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Abstract001

As large language models (LLMs) continue to002
scale, the memory footprint of key-value (KV)003
caches during inference has become a signif-004
icant bottleneck. Existing approaches primar-005
ily focus on compressing KV caches within a006
single prompt or reusing shared prefixes or fre-007
quently ocurred text segments across prompts.008
However, such strategies are limited in sce-009
narios where prompts are semantically similar010
but lexically different, which frequently occurs011
in tasks such as multi-document summariza-012
tion and conversational agents. We propose013
SemShareKV, a KV cache sharing and com-014
pression framework that accelerates LLM in-015
ference by reusing KVCache in semantically016
similar prompts. Instead of relying on exact017
token matches, SemShareKV applies fuzzy to-018
ken matching using locality-sensitive hashing019
(LSH) on token embeddings and incorporates020
Rotary Position Embedding (RoPE) to better021
preserve positional information. By selectively022
reusing relevant key-value pairs from a refer-023
ence prompt’s cache, SemShareKV reduces re-024
dundant computation while maintaining output025
quality. Experiments on diverse summarization026
datasets show up to 6.25× speedup and 42%027
lower GPU memory usage with 5k tokens input,028
with negligible quality degradation. These re-029
sults highlight the potential of semantic-aware030
cache sharing for efficient LLM inference.031
The code is available at https://anonymous.032
4open.science/r/SemShareKV-B53C.033

1 Introduction034

Large Language Models (LLMs) have exhibited035

a strong capability to understand and process hu-036

man languages, and have been shown to perform037

comparably to humans in several fields, such as038

math inference, text memorization, information039

extraction, story telling (Naveed et al., 2023). Re-040

cently released LLMs have significantly advanced041

in processing and comprehending extremely long042

prompts. However, this introduces a notable chal- 043

lenge: increased computational demand due to the 044

quadratic time complexity of their Decoder-Only 045

Transformer architecture when handling lengthy 046

text sequences. The issue is further compounded 047

during inference, as the auto-regressive decoding 048

process repeats the computation for each newly 049

generated token (Luohe et al., 2024). 050

Existing KVCache optimization approaches 051

primarily focus on single-prompt compression 052

through various techniques: Yang et al. (2024a) 053

leverage decaying key-value importance across 054

layers for selective extraction (though with lim- 055

ited small-batch gains), Gim et al. (2024) employ 056

restrictive markup schemas for text chunk reuse, 057

and Yao et al. (2024) propose deviation-based re- 058

computation that requires impractical per-chunk 059

precomputation for long inputs. Crucially, these 060

methods operate within the constrained paradigm 061

of single-prompt optimization, failing to exploit 062

the substantial efficiency potential of cross-prompt 063

cache reuse, a significant oversight given the preva- 064

lence of semantically similar queries in real-world 065

applications where shared computational savings 066

could be substantial. 067

Motivated by this challenge, we aim to address 068

the following research question: Can we reuse the 069

precomputed KVCache for another semantically 070

similar prompt? 071

To answer this question, we proposed 072

SemShareKV, a KVCache framework that can 073

reuse the cache from one prompt for another that is 074

semantically similar to each other via fuzzy token 075

match. It speeds up prefill phase and compress KV 076

cache in memory. We show that our method can 077

reduce the pre-fill phase time by 6.25× and save 078

42% GPU memory space. We make the following 079

contributions. 080

• We introduce SemShareKV, which explores 081

KVCache sharing across semantically similar 082
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prompts based on fuzzy token match.083

