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Abstract

Efficient long-sequence generation is a critical
challenge for Large Language Models. While
recent sparse decoding methods improve effi-
ciency, they suffer from KV cache misalign-
ment, where approximation errors accumulate
and degrade generation quality. In this work,
we propose Rectified Sparse Attention (ReSA),
a simple yet effective method that combines
block-sparse attention with periodic dense rec-
tification. By refreshing the KV cache at fixed
intervals using a dense forward pass, ReSA
bounds error accumulation and preserves align-
ment with the pretraining distribution. Ex-
periments across math reasoning, language
modeling, and retrieval tasks demonstrate that
ReSA achieves near-lossless generation quality
with significantly improved efficiency. Notably,
ReSA delivers up to 2.42 x end-to-end speedup
under decoding at 256K sequence length, mak-
ing it a practical solution for scalable long-
context inference.

1 Introduction

The ability to process long contexts has become
a core requirement for Large Language Models,
with context lengths up to millions of tokens (Reid
et al., 2024; Yang et al., 2025). In particular, long
sequence generation has received growing atten-
tion, especially due to the demand for test-time
scaling (Guo et al., 2025; Jaech et al., 2024).

Despite this progress, efficient long-sequence
generation remains a significant challenge. In stan-
dard autoregressive decoding, each token must at-
tend to the full KV cache, leading to frequent mem-
ory access and increased 1O pressure. This bot-
tleneck severely limits throughput, especially in
long-context scenarios where memory access dom-
inates latency.

Recent works (Liu et al., 2024; Tang et al., 2024)
used sparse decoding to alleviate this issue, which
selectively attends to a subset of the context, achiev-
ing accuracy comparable to dense attention on long
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Figure 1: Sparse decoding performance becomes worse
with increasing decoding length due to error accumula-
tion of KV cache. ReSA effectively mitigates this issue
by constraining error propagation through rectification
mechanism.

inputs while reducing computational cost. How-
ever, as shown in Figure 1, they often suffer from
worse performance with increasing length. Since
computation errors accumulate in the KV cache
during sparse decoding, the attention computation
suffers from the misalignment between training and
inference, contributing to performance degradation.

In this work, we propose Rectified Sparse Atten-
tion (ReSA), a simple yet effective approach that
achieves near-lossless long-sequence generation
quality while maintaining high inference efficiency.
ReSA leverages block-sparse attention (Tang et al.,
2024) for fast retrieval and further improves mem-
ory efficiency by applying shared grouping (Yuan
et al., 2025), allowing query heads to reuse atten-
tion patterns. To address the error accumulation
issue, we introduce dense rectification, where the
sparse KV cache is periodically refreshed with a
parallel dense forward pass. This ensures that ap-
proximation errors are bounded within a constant
range, preventing long-term degradation.

We conduct experiments to demonstrate the ef-
fectiveness of ReSA. On math reasoning bench-
marks, ReSA achieves strong test-time scaling and
matches dense attention in long-sequence settings.
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Figure 2: Overview of ReSA. After completing the prefill stage, the model enters sparse decoding. Once the number
of generated tokens reaches the rectification frequency, a rectification step is performed to construct a lossless

compact KV cache, after which sparse decoding resumes.

In language modeling, ReSA significantly closes
the quality gap between sparse and dense decoding.
On the efficiency side, our approach yields up to
2.42 x end-to-end speedup under INT4 decoding
at 256K context length, showing strong practical
utility for real-world deployment.

2 Rectified Sparse Attention

ReSA primarily involves two alternating phases,
sparse decoding and periodic rectification. During
the decoding phase, we employ the group block
sparse attention mechanism, which significantly
reduces computational and memory overhead, en-
abling fast autoregressive inference. During the rec-
tification stage, the decoding tokens are forwarded
in parallel to correct approximation errors in KV
cache introduced by sparse decoding. By alternat-
ing between sparse generation and dense rectifica-
tion, ReSA enables scalable long-context inference
while ensuring the generation quality.

2.1 Group Block Sparse Attention

Self-attention mechanisms are the core component
of Transformer architectures, enabling each token
to attend to all previous tokens.

