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Abstract001

Efficient long-sequence generation is a critical002
challenge for Large Language Models. While003
recent sparse decoding methods improve effi-004
ciency, they suffer from KV cache misalign-005
ment, where approximation errors accumulate006
and degrade generation quality. In this work,007
we propose Rectified Sparse Attention (ReSA),008
a simple yet effective method that combines009
block-sparse attention with periodic dense rec-010
tification. By refreshing the KV cache at fixed011
intervals using a dense forward pass, ReSA012
bounds error accumulation and preserves align-013
ment with the pretraining distribution. Ex-014
periments across math reasoning, language015
modeling, and retrieval tasks demonstrate that016
ReSA achieves near-lossless generation quality017
with significantly improved efficiency. Notably,018
ReSA delivers up to 2.42× end-to-end speedup019
under decoding at 256K sequence length, mak-020
ing it a practical solution for scalable long-021
context inference.022

1 Introduction023

The ability to process long contexts has become024

a core requirement for Large Language Models,025

with context lengths up to millions of tokens (Reid026

et al., 2024; Yang et al., 2025). In particular, long027

sequence generation has received growing atten-028

tion, especially due to the demand for test-time029

scaling (Guo et al., 2025; Jaech et al., 2024).030

Despite this progress, efficient long-sequence031

generation remains a significant challenge. In stan-032

dard autoregressive decoding, each token must at-033

tend to the full KV cache, leading to frequent mem-034

ory access and increased IO pressure. This bot-035

tleneck severely limits throughput, especially in036

long-context scenarios where memory access dom-037

inates latency.038

Recent works (Liu et al., 2024; Tang et al., 2024)039

used sparse decoding to alleviate this issue, which040

selectively attends to a subset of the context, achiev-041

ing accuracy comparable to dense attention on long042
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Figure 1: Sparse decoding performance becomes worse
with increasing decoding length due to error accumula-
tion of KV cache. ReSA effectively mitigates this issue
by constraining error propagation through rectification
mechanism.

inputs while reducing computational cost. How- 043

ever, as shown in Figure 1, they often suffer from 044

worse performance with increasing length. Since 045

computation errors accumulate in the KV cache 046

during sparse decoding, the attention computation 047

suffers from the misalignment between training and 048

inference, contributing to performance degradation. 049

In this work, we propose Rectified Sparse Atten- 050

tion (ReSA), a simple yet effective approach that 051

achieves near-lossless long-sequence generation 052

quality while maintaining high inference efficiency. 053

ReSA leverages block-sparse attention (Tang et al., 054

2024) for fast retrieval and further improves mem- 055

ory efficiency by applying shared grouping (Yuan 056

et al., 2025), allowing query heads to reuse atten- 057

tion patterns. To address the error accumulation 058

issue, we introduce dense rectification, where the 059

sparse KV cache is periodically refreshed with a 060

parallel dense forward pass. This ensures that ap- 061

proximation errors are bounded within a constant 062

range, preventing long-term degradation. 063

We conduct experiments to demonstrate the ef- 064

fectiveness of ReSA. On math reasoning bench- 065

marks, ReSA achieves strong test-time scaling and 066

matches dense attention in long-sequence settings. 067

1



Prefilling

Block Sparse Decoding

Dense Rectification

Block Sparse Decoding

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

Attended Token Ignored Token Cached by Dense Attention Cached by Sparse Attention

Refresh KV caches 

with dense attention 

every 𝑓 timesteps (only 

for the last 𝑓 tokens)

Figure 2: Overview of ReSA. After completing the prefill stage, the model enters sparse decoding. Once the number
of generated tokens reaches the rectification frequency, a rectification step is performed to construct a lossless
compact KV cache, after which sparse decoding resumes.