• We evaluate SemShareKV across multiple084

datasets, demonstrating its effectiveness in085

accelerating the prefill phase while simulta-086

neously reducing KVCache size.087

• We explored the role of position encoding in088

KVCache by injecting it into vector embed-089

dings.090

2 Related Work091

Prior research on KVCache optimization can be092

categorized into three key directions: (i) Conven-093

tional KVCache Compression, which focuses on094

reducing the storage and computational overhead095

of KVCache by applying quantization, pruning, or096

other compression techniques; (ii) KVCache Shar-097

ing, which explores methods to reuse KVCache098

across different queries or tasks to improve effi-099

ciency while maintaining response quality; and (iii)100

KVCache Reusing, which investigates strategies101

to adapt and repurpose precomputed KVCache for102

semantically similar inputs, minimizing redundant103

computation while preserving model accuracy.104

2.1 Conventional KVCache Compression105

To address long-context processing, many works106

propose optimizing inference by retaining only in-107

formative tokens. Token-level compression often108

uses attention-based token selection (Zhang et al.,109

2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,110

2024a; Zhong et al., 2024), low-rank decompo-111

sition (Sun et al., 2024), or quantization (Zhang112

et al., 2024; Wang et al., 2024). Model-level ap-113

proaches redesign architectures to improve reuse114

(Sun et al., 2025; Yan et al., 2024), while system-115

level methods focus on memory and scheduling116

(Kwon et al., 2023; Sheng et al., 2023). Recent117

work has highlighted the use of value vectors to118

facilitate compression (Guo et al., 2024).119

2.2 KVCache Sharing120

Some also emphasize reusing portions of the cache121

for future or similar queries and prompts. For exam-122

ple, PromptCache (Gim et al., 2024) stores text seg-123

ments that appear frequently on an inference server124

using a schema, although this approach hampers125

usability, as users must conform their natural lan-126

guage to the schema format. Mooncake (Qin et al.,127

2024), KVSharer (Yang et al., 2024b) and Mini- 128

Cache (Liu et al.) exploit the high similarity of at- 129

tention scores among adjacent transformer layers to 130

improve KVCache reuse. By consolidating or shar- 131

ing Key-Value pairs between similar layers, these 132

methods improve memory efficiency and stream- 133

line token processing. However, their approaches 134

are restricted to sharing in the layer or text segment 135

within adjacent layers or the same LLM, limiting 136

the broader applicability; GPTCache (Regmi and 137

Pun, 2024), (Rasool et al., 2024) and (Bang, 2023) 138

utilize similarity search among queries to reuse 139

KVCache. However, they have a high probability 140

of missing a hit and require the entire query to be 141

similar, offering limited flexibility. 142

2.3 KVCache Reusing 143

Limited attention has been directed toward the 144

sharing of KVCache in LLMs. DroidSpeak(Liu 145

et al., 2024b) improves context sharing between 146

fine-tuned LLMs by identifying critical KVCache 147

layers and selectively recomputing them for ef- 148

ficient reuse while maintaining accuracy. LM- 149

Cache(Cheng et al., 2024) introduces a Knowledge 150

Delivery Network (KDN) to optimize KVCache 151

storage and transfer, allowing cost-effective knowl- 152

edge injection in LLM inference. CacheBlend(Yao 153

et al., 2024), KVShare(Yang et al., 2025), and 154

EPIC(Hu et al., 2024) rely on exact context match- 155

ing, which is unsuitable for real user scenarios. 156

SentenceKV suffers from inter-sentence informa- 157

tion loss, as noted in the CacheBlend paper. In 158

contrast, SemShareKV introduces RoPE in token 159

matching to address this issue. 160

3 Observations and Insights 161

We present three key insights derived from our ex- 162

periments on three LLMs: Mistral-7B (Jiang et al., 163

2023), LLaMA-3.1-8B (Grattafiori et al., 2024), 164

and MPT-7B (Team, 2023). These insights show 165

consistent patterns across different LLMs, support- 166

ing the generality of our observations. 167

Insights 1 HD tokens stay consistent across layers. 168

When reusing KV caches from semantically simi- 169

lar prompts, we ensure the reused cache maintains 170

high fidelity with fully recomputed caches to pre- 171

vent performance degradation. To compare the 172

similarity between two KV matrices, we used our 173

augmented MultiNews dataset, where each sample 174

consists of a pair of semantically similar prompts: 175
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Figure 1: Schematic Overview of SemshareKV
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Figure 2: Insight 1: High-deviation tokens remain con-
sistent across layers.

the Target Prompt, which serves as the primary in-176

put to the model, and the Reference Prompt, which177

acts as the semantically similar counterpart. For178

each of the aforementioned LLMs, we first com-179

puted the KV caches for the prompt pairs indepen-180

dently. Subsequently, we calculated the deviations181

between the KV caches of the target and reference182

prompts using the previously mentioned L2 norm.183

Tokens with the highest 40% deviation were iden-184

tified as High Deviation (HD) tokens. To further185

quantify this observation, we compute the Spear-186

man correlation of HD tokens between adjacent lay-187

ers. As shown in Figure 2, adjacent layers exhibit188

relatively high consistency in HD token positions.189

Insights 2 Deeper layers focuses on fewer tokens190

To analyze attention patterns across layers, we first191

averaged the attention scores across all heads in192

each layer and then computed the mean along the193

first dimension, resulting in a one-dimensional vec-194

tor per layer. To quantify this behavior, we intro-195

duce Attention Recovery (AR), defined as follows:196

Stotal =
n∑

i=1

Ti

∑n
i=k Ti

Stotal
> Thres (1)197

Where T is a sorted vector of average attention198

scores for each token, Stotal represents the total199

0 5 10 15 20 25 30

Layer
0%

20%

40%

60%

80%

100%

At
te

nt
io

n 
Re

co
ve

ry
 (A

R)
LLama3.1-8B
Mistral-7B
MPT-7B

Figure 3: Insight 2: Deeper layers attend to fewer to-
kens.

