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Abstract

As large language models (LLMs) continue to
scale, the memory footprint of key-value (KV)
caches during inference has become a signif-
icant bottleneck. Existing approaches primar-
ily focus on compressing KV caches within a
single prompt or reusing shared prefixes or fre-
quently ocurred text segments across prompts.
However, such strategies are limited in sce-
narios where prompts are semantically similar
but lexically different, which frequently occurs
in tasks such as multi-document summariza-
tion and conversational agents. We propose
SemShareKV, a KV cache sharing and com-
pression framework that accelerates LLM in-
ference by reusing KVCache in semantically
similar prompts. Instead of relying on exact
token matches, SemShareKV applies fuzzy to-
ken matching using locality-sensitive hashing
(LSH) on token embeddings and incorporates
Rotary Position Embedding (RoPE) to better
preserve positional information. By selectively
reusing relevant key-value pairs from a refer-
ence prompt’s cache, SemShareKV reduces re-
dundant computation while maintaining output
quality. Experiments on diverse summarization
datasets show up to 6.25x speedup and 42%
lower GPU memory usage with 5k tokens input,
with negligible quality degradation. These re-
sults highlight the potential of semantic-aware
cache sharing for efficient LLM inference.
The code is available at https://anonymous.
4open.science/r/SemShareKV-B53C.

1 Introduction

Large Language Models (LLMs) have exhibited
a strong capability to understand and process hu-
man languages, and have been shown to perform
comparably to humans in several fields, such as
math inference, text memorization, information
extraction, story telling (Naveed et al., 2023). Re-
cently released LLMs have significantly advanced
in processing and comprehending extremely long

prompts. However, this introduces a notable chal-
lenge: increased computational demand due to the
quadratic time complexity of their Decoder-Only
Transformer architecture when handling lengthy
text sequences. The issue is further compounded
during inference, as the auto-regressive decoding
process repeats the computation for each newly
generated token (Luohe et al., 2024).

Existing KVCache optimization approaches
primarily focus on single-prompt compression
through various techniques: Yang et al. (2024a)
leverage decaying key-value importance across
layers for selective extraction (though with lim-
ited small-batch gains), Gim et al. (2024) employ
restrictive markup schemas for text chunk reuse,
and Yao et al. (2024) propose deviation-based re-
computation that requires impractical per-chunk
precomputation for long inputs. Crucially, these
methods operate within the constrained paradigm
of single-prompt optimization, failing to exploit
the substantial efficiency potential of cross-prompt
cache reuse, a significant oversight given the preva-
lence of semantically similar queries in real-world
applications where shared computational savings
could be substantial.

Motivated by this challenge, we aim to address
the following research question: Can we reuse the
precomputed KVCache for another semantically
similar prompt?

To answer this question, we proposed
SemShareKV, a KVCache framework that can
reuse the cache from one prompt for another that is
semantically similar to each other via fuzzy token
match. It speeds up prefill phase and compress KV
cache in memory. We show that our method can
reduce the pre-fill phase time by 6.25x and save
42% GPU memory space. We make the following
contributions.

* We introduce SemShareKV, which explores
KVCache sharing across semantically similar
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prompts based on fuzzy token match.

* We evaluate SemShareKV across multiple
datasets, demonstrating its effectiveness in
accelerating the prefill phase while simulta-
neously reducing KVCache size.

* We explored the role of position encoding in
KVCache by injecting it into vector embed-
dings.

2 Related Work

Prior research on KVCache optimization can be
categorized into three key directions: (i) Conven-
tional KVCache Compression, which focuses on
reducing the storage and computational overhead
of KVCache by applying quantization, pruning, or
other compression techniques; (ii) KVCache Shar-
ing, which explores methods to reuse KVCache
across different queries or tasks to improve effi-
ciency while maintaining response quality; and (iii)
KVCache Reusing, which investigates strategies
to adapt and repurpose precomputed KVCache for
semantically similar inputs, minimizing redundant
computation while preserving model accuracy.

2.1 Conventional KVCache Compression

To address long-context processing, many works
propose optimizing inference by retaining only in-
formative tokens. Token-level compression often
uses attention-based token selection (Zhang et al.,
2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,
2024a; Zhong et al., 2024), low-rank decompo-
sition (Sun et al., 2024), or quantization (Zhang
et al., 2024; Wang et al., 2024). Model-level ap-
proaches redesign architectures to improve reuse
(Sun et al., 2025; Yan et al., 2024), while system-
level methods focus on memory and scheduling
(Kwon et al., 2023; Sheng et al., 2023). Recent
work has highlighted the use of value vectors to
facilitate compression (Guo et al., 2024).

