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ABSTRACT

In recent years, large language models trained on enormous corpora of unlabeled
biological sequence data have demonstrated state-of-the-art performance on a va-
riety of downstream tasks. These LLMs have been successful in modeling both
genomic and proteomic sequences and their representations have been used to
outperform specialized models in a myriad of tasks. Since the genome contains
the information to encode all proteins, genomic language models (gLMs) hold the
potential to make downstream predictions not only about DNA sequences but also
about proteins. However, the performance of gLMs on protein tasks remains un-
known, mostly due to the lack of evaluation tasks with paired proteins and their
true coding DNA sequences (CDS) that can be processed by gLMs. In this work,
we curated five such datasets and use them to evaluate the performance of multi-
ple state-of-the-art genomic and proteomic language models (pLMs). We found
that, despite their pre-training on largely non-coding sequences, gLMs are com-
petitive and even outperform their pLMs counterparts on some tasks. The best
performance was achieved using the retrieved ”true” CDS compared to alternative
sampling strategies. The application of gLMs to proteomics offers the potential to
leverage rich CDS data, and in the spirit of the central dogma, the possibility of a
unified and synergistic approach to genomics and proteomics.

1 INTRODUCTION

Large language models (LLMs), have revolutionized the field of Natural Language Processing
(NLP) thanks to their capability to learn through self-supervision from unlabeled data (Devlin et al.,
2018; Brown et al., 2020; Raffel et al., 2020). Recently, the same techniques have been applied
to learn from biological data. The discrete and sequential nature of biological sequences, such
as proteins, DNA and RNA, paired with the abundance of unlabeled data obtained through high-
throughput sequencing, make it a perfect application for these methods to thrive. This effort started
first in proteomics, where several works showed that training large Transformer models to recover
masked amino-acids in protein sequences leads to powerful representations that can then be used to
solve diverse downstream tasks with state-of-the-art performance (Lin et al., 2022; Elnaggar et al.,
2021; Jumper et al., 2021; Lin et al., 2023). More recently, similar models were developed for
genomics and trained over the human reference genome as well as hundreds of reference genomes
from different species to recover masked consecutive nucleotides in chunks (Dalla-Torre et al., 2023;
Zhou et al., 2023; Ji et al., 2021; Nguyen et al., 2023; Benegas et al., 2022; Nguyen et al., 2024).
These DNA models, while more recent and still less mature than their protein counterparts, have
also showed the ability to build strong representations of nucleic acid sequences to solve down-
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Dataset Task Type # Train Samples # Validation Samples # Test Samples Mean Sequence
Length (bp)

Fluorescence Regression 21464 5366 27217 714

Beta-Lactamase (Unique) Regression 3457 865 1080 858

Beta-Lactamase (Complete) Regression 11252 2814 1080 858

Stability Regression 53700 2512 12851 135

Melting Point Regression 9432 1064 1648 1176

Secondary Structure Prediction Per AA Classification 6224 1556 334 724

Table 1: Overview of the proposed tasks. Samples in each dataset contain protein sequences paired
with nucleotide sequences. Total sampled over all 3 test sets is provided for SSP.

stream tasks with improved performance,including predicting diverse DNA molecular phenotypes
related to splicing, regulatory elements and chromatin profiles.

Motivated by the central dogma of biology which states that the genome encodes all protein informa-
tion and by the fact that codon usage can influence protein structure and function (Liu, 2020), a third
class of models, based on codons, was recently introduced (Outeiral & Deane, 2022; Li et al., 2023;
Hallee et al., 2023). These models were trained on large datasets made of coding sequences (CDS)
by reconstructing masked codons - instead of masked amino-acids. Notably, the Codon Adaptation
Language Model (CaLM) showed that cLMs can outperform their amino-acid based counterparts
on several downstream tasks of interest such as species recognition, prediction of protein and tran-
script abundance or melting point estimation when controlling for model size (Outeiral & Deane,
2022). This improved performance seems to be related to the ability of codon-based language mod-
els (cLMs) to capture patterns of codon usage across DNA sequences.