attention score derived from the averaged self- 200

attention matrices, and Thres indicates the thresh- 201

old of attention score. AR indicates the number of 202

tokens that must be summed from highest to low- 203

est based on their average attention scores in order 204

to cover Thres% of the total attention score. We 205

computed AR for each layer, and the results (Fig- 206

ure 3) reveal a consistent trend: as depth increases, 207

AR decreases across all three LLMs, despite minor 208

fluctuations. This suggests that deeper layers con- 209

centrate attention on progressively fewer tokens, 210

reflecting more selective focus. 211

Insights 3 Deeper layers have more redundant 212

information. 213

To reduce memory overhead from the KV cache, 214

a key optimization strategy is to remove tokens 215

containing redundant information. Such tokens 216

contribute minimally to the prediction of next to- 217

kens during decoding but occupy substantial GPU 218

memory. However, selective token retention risks 219

information loss, necessitating careful trade-offs 220

between memory savings and generation quality. 221

We evaluate three KVCache retention strategies 222

using perplexity: Constant, with equal retention 223

across layers; Exponential Growth, with higher re- 224

tention in shallow layers; and Exponential Decay, 225

with more retained in deeper layers (Figure C2). 226
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(a) Llama3.1-8B Retention Pattern
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(b) Mistral-7B Retention Pattern
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Figure 4: Insight 3: Deeper layers contain more redundant information.

We applied these three retention patterns to227

LLMs, and utilized perplexity to benchmark the228

generation performance, shown in Figure C2. For229

all three LLMs, the Exponential Decay pattern230

achieves the lowest perplexity score, indicating the231

best generation performance. This finding further232

validates that this pattern aligns with how LLMs233

interpret knowledge from prompts.234

4 Methodology235

4.1 Relevant Concepts236

Our work focuses on three critical cache compo-237

nents in modern LLMs:238

• Key Cache (K): Key vectors encode the struc-239

tural relationships among tokens in a sequence.240

• Value Cache (V): Value vectors containing241

the actual content representations aggregated242

through attention weights. These preserve the243

contextual information of each token.244

• Embedding Cache (E): Contextualized embed-245

dings t capturing fundamental semantic and syn-246

tactic relationships (Mikolov et al., 2013), pro-247

viding the foundational token representations248

before transformer processing.249

4.2 Model Overview250

The design of SEMSHAREKV, illustrated in Fig-251

ure 1, is based on three key insights from Section 3.252

Our approach employs two core strategies:253

• Recomputation Strategy (Insights 1 & 2): Pri-254

oritize the recomputing of more tokens in shal-255

low layers while reducing the recomputation in256

deeper layers, reflecting the varying importance257

of the layer depth in attention mechanisms.258

• Retention Strategy (Insights 1 & 3): Preserve259

more tokens in shallow layers while evicting to-260

kens from deeper layers, optimizing memory us-261

age without significant accuracy degradation.262

SemShareKV stores received prompts and their cor- 263

responding contextualized E caches in CPU mem- 264

ory. When the LLM receives a new prompt as the 265

target prompt, it retrieves a reference prompt by 266

computing an LSH-distance-based similarity score 267

between the target’s contextualized E cache and 268

all stored E caches. The reference prompt with 269

the highest similarity is then loaded onto the GPU 270

along with its corresponding KV cache for reuse. 271

Once a reference prompt is retrieved, 272

SemShareKV first applies RoPE to the E 273

caches of both the target and reference prompts. 274

Then it uses Locality-Sensitive Hashing (LSH) to 275

match each token in the target prompt to its most 276

similar tokens in the reference prompt. Based on 277

these LSH mappings, the precomputed KVCache 278

of the reference promptrompt is rearranged token 279

by token and injected into LLM transformer layers. 280

On the first transformer layer, all tokens undergo 281

full recomputation. The recomputed outputs are 282

compared with the rearranged cache values via 283

L2 norm, identifying high-deviation tokens for 284

prioritized recomputation in subsequent layers. 285

Simultaneously, the system evicts tokens with the 286

lowest attention scores from recent computations, 287

optimizing KVCache memory usage dynamically. 288

4.3 KVCache Sharing Challenge 289

The primary challenge in cross-prompt KVCache 290

sharing stems from length disparity between 291

prompts. Inspired by (Liu et al., 2024b), we in- 292

corporates positional encoding within the E Cache 293

to enable accurate token alignment while preserv- 294

ing contextual relationships. 295

Specifically, we use LSH to identify, for each to- 296

ken in the target prompt, the most similar token in 297

the reference prompt based on their vector represen- 298

tations. We use Locality-Sensitive Hashing (LSH) 299

for efficient token similarity search. Additional de- 300

tails on LSH are provided in Appendix A.2. This 301
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process allowed us to reorder the KVCache of the302