2.2 KVCache Sharing

Some also emphasize reusing portions of the cache
for future or similar queries and prompts. For exam-
ple, PromptCache (Gim et al., 2024) stores text seg-
ments that appear frequently on an inference server
using a schema, although this approach hampers
usability, as users must conform their natural lan-
guage to the schema format. Mooncake (Qin et al.,

2024), KVSharer (Yang et al., 2024b) and Mini-
Cache (Liu et al.) exploit the high similarity of at-
tention scores among adjacent transformer layers to
improve KVCache reuse. By consolidating or shar-
ing Key-Value pairs between similar layers, these
methods improve memory efficiency and stream-
line token processing. However, their approaches
are restricted to sharing in the layer or text segment
within adjacent layers or the same LLM, limiting
the broader applicability; GPTCache (Regmi and
Pun, 2024), (Rasool et al., 2024) and (Bang, 2023)
utilize similarity search among queries to reuse
KVCache. However, they have a high probability
of missing a hit and require the entire query to be
similar, offering limited flexibility.

2.3 KVCache Reusing

Limited attention has been directed toward the
sharing of KVCache in LLMs. DroidSpeak(Liu
et al., 2024b) improves context sharing between
fine-tuned LLMs by identifying critical KVCache
layers and selectively recomputing them for ef-
ficient reuse while maintaining accuracy. LM-
Cache(Cheng et al., 2024) introduces a Knowledge
Delivery Network (KDN) to optimize KVCache
storage and transfer, allowing cost-effective knowl-
edge injection in LLM inference. CacheBlend(Yao
et al., 2024), KVShare(Yang et al., 2025), and
EPIC(Hu et al., 2024) rely on exact context match-
ing, which is unsuitable for real user scenarios.
SentenceKV suffers from inter-sentence informa-
tion loss, as noted in the CacheBlend paper. In
contrast, SemShareKV introduces RoPE in token
matching to address this issue.

3 Observations and Insights

We present three key insights derived from our ex-
periments on three LLMs: Mistral-7B (Jiang et al.,
2023), LLaMA-3.1-8B (Grattafiori et al., 2024),
and MPT-7B (Team, 2023). These insights show
consistent patterns across different LLMs, support-
ing the generality of our observations.

Insights 1 HD tokens stay consistent across layers.

When reusing KV caches from semantically simi-
lar prompts, we ensure the reused cache maintains
high fidelity with fully recomputed caches to pre-
vent performance degradation. To compare the
similarity between two KV matrices, we used our
augmented MultiNews dataset, where each sample
consists of a pair of semantically similar prompts:
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Figure 2: Insight 1: High-deviation tokens remain con-
sistent across layers.

the Target Prompt, which serves as the primary in-
put to the model, and the Reference Prompt, which
acts as the semantically similar counterpart. For
each of the aforementioned LLMs, we first com-
puted the KV caches for the prompt pairs indepen-
dently. Subsequently, we calculated the deviations
between the KV caches of the target and reference
prompts using the previously mentioned L2 norm.
Tokens with the highest 40% deviation were iden-
tified as High Deviation (HD) tokens. To further
quantify this observation, we compute the Spear-
man correlation of HD tokens between adjacent lay-
ers. As shown in Figure 2, adjacent layers exhibit
relatively high consistency in HD token positions.

Insights 2 Deeper layers focuses on fewer tokens

To analyze attention patterns across layers, we first
averaged the attention scores across all heads in
each layer and then computed the mean along the
first dimension, resulting in a one-dimensional vec-
tor per layer. To quantify this behavior, we intro-
duce Attention Recovery (AR), defined as follows:

n
T;
Stotal = g Tz El k
=1

Stotal
Where T is a sorted vector of average attention
scores for each token, Sy, represents the total
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Figure 3: Insight 2: Deeper layers attend to fewer to-
kens.

attention score derived from the averaged self-
attention matrices, and T hres indicates the thresh-
old of attention score. AR indicates the number of
tokens that must be summed from highest to low-
est based on their average attention scores in order
to cover Thres% of the total attention score. We
computed AR for each layer, and the results (Fig-
ure 3) reveal a consistent trend: as depth increases,
AR decreases across all three LLMs, despite minor
fluctuations. This suggests that deeper layers con-
centrate attention on progressively fewer tokens,
reflecting more selective focus.