Inspired by these recent results, we aim to study to what extent genomic language models (gLMs)
can be used as a general unified approach to solve tasks in both domains - genomics and proteomics
(Supplementary Fig. 1). In opposition to cLMs, gLMs have been trained over full raw genomes and
as such can be used to analyze non-coding regions as well as full genes including exons and intronic
regions. While this makes gLMs widely capable for genomics tasks, their capacity to solve protein
tasks from their corresponding CDS has not been explored. Since they have never seen ”true” CDS
per se during training, as exons are always separated by introns in eukaryotic species genomes, and
coding sequences represent on average only ∼ 1.5% of the human genome data used for training
(Lander, 2011), it is unclear to what extent these models can be competitive with protein language
models (pLMs).

In this paper, we present a comprehensive analysis of gLMs applied to protein-related tasks. We
established a benchmark of five common protein analysis tasks and curated CDS sequences for a
fair comparison between pLMs and gLMs. Our evaluation of two state-of-the-art pLMs and gLMs
revealed that gLMs outperformed or matched pLMs on three out of five tasks, while underperform-
ing on the remaining two. Notably, careful curation of matched CDS sequences was crucial for
optimal gLM performance. The two tasks where pLMs significantly outperformed gLMs required
sensitivity to codon-level changes. Intriguingly, gLMs significantly outperformed pLMs in predict-
ing protein melting points – a trend also observed with cLMs. Further investigation revealed that
gLMs achieve this by leveraging GC-content and species information from nucleotide sequences,
features not captured by protein-based models.

2 PROTEIN DOWNSTREAM TASKS

We study five protein tasks of interest that are frequent in the literature. This collection includes
sequence- and residue-level tasks, spanning regression and multi-label classification. We detail and
motivate below these five tasks. See Table 1 for an overview of these tasks.

Secondary Structure Prediction (SSP): Understanding the structure of proteins is integral to un-
derstanding their function. This task tests a model’s ability to learn local secondary structure. The
task is a multi-label classification task where each input amino-acid is associated with one of 8 la-
bels, denoting which secondary structure that residue is a part of. Following the work of Klausen et
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al. (Høie et al., 2022), we used splits filtered at 25% sequence identity to ensure generalization, and
evaluated on 3 test sets: CASP12, CB513, TS115.

Melting Point Prediction (MPP): Predicting protein melting point can be a challenging task as
even single residue mutations can have large impacts (Pinney et al., 2021). Melting point prediction
is a sequence-level regression task that evaluates a model’s ability to predict a measure of melting
temperature. We follow the same “mixed” splits described in FLIP (Dallago et al., 2021) which
seek to avoid over-emphasis of large clusters. Sequences are clustered at 20% identity with 80% of
clusters assigned to the train dataset and 20% of clusters assigned to the test dataset.

Fluorescence Prediction: Estimating the fitness landscape of proteins which are many mutations
away from the wildtype sequence is one of the core challenges of protein design Rao et al. (2019).
This task evaluates a model’s ability to predict log-fluorescence of higher-order mutant green flu-
orescent protein (GFP) sequences. Original data is from an experimental study of the GFP fitness
landscape (Sarkisyan et al., 2016). Inspired from the TAPE and PEER benchmarks (Rao et al., 2019;
Xu et al., 2022), we restrict the training set to amino-acid sequences with three or fewer mutations
from parent GFP sequences, while the test set is all sequences with four or more mutations.

Beta-lactamase Activity Prediction: It is also important for models to have the precision to ac-
curately predict the effects of single amino-acid mutations (Xu et al., 2022). Beta-Lactamase is a
regression task consisting of sequences from a study exploring the fitness landscape of all single
codon substitutions in the TEM-1 gene (Firnberg et al., 2014). Labels indicate the ability of mutant
genes to confer ampicillin resistance.

Protein Stability Prediction: It is important for models trained on diverse sequences to be able
to accurately predict a small region of the fitness landscape. This task evaluates how well models
predict stability around a small region of high-fitness sequences. Labels indicate a peptide’s ability
to maintain structure at increasing levels of protease, which serves as a proxy for stability.

3 RETRIEVING AND CURATING CODING SEQUENCES

One main contribution of this work is to retrieve, curate, and share, consolidated CDS datasets for
the five protein tasks of interest to allow the comparison of nucleic acid- and amino-acid-based
models. We detail in this paragraph how these CDS were collected for each task.

For MPP, we used the Uniprot(uni, 2023) ID mapping tool to map the Uniprot ID’s associated with
each protein, available from the TAPE benchmark (Rao et al., 2019), to the DNA sequence database
of EMBL CDS (Kanz et al., 2005). Any retrieved CDS from EMBL whose translation did not match
the original amino-acid sequences were filtered out.

