine tokens after each
layer in the transformer. Furthermore, by identifying redundant patches, we can pre-compute the
token distributions of various datasets and sizes of examples, allowing us to employ techniques like
example-packing [21]. Finally, operating on visual patches is more interpretable and is similar to the
heuristics used by video encoders [37, 42].

We next define a criterion for determining whether two consecutive patches are static. Consider
two temporally consecutive patches P;, P, that correspond to spatial location (z,y) and temporal
locations t1,te with to = t1 + D;. For tubelet sizes with value P, > 1, each patch consists of
multiple frame crops, so that Py = [Pl Pitt, | phitDPe=1] Given a threshold 7, we consider P
and P static if

|PtPet — Pl <7 ()

with P,;;*D =1 being the temporally last spatial crop of in P, and P;}/ the first spatial crop of P;.
This operation compares the “start” of the P; to the “end” of P,, with the idea being that if the first
crop of token P} matches the last crop of token P», the patches in between likely match as well.
Notably, 7 is a hyperparameter that needs to be tuned, but is dataset-agnostic; it simply encodes how
much change between patches is allowed before they are considered different. We use 7 > 0 since
imperceptible artifacts can occur, and follow standard procedure by running ImageNet normalization
before comparing patches. We typically use 7 = 0.1, and provide experiments and visualizations on
its effect in Section 4.3 and Appendix B.

Pruning Procedure. To identify all static tokens, we run the prior comparison on all pairs of tem-
porally consecutive patches in P obtaining their differences and only retaining those with difference
less than 7. We always include the entirety of the first frame since there is no previous patch to
compare it to. This results in a binary mask Mgqa4ic, Which we can then apply with

P’ = P o My @)

with P’ containing Np: tokens and P consisting of Np tokens. Note that Np, < Np is always
true; with RLT, we can never have more tokens than in the standard tokenization procedure, so
the worst-case performance matches the standard vision transformer. RLT also incurs essentially
no overhead as the entire process can be implemented entirely with parallelizable PyTorch [30]
operations on the GPU, so training and inference are strictly faster.

The simplicity of RLT is a major advantage: in contrast to other methods, we can take advantage of
transformers’ ability to handle variable input sizes, and do not need to provide any additional padding.
Because we make no changes to the model itself, a video transformer using RLT can make use of
hardware optimizations like Flash Attention [8, 9] and memory efficient kernels [23].

Notably, the pruning procedure is content-aware: some videos with large amounts of static content
will result in significantly fewer input tokens than videos with significant amounts of camera or
subject motion. This is a desired outcome, and we discuss how to handle training with dynamic input
sizes in Section 3.3.

3.2 Run-length Positional Encoding

Although we have reduced the number of input patches, we know that each patch represents a ‘run’
of static patches, with length 1 corresponding to no static content, and length 7" corresponding to
input time dimension length. Without information about the length of the ‘run’ of static patches, the
transformer may not be able to compensate for information removed during the pruning procedure.
To address this, Bolya et al. [5] introduced Proportional Attention, which weights each token by the
number of tokens in each group. On the other hand, we opt to let the model learn this information:
we treat each token as having variable length that we can communicate through a new positional
encoding. Specifically, we use a factorized encoding, described in Dehghani et al. [10], with one
encoding ¢;,; containing positional information and the other ¢, corresponding to the length. We
use a learnable length bias ¢, consisting of a single parameter of size (T, dempbeq). For a given ‘run’
of repeated patches, we always retain the initial patch P,,, and thus can compute the new length /;
as the distance from xyt to the nearest 1 entry in Mgy ,;c along the ¢-axis. Concretely, for P,

l; = rrgn(t’ —1t), where Mguatic(x,y,t') =1, >t 3)

This operation can also be efficiently implemented on the GPU, adding no overhead. Then, the full
positional encoding becomes

(Ti) = Gayt(Ti) + oL [li] O]
with the ¢ [¢;] representing the indexing operator. We add the positional encoding ¢(T;) to each
token after running the patch embedding network £. Unlike the pruning procedure, since we use
a learnable length encoding ¢, we propagate gradients to the positional embedding, enabling the
model to learn how to optimally encode variable length tokens during fine-tuning.