Insights 3 Deeper layers have more redundant
information.

To reduce memory overhead from the KV cache,
a key optimization strategy is to remove tokens
containing redundant information. Such tokens
contribute minimally to the prediction of next to-
kens during decoding but occupy substantial GPU
memory. However, selective token retention risks
information loss, necessitating careful trade-offs
between memory savings and generation quality.
We evaluate three KVCache retention strategies
using perplexity: Constant, with equal retention
across layers; Exponential Growth, with higher re-
tention in shallow layers; and Exponential Decay,
with more retained in deeper layers (Figure C2).
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Figure 4: Insight 3: Deeper layers contain more redundant information.

We applied these three retention patterns to
LLMs, and utilized perplexity to benchmark the
generation performance, shown in Figure C2. For
all three LLMs, the Exponential Decay pattern
achieves the lowest perplexity score, indicating the
best generation performance. This finding further
validates that this pattern aligns with how LLMs
interpret knowledge from prompts.

4 Methodology
4.1 Relevant Concepts

Our work focuses on three critical cache compo-
nents in modern LLMs:

* Key Cache (K): Key vectors encode the struc-
tural relationships among tokens in a sequence.

e Value Cache (V): Value vectors containing
the actual content representations aggregated
through attention weights. These preserve the
contextual information of each token.

Embedding Cache (E): Contextualized embed-
dings t capturing fundamental semantic and syn-
tactic relationships (Mikolov et al., 2013), pro-
viding the foundational token representations
before transformer processing.

4.2 Model Overview

The design of SEMSHAREKYV, illustrated in Fig-
ure 1, is based on three key insights from Section 3.
Our approach employs two core strategies:

* Recomputation Strategy (Insights 1 & 2): Pri-
oritize the recomputing of more tokens in shal-
low layers while reducing the recomputation in
deeper layers, reflecting the varying importance
of the layer depth in attention mechanisms.

* Retention Strategy (Insights 1 & 3): Preserve
more tokens in shallow layers while evicting to-
kens from deeper layers, optimizing memory us-
age without significant accuracy degradation.

SemShareKV stores received prompts and their cor-
responding contextualized E caches in CPU mem-
ory. When the LLM receives a new prompt as the
target prompt, it retrieves a reference prompt by
computing an LSH-distance-based similarity score
between the target’s contextualized E cache and
all stored E caches. The reference prompt with
the highest similarity is then loaded onto the GPU
along with its corresponding KV cache for reuse.
Once a reference prompt is retrieved,
SemShareKV first applies RoPE to the E
caches of both the target and reference prompts.
Then it uses Locality-Sensitive Hashing (LSH) to
match each token in the target prompt to its most
similar tokens in the reference prompt. Based on
these LSH mappings, the precomputed KVCache
of the reference promptrompt is rearranged token
by token and injected into LLM transformer layers.
On the first transformer layer, all tokens undergo
full recomputation. The recomputed outputs are
compared with the rearranged cache values via
L2 norm, identifying high-deviation tokens for
prioritized recomputation in subsequent layers.
Simultaneously, the system evicts tokens with the
lowest attention scores from recent computations,
optimizing KVCache memory usage dynamically.

4.3 KVCache Sharing Challenge

The primary challenge in cross-prompt KVCache
sharing stems from length disparity between
prompts. Inspired by (Liu et al., 2024b), we in-
corporates positional encoding within the E Cache
to enable accurate token alignment while preserv-
ing contextual relationships.

Specifically, we use LSH to identify, for each to-
ken in the target prompt, the most similar token in
the reference prompt based on their vector represen-
tations. We use Locality-Sensitive Hashing (LSH)
for efficient token similarity search. Additional de-
tails on LSH are provided in Appendix A.2. This
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process allowed us to reorder the KVCache of the
reference prompt to align with the token sequence
of the target prompt. Consequently, the reordered
KVCache matches the target prompt’s length, with
its key-value pairs entirely derived from the origi-
nal KVCache of the reference prompt. The LLM
uses the reordered KVCache to the target prompt.

4.3.1 Use Relative Position Encoding to
Facilitate Fuzzy Token Match

A fundamental limitation of naive matching using
the E cache arises from the absence of positional
context in its representation. Since raw vector em-
beddings lack inherent positional information, LSH
fails to maintain crucial sequential relationships
when identifying reference-target token correspon-
dences. This positional agnosticism in the E cache
consequently produces semantically inferior map-
ping results.