In language modeling, ReSA significantly closes068

the quality gap between sparse and dense decoding.069

On the efficiency side, our approach yields up to070

2.42× end-to-end speedup under INT4 decoding071

at 256K context length, showing strong practical072

utility for real-world deployment.073

2 Rectified Sparse Attention074

ReSA primarily involves two alternating phases,075

sparse decoding and periodic rectification. During076

the decoding phase, we employ the group block077

sparse attention mechanism, which significantly078

reduces computational and memory overhead, en-079

abling fast autoregressive inference. During the rec-080

tification stage, the decoding tokens are forwarded081

in parallel to correct approximation errors in KV082

cache introduced by sparse decoding. By alternat-083

ing between sparse generation and dense rectifica-084

tion, ReSA enables scalable long-context inference085

while ensuring the generation quality.086

2.1 Group Block Sparse Attention087

Self-attention mechanisms are the core component088

of Transformer architectures, enabling each token089

to attend to all previous tokens.090

We adopt a block-sparse attention design that091

selectively attends to a small number of relevant092

memory blocks rather than the entire context. For-093

mally, in Group-Query Attention (GQA) (Ainslie094

et al., 2023), given a sequence of n tokens, the095

query Q ∈ Rh×g×n×d, key K ∈ Rh×n×d, and096

value V ∈ Rh×n×d, the block size b and block097

sparse mask M ∈ {0, 1}h×n×n/b, the block-sparse098

attention is computed as: 099

GBSA(Q,K, V,M)ij =

softmax

(
QijK

⊤
i ·M i√
d

)
· Vi,

M ijk = Mij⌊k/b⌋

(1) 100

GBSA adopts a query-dependent sparsity pat- 101

tern, where each query attends to a limited set of 102

key blocks determined by M . Since each selected 103

key block corresponds to a contiguous memory 104

region in the KV cache, this design ensures both 105

high performance and memory efficiency during 106

inference. Note that we further accelerate decoding 107

by maintaining a shared sparse pattern within each 108

GQA group (Yuan et al., 2025). 109

Block Representation Following Quest (Tang 110

et al., 2024), we represent the key-value memory 111

using blocks to enable efficient retrieval. Specifi- 112

cally, given a key matrix k ∈ Rn×d, we partition it 113

into non-overlapping blocks of size b, where each 114

block contains b consecutive tokens. For the i-th 115

block, we compute two block descriptors: 116

kblock_min,i = min(kib:(i+1)b)

kblock_max,i = max(kib:(i+1)b)
(2) 117

where min(·) and max(·) are applied element-wise 118

across the block dimension. 119

Notably, the block representation is entirely 120

training-free, relying solely on statistical descrip- 121

tors. Our method remains compatible with more 122

advanced block representation strategies, such as 123

SeerAttention (Gao et al., 2024), where block keys 124

are fine-tuned jointly with the model to achieve 125

higher retrieval precision if needed. 126
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Figure 3: Overview of Group Block Sparse Attention. For each group of query heads, we perform average pooling
and enforce the selection of the same KV blocks across all heads within the group.