In SSP, we used protein sequences with associated PDB ID’s (Berman et al., 2000) from the dataset
hosted by NetsurfP-3.0 (Høie et al., 2022). To collect the CDS we first used the RCSB 1D Coordinate
Server (Berman et al., 2000) which assembles alignments between structure and sequence databases,
to find alignments to protein sequences from the Uniprot database. Returned alignments to Uniprot
were filtered out if there was not complete coverage. The remaining Uniprot id’s were then mapped
to the sequence database EMBL CDS using the same process as for MPP described above.

For the beta-lactamase task, all sequences corresponded to the same gene. We obtained the TEM-1
reference gene as well as the mutations from supplementary material of ref. (Rocklin et al., 2017).
This original fluorescence dataset contains many degenerate coding sequences. In PEER (Xu et al.,
2022) labels were averaged over degenerate coding sequences in the original dataset. This process
removes much data and does not allow us to study gLMs on degenerate sequences. Consequently, we
propose two training datasets, sharing a single test set. The Complete set contains all CDS samples
while the Unique set contains a random, maximal, subset of the non-degenerate coding sequences.
This Unique set allows comparison between the gLMs and pLMs since all translated sequences are
unique, while the Complete set demonstrates the impact of degenerate sequence data availability on
gLM performance.

For the stability prediction task, coding sequences were taken from supplementary material of the
original experimental study (Rocklin et al., 2017). Since all CDS sequences translate into unique
amino-acids, we are able to match the dataset splits presented in TAPE (Rao et al., 2019).
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Figure 1: The impact of three codon sampling strategies on the performance of NT-v2 and
DNABERT2 over 5 tasks (CASP12, CB513 and TS115 are the different test sets for the SSP task).
The strategies include uniformly sampling codons, permuting synonymous codons, and no sampling
(true CDS). Performance is measured as Spearman correlation for Fluorescence, Beta-Lactamase,
and Stability, R2 for Melting Point, and accuracy for SSP classification task.

Finally, for the fluorescence task we obtained the reference GFP gene as well as its mutations from
the reference of the original data (Sarkisyan et al., 2016). We chose to take the Unique subset as
described above since the dataset was mostly non-degenerate.

4 EVALUATION METHODOLOGY

The two pre-trained gLMs, DNABERT2 and NT-v2, and the two pre-trained pLMs, ESM1b and
ESM2, were respectively evaluated with corresponding CDS and protein sequences as input and
fine-tuned in similar conditions for a fair comparison. In opposition to all the other tasks that are re-
gression tasks at the sequence level, the SSP task is a classification task at the amino-acid level. This
is simply performed by pLMs by predicting for each amino-acid embedding a secondary structure
from the 8 possible classes. For the Nucleotide Transformer, as tokens represent 6-mers, each token
embedding is mapped to two classification predictions corresponding to the two amino-acids that
the 6-mer represents. As DNABERT2 uses Byte Pair Encoding to tokenize nucleotides sequences,
we couldn’t retrieve any systematic mapping from tokens to amino-acids and thus couldn’t evaluate
this model over the SSP task.

Fine-tuning of the models was done using IA3 (Liu et al., 2022) parameter-efficient fine-tuning,
along with a single-layer classification or regression head. IA3 scales activations by a learnable
vector, introducing a number of parameters approximately 0.1% of the total number of parameters.
Models were fine-tuned with a batch size of 8. Adam optimizer was used with a learning rate of
0.003. Models were evaluated at fixed intervals over the validation set during training. Checkpoints
with the highest R2 for regression and lowest cross-entropy loss for classification over the validation
set were saved and evaluated on the test set.

5 IMPACT OF CODON USAGE ON GENOMICS MODELS

We initiated our study by evaluating the impact of having access to the true CDS sequence on
genomic language models performance. To answer that question, we follow a procedure similar to
the one presented in CaLM (Outeiral & Deane, 2022). We fine-tune the genomics language models
on all tasks, excluding SSP for DNABERT2 as it couldn’t be evaluated on that task, in three different
settings: (1) on ”true” curated CDS, (2) on sequences obtained by respecting codon frequencies from
the true CDS but by permuting codons and (3) on sequences obtained by uniformly sampling codons.
We report the obtained performance on the test sets of each task in Figure 1.
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We observe that on most tasks, having access to the ”true” CDS improves the performance over
sequences obtained by sampling codons from their natural frequencies, thus justifying the need for
our curated dataset. We also observe that randomly sampling codons yields degraded and close to
zero performance on the Beta-Lactamase prediction task. Interestingly, we observe that Nucleotide
Transformer v2 seems to be more robust than DNABERT to the codon distributions shift which
might be explained by respectively the usage of 6-mers tokenization compared to BPE.