To address this, we introduce positional encod-
ing into the E cache to enhance fuzzy token match-
ing. Two widely used positional encoding strate-
gies are absolute positional encoding (Vaswani
et al., 2017), which embeds explicit position infor-
mation, and relative positional encoding (Su et al.,
2024), which captures positional relationships be-
tween tokens. In our work, we incorporate Rotary
Position Embedding (RoPE) into the E cache and
evaluate its impact. Specifically, RoPE is applied to
the non-contextual embeddings (E cache) of both
the reference and target prompts. Then, LSH is
used to match each token in the target prompt’s E
cache to the most similar token in the reference
prompt’s E cache. This step is crucial because
ROPE introduces position-sensitive information, al-
lowing the same token at different positions to carry
distinct semantics, enabling LSH to achieve more
accurate token-level matching.

Figure 6 further illustrates how maintaining posi-
tional relationships through RoPE improves align-
ment accuracy, leading to better token retrieval and
overall performance. Figure 6a compares the to-
ken positions in the original E cache with the re-

Original

Rearranged

250 300 350 400

Token Position

(a) Only E Cache

Original

Rearranged

200 250 300 350 400

Token Position

(b) E Cache with Relative Position Encoding
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Figure 7: Impact of position encoding on E cache and
KV cache deviation.

arranged positions after passing through the fuzzy
token matching block, while Figure 6b presents the
results when using an E cache with positional en-
coding. Notably, the first 20 tokens remain in their
original positions, as they represent query tokens.
This demonstrates that LSH correctly identifies and
preserves query positions.

Beyond the initial tokens, a key difference
emerges: without positional encoding, many to-
kens in the target prompt map to the initial tokens,
whereas with positional encoding, they align more
accurately with later tokens. We interpret this as
a manifestation of "attention sink", a phenomenon
in self-attention mechanisms where a significant
portion of attention scores is consistently assigned
to initial tokens, regardless of their actual relevance
to the task (Xiao et al., 2023; Fei et al., 2025). In-
corporating positional encoding into the E cache
effectively mitigates this issue, leading to more ac-
curate token matching and improved performance.

4.3.2 Impact from Position Encoding in
KVCache

The second challenge is that LSH-based token re-
arrangement disrupts position encoding in the pre-



computed KV cache, affecting the KV matrices
from the prefill phase. Previous studies (Gao et al.,
2024) have discussed the impact of different posi-
tion encoding strategies, suggesting that RoPE can
be excluded from KVCache by applying it after
storage, as illustrated in Figure 5. In evaluating the
role of RoPE in the E cache, we compared three
configurations of KVCache: (i) with position en-
coding, the standard setting where RoPE is applied
before storing KVCache; (ii) without position en-
coding, where RoPE is not applied during storage;
and (iii) without position encoding but reapplied,
where RoPE is omitted during storage but reapplied
after LSH-based reordering. Ideally, the rearranged
KVCache should closely match the ground-truth
KVCache for the target prompt. To quantify the
deviation, we compute the L, norm between the
rearranged and ground-truth caches. As shown in
Figure 7, KV cache with position encoding has
the lowest deviation, followed by the version with-
out position encoding, while the configuration with
reapplied RoPE gives the highest deviation. This
highlights the importance of storing KV pairs af-
ter RoPE is applied. Ensuring consistent position
encoding between the E and KV cache is essential
for the LLM to fully leverage them and achieve
optimal generation quality.

4.3.3 Recomputation Strategy

We divide the layers into two groups: the first and
subsequent layers. Given that LLMs tend to focus
more on later tokens (Liu et al., 2024a; Yang et al.,
2024a), we categorize tokens into Cold (c) and Hot
(h) using a dynamic ratio Tqynamic from Atten-
tion Recovery with a threshold of 55%, meaning
Tdynamic% of tokens with the highest cumulative
attention are selected as Hot, and the rest as Cold.
The total number of recomputed tokens is defined
as Recomputed = w, - ¢ + wp, - h, where we = 0.1
and wp, = 0.5 in the SemShareKV setting.
Starting from the second layer, token selection
follows this rule: based on Insight 1, the tokens
selected in the next layer are derived from those
chosen in the previous layer based on a recompute
ratio recomp o Of this layer. Based on Insight
2, 0trecomp o in shallow layers will be relatively
small while in deeper layers will be relatively large.