3.3 Handling Dynamic Input Sizes

Since RLT is content-aware, the number of tokens varies significantly per example. Although
transformers can natively handle any input size [40], prior methods like DynamicViT [32] or A-
ViT[48] produce different numbers of tokens at each layer; this requires padding or attention masking
to handle batched inference during training. In our case, only the input token count is variable, but
the number of tokens stays constant throughout the network, closer to the setting of NaViT [10].
Furthermore, since we know the input size before running the network, we can employ example
packing [21], an idea from language modeling where multiple inputs with variable sizes are packed
together, and tokens from individual examples attend only to each other.

At training time, the input to the transformer consists of a batch of tokenized videos, V1, Vo, .. Vg,
each with size Ty,T5,...Tp. Rather than pass an input (B, max; T}, dembed) to the network,
we concatenate the video tensors to produce V' = V; @ V5 & V3...Vp, resulting in input size

(1, Zf;l T;, dembea). We then construct a block-diagonal attention mask so that tokens only attend
to other tokens from the same video, which we add during the attention operation. Since every token
in V' is attending only to tokens from the same example, this does not reduce throughput and is
also compatible with existing hardware-efficient attention implementations. To compute the class
prediction in action recognition, we split each example out and compute its prediction as the mean
of each example token, as in [39]. We then project it to dimension N, resulting in output of size
(B, N¢) to which we can apply standard cross-entropy losses during training.

We note that typically example packing results in a constant number of input tokens, with a variable
number of input examples. A key difference between RLT and Dehghani et al. [10] is that data
augmentations such as RandAugment [7] can alter the visual content and thus number of tokens of
input videos, rendering greedy example packing strategies inapplicable during data loading. We opt
to use a constant number of examples per GPU, with high enough batch size sufficiently reducing
variance in input size.

4 Experimental Results

To analyze RLT’s impact on performance and speed, we conduct several experiments on standard
action recognition tasks. We measure the speedup on model training at several scales in Section 4.1
as well as RLT’s effect as a drop-in addition at inference time in Section 4.2. We perform ablations in
Section 4.3, then evaluate RLT’s effect on higher FPS videos and long video datasets in Section 4.4.
Finally, we provide qualitative visualizations in Section 4.5.

4.1 Training

In Table 1 we evaluate RLT’s impact on the performance of video transformers during training and its
resulting speedup. We fine-tune ViT-B and ViT-L from pre-trained VideoMAE [39, 41] checkpoints,
comparing the speed and performance with standard tokenization, random masking, and RLT. We
evaluate random masking by removing k tokens, with k£ being the mean number of tokens pruned by
RLT on a given dataset. For the most fair speed comparison, all evaluated models are trained with
mixed-precision, memory-efficient attention and Flash Attention where possible using an 8xH100
node, as well as the optimized data loader from AVION [50] to avoid data loading bottlenecks. We
use the standard Vision Transformer rather than more complex architectures such as TimesFormer [3]
or MViT [24]; we found that it was significantly simpler and more efficient, matching observations
from Ryali et al. [34]. We limit our analysis to fine-tuning due to computational constraints.

Compared to standard tokenization, RLT achieves a speed-up of up to 40%, even with heavily opti-
mized implementations. RLT achieves the best trade-off between performance and speed, with better

Kinetics-400 \ Something-Something-v2

Model Acc FTtime(8 GPU) Speedup | Acc FT time(8 GPU) Speedup
ViT-B 80.1 14.4h 1.0x 70.3 10.1h 1.0x
ToMe,,, 80.0 13.4h 1.1x 69.7 9.4h 1.1x
Random (0.7) 79.2 10.2h 1.4x 69.3 7.2h 1.4x%
RLT (Ours) 80.1 10.2h 1.4x 70.2 7.2h 1.4x
ViT-L 84.8 21.6h 1.0x 74.3 15.2h 1.0x
ToMe 84.4 18.3h 1.2x 74.3 12.9h 1.2x
Random 83.1 15.4h 1.4x 74.3 10.8h 1.4x
RLT (Ours) 84.7 15.4h 1.4x 74.4 10.8h 1.4x

Table 1: Training results on action recognition. RLT significantly reduces fine-tuning time with
comparable performance to the baseline on both Kinetics-400 and Something-Something-v2.