6 GENOMIC VS PROTEIN LANGUAGE MODELS

b Protein Language Model pre-training

c Performance per task

Genomics Language Model pre-traininga

Figure 1: Genomic Language Models are Competive on Protein Tasks
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Figure 2: Genomic Language Models are Competitive on Protein Tasks. Evaluation results
of Nucleotide Transformer v2 500M, DNABERT2, ESM2 650M, and ESM1-b 650M on the test
datasets of the proposed tasks. The metrics used to measure performance were chosen to match
previous benchmarks and include Spearman correlation ρ, R2, and accuracy, with a higher value
indicating better performance for all metrics. Notably NTv2, matches or supersedes pLMs on 3 of
the 5 tasks.

We compared the four aforementioned models over the five tasks and reported the performance
in Figure 2 (see also Supplementary Table 1). First, we observe that the Nucleotide Transformer
v2 matches or outperforms its DNABERT2 gLM counterpart on all the protein downstream tasks,
confirming the recently published results on genomics downstream tasks (Dalla-Torre et al., 2023).
Interestingly, we also observe that ESM2 and ESM1b seem to have comparable performance over
these five tasks.

We observe that the Nucleotide Transformer matches the performance of its pLMs counterparts on
the fluorescence prediction and stability prediction tasks. This suggests that despite the distribution
shift between the raw genes seen during training by gLMs and the true CDS sequences, these models
are able to capture protein features to the same extent than protein models. However, the Nucleotide
Transformer and DNABERT2 models underperform on the beta-lactamase activity prediction and
SSP tasks. This might suggest that gLMs can capture global patterns in protein sequences but fail to
capture finer-grain effects such as structure or the impact of single point mutations.

Finally, we observe that both the Nucleotide Transformer and DNABERT2 models outperform sig-
nificantly ESM models on the melting point prediction tasks. We propose detailed analysis about
this result in the next section.

7 MELTING POINT PREDICTION TASK ANALYSIS

We showed that gLMs outperforms significantly their pLM counterpart on the melting point predic-
tion task. A similar behavior has been reported for cLMs (Outeiral & Deane, 2022). This motivated
us to analyse the disparity between gLMs and pLMs performance on this task. In particular, we
explored whether the superior performance of gLMs can be attributed to a biological phenomenon
such as codon usage, or whether it is exploiting a “superficial” feature unique to CDS data. Here we
define superficial as information readily available that does not contribute to a better understanding
of proteins.
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In investigating impact of codon usage reported in Figure 1, we found that in the absence of codon
usage information the NT-v2 performance drops below that of ESM, the gLM achieving an accuracy
of only 0.64 compared to the pLM’s 0.72. This result suggests that evaluated on the true CDS NT-
v2 is utilizing codon frequencies. We further explored if the improved performance on the melting
point prediction task could be related to additional sequence features. One indication that the NT-v2
might be exploiting superficial features of CDS would be if it can achieve the similar performance
using only global sequence information. The motivation is that a biological phenomenon regarding
codon usage would likely depend on their absolute and relative locations. To test this we developed
two hypotheses around the use of global sequence information.

7.1 THE GC-CONTENT HYPOTHESIS.

We hypothesized that the NT-v2 may use GC-content to influence protein melting point prediction.
The GC-content of a genomic sequence indicates the proportion of guanine (G) or cytosine (C)
bases. G-C base pairs, featuring three hydrogen bonds, are more stable than A-T base pairs with two
hydrogen bonds. Higher GC-content leads to higher melting temperatures in equal-length sequences.
To test this hypothesis, we augmented both ESM-2 and NT-v2 with the sequence’s GC-content
information by appending the normalized GC-content to the embeddings before making the melting
point prediction. Although this addition moderately improves performance with an increase in R2

from 0.72 to 0.74, the model still lags behind NT-v2 (Supplementary Fig. 2a). Augmenting NT-v2
with the same information does not lead to any increase in performance. This suggests that NT-v2
already has access to GC-content information.