We adopt a block-sparse attention design that
selectively attends to a small number of relevant
memory blocks rather than the entire context. For-
mally, in Group-Query Attention (GQA) (Ainslie
et al., 2023), given a sequence of n tokens, the
query Q € RW>9xnxd ey K e RMnxd and
value V' € RM"%d  the block size b and block
sparse mask M € {0, 1}*"*"/® the block-sparse

attention is computed as:
GBSA(Q,K,V,M);; =
i K - M,
Q 1 > : ‘/ia
Vd
Mijk = Mij k)

softmax ( (D

GBSA adopts a query-dependent sparsity pat-
tern, where each query attends to a limited set of
key blocks determined by M. Since each selected
key block corresponds to a contiguous memory
region in the KV cache, this design ensures both
high performance and memory efficiency during
inference. Note that we further accelerate decoding
by maintaining a shared sparse pattern within each
GQA group (Yuan et al., 2025).

Block Representation Following Quest (Tang
et al., 2024), we represent the key-value memory
using blocks to enable efficient retrieval. Specifi-
cally, given a key matrix k& € R™*%, we partition it
into non-overlapping blocks of size b, where each
block contains b consecutive tokens. For the i-th
block, we compute two block descriptors:

Evlock_min,i = min (Kp.(i11y) )

Fblock_max,i = max(k;, (i+1)b)

where min(-) and max(-) are applied element-wise
across the block dimension.

Notably, the block representation is entirely
training-free, relying solely on statistical descrip-
tors. Our method remains compatible with more
advanced block representation strategies, such as
SeerAttention (Gao et al., 2024), where block keys
are fine-tuned jointly with the model to achieve
higher retrieval precision if needed.
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Figure 3: Overview of Group Block Sparse Attention. For each group of query heads, we perform average pooling
and enforce the selection of the same KV blocks across all heads within the group.

Block Selection During decoding, given a pool-
ing query ¢ € R? for each GQA group and a set
of block descriptors {(kblock_min,i) kblock_max,i)}ij\il,
we compute similarity scores following the Quest
algorithm (Tang et al., 2024). Specifically, the
score between the pooling query and block ¢ is
calculated as:

3)

d
score; = » _max (g; X (Kblock_max.i);>
7j=1

q; X (kblockfmin,i)j)

where g; denotes the j-th dimension of the pooling
query, and (kblock min,i) js (kblock max,i) j are the ] -th
dimensions of the minimum and maximum vectors
of block 7, respectively.

To select the attended blocks, we adopt a dy-
namic top-n strategy. First, a fixed number of re-
cent blocks, denoted as njocq1, are always preserved
by setting their scores to +oo, ensuring that the
latest context is available for local coherence. Sec-
ond, we enforce a minimal block number ny;, to
avoid significant performance degradation on short
sequences. Finally, the value of n is dynamically
determined based on a active ratio p, following:

n = max (Nmin, [M X p]), “4)

where M is the total number of available memory
blocks.

2.2 Dense Rectification

Transformer inference implicitly consists of two
distinct phases: context encoding, realized
through the construction of the KV cache, and next-
token prediction, realized through the forward
pass of the current token. While sparse attention
effectively approximates the next-token prediction
phase, it inevitably introduces errors. Crucially,
these prediction errors accumulate in the KV cache
during decoding, leading to compounding inaccura-
cies over long sequences. To mitigate this issue, we

propose Dense Rectification, a lightweight mech-
anism that periodically refreshes the KV cache to
maintain its quality. This design constrains error
accumulation within a constant window size and
enables efficient sparse decoding without compro-
mising generation consistency.

Rectification Algorithm Given a rectification
frequency f, we perform standard sparse decod-
ing for up to f tokens, appending newly generated
tokens into the KV cache. After every f token, we
batch these recent tokens and re-encode them using
dense attention to reconstruct an updated KV cache.
This two-phase approach — serial sparse decod-
ing followed by parallel rectification — ensures
that errors introduced by approximate attention are
corrected at regular intervals, keeping the memory
quality close to that of dense decoding. Impor-
tantly, the rectification step amortizes efficiently
over large batches, maintaining high throughput
even when dense recomputation is involved. To
maintain consistency, we also refresh the associ-
ated block keys during rectification. otherwise, the
misalignment between the block keys and the up-
dated KV cache would degrade subsequent sparse
retrieval accuracy.