Kinetics-400 \ Something-Something-v2
Model Acc GFLOPS Clips/s Speedup ‘ Acc GFLOPS Clips/s Speedup
ViT-B 80.5 180 314 1.0x 70.8 180 31.4 1.0x
ToMe,, 80.4 131 34.4 1.09x | 69.1 131 344 1.09x
Random 80.1 120 53.0 1.68x | 69.3 120 53.0 1.68x
RLT (Ours) 80.6 120 52.6 1.67x | 69.8 120 52.6 1.67 %
ViT-L 84.8 598 11.5 1.0x 74.3 598 11.5 1.0x
ToMe,,, 84.3 285 19.3 1.68x | 73.6 285 19.3 1.68x
Random 84.1 405 18.8 1.63x | 73.3 405 18.8 1.63x
RLT (Ours) 84.6 405 18.71 1.62x | 74.1 405 18.71 1.62x
ViT-H 86.8 1192 6.65 1.0x - - - -
ToMe,,, 86.1 766 8.51 1.27x - - - -
Random 85.1 816 9.66 1.45x - - - -
RLT (Ours) 86.3 816 9.66 1.45x - - - -

Table 2: Inference-only results on action recognition. With batch size 1, RLT with 7 = 0.1
consistently achieves the closest performance to the baseline, comparable or faster than Token
Merging or random masking. We omit ViT-H results on Something-Something-v2 due to lack of
existing pre-trained checkpoints.

performance than random masking while achieving the same speedup. In particular, RLT is much
faster to train than Token Merging since it is compatible with hardware-optimized implementations
such as Flash-Attention [8, 9]. Unlike random masking, RLT matches the performance of the baseline
ViT after the same number of training batches, while random masking requires significantly more
epochs to catch up. RLT matches baseline performance across multiple scales, indicating that RLT
does not degrade performance while considerably accelerating training.

4.2 Inference-Time Results

Although RLT was designed to speed up training, it can be used as a drop-in replacement for standard
tokenization, similar to Token Merging[S]. In Table 2 we compare the top-1 accuracy, GFLOPs and
throughput with RLT to standard tokenization and Token Merging [5]. We also compare against
random masking for completeness, although it is intended only for training time [25]. For the most
fair comparison, we randomly mask out P tokens for each example, where P is the mean number of
tokens used by RLT; for Kinetics-400 and SSv2 this was P = 0.72. We do not compare to learned
pruning methods like A-ViT [48] since those only present results on images. We measure throughput
in clips-per-second, with each model running on a single clip at a time. In practice, video models are
evaluated on multiple temporal and spatial crops; following VideoMAE[39] we measure GFLOPs on
single clip and measure accuracy with 4 temporal and 3 spatial crops.

87
. ° . i Model Acc FT time(8 GPU)
s ViT-B 80.1 14.4h
. . ® =005 RLT 80.1 10.2h
€ ol ®® ol RLT + length 80.1 10.2h
g ® 102 RLT + Rand 79.3 8.1h
27 RLT + Rand + length 79.8 8.1h
8
827 ViT-L 84.8 21.6h
o | . RLT 84.6 15.4h
RLT + length 80.1 15.4h
g 10 12 14 16 1_'8.; RLT + Rand 78.8 11.3h
Relative Speed-up (vs baseline) RLT + Rand + length 79.6 11.3h

Fli(glur&,h& Varying Il)lifferznc?f l;r hresh- 11 3. Effect of length encoding. When fine-
o'c. en comparing the tradeolf between tuning with RLT only, length encoding has mini-

spett)edu? factorf and accu;ac%/, RLTl is Cl?se mal effect, but helps significantly when combined
to baseline performance for low values of 7, with random masking.

with a sharp drop-off after 7 = 0.1.