reference prompt to align with the token sequence303

of the target prompt. Consequently, the reordered304

KVCache matches the target prompt’s length, with305

its key-value pairs entirely derived from the origi-306

nal KVCache of the reference prompt. The LLM307

uses the reordered KVCache to the target prompt.308

4.3.1 Use Relative Position Encoding to309

Facilitate Fuzzy Token Match310

A fundamental limitation of naive matching using311

the E cache arises from the absence of positional312

context in its representation. Since raw vector em-313

beddings lack inherent positional information, LSH314

fails to maintain crucial sequential relationships315

when identifying reference-target token correspon-316

dences. This positional agnosticism in the E cache317

consequently produces semantically inferior map-318

ping results.319

To address this, we introduce positional encod-320

ing into the E cache to enhance fuzzy token match-321

ing. Two widely used positional encoding strate-322

gies are absolute positional encoding (Vaswani323

et al., 2017), which embeds explicit position infor-324

mation, and relative positional encoding (Su et al.,325

2024), which captures positional relationships be-326

tween tokens. In our work, we incorporate Rotary327

Position Embedding (RoPE) into the E cache and328

evaluate its impact. Specifically, RoPE is applied to329

the non-contextual embeddings (E cache) of both330

the reference and target prompts. Then, LSH is331

used to match each token in the target prompt’s E332

cache to the most similar token in the reference333

prompt’s E cache. This step is crucial because334

RoPE introduces position-sensitive information, al-335

lowing the same token at different positions to carry336

distinct semantics, enabling LSH to achieve more337

accurate token-level matching.338

Figure 6 further illustrates how maintaining posi-339

tional relationships through RoPE improves align-340

ment accuracy, leading to better token retrieval and341

overall performance. Figure 6a compares the to-342

ken positions in the original E cache with the re-343
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Figure 6: Fuzzy matching: with vs. without position
encoding.
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Figure 7: Impact of position encoding on E cache and
KV cache deviation.

arranged positions after passing through the fuzzy 344

token matching block, while Figure 6b presents the 345

results when using an E cache with positional en- 346

coding. Notably, the first 20 tokens remain in their 347

original positions, as they represent query tokens. 348

This demonstrates that LSH correctly identifies and 349

preserves query positions. 350

Beyond the initial tokens, a key difference 351

emerges: without positional encoding, many to- 352

kens in the target prompt map to the initial tokens, 353

whereas with positional encoding, they align more 354

accurately with later tokens. We interpret this as 355

a manifestation of "attention sink", a phenomenon 356

in self-attention mechanisms where a significant 357

portion of attention scores is consistently assigned 358

to initial tokens, regardless of their actual relevance 359

to the task (Xiao et al., 2023; Fei et al., 2025). In- 360

corporating positional encoding into the E cache 361

effectively mitigates this issue, leading to more ac- 362

curate token matching and improved performance. 363

4.3.2 Impact from Position Encoding in 364

KVCache 365

The second challenge is that LSH-based token re- 366

arrangement disrupts position encoding in the pre- 367
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computed KV cache, affecting the KV matrices368