4.3.4 Retention Strategy

Similar to token recomputation, we categorize the
layers into two groups: the first and the subse-
quent layers. On the first layer, the retention

ratio is determined also by Tgynamic, follows
Retained = max(0.8, rdynamic). And retained
tokens are selected based on average attention
scores across the last (1 — raynamic) % tokens,
and only retain the top rgynamic/ tokens with
highest avg attention scores. In detail, the intuition
behind selecting retained tokens is as follows: In
the first layer, all hot tokens will be retained. To-
ken eviction occurs only among Cold tokens that
are not marked as recomputed. The underlying
principle is that recomputed tokens provide better
representations of the target prompt. If these to-
kens are evicted, the computational resources and
time spent on recomputing them will be wasted. In
subsequent layers, based on Insight 3, we should
retain fewer tokens.

5 Evaluation and Results

5.1 Experiments Setup

We select a diverse set of datasets cover-
ing a broad range of tasks. For Q&A, we
use WikiHow (Koupaee and Wang, 2018) and
Qasper (Dasigi et al.,, 2021). For summariza-
tion, we include MultiNews (Bai et al., 2023)
(multi-document), SAMsum (Gliwa et al., 2019)
(dialogue), and BookSum, PubMed, and Big-
Patent (Kwan et al., 2023), which represent nar-
rative, scientific, and patent documents, respec-
tively; all three are single-document summariza-
tion. For code completion, we use LL.C (Guo et al.,
2023). For multiple-choice Q&A, we evaluate on
MMLU (Hendrycks et al., 2021b,a).

We compared SemShareKV against three base-
lines: (i) Fully Recompute: standard inference
using the unmodified model from the Transform-
ers library, where the entire prompt is input with-
out any KVCache reuse; (ii) SnapKV (Li et al.,
2024): a KVCache management method that ac-
celerates the prefill phase by efficient caching but
does not compress the KVCache; (iii) H20 (Zhang
et al., 2023): a dynamic KVCache eviction strategy
that compresses KV memory by prioritizing impor-
tant tokens, but does not optimize the prefill phase.
ChatGPT said: We use a modified H20 compress-
ing 10% of the cache per layer, with SnapKV and
H2O0 as baselines for prefill optimization and KV-
Cache compression. Experiments ran on a single
A100 GPU with standard attention. Implementa-
tion details are in Appendix D.

To the best of our knowledge, no existing dataset
benchmarks LLMs on KVCache sharing across



Table 1: Performance comparison between SemShareKV and baseline methods

. & & < R D & ,@0‘ S
Method « & %V’@% Q“y\ ‘b°°@ o ¢ $®\\»
MISTRAL-7B
Full KV 22.10 20.50 17.10 18.79 24.66 22.44 2547 2241 34.00
SemShareKV ~ 23.15 19.38 16.52 21.22 24.30 22.50 26.62 21.55 32.50
SnapKV 23.07 21.32 15.55 20.16 24.58 23.22 25.78 2598 35.50
H20 23.04 21.33 15.88 20.50 23.53 22.77 24.99 16.57 33.00
LLAMA3.1-8B
Full KV 22.49 19.71 14.21 16.69 24.50 22.65 27.26 19.01 55.00
SemShareKV 23.18 20.41 14.41 18.61 24.04 21.66 26.71 2139 51.00
SnapKV 23.84 21.65 14.70 16.07 24.82 22.76 27.48 19.16  52.50
H20 22.81 20.61 14.44 16.81 24.19 22.08 2694 2132 47.50
semantically similar prompts. To bridge this gap, ‘ool —+— Fully Recompute /
we constructed evaluation samples by randomly iy /’
selecting portions of entries from existing datasets _ ] == H20 /
and rewriting them using the Llama3 model. Then, £ e A
these rewritten samples were manually verified to = e
ensure that they remained semantically close to the /:/ |
originals. More details in the data preparation are . el
provided in the Appendix B. S
Input Length
5.2 Benchmarking Evaluation (a) TTFT Comparison
We argue that using Fuzzy Token Match introduces wo) T ;i'gsizi?\f e ,é
only a negligible overhead to model inference. Ta- o) T STV /
ble 1 reports the ROUGE-L scores (Lin, 2004). g a0 " ?/ }
Benchmarking results show that SemShareKV gm i = e —
achieves performance comparable to or better than S .. I // o 1
other baseline methods. Notably, in 4 out of the * o /*Z ! o
5 evaluated datasets, Fully Recompute fails to at- &

tain the highest performance scores. We attribute
this phenomenon to the token eviction mechanisms
employed by SemShareKV, SnapKV, and H20. By
selectively retaining only the most semantically sig-
nificant tokens for self-attention computation, these
methods effectively reduce redundant information
in the semantic representation, thereby enhancing
the model’s generation quality.