Across model sizes, RLT consistently delivers the best tradeoff between speed and accuracy. The
benefit becomes more pronounced as model size increases, as at larger parameter counts, the attention
operation begins to dominate the computation. Compared to baselines, RLT is significantly faster than
Token Merging and outperforms all other baselines on accuracy. Token Merging cannot make use of
Flash Attention and other optimizations due to its reliance on a weighted attention operation, slowing
it down in comparison to RLT. Although worse than RLT, random masking performs surprisingly
well, likely due to the fact that most tokens in videos are redundant. Random masking can also be
combined with RLT for further speed benefits, with smaller resulting performance gaps than in [25].
However, achieving the optimal performance-throughput tradeoff with random masking requires
tuning for each dataset, while RLT is natively content-aware, achieving higher accuracy at similar
speeds without tuning. Similarly, Token Merging [5] requires changing the r parameter based on the
model size and is not content aware, limiting its speed-up in highly static videos.

4.3 Ablations

We ablate our design choices for RLT in Figure 3 and Table 3, measuring the impact of the difference
threshold and length encoding design choices at multiple model scales during training.

Difference Threshold. The only tunable hyperparameter in RLT is the threshold 7, which controls
the sensitivity to change between temporally consecutive tokens. Lower values of 7 indicate higher
sensitivty to change. We vary tau and compare the final action recognition accuracy vs. throughput
and wall-clock time for several configurations, both for training and inference. These results are
shown in Figure 3. We find that using 7 = 0.1 offered the best tradeoff in speed and performance: it
matches the baseline performance while delivering a 37% speedup in training. Lower values of 7 lead
to similar performance, but with less of a speedup, while high values deliver larger speedups at a cost
to performance. We attribute this to the existence of a ‘difference cut-off’: at some point, the tokens
are too different to be grouped together, and the resulting tokens do not obey the assumptions made
by RLT. We also note that 7 is dataset-agnostic: it simply describes how much pixel difference is
needed to consider two 16x16 patches different, and the same value of 7 leads to different reductions
across datasets based on the video content.

Length Encoding. We ablate the effect of our length encoding mechanism in Table 3. When
using RLT by itself, length encoding has minimal effect. However, when combining RLT with
random masking, we note a clear improvement. Due RLT’s structured and predictable pruning, length
encoding may be unnecessary: the transformer is able to mostly understand the length of various
tokens by their associated spatial positional encoding. However, once random masking is introduced,
the structure is removed, and the length encoding adds crucial information. Since including the length
encoding is strictly more information and has no negative effect, we default to including it.

Model FPS Acc FT Time

Dataset FPS #Tokens RLT VILL 75 848 21.6h
K400 75 3.8 x108 2.7 x 108 (-29%) RLT 7.5 846 154h 141x
K400 15 7.5 x10% 4.8 x 108 (-36%) ViT-L 15 858 45.2h
K400 30 1.5 x10° 8.2 x 108 (-45%) RLT 15 858 274h 172X
VIiT.L 30 863 110h
SSv2 7.5 2.6 x10% 1.8 x 108 (-31%) RLT 30 862 52.3h 2.1x%
SSv2 15 52 x108 3.2 x 10® (-38%) _
SSv2 30 1.0 x10° 5.7 x 108 (-48%) VitL 7.5 743 15.1h
RLT 7.5 744 10.8h 1.39x
EK-100 3.5 1.1 x10®8 7.2 x107 (-36%) ViT-L 15 75.4 41.4h
COIN 30 9.8x109 2.8 x 10 (-71%) RLT 15 753 241h 1.7x
Breakfast 15 1.3 x 109 2.7 x 10% (-79%) ViTL 30 76.1 99.8h

RLT 30 76.1 47.5h 2.0x
Table 4: Per-Dataset Token Reduction. RLT

reduces tokens significantly across datasets, with Table 5: Training at higher FPS. RLT en-
higher reductions on higher FPS. On long-video ables training efficiently for higher FPS, al-
datasets like COIN and Breakfast with mostly lowing us to go beyond the standard low FPS
static content, RLT achieves almost 80% reduction, ~ paradigm. As FPS increases, RLT delivers
demonstrating its promise for scaling training. larger and larger speed-ups over the baseline
for training, with no decrease in accuracy.