from the prefill phase. Previous studies (Gao et al.,369

2024) have discussed the impact of different posi-370

tion encoding strategies, suggesting that RoPE can371

be excluded from KVCache by applying it after372

storage, as illustrated in Figure 5. In evaluating the373

role of RoPE in the E cache, we compared three374

configurations of KVCache: (i) with position en-375

coding, the standard setting where RoPE is applied376

before storing KVCache; (ii) without position en-377

coding, where RoPE is not applied during storage;378

and (iii) without position encoding but reapplied,379

where RoPE is omitted during storage but reapplied380

after LSH-based reordering. Ideally, the rearranged381

KVCache should closely match the ground-truth382

KVCache for the target prompt. To quantify the383

deviation, we compute the L2 norm between the384

rearranged and ground-truth caches. As shown in385

Figure 7, KV cache with position encoding has386

the lowest deviation, followed by the version with-387

out position encoding, while the configuration with388

reapplied RoPE gives the highest deviation. This389

highlights the importance of storing KV pairs af-390

ter RoPE is applied. Ensuring consistent position391

encoding between the E and KV cache is essential392

for the LLM to fully leverage them and achieve393

optimal generation quality.394

4.3.3 Recomputation Strategy395

We divide the layers into two groups: the first and396

subsequent layers. Given that LLMs tend to focus397

more on later tokens (Liu et al., 2024a; Yang et al.,398

2024a), we categorize tokens into Cold (c) and Hot399

(h) using a dynamic ratio rdynamic from Atten-400

tion Recovery with a threshold of 55%, meaning401

rdynamic% of tokens with the highest cumulative402

attention are selected as Hot, and the rest as Cold.403

The total number of recomputed tokens is defined404

as Recomputed = ωc · c+ ωh · h, where ωc = 0.1405

and ωh = 0.5 in the SemShareKV setting.406

Starting from the second layer, token selection407

follows this rule: based on Insight 1, the tokens408

selected in the next layer are derived from those409

chosen in the previous layer based on a recompute410

ratio αrecomp% of this layer. Based on Insight411

2, αrecomp% in shallow layers will be relatively412

small while in deeper layers will be relatively large.413

4.3.4 Retention Strategy414

Similar to token recomputation, we categorize the415

layers into two groups: the first and the subse-416

quent layers. On the first layer, the retention417

ratio is determined also by rdynamic, follows 418

Retained = max(0.8, rdynamic). And retained 419

tokens are selected based on average attention 420

scores across the last (1 − rdynamic)% tokens, 421

and only retain the top rdynamic% tokens with 422

highest avg attention scores. In detail, the intuition 423

behind selecting retained tokens is as follows: In 424

the first layer, all hot tokens will be retained. To- 425

ken eviction occurs only among Cold tokens that 426

are not marked as recomputed. The underlying 427

principle is that recomputed tokens provide better 428

representations of the target prompt. If these to- 429

kens are evicted, the computational resources and 430

time spent on recomputing them will be wasted. In 431

subsequent layers, based on Insight 3, we should 432

retain fewer tokens. 433

5 Evaluation and Results 434

5.1 Experiments Setup 435

We select a diverse set of datasets cover- 436

ing a broad range of tasks. For Q&A, we 437

use WikiHow (Koupaee and Wang, 2018) and 438

Qasper (Dasigi et al., 2021). For summariza- 439

tion, we include MultiNews (Bai et al., 2023) 440

(multi-document), SAMsum (Gliwa et al., 2019) 441

(dialogue), and BookSum, PubMed, and Big- 442

Patent (Kwan et al., 2023), which represent nar- 443

rative, scientific, and patent documents, respec- 444

tively; all three are single-document summariza- 445

tion. For code completion, we use LLC (Guo et al., 446

2023). For multiple-choice Q&A, we evaluate on 447

MMLU (Hendrycks et al., 2021b,a). 448

We compared SemShareKV against three base- 449

lines: (i) Fully Recompute: standard inference 450

using the unmodified model from the Transform- 451

ers library, where the entire prompt is input with- 452

out any KVCache reuse; (ii) SnapKV (Li et al., 453

2024): a KVCache management method that ac- 454

celerates the prefill phase by efficient caching but 455

does not compress the KVCache; (iii) H2O (Zhang 456

et al., 2023): a dynamic KVCache eviction strategy 457

that compresses KV memory by prioritizing impor- 458

tant tokens, but does not optimize the prefill phase. 459

ChatGPT said: We use a modified H2O compress- 460

ing 10% of the cache per layer, with SnapKV and 461

H2O as baselines for prefill optimization and KV- 462

Cache compression. Experiments ran on a single 463

A100 GPU with standard attention. Implementa- 464

tion details are in Appendix D. 465

To the best of our knowledge, no existing dataset 466

benchmarks LLMs on KVCache sharing across 467
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Table 1: Performance comparison between SemShareKV and baseline methods

Method MultiN
ew

s

Wikihow

Qasper

SAMSum

PubMed

BookSum

BigPaten
t

LCC
MMLU

MISTRAL-7B
Full KV 22.10 20.50 17.10 18.79 24.66 22.44 25.47 22.41 34.00
SemShareKV 23.15 19.38 16.52 21.22 24.30 22.50 26.62 21.55 32.50
SnapKV 23.07 21.32 15.55 20.16 24.58 23.22 25.78 25.98 35.50
H2O 23.04 21.33 15.88 20.50 23.53 22.77 24.99 16.57 33.00

LLAMA3.1-8B
Full KV 22.49 19.71 14.21 16.69 24.50 22.65 27.26 19.01 55.00
SemShareKV 23.18 20.41 14.41 18.61 24.04 21.66 26.71 21.39 51.00
SnapKV 23.84 21.65 14.70 16.07 24.82 22.76 27.48 19.16 52.50
H2O 22.81 20.61 14.44 16.81 24.19 22.08 26.94 21.32 47.50