5.3 Efficiency Evaluation

We evaluate SemShareKV based on Time To First
Token (TTFT) and KV Cache GPU KV memory
usage, benchmarking it against Fully Recompute,
SnapKV, and the unmodified H20 model. Fig-
ure 8 demonstrates the efficiency advantages of
SemShareKV on the MultiNews dataset, showing
consistent improvements over baseline methods:
SemShareKV achieves 6.25x faster Time-To-First-
Token (TTFT) than Fully Recompute and H20,
2.23x faster TTFT than SnapKYV, while reducing

0.5k 1k 1.5k 2k 2.5k 3k 3.5k ak 4.5k 5k
Input Length

(b) KVCache Size Comparison

Figure 8: Efficiency Evaluation Results.

memory usage by 42%. However, as illustrated
in Figure 8b, SemShareKV offers limited perfor-
mance improvements for shorter prompts (fewer
than 700 tokens), which we attribute to the over-
head caused by fuzzy token matching and the rear-
rangement of tokens from the precomputed cache
of the reference prompt. In future work, our goal
is to minimize this overhead.

5.4 Impact of Prompt Similarity on
Performance.

To evaluate similarity effects and SemShareKV per-
formance, we designed two studies using the same
percentage range (10% to 90% in 10% increments):
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1) randomly eliminating sentences from the con-
text, and 2) randomly replacing sentences with
others from the MULTINEWS dataset. We then
applied SemShareKV to reuse the cache from the
modified reference prompt for the target prompt.
As shown in Figure 10, performance gradually de-
grades as more sentences are removed, yet remains
reasonable even with substantial reductions. No-
tably, SemShareKV maintains strong performance
even when 50% of context sentences are removed,
highlighting the effectiveness of LSH-based token-
level matching. This trend holds across both LLMs,
suggesting the generality of our approach. Addi-
tionally, based on the observed performance trend,
we empirically set a threshold of 0.8 for applying
SemShareKV, meaning that if two prompts have
an LSH similarity score above 0.8, SemShareKV
can be applied. Figure 11 illustrates how the LSH-
distance-based similarity changes as the replace-
ment and elimination ratios increase. More details
are in Appendix B.2.

5.5 Ablation Study

We conducted two ablation studies to evaluate the
impact of fuzzy token matching on semantic un-
derstanding. First, by either zeroing out or re-
placing matched KV cache tokens with random
ones, we observed significantly lower ROUGE-L

LSH Similarity
s

-~ Baseline (0%)
*+  Elimination LSH Similarity
Replacement LSH Similarity

10% 30% 50% 70% 90%
Elimination / Replacement Ratio

Figure 11: The three retention patterns start from the
same retention ratio.

Table 2: Ablation study on ROUGE-L for SemShareKV
and its ablations across datasets.

Method SAMSum(f) MultiNews(1)
SemShareKV 21.22 23.15
Ablation-Zero 14.63 17.71
Ablation-Random 5.38 12.67

scores compared to the full SemShareKV method,
confirming the importance of fuzzy matching for
capturing semantics (Table 2). Second, analyzing
the KVCache compression ratio on the MultiNews
dataset (Figure 9), retaining too much cache adds
redundancy and harms performance, while retain-
ing too little causes information loss, emphasizing
the need for a balanced cache retention strategy.

6 Conclusion

We proposed SEMSHAREKYV, a KVCache shar-
ing framework that enables reuse across semanti-
cally similar prompts through fuzzy token match-
ing using locality-sensitive hashing. SemShareKV
achieves a speed of 6.25x and saves up to 42%
kvcahce memory space compared to conventional
KVCache, with a minimum performance drop.