Block Selection During decoding, given a pool-127

ing query q ∈ Rd for each GQA group and a set128

of block descriptors {(kblock_min,i, kblock_max,i)}Mi=1,129

we compute similarity scores following the Quest130

algorithm (Tang et al., 2024). Specifically, the131

score between the pooling query and block i is132

calculated as:133

scorei =
d∑

j=1

max
(
qj × (kblock_max,i)j ,

qj × (kblock_min,i)j
) (3)134

where qj denotes the j-th dimension of the pooling135

query, and (kblock min,i)j , (kblock max,i)j are the j-th136

dimensions of the minimum and maximum vectors137

of block i, respectively.138

To select the attended blocks, we adopt a dy-139

namic top-n strategy. First, a fixed number of re-140

cent blocks, denoted as nlocal, are always preserved141

by setting their scores to +∞, ensuring that the142

latest context is available for local coherence. Sec-143

ond, we enforce a minimal block number nmin to144

avoid significant performance degradation on short145

sequences. Finally, the value of n is dynamically146

determined based on a active ratio p, following:147

n = max (nmin, ⌈M × p⌉) , (4)148

where M is the total number of available memory149

blocks.150

2.2 Dense Rectification151

Transformer inference implicitly consists of two152

distinct phases: context encoding, realized153

through the construction of the KV cache, and next-154

token prediction, realized through the forward155

pass of the current token. While sparse attention156

effectively approximates the next-token prediction157

phase, it inevitably introduces errors. Crucially,158

these prediction errors accumulate in the KV cache159

during decoding, leading to compounding inaccura-160

cies over long sequences. To mitigate this issue, we161

propose Dense Rectification, a lightweight mech- 162

anism that periodically refreshes the KV cache to 163

maintain its quality. This design constrains error 164

accumulation within a constant window size and 165

enables efficient sparse decoding without compro- 166

mising generation consistency. 167

Rectification Algorithm Given a rectification 168

frequency f , we perform standard sparse decod- 169

ing for up to f tokens, appending newly generated 170

tokens into the KV cache. After every f token, we 171

batch these recent tokens and re-encode them using 172

dense attention to reconstruct an updated KV cache. 173

This two-phase approach — serial sparse decod- 174

ing followed by parallel rectification — ensures 175

that errors introduced by approximate attention are 176

corrected at regular intervals, keeping the memory 177

quality close to that of dense decoding. Impor- 178

tantly, the rectification step amortizes efficiently 179

over large batches, maintaining high throughput 180

even when dense recomputation is involved. To 181

maintain consistency, we also refresh the associ- 182

ated block keys during rectification. otherwise, the 183

misalignment between the block keys and the up- 184

dated KV cache would degrade subsequent sparse 185

retrieval accuracy. 186

Compatibility with LLM Serving Systems 187

Dense Rectification is naturally compatible with 188

modern LLM serving optimizations such as con- 189

tinuous batching (Yu et al., 2022) and chunked 190

prefill (Agrawal et al., 2023; Holmes et al., 2024). 191

Since rectification only requires periodic batched 192

re-encoding, it seamlessly fits into systems that dy- 193

namically group decoding and prefill workloads to 194

maximize GPU utilization. By maintaining a fixed 195

rectification frequency per request, our method 196

can operate within the batching and scheduling 197

pipelines without introducing special synchroniza- 198

tion barriers or inefficiencies. 199
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Minerva Gaokao2023En OlympiadBench AIME24 AMC23 Avg

R1-Qwen-Distill 1.5B
Dense 28.7 71.6 40.8 27.4 65.6 46.82

StreamingLLM 2.9 11.2 1.8 0.0 1.9 3.56
H2O 2.6 14.2 3.3 0.0 4.4 4.90
Block Sparse 29.0 67.9 38.7 21.3 60.6 43.50
ReSA 28.1 71.8 39.5 23.0 65.4 45.56

Avg Length 6390.8 4915.8 8991.6 12126.4 7866.4 8058.2

R1-Qwen-Distill 7B
Dense 40.4 73.8 52.3 48.1 89.0 60.72

StreamingLLM 7.2 23.1 4.1 0.2 3.8 7.68
H2O 2.9 13.9 3.1 0.0 6.3 5.24
Block Sparse 38.1 72.9 48.4 46.1 83.1 57.72
Block Sparsedense2 37.9 72.5 48.8 44.6 83.1 57.38
ReSA 39.7 73.5 52.3 51.1 86.0 60.52

Avg Length 4018.7 2889.9 7520.0 10474.5 5732.2 6127.1

Table 1: Performance comparison on math reasoning tasks. While simple sparse decoding methods show a gap with
dense decoding, ReSA achieves near lossless long-sequence generation.
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Figure 4: Top-3 next-token prediction accu-
racy with different rectification frequency.
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Figure 5: Top-3 next-token prediction accu-
racy with different sparsity ratio.