Compatibility with LLM Serving Systems
Dense Rectification is naturally compatible with
modern LLM serving optimizations such as con-
tinuous batching (Yu et al., 2022) and chunked
prefill (Agrawal et al., 2023; Holmes et al., 2024).
Since rectification only requires periodic batched
re-encoding, it seamlessly fits into systems that dy-
namically group decoding and prefill workloads to
maximize GPU utilization. By maintaining a fixed
rectification frequency per request, our method
can operate within the batching and scheduling
pipelines without introducing special synchroniza-
tion barriers or inefficiencies.



Minerva Gaokao2023En OlympiadBench AIME24 AMC23  Avg
RI1-Owen-Distill 1.5B
Dense 28.7 71.6 40.8 274 65.6 46.82
StreamingLLM 29 11.2 1.8 0.0 1.9 3.56
H20 2.6 14.2 33 0.0 44 4.90
Block Sparse 29.0 67.9 38.7 21.3 60.6 43.50
ReSA 28.1 71.8 39.5 23.0 65.4 45.56
Avg Length 6390.8 4915.8 8991.6 121264  7866.4  8058.2
RI1-Qwen-Distill 7B
Dense 40.4 73.8 523 48.1 89.0 60.72
StreamingLLM 7.2 23.1 4.1 0.2 3.8 7.68
H20 29 13.9 3.1 0.0 6.3 5.24
Block Sparse 38.1 72.9 48.4 46.1 83.1 57.72
Block Sparsegense2 379 72.5 48.8 44.6 83.1 57.38
ReSA 39.7 73.5 52.3 51.1 86.0 60.52
Avg Length 4018.7 2889.9 7520.0 10474.5 57322 6127.1

Table 1: Performance comparison on math reasoning tasks. While simple sparse decoding methods show a gap with
dense decoding, ReSA achieves near lossless long-sequence generation.
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Figure 4: Top-3 next-token prediction accu-
racy with different rectification frequency.

2.3 Decoding Procedure

Our decoding procedure alternates between sparse
decoding and periodic rectification to achieve a
balance between efficiency and generation quality.
The process begins with a standard dense prefill
phase, where the initial prompt is encoded into a
complete key-value memory for subsequent decod-
ing. During the decoding phase, tokens are gen-
erated sequentially using sparse attention, which
restricts memory access to a dynamically selected
subset of context blocks. This enables fast autore-
gressive generation with reduced computational
and memory costs.

To correct for approximation errors introduced
by sparse attention, we periodically perform rec-
tification. Specifically, after a fixed number of
decoding steps, we batch the recently generated

0.80 =
0.78

>

@

£0.76

1%

<

S0.74

a —e— Dense

(e}

F0.72 ReSAp=o_8

—— ReSApzolg

0.70 == ReSA,-0.95

8K 16K 32K 48K 64K

Sequence Length

Figure 5: Top-3 next-token prediction accu-
racy with different sparsity ratio.

tokens and re-encode them using dense attention.
This refreshes the key-value memory and ensures
that accumulated errors are bounded within a con-
stant window, maintaining memory quality close
to dense decoding.

The pipeline continues by alternating between
sparse generation and rectification until the gener-
ation process completes. The design enables scal-
able long-context inference while preserving the
consistency and reliability of the generated outputs.

Memory Access Analysis In each sparse decod-
ing step, the memory access consists of two parts:
retrieving block keys for selection, proportional to
mem(KYV cache) /b, and performing sparse atten-
tion, proportional to mem(KV cache) x p, where
b denotes the block size and p denotes the spar-



sity ratio. For every f steps, a dense rectification
is performed, whose amortized cost per step is
mem (KV cache)/ f. Therefore, the average mem-
ory access per decoding step is approximated as:

1 1

Avg(mem) = mem(KV cache) x (b +p+ f> .
Compared to dense decoding, which requires ac-
cessing the entire KV cache at every step, our de-
sign achieves a theoretical memory access reduc-
tion factor of % +p+ % By adjusting b, p, and f,
the pipeline can flexibly trade-off between memory
efficiency and generation fidelity.

2.4 Kernel Implementation

We develop a custom kernel optimized for the de-
coding phase, following a split-execution strategy
similar to Flash Decoding and incorporating shared
KV fetching techniques (Yuan et al., 2025). The
key design principle is to assign each GQA group
to an individual streaming multiprocessor (SM),
ensuring efficient resource utilization and minimal
inter-SM communication.