Limitations

While SEMSHAREKV effectively shares KV
caches for semantically similar prompts, its evalua-
tion so far has been limited to summarization tasks.
Speedups decrease for shorter prompts due to the
overhead of fuzzy matching, and several hyperpa-
rameters require careful tuning. Additionally, our
current implementation focuses on demonstrating
SEMSHAREKV’s effectiveness and does not yet
support FlashAttention; we plan to incorporate it
in future work. Also, the matching threshold is
empirically set, and exploring adaptive strategies
remains future work.
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A Formula and Inference

A.1 Rotary Position Encoding

In our methodology, we introduced the application
of Rotary Position Embedding (RoPE) to the E
cache, which improves the performance of fuzzy
token matching. RoPE is designed to incorporate
positional information directly into embeddings,
allowing for improved alignment between tokens
in a sequence. This is particularly important in
natural language processing tasks where the order
of words can significantly impact the meaning and
context.

The formula of RoPE in a 2-D case is shown
below:

_ |cos(b)

RoPE(x) = | .~ 00)

P el
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In this equation, 8}, = 10000~2#/, where d repre-
sents the embedding dimension. The use of RoPE
allows for the effective encoding of relative po-
sitional information, enabling the model to bet-
ter capture the relationships between tokens in a
sequence. Integrating RoPE into the E cache fa-
cilitates the identification of semantically similar
tokens using LSH, leading to more accurate and
efficient fuzzy token matching. This enhancement
helps the model perform more accurately on tasks
that require strong semantic understanding.

A.2 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) is a technique
that enables efficient approximate nearest neighbor
searches in high-dimensional spaces by ensuring
similar input items are hashed into the same bucket
with high probability (Indyk and Motwani, 1998).
This reduces the number of distance computations
required, making LSH particularly useful for large
datasets in applications such as image retrieval and
natural language processing (Datar et al., 2004).
In LSH for Euclidean distance, a common hash
function is:

:Lac-r—i-bJ

h(x) ”

where 7 is a random vector, b is a random offset,

and w is the hash width. This overview encapsu-

lates the theory and practical application of LSH in
our framework.

The LSH (Locality-Sensitive Hashing) in
SemShareKV is implemented using the FAISS
Python library (Douze et al., 2024). Further config-
uration details can be found in the provided code

repository.

A.3 LSH-Distance Based Similarity Score

For retrieving reference prompts to reuse cache
with SEMSHAREKYV, we compute a similarity
score by normalizing the LSH distance and invert-
ing it to fit within a [0, 1] range:

LSH_dist — min(dist)
max(dist) — min(dist)

Similarity = clip(1 — dporm, 0, 1)

dnorm =

2

where d,,orm denotes the normalized LSH distance;
min(dist) is set to 0 and max(dist) is set to 30.
A4 Key-Value Deviation

We define Key-Value Deviation with L2 norm as
below:



Table B1: Similarity evaluation on benchmarking datasets using ROUGE-L, BERTScore, and BLEU. All datasets

contain 100 semantically similar rewritten samples.

< & & > & &
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N of Samples 100 100 100 100 100 100 100 100 200
Rewrite % (Avg)  54.58 2899 4675 4564 4431 2855 2951 7639
ROUGE-L(%) 84.71 8382 9171 5090 8815 7815  90.03 8734 44.04
BERTScore(%) 9585 9598 9813 8697 9548 9558 9607 98.41 89.57
BLEU(%) 9040  87.84 9132 2468 8922 8116  89.29 89.76 40.51
— e

| =——

SO Eiminated (n=100]

(a) Elimination from Multinews dataset

(b) Replace from Multinews dataset

Figure C1: Insight 3: Deeper layers contain more redundant information.

oK = H Kreused _ erecomputedH2
- M

oy = Hvreused . VrecomputeclH2
Y

3)
OKV = 0K + 0y

Where K™5¢d and V™eused represent the Key and

Value matrices in cache reused from the semantic

similar prompt; Krecomputed apd y/recomputed pefer

to the Key and Value matrices recomputed at the
current layer.

A.5 Token Recomputation

The total number of tokens recomputed on layer i
is represented as

Recomp(i] =T H Qtrecomp ] 4)
j=1

Where T denotes the total number of tokens, 2
represents the layer index.

A.6 Token Retention

The token retained on each layer is defined as:

K3
Retain(i] = T ] | ctretainls] (5)
j=1
Where T is the total tokens, ¢ the layer index, and
Oretain|j] the token retention ratio at layer j; tokens
not retained are evicted. Typically, Qeain 1S larger
in shallow layers and smaller in deeper ones.
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B Data Preparation

B.1 Benchmark Datasets

We categorize these nine English-language datasets
into four groups based on how semantically similar
samples are constructed and the nature of the task.