2.3 Decoding Procedure200

Our decoding procedure alternates between sparse201

decoding and periodic rectification to achieve a202

balance between efficiency and generation quality.203

The process begins with a standard dense prefill204

phase, where the initial prompt is encoded into a205

complete key-value memory for subsequent decod-206

ing. During the decoding phase, tokens are gen-207

erated sequentially using sparse attention, which208

restricts memory access to a dynamically selected209

subset of context blocks. This enables fast autore-210

gressive generation with reduced computational211

and memory costs.212

To correct for approximation errors introduced213

by sparse attention, we periodically perform rec-214

tification. Specifically, after a fixed number of215

decoding steps, we batch the recently generated216

tokens and re-encode them using dense attention. 217

This refreshes the key-value memory and ensures 218

that accumulated errors are bounded within a con- 219

stant window, maintaining memory quality close 220

to dense decoding. 221

The pipeline continues by alternating between 222

sparse generation and rectification until the gener- 223

ation process completes. The design enables scal- 224

able long-context inference while preserving the 225

consistency and reliability of the generated outputs. 226

Memory Access Analysis In each sparse decod- 227

ing step, the memory access consists of two parts: 228

retrieving block keys for selection, proportional to 229

mem(KV cache)/b, and performing sparse atten- 230

tion, proportional to mem(KV cache)× p, where 231

b denotes the block size and p denotes the spar- 232
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sity ratio. For every f steps, a dense rectification233