The decoding workload is batch_size X
num_kv_heads. Given the total number of SMs
available on the GPU, the workload is split accord-
ingly to balance the computation between SMs.
The splitting is performed at the level of block in-
dices. For each decoding step, a batch of queries
typically activates kK memory blocks. We evenly
partition k active blocks among the available SMs,
so that each SM is responsible for approximately
k /split blocks. Each SM independently fetches the
required KV entries corresponding to its assigned
blocks and performs sparse attention locally. The
kernel implementation is described in Appendix A.

The design achieves high decoding throughput
by minimizing memory contention, maximizing
SM occupancy, and fully exploiting intra-GQA key
sharing during sparse decoding.

3 Experiments

We evaluate ReSA from different perspectives.
First, we make test-time scaling inference on math
reasoning tasks (Section 3.1). Second, we simulate
inference-time attention pattern on language model-
ing (Section 3.2). Third, we verify the effectiveness
on retrieval (Section 3.3) tasks. Fourth, we analyze
the inference advantages (Section 3.4, including
kernel-level and end-to-end accelerations.

We choose Qwen2.5 (Yang et al., 2024), a
widely-used standard Transformer pre-trained

model as evalutaion architectures. We apply ReSA
on all of the layers, rather than skipping the first
two layers in Quest (Tang et al., 2024). The block
size is 16 and the minimal selected block num-
ber is nyin = 16, njecal = 1 to avoid performance
degradation in short context. For longer sequences,
the default sparsity ratio is p = 0.9. The default
rectification frequency is f = 32.

3.1 Long Reasoning

We evaluate test-time scaling performance on
math reasoning tasks. The validation datasets in-
clude Minerva Math (Lewkowycz et al., 2022),
Gaokao 2023 En (Liao et al., 2024), Olympiad-
Bench (He et al., 2024), AIME24, and AMC23.
We exclude some well-known math datasets
such as GSMS8K (Cobbe et al., 2021), and
MATH (Hendrycks et al., 2021) since these
datasets’ average inference length is below 512.
We choose DeepSeek-R1-Qwen-Distill 7B (Guo
et al., 2025) as the evaluation model. The num-
ber of attention head is 28 and KV head is 4. The
hidden size is 3584 and the number of layers is 28.
The results in Table 1 show that while ReSA
achieves performance comparable to the dense
baseline, Sparse Decoding alone consistently un-
derperforms. While Streamingl.I.M (Xiao et al.,
2023) and H20 (Zhang et al., 2023) are query-
independent sparse patterns, their performances are
large behind Block Sparse methods. ReSA main-
tains near-lossless performance in long-context rea-
soning tasks, whereas Sparse Decoding leads to
performance degradation as decoding progresses.
Additionally, manually enforcing dense layers for
the first two layers does not result in a significant
improvement in math-reasoning tasks.

3.2 Language Modeling

We evaluate language modeling performance un-
der simulated sparse decoding patterns. Specifi-
cally, we divide each input sequence into two parts.
Given a total sequence length L, we split it into a
prefix of length L — x and a suffix of length x. The
prefix is processed using dense attention, while the
suffix uses sparse attention. Here, x effectively con-
trols the rectification frequency. When z = L, it
corresponds to the sparse decoding baseline, where
no rectifying is performed and the entire sequence
is encoded using sparse attention.

We conduct our experiments using long-
sequence book data. These texts are typically full-
length books, often exceeding 64k tokens, mak-



Setting QA MultiQuery FWE VT MultiKey MultiValue CWE Single Avg
Dense 0.563 0.211 0.833 0.719 0.688 0.246 0.134  1.000 0.549
ReSA,)—p95 0.500 0.180 0.740 0.719 0.750 0.238 0.125 1.000 0.531
ReSA,—p9 0.625 0.203 0.760 0.719 0.750 0.234 0.178 1.000 0.559
ReSA,—ps 0.594 0.195 0.771 0.719 0.719 0.246 0.175 1.000 0.552

Table 2: RULER benchmarks under different sparsity ratios. Dense represents the fully-attended baseline, while

ReSA,—, denotes our method with sparsity level .