semantically similar prompts. To bridge this gap,468

we constructed evaluation samples by randomly469

selecting portions of entries from existing datasets470

and rewriting them using the Llama3 model. Then,471

these rewritten samples were manually verified to472

ensure that they remained semantically close to the473

originals. More details in the data preparation are474

provided in the Appendix B.475

5.2 Benchmarking Evaluation476

We argue that using Fuzzy Token Match introduces477

only a negligible overhead to model inference. Ta-478

ble 1 reports the ROUGE-L scores (Lin, 2004).479

Benchmarking results show that SemShareKV480

achieves performance comparable to or better than481

other baseline methods. Notably, in 4 out of the482

5 evaluated datasets, Fully Recompute fails to at-483

tain the highest performance scores. We attribute484

this phenomenon to the token eviction mechanisms485

employed by SemShareKV, SnapKV, and H2O. By486

selectively retaining only the most semantically sig-487

nificant tokens for self-attention computation, these488

methods effectively reduce redundant information489

in the semantic representation, thereby enhancing490

the model’s generation quality.491

5.3 Efficiency Evaluation492

We evaluate SemShareKV based on Time To First493

Token (TTFT) and KV Cache GPU KV memory494

usage, benchmarking it against Fully Recompute,495

SnapKV, and the unmodified H2O model. Fig-496

ure 8 demonstrates the efficiency advantages of497

SemShareKV on the MultiNews dataset, showing498

consistent improvements over baseline methods:499

SemShareKV achieves 6.25× faster Time-To-First-500

Token (TTFT) than Fully Recompute and H2O,501

2.23× faster TTFT than SnapKV, while reducing502
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Figure 8: Efficiency Evaluation Results.

memory usage by 42%. However, as illustrated 503

in Figure 8b, SemShareKV offers limited perfor- 504

mance improvements for shorter prompts (fewer 505

than 700 tokens), which we attribute to the over- 506

head caused by fuzzy token matching and the rear- 507

rangement of tokens from the precomputed cache 508

of the reference prompt. In future work, our goal 509

is to minimize this overhead. 510

5.4 Impact of Prompt Similarity on 511

Performance. 512

To evaluate similarity effects and SemShareKV per- 513

formance, we designed two studies using the same 514

percentage range (10% to 90% in 10% increments): 515
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1) randomly eliminating sentences from the con-516

text, and 2) randomly replacing sentences with517

others from the MULTINEWS dataset. We then518

applied SemShareKV to reuse the cache from the519

modified reference prompt for the target prompt.520

As shown in Figure 10, performance gradually de-521

grades as more sentences are removed, yet remains522

reasonable even with substantial reductions. No-523

tably, SemShareKV maintains strong performance524

even when 50% of context sentences are removed,525

highlighting the effectiveness of LSH-based token-526

level matching. This trend holds across both LLMs,527

suggesting the generality of our approach. Addi-528

tionally, based on the observed performance trend,529

we empirically set a threshold of 0.8 for applying530

SemShareKV, meaning that if two prompts have531

an LSH similarity score above 0.8, SemShareKV532

can be applied. Figure 11 illustrates how the LSH-533

distance-based similarity changes as the replace-534

ment and elimination ratios increase. More details535

are in Appendix B.2.536

5.5 Ablation Study537

We conducted two ablation studies to evaluate the538

impact of fuzzy token matching on semantic un-539

derstanding. First, by either zeroing out or re-540

placing matched KV cache tokens with random541

ones, we observed significantly lower ROUGE-L542
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Figure 11: The three retention patterns start from the
same retention ratio.

Table 2: Ablation study on ROUGE-L for SemShareKV
and its ablations across datasets.

Method SAMSum(↑) MultiNews(↑)
SemShareKV 21.22 23.15
Ablation-Zero 14.63 17.71
Ablation-Random 5.38 12.67

scores compared to the full SemShareKV method, 543

confirming the importance of fuzzy matching for 544

capturing semantics (Table 2). Second, analyzing 545

the KVCache compression ratio on the MultiNews 546

dataset (Figure 9), retaining too much cache adds 547

redundancy and harms performance, while retain- 548

ing too little causes information loss, emphasizing 549

the need for a balanced cache retention strategy. 550

6 Conclusion 551

We proposed SEMSHAREKV, a KVCache shar- 552

ing framework that enables reuse across semanti- 553

cally similar prompts through fuzzy token match- 554

ing using locality-sensitive hashing. SemShareKV 555

achieves a speed of 6.25× and saves up to 42% 556

kvcahce memory space compared to conventional 557

KVCache, with a minimum performance drop. 558

Limitations 559

While SEMSHAREKV effectively shares KV 560

caches for semantically similar prompts, its evalua- 561

tion so far has been limited to summarization tasks. 562

Speedups decrease for shorter prompts due to the 563

overhead of fuzzy matching, and several hyperpa- 564

rameters require careful tuning. Additionally, our 565

current implementation focuses on demonstrating 566

SEMSHAREKV’s effectiveness and does not yet 567

support FlashAttention; we plan to incorporate it 568

in future work. Also, the matching threshold is 569

empirically set, and exploring adaptive strategies 570

remains future work. 571
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A Formula and Inference828

A.1 Rotary Position Encoding829

In our methodology, we introduced the application830

of Rotary Position Embedding (RoPE) to the E831

cache, which improves the performance of fuzzy832

token matching. RoPE is designed to incorporate833

positional information directly into embeddings,834

allowing for improved alignment between tokens835

in a sequence. This is particularly important in836

natural language processing tasks where the order837

of words can significantly impact the meaning and838

context.839

The formula of RoPE in a 2-D case is shown840

below:841

RoPE(x) =
[
cos(θk) − sin(θk)
sin(θk) cos(θk)