is performed, whose amortized cost per step is234

mem(KV cache)/f . Therefore, the average mem-235

ory access per decoding step is approximated as:236

Avg(mem) = mem(KV cache)×
(
1

b
+ p+

1

f

)
.237

Compared to dense decoding, which requires ac-238

cessing the entire KV cache at every step, our de-239

sign achieves a theoretical memory access reduc-240

tion factor of 1
b + p+ 1

f . By adjusting b, p, and f ,241

the pipeline can flexibly trade-off between memory242

efficiency and generation fidelity.243

2.4 Kernel Implementation244

We develop a custom kernel optimized for the de-245

coding phase, following a split-execution strategy246

similar to Flash Decoding and incorporating shared247

KV fetching techniques (Yuan et al., 2025). The248

key design principle is to assign each GQA group249

to an individual streaming multiprocessor (SM),250

ensuring efficient resource utilization and minimal251

inter-SM communication.252

The decoding workload is batch_size ×253

num_kv_heads. Given the total number of SMs254

available on the GPU, the workload is split accord-255

ingly to balance the computation between SMs.256

The splitting is performed at the level of block in-257

dices. For each decoding step, a batch of queries258

typically activates k memory blocks. We evenly259

partition k active blocks among the available SMs,260

so that each SM is responsible for approximately261

k/split blocks. Each SM independently fetches the262

required KV entries corresponding to its assigned263

blocks and performs sparse attention locally. The264

kernel implementation is described in Appendix A.265

The design achieves high decoding throughput266

by minimizing memory contention, maximizing267

SM occupancy, and fully exploiting intra-GQA key268

sharing during sparse decoding.269

3 Experiments270

We evaluate ReSA from different perspectives.271

First, we make test-time scaling inference on math272

reasoning tasks (Section 3.1). Second, we simulate273

inference-time attention pattern on language model-274

ing (Section 3.2). Third, we verify the effectiveness275

on retrieval (Section 3.3) tasks. Fourth, we analyze276

the inference advantages (Section 3.4, including277

kernel-level and end-to-end accelerations.278

We choose Qwen2.5 (Yang et al., 2024), a279

widely-used standard Transformer pre-trained280

model as evalutaion architectures. We apply ReSA 281

on all of the layers, rather than skipping the first 282

two layers in Quest (Tang et al., 2024). The block 283

size is 16 and the minimal selected block num- 284

ber is nmin = 16, nlocal = 1 to avoid performance 285

degradation in short context. For longer sequences, 286

the default sparsity ratio is p = 0.9. The default 287

rectification frequency is f = 32. 288

3.1 Long Reasoning 289

We evaluate test-time scaling performance on 290

math reasoning tasks. The validation datasets in- 291

clude Minerva Math (Lewkowycz et al., 2022), 292

Gaokao 2023 En (Liao et al., 2024), Olympiad- 293

Bench (He et al., 2024), AIME24, and AMC23. 294

We exclude some well-known math datasets 295

such as GSM8K (Cobbe et al., 2021), and 296

MATH (Hendrycks et al., 2021) since these 297

datasets’ average inference length is below 512. 298

We choose DeepSeek-R1-Qwen-Distill 7B (Guo 299

et al., 2025) as the evaluation model. The num- 300

ber of attention head is 28 and KV head is 4. The 301

hidden size is 3584 and the number of layers is 28. 302

The results in Table 1 show that while ReSA 303

achieves performance comparable to the dense 304

baseline, Sparse Decoding alone consistently un- 305

derperforms. While StreamingLLM (Xiao et al., 306

2023) and H2O (Zhang et al., 2023) are query- 307

independent sparse patterns, their performances are 308

large behind Block Sparse methods. ReSA main- 309

tains near-lossless performance in long-context rea- 310

soning tasks, whereas Sparse Decoding leads to 311

performance degradation as decoding progresses. 312

Additionally, manually enforcing dense layers for 313

the first two layers does not result in a significant 314

improvement in math-reasoning tasks. 315

3.2 Language Modeling 316

We evaluate language modeling performance un- 317

der simulated sparse decoding patterns. Specifi- 318

cally, we divide each input sequence into two parts. 319

Given a total sequence length L, we split it into a 320

prefix of length L−x and a suffix of length x. The 321

prefix is processed using dense attention, while the 322

suffix uses sparse attention. Here, x effectively con- 323

trols the rectification frequency. When x = L, it 324

corresponds to the sparse decoding baseline, where 325

no rectifying is performed and the entire sequence 326

is encoded using sparse attention. 327

We conduct our experiments using long- 328

sequence book data. These texts are typically full- 329

length books, often exceeding 64k tokens, mak- 330
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Setting QA MultiQuery FWE VT MultiKey MultiValue CWE Single Avg

Dense 0.563 0.211 0.833 0.719 0.688 0.246 0.134 1.000 0.549

ReSAp=0.95 0.500 0.180 0.740 0.719 0.750 0.238 0.125 1.000 0.531
ReSAp=0.9 0.625 0.203 0.760 0.719 0.750 0.234 0.178 1.000 0.559
ReSAp=0.8 0.594 0.195 0.771 0.719 0.719 0.246 0.175 1.000 0.552

Table 2: RULER benchmarks under different sparsity ratios. Dense represents the fully-attended baseline, while
ReSAp=x denotes our method with sparsity level x.
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Sequence Length: 65536
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Figure 6: Kernel-level latency breakdown across different sequence lengths. While Sparse Decoding achieves
effective acceleration, rectification only requires a small additional overhead.