Sequence Length: 16384

ReSA

Dense

Sequence Length: 65536

Sequence Length: 262144

0.0 25 50 75
Latency (ms)

10.0 0

Sparse Estimation

Latency (ms)

Il Attention

20 0 20 40 60
Latency (ms)

Rectification

Figure 6: Kernel-level latency breakdown across different sequence lengths. While Sparse Decoding achieves
effective acceleration, rectification only requires a small additional overhead.

ing them well suited for evaluating models’ perfor-
mance on long-range dependency modeling. For
each target sequence length, we use the same data
and truncate from the left to ensure that the predic-
tion tokens are perfectly aligned across all settings.
We report the top-3 accuracy computed over the
final 32 tokens of each sequence to focus on the
model’s performance in the later decoding stages.
We choose top-3 accuracy instead of perplexity
because many tokens achieve the correct top-1 pre-
diction yet still exhibit non-negligible differences
in perplexity. However, such differences have mini-
mal impact on actual generation quality. Therefore,
top-k accuracy serves as a more appropriate met-
ric in this setting, as it better reflects the model’s
practical effectiveness during decoding.

As shown in Figure 4, we compare the impact
of different rectification frequencies on model per-
plexity. The setting labeled Decode Only corre-
sponds to the case where all KV cache entries are
generated using dense attention, and sparse atten-
tion is only used for decoding. This serves as the
upper bound for ReSA. We observe that ReSA sig-
nificantly reduces the performance gap between
dense and sparse decoding. Notably, when z = 32,
the model’s performance almost approaches the
upper bound, demonstrating the effectiveness of
rectification in mitigating the error accumulation
issue inherent in sparse decoding.

In Figure 5, we further examine the effect of

different sparsity ratios under a fixed rectification
frequency of x = 32. We find that there is a notice-
able performance gap between the p = 0.98 and
p = 0.95. Although p = 0.8 sparsity achieves per-
plexity comparable to the dense setting, we adopt
p = 0.9 as the default due to its better trade-off
between performance and efficiency. Additionally,
since effective block selection strategies can lead
to higher achievable sparsity, our method can be
further combined with advanced attention selec-
tion mechanisms such as SeerAttention (Gao et al.,
2024) to enhance runtime efficiency.

3.3 Long-Sequence Retrieval

We conduct experiments on the RULER benchmark
to further evaluate the impact of different sparsity
levels. Unlike the long-sequence generation tasks,
where rectification plays a critical role in mitigating
cumulative error, the RULER benchmark focuses
on relatively short output sequences. As a result,
the final accuracy is primarily determined by the
quality of the sparse attention estimation.

Results are presented in Table 2. We observe
that as the sparsity ratio increases from p = 0.95
to p = 0.9, there is a consistent improvement in
average accuracy, with ReSA,,— 9 achieving com-
parable performance to the dense baseline (0.559
vs. 0.549). The performance under p = 0.8 re-
mains similar to that under p = 0.9, indicating that
moderate increases in sparsity do not substantially
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degrade accuracy in short-generation settings. Con-
sidering that a lower sparsity ratio generally leads
to faster inference, ReSA,—q g represents a better
trade-off between performance and efficiency on
the RULER benchmark.

3.4 Inference Efficiency

We evaluate the efficiency of ReSA on standard
GPU hardware. Specifically, we use Qwen-2.5
7B as the evaluation model and conduct all ex-
periments on NVIDIA A100-80G GPUs. The pri-
mary baseline is FlashAttention, a highly optimized
dense attention implementation. To ensure a fair
comparison and prevent memory overflow issues
caused by excessively large KV caches during long-
sequence evaluation, we adopt a shared KV cache
strategy across all layers during efficiency mea-
surements. The batch size is fixed at 8 by default
throughout all experiments.

For latency measurement, we report the CUDA
kernel execution time, excluding CPU-side schedul-
ing overhead. This setup more accurately reflects
the real-world inference scenario, as the CPU over-
head can be effectively optimized away through
techniques such as CUDA graph capture.

3.4.1 Attention Efficiency

Figure 6 shows the detailed latency breakdown
across different sequence lengths (16k, 64k, and

256k tokens). We compare ReSA, and dense at-
tention under the same settings. The latency is
decomposed into three parts: sparse estimation,
attention computation, and rectification overhead.

Compared to dense attention, ReSA significantly
reduces the total latency, especially at longer se-
quence lengths. As the sequence grows, dense
attention exhibits longer latency with increasing
context length, leading to substantial latency in-
crease, while ReSA maintains much flatter scaling
due to its sparsified attention computation.