] [
x2k
x2k+1

]
(1)842

In this equation, θk = 10000−2k/d, where d repre- 843

sents the embedding dimension. The use of RoPE 844

allows for the effective encoding of relative po- 845

sitional information, enabling the model to bet- 846

ter capture the relationships between tokens in a 847

sequence. Integrating RoPE into the E cache fa- 848

cilitates the identification of semantically similar 849

tokens using LSH, leading to more accurate and 850

efficient fuzzy token matching. This enhancement 851

helps the model perform more accurately on tasks 852

that require strong semantic understanding. 853

A.2 Locality-Sensitive Hashing (LSH) 854

Locality-Sensitive Hashing (LSH) is a technique 855

that enables efficient approximate nearest neighbor 856

searches in high-dimensional spaces by ensuring 857

similar input items are hashed into the same bucket 858

with high probability (Indyk and Motwani, 1998). 859

This reduces the number of distance computations 860

required, making LSH particularly useful for large 861

datasets in applications such as image retrieval and 862

natural language processing (Datar et al., 2004). 863

In LSH for Euclidean distance, a common hash 864

function is: 865

h(x) = ⌊x · r + b

w
⌋ 866

where r is a random vector, b is a random offset, 867

and w is the hash width. This overview encapsu- 868

lates the theory and practical application of LSH in 869

our framework. 870

The LSH (Locality-Sensitive Hashing) in 871

SemShareKV is implemented using the FAISS 872

Python library (Douze et al., 2024). Further config- 873

uration details can be found in the provided code 874

repository. 875

A.3 LSH-Distance Based Similarity Score 876

For retrieving reference prompts to reuse cache 877

with SEMSHAREKV, we compute a similarity 878

score by normalizing the LSH distance and invert- 879

ing it to fit within a [0, 1] range: 880

dnorm =
LSH_dist−min(dist)

max(dist)−min(dist)

Similarity = clip(1− dnorm, 0, 1)

(2) 881

where dnorm denotes the normalized LSH distance; 882

min(dist) is set to 0 and max(dist) is set to 30. 883

A.4 Key-Value Deviation 884

We define Key-Value Deviation with L2 norm as 885

below: 886

11



Table B1: Similarity evaluation on benchmarking datasets using ROUGE-L, BERTScore, and BLEU. All datasets
contain 100 semantically similar rewritten samples.

Metric MultiN
ew

s

Wikihow

Qasper

SAMSum

PubMed

BookSum

BigPaten
t

LCC
MMLU

N of Samples 100 100 100 100 100 100 100 100 200
Rewrite % (Avg) 54.58 28.99 46.75 45.64 44.31 28.55 29.51 76.39

ROUGE-L(%) 84.71 83.82 91.71 50.90 88.15 78.15 90.03 87.34 44.04
BERTScore(%) 95.85 95.98 98.13 86.97 95.48 95.58 96.07 98.41 89.57
BLEU(%) 90.40 87.84 91.32 24.68 89.22 81.16 89.29 89.76 40.51
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(a) Elimination from Multinews dataset
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Figure C1: Insight 3: Deeper layers contain more redundant information.

σK = ∥Kreused −Krecomputed∥2,
σV = ∥V reused − V recomputed∥2,

σKV = σK + σV

(3)887

Where Kreused and V reused represent the Key and888

Value matrices in cache reused from the semantic889

similar prompt; Krecomputed and V recomputed refer890

to the Key and Value matrices recomputed at the891

current layer.892

A.5 Token Recomputation893

The total number of tokens recomputed on layer i894

is represented as895

Recomp[i] = T
i∏

j=1

αrecomp[j] (4)896

Where T denotes the total number of tokens, i897

represents the layer index.898

A.6 Token Retention899

The token retained on each layer is defined as:900

Retain[i] = T
i∏

j=1

αretain[j] (5)901

Where T is the total tokens, i the layer index, and902

αretain[j] the token retention ratio at layer j; tokens903

not retained are evicted. Typically, αretain is larger904

in shallow layers and smaller in deeper ones.905

B Data Preparation 906

B.1 Benchmark Datasets 907

We categorize these nine English-language datasets 908

into four groups based on how semantically similar 909

samples are constructed and the nature of the task. 910

1. MultiNews (Bai et al., 2023): This datasets 911

contain samples composed of multiple inde- 912

pendent passages or articles. To generate se- 913

mantically similar samples, we randomly se- 914

lect one passage or article from each sample 915

and use the Llama 3 model to rewrite it while 916

preserving the original semantics. The rewrit- 917

ten passage is constrained to have a similar 918

length to the original (within a 10% difference 919

in token count). We then replace the original 920

passage with the rewritten one to construct a 921

semantically similar prompt. The position of 922

the rewritten passage naturally varies across 923

samples, appearing at the beginning, middle, 924

or end of the context. 925

2. SAMSum (Gliwa et al., 2019), PubMed, 926

BigPatent, BookSum (Kwan et al., 2023), 927

LCC (Guo et al., 2023): These datasets con- 928

sist of semantically continuous text or codes. 929

For each sample, we divide the context into in- 930

dividual sentences and randomly select a con- 931

tiguous segment of the total sentence count. 932
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This segment is rewritten using the Llama 3933