4.4 Longer Videos and Higher FPS

Standard action recognition datasets consist of short clips with downsampled FPS; an input example
typically spans 2 seconds. One potential advantage of RLT is that by reducing the total number of
tokens, training becomes more tractable for both longer videos and higher FPS. We evaluate the
effect of training with RLT in Table 5 on action recognition datasets with higher FPS along with
their training time. As before, we fine-tune these models from pre-trained VideoMAE checkpoints.
Although these checkpoints were pre-trained at 7.5 FPS, we can still compare with the baseline
performance to observe differences in training time or quality. Similar to the result from Table 1,
we find that ViTs trained with RLT can match performance but train significantly faster, with the
speed-up increasing with the FPS.

We next analyze the number of total tokens in RLT compared to the baseline for several video datasets
in Table 4, including datasets with longer videos as well as higher FPS. Matching the result from
Table 5, at higher FPS, RLT consistently reduces the tokens by a higher proportion. This matches
our intuition, since tokens between two redundant tokens at lower FPS are likely to be similar and
also be removed. Furthermore, on longer video datasets, RLT can reduce the number of tokens by
significantly larger margins, with reductions of up to 80% on COIN and Breakfast. These datasets in
particular consist of videos filmed with fixed cameras and largely static backgrounds, demonstrating
RLT’s potential to drastically speed up transformers on these types of videos. Although in practice,
researchers do not typically train on raw videos with large number of frames due to the heavy cost
of video decoding on academic clusters, RLT presents a promising way to efficiently train on these
videos at scale.

4.5 Visualizations

We provide some qualitative visualizations of the tokens RLT removes in Figure 4. As desired, input
patches that are repeated over time are pruned by RLT. This intuitively matches with how humans
often pay less attention to static tokens over time. In the top example, most of the background is black,
with some motion taking place in the foreground. RLT is able to remove the constant black portions,
drastically reducing the number of tokens. Similarly in the second example, RLT ensures that the
tokens containing motion, with the boy’s hands and instrument, are not modified, but prunes the static
background. In the lower two examples, the person using the drill and the girl in the foreground move
around significantly, reducing the amount of tokens that can be compressed. In such cases where
there is significant subject or camera motion, RLT removes fewer tokens, resulting in similar token
counts to standard tokenization. However, the sensitivity of RLT to small perturbations and motion

—

Figure 4: Sample Visualizations. Tokens that are compressed are visualized in gray. RLT retains
tokens that change between frames while removing redundant tokens. In the top example, RLT
captures the static background, and in the bottom example, due to camera motion and the motion of
the girl, almost no tokens are modified. Video visualizations are available at the project page.

depends entirely on the 7 hyperparameter. We provide further example visualizations and visualize
the effect of different values of 7 in Appendix B and on our project page.

5 Conclusion

Summary We present Run-Length Tokenization (RLT), a simple alternative to standard video
tokenization for video transformers that replaces temporally redundant tokens with a single token of
variable length. RLT decreases transformer training and inference wall-clock time by up to 40%m
achieves a better speed-accuracy tradeoff than prior works, and is simple to implement and combine
with other methods. RLT demonstrates strong results during finetuning, especially at higher FPS, and
even works well when applied to models without any training.

Limitations Though RLT works well, it relies on a heuristic to compare temporally consecutive
tokens, which could include extra tokens that are unused by the transformer. Furthermore, while
RLT speeds up video transformers significantly, it cannot be used for dense vision tasks, such as
point tracking or video generation, that require the same number of output tokens as input tokens.
Furthermore, RLT does not handle camera motion well: in a video with constant camera motion, few
tokens will be removed, leading to no speedup. Future work will be necessary to overcome these
limitations, and we hope that RLT can inspire more research on efficient video transformers.

Acknowledgments and Disclosure of Funding

Use unnumbered first level headings for the acknowledgments. All acknowledgments go at the
end of the paper before the list of references. Moreover, you are required to declare funding
(financial activities supporting the submitted work) and competing interests (related financial activities
outside the submitted work). More information about this disclosure can be found at: https:
//neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure.

Do not include this section in the anonymized submission, only in the final paper. You can use
the ack environment provided in the style file to automatically hide this section in the anonymized
submission.

References

[1] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and
Boging Gong. Vatt: Transformers for multimodal self-supervised learning from raw video,
audio and text. Advances in Neural Information Processing Systems, 34:24206-24221, 2021.