ing them well suited for evaluating models’ perfor-331

mance on long-range dependency modeling. For332

each target sequence length, we use the same data333

and truncate from the left to ensure that the predic-334

tion tokens are perfectly aligned across all settings.335

We report the top-3 accuracy computed over the336

final 32 tokens of each sequence to focus on the337

model’s performance in the later decoding stages.338

We choose top-3 accuracy instead of perplexity339

because many tokens achieve the correct top-1 pre-340

diction yet still exhibit non-negligible differences341

in perplexity. However, such differences have mini-342

mal impact on actual generation quality. Therefore,343

top-k accuracy serves as a more appropriate met-344

ric in this setting, as it better reflects the model’s345

practical effectiveness during decoding.346

As shown in Figure 4, we compare the impact347

of different rectification frequencies on model per-348

plexity. The setting labeled Decode Only corre-349

sponds to the case where all KV cache entries are350

generated using dense attention, and sparse atten-351

tion is only used for decoding. This serves as the352

upper bound for ReSA. We observe that ReSA sig-353

nificantly reduces the performance gap between354

dense and sparse decoding. Notably, when x = 32,355

the model’s performance almost approaches the356

upper bound, demonstrating the effectiveness of357

rectification in mitigating the error accumulation358

issue inherent in sparse decoding.359

In Figure 5, we further examine the effect of360

different sparsity ratios under a fixed rectification 361

frequency of x = 32. We find that there is a notice- 362

able performance gap between the p = 0.98 and 363

p = 0.95. Although p = 0.8 sparsity achieves per- 364

plexity comparable to the dense setting, we adopt 365

p = 0.9 as the default due to its better trade-off 366

between performance and efficiency. Additionally, 367

since effective block selection strategies can lead 368

to higher achievable sparsity, our method can be 369

further combined with advanced attention selec- 370

tion mechanisms such as SeerAttention (Gao et al., 371

2024) to enhance runtime efficiency. 372

3.3 Long-Sequence Retrieval 373

We conduct experiments on the RULER benchmark 374

to further evaluate the impact of different sparsity 375

levels. Unlike the long-sequence generation tasks, 376

where rectification plays a critical role in mitigating 377

cumulative error, the RULER benchmark focuses 378

on relatively short output sequences. As a result, 379

the final accuracy is primarily determined by the 380

quality of the sparse attention estimation. 381

Results are presented in Table 2. We observe 382

that as the sparsity ratio increases from p = 0.95 383

to p = 0.9, there is a consistent improvement in 384

average accuracy, with ReSAp=0.9 achieving com- 385

parable performance to the dense baseline (0.559 386

vs. 0.549). The performance under p = 0.8 re- 387

mains similar to that under p = 0.9, indicating that 388

moderate increases in sparsity do not substantially 389
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Figure 7: End-to-end latency with FP16.
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Figure 8: End-to-end latency with INT4.