1. MultiNews (Bai et al., 2023): This datasets
contain samples composed of multiple inde-
pendent passages or articles. To generate se-
mantically similar samples, we randomly se-
lect one passage or article from each sample
and use the Llama 3 model to rewrite it while
preserving the original semantics. The rewrit-
ten passage is constrained to have a similar
length to the original (within a 10% difference
in token count). We then replace the original
passage with the rewritten one to construct a
semantically similar prompt. The position of
the rewritten passage naturally varies across
samples, appearing at the beginning, middle,
or end of the context.

. SAMSum (Gliwa et al., 2019), PubMed,
BigPatent, BookSum (Kwan et al., 2023),
LCC (Guo et al., 2023): These datasets con-
sist of semantically continuous text or codes.
For each sample, we divide the context into in-
dividual sentences and randomly select a con-
tiguous segment of the total sentence count.



This segment is rewritten using the Llama 3
model, with the constraint that the token count
deviates by less than 10% from the original.
The rewritten segment replaces the original
to create a semantically similar prompt, with
its position varying within the context in a
similar manner.

Qasper (Dasigi et al.,, 2021) and Wiki-
How (Koupaee and Wang, 2018): These
datasets consist of Q&A tasks where each
question must be answered based on a specific
provided context. To preserve the accuracy of
the questions, we use the LLM to rewrite only
part of the context, leaving the questions un-
changed.

MMLU (Hendrycks et al., 2021a): MMLU
is a multiple-choice question-answering
dataset. To ensure the logical integrity of the
questions and preserve the original answers,
we prompt the LLM to paraphrase each entire
question.

Table B1 presents the results of the similar-
ity evaluation, measured using ROUGE-L (Lin,
2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2019). We include
both longest common subsequence-based metrics
(ROUGE-L), n-gram-based metrics (BLEU) and
embedding-based metrics (BERTScore) to provide
a comprehensive evaluation of semantic similarity
across rewritten datasets.

B.2 Eliminination and Replacement Dataset

To study the impact of prompt similarity on LLM
performance when applying SemShareKV, we de-
signed two ablation studies. In the first, we ran-
domly removed a portion of sentences from each
sample in the MULTINEWS dataset, then applied
SemShareKV to evaluate its effectiveness. Fig-
ure Cla presents box plots of token length dif-
ferences in the Elimination datasets compared to
the original dataset. Figure C1b shows the BLEU
scores of the Replacement datasets relative to the
original dataset.

C Extra Experimental Results

Figure C2 shows the three retention patterns men-
tioned in Insights 3.
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Figure C2: The three retention patterns start from the
same retention ratio.

D Implementation and Hyperparameters

SemShareKV is implemented in Python using
the transformers library (Wolf et al., 2020),
with the monkeypatching technique. We use the
Locality Sensitive Hashing from FAISS (Douze
et al.,, 2024) library. The code is avail-
able at: https://anonymous.4open.science/r/
SemShareKV-B53C. Details of the key functions
and their roles are outlined below:

* mistral_attn_forward: A modified ver-
sion of MistralAttention.forward from
the transformers library, incorporating the
SemShareKV mechanism. The hyperparame-
ters used in our experiments are also specified
in this function.

* replace_mistral_forward: Applies monkey-
patching to substitute the original Mistral
model attention forward function in the
transformers library with our customized
SemShareKV implementation.

* llama_attn_forward: A modified ver-
sion of LlamaAttention. forward from the
transformers library, incorporating the
SemShareKV mechanism. The hyperparame-
ters used in our experiments are also specified
in this function.

* replace_llama_forward: Applies monkey-
patching to substitute the original Llama
model attention forward function in the
transformers library with our customized
SemShareKV implementation.

» prepare_fuzzy_caches: Encodes ROPE into
E caches and performs fuzzy token matching
using locality-sensitive hashing (LSH).


https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C

Overall, SemShareKYV is built on the transformer
architecture and consists of fewer than 300 new
lines of code, making it lightweight and easily
transferable to other LLMs.

E Artifact Use and Compliance with
Intended Purpose

The datasets used in this study are publicly avail-
able and are consistent with their intended use, as
specified by the respective sources. In preparing the
data, we adhered to ethical guidelines and ensured
that the use of these publicly released datasets was
for research purposes only.

For the created artifacts, such as the semantically
similar samples, we have ensured that the use of
these modified datasets remains consistent with the
original intended research purpose. The generated
data serves the purpose of advancing research in
semantic similarity and does not extend beyond the
intended scope of the original datasets.
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