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia
Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836-6846, 2021.

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for

video understanding? In Proceedings of the International Conference on Machine Learning
(ICML), July 2021.

[4] Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic.
Flexivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14496-14506, 2023.

[5] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your ViT but faster. In International Conference on Learning
Representations, 2023.

[6] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

[7] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 702-703, 2020.

[8] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344-16359, 2022.

[10] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al.
Patch n’pack: Navit, a vision transformer for any aspect ratio and resolution. Advances in
Neural Information Processing Systems, 36, 2024.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure
https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873—12883, 2021.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6824-6835, 2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6202-6211, 2019.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as
spatiotemporal learners. arXiv:2205.09113, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The" something something" video database for learning and evaluating visual common
sense. In Proceedings of the IEEE international conference on computer vision, pages 5842—
5850, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll4r, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000-16009, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen,
Geng Yuan, Bin Ren, Hao Tang, et al. Spvit: Enabling faster vision transformers via latency-
aware soft token pruning. In European conference on computer vision, pages 620-640. Springer,
2022.

Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient clips from video
for efficient action recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6232—6242, 2019.

Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon. Efficient sequence
packing without cross-contamination: Accelerating large language models without impacting
performance. arXiv preprint arXiv:2107.02027, 2021.

Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax
and semantics of goal-directed human activities. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 780-787, 2014.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hack-
able transformer modelling library. https://github.com/facebookresearch/xformers,
2022.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification
and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4804-4814, 2022.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
language-image pre-training via masking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23390-23400, 2023.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all
patches are what you need: Expediting vision transformers via token reorganizations. arXiv
preprint arXiv:2202.07800, 2022.

11

https://github.com/facebookresearch/xformers

[27] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video under-

standing. In Proceedings of the IEEE/CVF international conference on computer vision, pages
70837093, 2019.

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012—-10022, 2021.

[29] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers. arXiv preprint arXiv:2110.03860, 2021.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[31] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195-4205, 2023.

[32] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937-13949, 2021.

[33] Cedric Renggli, André Susano Pinto, Neil Houlsby, Basil Mustafa, Joan Puigcerver, and Carlos
Riquelme. Learning to merge tokens in vision transformers. arXiv preprint arXiv:2202.12015,
2022.

[34] Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical
vision transformer without the bells-and-whistles. In International Conference on Machine
Learning, pages 29441-29454. PMLR, 2023.

[35] Michael S Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova.
Tokenlearner: What can 8 learned tokens do for images and videos? arXiv preprint
arXiv:2106.11297, 2021.

[36] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. Advances in neural information processing systems, 27, 2014.

[37] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on circuits and systems for video
technology, 22(12):1649-1668, 2012.

[38] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu,
and Jie Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1207-1216, 2019.

[39] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. Advances in neural information
processing systems, 35:10078-10093, 2022.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[41] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and
Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14549-14560,
2023.

[42] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h.
264/avc video coding standard. IEEE Transactions on circuits and systems for video technology,
13(7):560-576, 2003.

12

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha, Alexander J Smola, and Philipp
Krihenbiihl. Compressed video action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6026—6035, 2018.

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik,
and Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer for
efficient long-term video recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13587-13597, 2022.

Zhirong Wu, Zihang Lai, Xiao Sun, and Stephen Lin. Extreme masking for learning instance
and distributed visual representations. arXiv preprint arXiv:2206.04667, 2022.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18134—18144,
2022.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov.
A-vit: Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10809-10818, 2022.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 2998-3008,
2021.

Yue Zhao and Philipp Krihenbiihl. Training a large video model on a single machine in a day.
arXiv preprint arXiv:2309.16669, 2023.

Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reasoning
in videos. In Proceedings of the European conference on computer vision (ECCV), pages
803-818, 2018.

Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient convolutional
network for online video understanding. In Proceedings of the European conference on computer
vision (ECCV), pages 695-712, 2018.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

A Implementation Details

We include our code in the supplementary zip files, and our project page is located at the following
link

Architecture. All models used were based on the timm [43] Vision Transformer implementation,
and all fine-tuning experiments were done with pre-trained checkpoints from VideoMAE [39] and
VideoMAEV2 [41]. As mentioned in 3.3, we compute output predictions for action recognition by
taking the mean across the output tokens, rather than producing a separate class token.