degrade accuracy in short-generation settings. Con-390

sidering that a lower sparsity ratio generally leads391

to faster inference, ReSAp=0.9 represents a better392

trade-off between performance and efficiency on393

the RULER benchmark.394

3.4 Inference Efficiency395

We evaluate the efficiency of ReSA on standard396

GPU hardware. Specifically, we use Qwen-2.5397

7B as the evaluation model and conduct all ex-398

periments on NVIDIA A100-80G GPUs. The pri-399

mary baseline is FlashAttention, a highly optimized400

dense attention implementation. To ensure a fair401

comparison and prevent memory overflow issues402

caused by excessively large KV caches during long-403

sequence evaluation, we adopt a shared KV cache404

strategy across all layers during efficiency mea-405

surements. The batch size is fixed at 8 by default406

throughout all experiments.407

For latency measurement, we report the CUDA408

kernel execution time, excluding CPU-side schedul-409

ing overhead. This setup more accurately reflects410

the real-world inference scenario, as the CPU over-411

head can be effectively optimized away through412

techniques such as CUDA graph capture.413

3.4.1 Attention Efficiency414

Figure 6 shows the detailed latency breakdown415

across different sequence lengths (16k, 64k, and416

256k tokens). We compare ReSA, and dense at- 417

tention under the same settings. The latency is 418

decomposed into three parts: sparse estimation, 419

attention computation, and rectification overhead. 420

Compared to dense attention, ReSA significantly 421

reduces the total latency, especially at longer se- 422

quence lengths. As the sequence grows, dense 423

attention exhibits longer latency with increasing 424

context length, leading to substantial latency in- 425

crease, while ReSA maintains much flatter scaling 426

due to its sparsified attention computation. 427

Moreover, sparse estimation and attention com- 428

putation consume comparable amounts of time, be- 429

cause the memory access pattern for sparse estima- 430

tion scales with mem(KV cache)/block, while for 431

attention it scales with mem(KV cache)×p. Given 432

our experimental settings (block = 16, p = 0.9), 433

both operations operate on similar memory vol- 434

umes. Notably, under fixed block size, further in- 435

creasing the sparsity ratio can not bring significant 436

speed-up. 437

The overhead of rectification is relatively small 438

compared with sparse decoding part. Specifically, 439

the rectification module accounts for up to 32.7% 440

of the total attention-related latency at 256k lengths, 441

while at 64k, this proportion drops to 28.9%. When 442

the sequence length is scaling, the latency ratio will 443

converge to the memory access ratio 1/f . These 444

results indicate that while sparse estimation and 445

attention computation remain efficient, the rectifi- 446

cation does not bring big overhead. 447

3.4.2 End-to-End Efficiency 448

We further evaluate the end-to-end throughput of 449

ReSA in both FP16 and INT4 precision settings. 450

For the INT4 experiments, we leverage the Marlin 451

kernel (Frantar et al., 2024) for low-bit matmul. 452

The matmul weight is quantized with group-wise 453

scaling. The group size is 128. 454

Figure 7 and Figure 8 report the throughput 455

across different context lengths (4K, 16K, 64K, and 456

256K tokens) under FP16 and INT4 settings, re- 457

spectively. Consistent with the kernel-level results, 458

ReSA significantly improves the overall through- 459

put as the sequence length grows, achieving up to 460

2.28× speedup over dense attention in FP16 and 461

2.44× in INT4 at 256K context length. 462

Notably, the benefits of ReSA become more 463

prominent at longer sequences due to the quadratic 464

scaling bottleneck of dense attention, while the 465

overhead of sparse estimation and rectification 466

remains modest even under quantized inference. 467
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Figure 9: Ablation studies on different rectification frequencies f and sparsity ratios p across five math reasoning
benchmarks. ReSA consistently improves over the sparse baseline. Frequencies f = 32 or f = 64 achieve the best
trade-off between performance and overhead.