7.2 THE SPECIES-LEVEL CONDITIONING HYPOTHESIS.

We next explored if the NT-v2 may exploit codon usage bias to condition on the species the sequence
was derived from. The melting point prediction dataset consists of proteins from thirteen different
species ranging from unicellular E. coli, to mice and humans. Proteins of different species have
distinct melting point profiles and identifiable codon preferences (Supplementary Fig. 2b). To test
this hypothesis, first we verify that gLM can better identify species from sequence. We finetuned
NT-v2 and ESM-2 on the task of species identification and found that NT achieves an accuracy
of 0.95 while ESM-2 achieves an accuracy of only 0.81 (Supplementary Fig. 2d,e). Additionally,
we showed that the t-SNE for pretrained embeddings of models reveal that gLM embeddings are
strongly structured by species while pLM are not (Supplementary Fig. 2c).

To test whether species information may account for the difference in performance we augmented
both ESM-2 and NT-v2 with the species information of each sequence and evaluate test set per-
formance. This augmentation was done by appending a one-hot species-identifying vector to the
embeddings of each model. We find that augmenting ESM-2 with species information increases
performance from an R2 value of 0.72 to 0.79 (Supplementary Fig. 2a). This closes most of the gap
with the NT-v2 trained from curated CDS and brings the model to the performance of NT-v2 trained
with permutated codons (no local information) which has an R2 of 0.80. In contrast, augment-
ing NT-v2 with species does not result in an improvement in performance, suggesting that NT-v2
achieves the majority of its advantage via conditioning on species information, which it learned
during pre-training.

Using these findings we finally tested if augmenting ESM-2 with both global attributes (GC-content
and species) could recover the performance of NT-v2. We found ESM-2 achieved a similar perfor-
mance of 0.79, while, once more, NT-v2 showed no change in performance. Our results demonstrate
that although there are additive benefits for ESM-2 from having both features, there still exists a gap
in performance with NT-v2 (Supplementary Fig. 2a). We presume this advantage is coming from
local codon interaction information present in the coding sequences.

8 CONCLUSION

After retrieving and curating CDS datasets for five protein downstream tasks of interest, we evalu-
ated two pLMs and two gLMs over all tasks using a standardized fine-tuning strategy. After reporting
evidence that true CDS are required for gLMs to obtain good performance, we observe that these
models match and even outperform pLMs on 3 out of the 5 tasks, while obtaining lower performance
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on the remaining 2 tasks. This suggests that gLMs might be a good starting point to build unified
foundational models for biology, but it leaves the door open to better understand how to improve
these models on tasks such as SSP. We hope that the collection and release of the five CDS datasets
will help the community to keep making progress in this field.
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A APPENDIX

b Protein Language Model pre-training

c Performance per task

Genomics Language Model pre-traininga

Figure 1: Genomic Language Models are Competive on Protein Tasks
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Supplementary Figure 1: Differences between genomic and protein language model pre-
training. We outline key differences between (a) gLM and (b) pLM pre-training that make the
task of building robust protein representations more difficult for gLMs. Unlike pLMs and cLMs,
gLM pre-training is predominantly (∼ 99%) on non-coding regions of the genome, the vast major-
ity of which (barring prokaryotic genomes) are non-contiguous, while fine-tuning and inference are
carried out with contiguous CDS. Additionally, coding regions during pre-training are not tokenized
on codons, making amino acid representations non-trivial.
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e

Models augmented with additional features Melting temperature by speciesa

Figure 4: gLMs use species codon usage bias to outperform pLMs on MPP
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Supplementary Figure 2: Genomic language models use species codon-usage bias to outperform
protein language models on melting point prediction. a) The results of appending combinations
of GC-content and Species to NT-v2 and ESM-2 embeddings during fine-tuning on the melting
point prediction task. We find that species information accounts for the majority of the disparity of
performance between ESM-2 and NT-v2. We also augment NT with the same information but see no
change in performance indicating NT-v2 already has access to this information. b) The distribution
of melting points for each species in the dataset show distinct profiles. c) Dimensionality reduction
via t-SNE of the pre-trained and fine-tuned NT-v2 and ESM-2 models demonstrates that the gLM
captures the structure of species information to a greater degree than pLM and initially acquired this
knowledge from its pre-training. d) We train ESM-2 and NT-v2 models to predict the species from
sequence via fine-tuning with a single layer classification head. We plot the f1-score, precision and
recall across species. e) Bar plot for the species classification accuracy weighted by the number of
sequences for each species. Results from both d and e confirm that NT is superior at identifying
species.
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