Moreover, sparse estimation and attention com-
putation consume comparable amounts of time, be-
cause the memory access pattern for sparse estima-
tion scales with mem(KV cache) /block, while for
attention it scales with mem(KV cache) x p. Given
our experimental settings (block = 16, p = 0.9),
both operations operate on similar memory vol-
umes. Notably, under fixed block size, further in-
creasing the sparsity ratio can not bring significant
speed-up.

The overhead of rectification is relatively small
compared with sparse decoding part. Specifically,
the rectification module accounts for up to 32.7%
of the total attention-related latency at 256k lengths,
while at 64k, this proportion drops to 28.9%. When
the sequence length is scaling, the latency ratio will
converge to the memory access ratio 1/f. These
results indicate that while sparse estimation and
attention computation remain efficient, the rectifi-
cation does not bring big overhead.

3.4.2 End-to-End Efficiency

We further evaluate the end-to-end throughput of
ReSA in both FP16 and INT4 precision settings.
For the INT4 experiments, we leverage the Marlin
kernel (Frantar et al., 2024) for low-bit matmul.
The matmul weight is quantized with group-wise
scaling. The group size is 128.

Figure 7 and Figure 8 report the throughput
across different context lengths (4K, 16K, 64K, and
256K tokens) under FP16 and INT4 settings, re-
spectively. Consistent with the kernel-level results,
ReSA significantly improves the overall through-
put as the sequence length grows, achieving up to
2.28x speedup over dense attention in FP16 and
2.44x in INT4 at 256K context length.

Notably, the benefits of ReSA become more
prominent at longer sequences due to the quadratic
scaling bottleneck of dense attention, while the
overhead of sparse estimation and rectification
remains modest even under quantized inference.
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Figure 9: Ablation studies on different rectification frequencies f and sparsity ratios p across five math reasoning
benchmarks. ReSA consistently improves over the sparse baseline. Frequencies f = 32 or f = 64 achieve the best

trade-off between performance and overhead.

These results demonstrate that ReSA is highly ef-
fective in improving real-world end-to-end genera-
tion speed across different precision levels.

3.5 Ablation Studies

We conduct ablation studies to examine the effect
of rectification frequency and sparsity ratio on per-
formance. As shown in Figure 9, we evaluate ReSA
across five math reasoning benchmarks under vary-
ing sparsity levels (p € {0.9,0.95,0.98}) and rec-
tification frequencies (f € {16, 32,64, 128}).

Compared to the sparse decoding baseline, ReSA
consistently outperforms the baseline across all
sparsity levels. Notably, when the attention com-
putation ratio is reduced to 0.1, ReSA achieves
accuracy that is remarkably close to the dense de-
coding upper bound. This demonstrates that ReSA
effectively mitigates the quality drop typically as-
sociated with sparse decoding while maintaining
high computational efficiency.

Among the frequencies, f = 32 achieves accu-
racy close to the dense baseline on most datasets,
striking a favorable balance between quality and
efficiency. While f = 16 offers marginal gains, it
incurs higher rectification overhead and is therefore
less practical. Notably, even with f = 128, a large
portion of the performance gain is retained, high-
lighting the robustness of the rectification mecha-
nism under infrequent updates.

4 Related Work

Sparse Attention Recent efforts in sparse de-
coding for large language models can be broadly
categorized into training-free and training-aware
approaches. Training-free methods enhance in-
ference efficiency without substantial retraining.
Quest (Tang et al., 2024) and InfLLM (Xiao et al.,
2024) both adopt query-aware block-sparse atten-
tion, selectively retrieving critical memory blocks

based on query relevance. MagicPig (Chen et al.,
2024) and ClusterKV (Tactic) (Liu et al., 2024)
employ similarity-based techniques, using hashing
or clustering to approximate attention relevance.
In contrast, training-aware architectures such as
NSA (Yuan et al., 2025) and MoBA (Lu et al.,
2025) integrate sparsity into model design, aligning
structures with hardware during pretraining. Our
method complements training-free sparse attention
by improving memory quality through lightweight
rectification, avoiding the high retraining cost re-
quired by training-aware approaches.