These results demonstrate that ReSA is highly ef-468

fective in improving real-world end-to-end genera-469

tion speed across different precision levels.470

3.5 Ablation Studies471

We conduct ablation studies to examine the effect472

of rectification frequency and sparsity ratio on per-473

formance. As shown in Figure 9, we evaluate ReSA474

across five math reasoning benchmarks under vary-475

ing sparsity levels (p ∈ {0.9, 0.95, 0.98}) and rec-476

tification frequencies (f ∈ {16, 32, 64, 128}).477

Compared to the sparse decoding baseline, ReSA478

consistently outperforms the baseline across all479

sparsity levels. Notably, when the attention com-480

putation ratio is reduced to 0.1, ReSA achieves481

accuracy that is remarkably close to the dense de-482

coding upper bound. This demonstrates that ReSA483

effectively mitigates the quality drop typically as-484

sociated with sparse decoding while maintaining485

high computational efficiency.486

Among the frequencies, f = 32 achieves accu-487

racy close to the dense baseline on most datasets,488

striking a favorable balance between quality and489

efficiency. While f = 16 offers marginal gains, it490

incurs higher rectification overhead and is therefore491

less practical. Notably, even with f = 128, a large492

portion of the performance gain is retained, high-493

lighting the robustness of the rectification mecha-494

nism under infrequent updates.495

4 Related Work496

Sparse Attention Recent efforts in sparse de-497

coding for large language models can be broadly498

categorized into training-free and training-aware499

approaches. Training-free methods enhance in-500

ference efficiency without substantial retraining.501

Quest (Tang et al., 2024) and InfLLM (Xiao et al.,502

2024) both adopt query-aware block-sparse atten-503

tion, selectively retrieving critical memory blocks504

based on query relevance. MagicPig (Chen et al., 505

2024) and ClusterKV (Tactic) (Liu et al., 2024) 506

employ similarity-based techniques, using hashing 507

or clustering to approximate attention relevance. 508

In contrast, training-aware architectures such as 509

NSA (Yuan et al., 2025) and MoBA (Lu et al., 510

2025) integrate sparsity into model design, aligning 511

structures with hardware during pretraining. Our 512

method complements training-free sparse attention 513

by improving memory quality through lightweight 514

rectification, avoiding the high retraining cost re- 515

quired by training-aware approaches. 516

Speculative Decoding Speculative decod- 517

ing (Leviathan et al., 2023) accelerates generation 518

by drafting multiple tokens and verifying them 519

with the target model. Methods like Medusa (Cai 520

et al., 2024) and EAGLE (Li et al., 2024) reuse 521

the target model’s hidden states for drafting. Tri- 522

Force (Sun et al., 2024) and MagicDec (Sadhukhan 523

et al., 2024) propose self-speculation, using the 524

model’s own sparse KV cache for drafting and a 525

dense cache for verification. While sharing similar 526

compute characteristics with sparse KV-based self- 527

speculation, ReSA avoids per-token accept/reject 528

decisions and resampling overhead. In Appendix B, 529

we compare ReSA and self-speculation in detail. 530

5 Conclusion 531

We introduced Rectified Sparse Attention, a simple 532

yet effective method for efficient long-sequence 533

generation. ReSA combines group block sparse 534

attention for decoding latency, and dense rectifica- 535

tion to bound error accumulation. Extensive exper- 536

iments on math reasoning and language modeling 537

tasks show that ReSA achieves near-lossless perfor- 538

mance compared to dense decoding, delivering up 539

to 2.42× inference speedup at 256K context length. 540

These results highlight ReSA’s practical effective- 541

ness in long-context language model deployment. 542
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Limitations543

Our current implementation has not yet been inte-544

grated with standard LLM inference frameworks545

such as vLLM or SGLang, which may limit the im-546

mediate applicability of our method in real-world547

deployment scenarios. Additionally, our study fo-548

cuses solely on the training-free setting to ensure a549

fair comparison across different attention strategies.550

Extending our approach to training-based sparse551

attention remains an important direction for future552

work.553
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A Pseudo Code of Flash Decoding Kernel712

The proposed group block sparse attention (Sec-713

tion 2.1) can be easily integrated into the Flash714

Decoding (Dao et al., 2023) kernel implementation.715

The modified parts are highlighted as follows.716

B Comparison with Self-Speculation717

As discussed in Section 4, ReSA shares simi-718

lar computational characteristics with sparse KV719

cache-based self-speculation. The rectification720

phase in ReSA resembles the verification phase721

used in self-speculative methods. However, un-722

like these methods, ReSA does not rely on output723

logits to make per-token accept / reject decisions.724

This design choice is motivated by the observation725

that, when sparse attention achieves high genera-726

tion quality, this kind of token-wise strict verifi-727

cation can significantly increase latency without728

providing proportionate accuracy gains.729

To validate this, we compare ReSA and sparse730

KV-based self-speculation on mathematical rea-731

soning tasks. We set the speculation length to 16,732

meaning that the model drafts 16 tokens using the733

sparse KV cache. Similarly, we set ReSA’s recti-734

fication frequency to 16. Across all tasks, ReSA735

achieves nearly 2× speedup over self-speculation736

while maintaining comparable accuracy. This is737

because, in each verification step of speculative738

decoding, only about 8 tokens are typically ac-739

cepted—effectively halving the generation rate740

compared to ReSA. Although this strict verifica-741

tion ensures that speculative decoding matches the742

accuracy of dense attention, we have previously743

shown that ReSA also approaches the accuracy of744

dense attention. Therefore, we believe that the745

marginal accuracy gains of speculative decoding746

do not justify its substantial latency overhead.747
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Algorithm 1 Flash Decoding with Block-Sparse Attention

Require: Queries Q, Keys K, Values V , block_indices
Ensure: Attention outputs Outpartial, logsumpartial, Out

1: for Grid indexed by (num_splits, num_kv_heads, batch_size) do
2: Load query vectors q in a GQA group
3: Compute partial_block_indices with block_indices and num_splits
4: Initialize accumulators: mi ← −∞, li ← 1.0, acc← 0
5: for block_id in partial_block_indices do
6: Load keys k and values v from KV cache in block block_id
7: Compute scaled attention scores qk ← (qk)× sm_scale
8: Apply masking to invalid positions (qk ← −1e6)
9: Compute and update mi, li, acc

10: end for
11: Store partial logsum and attention outputs into logsumpartial,Outpartial
12: end for
13: Combine different splits Combine(logsumpartial,Outpartial,Out)
14: return Attention output tensor Out

Task Sparse KV Self-Spec. Rectified Sparse Attention

Minerva 1× 1.93×
Gaokao2023En 1× 1.87×
OlympiadBench 1× 1.98×
AIME24 1× 1.96×
AMC23 1× 1.86×

Average 1× 1.92×

Table 3: Decoding speedup comparison. We set the throughput of self-speculation as baseline. ReSA achieves
larger speedup compared with sparse self-speculative decoding.
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