model, with the constraint that the token count934

deviates by less than 10% from the original.935

The rewritten segment replaces the original936

to create a semantically similar prompt, with937

its position varying within the context in a938

similar manner.939

3. Qasper (Dasigi et al., 2021) and Wiki-940

How (Koupaee and Wang, 2018): These941

datasets consist of Q&A tasks where each942

question must be answered based on a specific943

provided context. To preserve the accuracy of944

the questions, we use the LLM to rewrite only945

part of the context, leaving the questions un-946

changed.947

4. MMLU (Hendrycks et al., 2021a): MMLU948

is a multiple-choice question-answering949

dataset. To ensure the logical integrity of the950

questions and preserve the original answers,951

we prompt the LLM to paraphrase each entire952

question.953

Table B1 presents the results of the similar-954

ity evaluation, measured using ROUGE-L (Lin,955

2004), BLEU (Papineni et al., 2002), and956

BERTScore (Zhang et al., 2019). We include957

both longest common subsequence-based metrics958

(ROUGE-L), n-gram-based metrics (BLEU) and959

embedding-based metrics (BERTScore) to provide960

a comprehensive evaluation of semantic similarity961

across rewritten datasets.962

B.2 Eliminination and Replacement Dataset963

To study the impact of prompt similarity on LLM964

performance when applying SemShareKV, we de-965

signed two ablation studies. In the first, we ran-966

domly removed a portion of sentences from each967

sample in the MULTINEWS dataset, then applied968

SemShareKV to evaluate its effectiveness. Fig-969

ure C1a presents box plots of token length dif-970

ferences in the Elimination datasets compared to971

the original dataset. Figure C1b shows the BLEU972

scores of the Replacement datasets relative to the973

original dataset.974

C Extra Experimental Results975

Figure C2 shows the three retention patterns men-976

tioned in Insights 3.977
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Figure C2: The three retention patterns start from the
same retention ratio.

D Implementation and Hyperparameters 978

SemShareKV is implemented in Python using 979

the transformers library (Wolf et al., 2020), 980

with the monkeypatching technique. We use the 981

Locality Sensitive Hashing from FAISS (Douze 982

et al., 2024) library. The code is avail- 983

able at: https://anonymous.4open.science/r/ 984

SemShareKV-B53C. Details of the key functions 985

and their roles are outlined below: 986

• mistral_attn_forward: A modified ver- 987

sion of MistralAttention.forward from 988

the transformers library, incorporating the 989

SemShareKV mechanism. The hyperparame- 990

ters used in our experiments are also specified 991

in this function. 992

• replace_mistral_forward: Applies monkey- 993

patching to substitute the original Mistral 994

model attention forward function in the 995

transformers library with our customized 996

SemShareKV implementation. 997

• llama_attn_forward: A modified ver- 998

sion of LlamaAttention.forward from the 999

transformers library, incorporating the 1000

SemShareKV mechanism. The hyperparame- 1001

ters used in our experiments are also specified 1002

in this function. 1003

• replace_llama_forward: Applies monkey- 1004

patching to substitute the original Llama 1005

model attention forward function in the 1006

transformers library with our customized 1007

SemShareKV implementation. 1008

• prepare_fuzzy_caches: Encodes ROPE into 1009

E caches and performs fuzzy token matching 1010

using locality-sensitive hashing (LSH). 1011

13

https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C


Overall, SemShareKV is built on the transformer1012

architecture and consists of fewer than 300 new1013

lines of code, making it lightweight and easily1014

transferable to other LLMs.1015

E Artifact Use and Compliance with1016

Intended Purpose1017

The datasets used in this study are publicly avail-1018

able and are consistent with their intended use, as1019

specified by the respective sources. In preparing the1020

data, we adhered to ethical guidelines and ensured1021

that the use of these publicly released datasets was1022

for research purposes only.1023

For the created artifacts, such as the semantically1024

similar samples, we have ensured that the use of1025

these modified datasets remains consistent with the1026

original intended research purpose. The generated1027

data serves the purpose of advancing research in1028

semantic similarity and does not extend beyond the1029

intended scope of the original datasets.1030
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