Baselines. The baselines we compared to are Token Merging [5] and random masking [25]. For all
random masking experiments, we set the masking ratio p to match the mean RLT token reduction for
the given dataset. For example, on Kinetics-400 at 7.5 FPS, RLT with 7 = 0.1 reduces the number of
tokens by 28%, so we randomly drop 28% of the tokens during training. We use the recommended
values of r from the Token Merging paper, except on ViT-H, where we use = 32 due to the larger
depth of the model.

Datasets. We train and evaluate RLT on Kinetics-400 (K400) [18] and Something-Something-v2
(SSv2) [16]. Both datasets are video classification datasets, with K400 having 400 classes and SSv2
having 174. K400 has 240k training examples and 40k test examples, while SSv2 has 170k training
examples and 30k test examples. We also included experiments measuring the token reduction on
the Breakfast [22] and COIN [38] datasets, both of which are smaller-scale datasets involving longer
videos that range from 2-5 minutes. In particular, these datasets contain lots of fixed-camera videos
with static backgrounds, leading to particularly high token reductions from RLT.

Training Recipe. We do not change hyperparameters when finetuning models with different
tokenization strategies, as we found the provided set to be optimal in our experiments. We follow the
recommended training recipes from VideoMAE for each model size, namely training for 100 epochs,
with batch size 256, learning rate with warm-up to 1 x 10~3 for 5 epochs, then cosine annealing down
to 1 x 1075, We also use RandAugment, random erasing, CutMix, and standard cropping/scaling
and flipping. We do not use MixUp since it can severely affect the efficacy of RLT, and we found that
removing it and only using CutMix did not affect our experiments.

All experiments were conducted with 8xH100 Nvidia GPUs with 128 CPU cores, with 16 workers
per GPU. The inference-time results were computed on a single GPU, along with the throughput and
FLOPS analysis. W1l code will be open-sourced. Each training run for the paper is specified in hours,
but this does not include a few months of work testing and debugging. We used a single node for all
work on this paper.

B More Visualizations

We include some additional visualizations here to qualitatively demonstrate which tokens RLT prunes,
as well as to analyze the qualitative effect of varying the difference threshold 7. In each figure, the
whitened patches represent those RLT identified as static, and that are not passed to the transformer.
In Figure 5, we visualize a diverse range of samples and note that RLT consistently prunes out patches
that repeat across consecutive frames. One case where RLT fails to remove many tokens is the 4th
example from the top, which is from a ski jumper using a GoPro; the constant camera motion means
that RLT is unable to identify almost any repeated patches. In Figure 6 we demonstrate the effect that
the 7 hyperparameter has on the input tokens. We see that as 7 increases, more and more patches
are included, and after 7 = 0.1, some patches that have change in them are pruned incorrectly. On
the other hand, 7 = 0 includes many patches with essentially imperceptible change, which is also
undesired.

We highly encourage readers to visit our project page for video visualizations that better convey the
effect of RLT. If visualizations do not render in Google Chrome, please open the page in Safari or a
different browser.

14

https://dferthvf.github.io/RLT/
https://dferthvf.github.io/RLT/
https://dferthvf.github.io/RLT/

Figure 5: More examples. We visualize RLT’s effect on videos ranging from TV shows, movies,
action sequences on a GoPro, and sports. RLT consistently prunes out tokens that are repeated and
static, and includes all patches that change between frames, retaining as much information as possible
while cutting the number of tokens significantly.

15

Figure 6: Effect of 7. With low values of 7, the clearest repeated patches are ablated, but imperceptible
variations can prevent some visibly similar tokens from being pruned. Above 7 = 0.1, some tokens
with slight movement are pruned.

16

	Introduction
	Related Work
	Method
	Removing Static Patches
	Run-length Positional Encoding
	Handling Dynamic Input Sizes

	Experimental Results
	Training
	Inference-Time Results
	Ablations
	Longer Videos and Higher FPS
	Visualizations

	Conclusion
	Implementation Details
	More Visualizations