Speculative Decoding Speculative decod-
ing (Leviathan et al., 2023) accelerates generation
by drafting multiple tokens and verifying them
with the target model. Methods like Medusa (Cai
et al., 2024) and EAGLE (Li et al., 2024) reuse
the target model’s hidden states for drafting. Tri-
Force (Sun et al., 2024) and MagicDec (Sadhukhan
et al., 2024) propose self-speculation, using the
model’s own sparse KV cache for drafting and a
dense cache for verification. While sharing similar
compute characteristics with sparse KV-based self-
speculation, ReSA avoids per-token accept/reject
decisions and resampling overhead. In Appendix B,
we compare ReSA and self-speculation in detail.

5 Conclusion

We introduced Rectified Sparse Attention, a simple
yet effective method for efficient long-sequence
generation. ReSA combines group block sparse
attention for decoding latency, and dense rectifica-
tion to bound error accumulation. Extensive exper-
iments on math reasoning and language modeling
tasks show that ReSA achieves near-lossless perfor-
mance compared to dense decoding, delivering up
to 2.42 x inference speedup at 256K context length.
These results highlight ReSA’s practical effective-
ness in long-context language model deployment.



Limitations

Our current implementation has not yet been inte-
grated with standard LLM inference frameworks
such as vLLM or SGLang, which may limit the im-
mediate applicability of our method in real-world
deployment scenarios. Additionally, our study fo-
cuses solely on the training-free setting to ensure a
fair comparison across different attention strategies.
Extending our approach to training-based sparse
attention remains an important direction for future
work.
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A Pseudo Code of Flash Decoding Kernel

The proposed group block sparse attention (Sec-
tion 2.1) can be easily integrated into the Flash
Decoding (Dao et al., 2023) kernel implementation.
The modified parts are highlighted as follows.

B Comparison with Self-Speculation

As discussed in Section 4, ReSA shares simi-
lar computational characteristics with sparse KV
cache-based self-speculation. The rectification
phase in ReSA resembles the verification phase
used in self-speculative methods. However, un-
like these methods, ReSA does not rely on output
logits to make per-token accept / reject decisions.
This design choice is motivated by the observation
that, when sparse attention achieves high genera-
tion quality, this kind of token-wise strict verifi-
cation can significantly increase latency without
providing proportionate accuracy gains.

To validate this, we compare ReSA and sparse
KV-based self-speculation on mathematical rea-
soning tasks. We set the speculation length to 16,
meaning that the model drafts 16 tokens using the
sparse KV cache. Similarly, we set ReSA’s recti-
fication frequency to 16. Across all tasks, ReSA
achieves nearly 2x speedup over self-speculation
while maintaining comparable accuracy. This is
because, in each verification step of speculative
decoding, only about 8 tokens are typically ac-
cepted—effectively halving the generation rate
compared to ReSA. Although this strict verifica-
tion ensures that speculative decoding matches the
accuracy of dense attention, we have previously
shown that ReSA also approaches the accuracy of
dense attention. Therefore, we believe that the
marginal accuracy gains of speculative decoding
do not justify its substantial latency overhead.
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Algorithm 1 Flash Decoding with Block-Sparse Attention

Require: Queries @), Keys K, Values V, block_indices
Ensure: Attention outputs Outpartial, l0gSUMpartial, Out
1: for Grid indexed by (num_splits, num_kv_heads, batch_size) do
Load query vectors ¢ in a GQA group
3 Compute partial_block_indices with block_indices and num_splits
4 Initialize accumulators: m; < —oo, I; < 1.0, acc <+ 0
5 for block_id in partial_block_indices do
6: Load keys k and values v from KV cache in block block_id
7
8
9

N

Compute scaled attention scores gk < (gk) x sm_scale
Apply masking to invalid positions (¢gk <— —1e6)
: Compute and update m;, l;, acc
10:  end for
11:  Store partial logsum and attention outputs into logsum,,,ia1, Oubpartial
12: end for
13: Combine different splits Combine(logsumpartial, Outpartial, Out)
14: return Attention output tensor Out

Task Sparse KV Self-Spec. Rectified Sparse Attention
Minerva 1x 1.93x
Gaokao2023En Ix 1.87x
OlympiadBench 1x 1.98x%
AIME24 1x 1.96x
AMC23 1x 1.86x
Average 1x 1.92x

Table 3: Decoding speedup comparison. We set the throughput of self-speculation as baseline. ReSA achieves
larger speedup compared with sparse self-speculative decoding.
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